华理概率论习题3答案

合集下载

东华理工大学概率论与数理统计练习册答案_

东华理工大学概率论与数理统计练习册答案_
第一章 概率论的基本概念
一、选择题
1.答案:(B)
2. 答案:(B)
3.答案:(C)
4. 答案:(C)
注:C成立的条件:A与B互不相容.
5. 答案:(C)
注:C成立的条件:A与B互不相容,即.
6. 答案:(D)
注:由C得出A+B=.
7. 答案:(C)
8. 答案:(D)
Байду номын сангаас
注:选项B由于
9.答案:(C)
注:古典概型中事件A发生的概率为.
.
12.答案:(D) 解:对任意的;选项C描述的是服从指数分布的随机变量的“无记忆 性”;对于指数分布而言,要求参数. 13.答案:(A) 解:选项A改为,才是正确的;
; . 14.答案:(B) 解:由于随机变量X服从(1,6)上的均匀分布,所以X的概率密度函数为.
而方程有实根,当且仅当,因此方程有实根的概率为 .
P(A|B)=.
15.答案:(D)
解:用A表示事件“密码最终能被译出”,由于只要至少有一人能译出
密码,则密码最终能被译出,因此事件A包含的情况有“恰有一人译出
密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译
出密码”,情况比较复杂,所以我们可以考虑A的对立事件“密码最终
没能被译出”,事件只包含一种情况,即“四人都没有译出密码”,
二、填空题
1.{(正,正,正),(正,正,反),(正,反,反),(反,反,
反),(反,正,正),(反,反,正),(反,正,反),(正,
反,正)}
2.或
3.0.3,0.5 解:若A与B互斥,则P(A+B)=P(A)+P(B),于是 P(B)=P(A+B)-P(A)=0.7-0.4=0.3; 若A与B独立,则P(AB)=P(A)P(B),于是 由P(A+B)=P(A)+P(B)-P(AB)=P(A)+P(B)-P(A)P(B), 得. 4.0.7 解:由题设P(AB)=P(A)P(B|A)=0.4,于是 P(AUB)=P(A)+P(B)-P(AB)=0.5+0.6-0.4=0.7. 5.0.3 解:因为P(AUB)=P(A)+P(B)-P(AB),又,所以. 6.0.6 解:由题设P(A)=0.7,P()=0.3,利用公式知 =0.7-0.3=0.4,故. 7.7/12 解:因为P(AB)=0,所以P(ABC)=0,于是 . 8.1/4 解:因为 由题设 ,

华南理工大学概率论与数理统计考试试卷及答案

华南理工大学概率论与数理统计考试试卷及答案

二、(12分)在某种牌赛中,5张牌为一组,其大小与出现的概率有关。

一付52张的牌(四种花色:黑桃、红心、方块、梅花各13张,即2-10、J=11、Q=12、K=13、A=14),求(1)同花顺(5张同一花色连续数字构成)的概率;(2)3张带一对(3张数字相同、2张数字相同构成)的概率;(3)3张带2散牌(3张数字相同、2张数字不同构成)的概率。

三、(10分)某安检系统检查时,非危险人物过安检被误认为是危险人物的概率是0.02;而危险人物又被误认为非危险人物的概率是0.05。

假设过关人中有96%是非危险人物。

问:(1)在被检查后认为是非危险人物而确实是非危险人物的概率?(2)如果要求对危险人物的检出率超过0.999概率,至少需安设多少道这样的检查关卡?四、(8分)随机变量X 服从),(2σμN ,求)0( >=a a Y X 的密度函数五、(12分)设随机变量X、Y的联合分布律为:已知E(X+Y)=0,求:(1)a,b;(2)X的概率分布函数;(3)E(XY)。

六、(10分)某学校北区食堂为提高服务质量,要先对就餐率p进行调查。

决定在某天中午,随机地对用过午餐的同学进行抽样调查。

设调查了n个同学,其中在北区食堂用过餐的学生数为m,若要求以大于95%的概率保证调查所得的就餐频率与p之间的误差上下在10% 以内,问n应取多大?七、(10分)设二维随机变量(X,Y)在区域:{}b y a x <<<<0,0上服从均匀分布。

(1)求(X,Y)的联合概率密度及边缘概率密度;(2)已知36,12==DY DX ,求参数a 、b ;(3)判断随机变量X 与Y 是否相互独立?八、(8分)证明:对连续型随机变量ξ,如果c E =3||ξ存在,则0>∀t ,3)|(|t ct P ≤>ξ。

九、(12分)设(X ,Y )的密度函数为⎩⎨⎧<<<<=其他010,10,),(y x Axy y x f 求(1)常数A ;(2)P(X<0.4,Y<1.3);(3)sY tX Ee +;(4)EX ,DX ,Cov(X ,Y)。

概率论与数理统计答案(东华大学出版)第三章第三节

概率论与数理统计答案(东华大学出版)第三章第三节

第三章 连续型随机变量及分布习题3.3(p.122)1、⑴设ξ的密度函数为()⎩⎨⎧≤>=-0,00,e x x x f x λλ求3ξη=的密度函数。

解:3x y =,31y x =,032>='x y ,y 严格单调。

由0>x ,则0>y 。

当0>y 时,()()()()3231e3--⋅='=y y h y h f y f yλξηλ ()⎪⎩⎪⎨⎧≤>=∴--0,00,e 3332y y y y f y ληλ⑵若ξ的密度函数为()x f ,求3ξη=的密度函数。

解:解法同上,()()32331-⋅=y y fy f η2、设随机变量ξ在[]1,0上服从均匀分布 ⑴求ξη21=的密度函数; 解:()[]⎩⎨⎧∈=其它,01,0,1x x f ξ, x y 2=,严格单调,由10≤≤x ,得20≤≤y 。

当20≤≤y 时,()()()()212111=⋅='=y h y h f y f ξη ()[]⎪⎩⎪⎨⎧∈=∴其它,02,0,211y y f η⑵求ξηe 2=的密度函数; 解:()[]⎩⎨⎧∈=其它,01,0,1x x f ξ,x y e =,y x ln =严格单调,由10≤≤x ,得e 1≤≤y 。

当e 1≤≤y 时,()()()()()()yy y y f y h y h f y f 111ln ln 2=⋅='='=ξξη ()[]⎪⎩⎪⎨⎧∈=∴其它,0e ,1,12y yy f η⑶求ξηln 23-=的密度函数。

解:()[]⎩⎨⎧∈=其它,01,0,1x x f ξ, x y ln 2-=,2eyx -=严格单调,由10≤≤x ,得0>y 。

当0>y 时,()()()()2222e 21e 211e e 3y y y y f y h y h f y f ----=⋅='⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫ ⎝⎛='=ξξη()⎪⎩⎪⎨⎧>=∴-其它,00,e 2123y y f yη3、设()1,0~N ξ,求下列各随机变量函数的密度函数。

华东理工大学-概率论与数理统计-附参考答案

华东理工大学-概率论与数理统计-附参考答案

华东理工大学《概率论与数理统计》课程 期末考试试卷开课学院:理学院,专业:数学系 考试形式:闭 卷,所需时间120分钟考生姓名: 学号: 班级 任课教师一、填空题(每题4分,共计24分)1、设随机变量X 的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤≤⎨>⎪⎩,则)211(<<-X P = 0.5 ,2、设随机变量X 服从参数为λ的泊松分布,且(1)(2)1E x x --=,则λ= 13、用(,)X Y 的联合分布函数(,)F x y 表示概率(0)P Y a <≤=(,)(,0)F a F +∞-+∞4、已知随机变量221122~(,),~(,),X N Y N μσμσ且相互独立,设随机变量Z X Y =+,则~Z 221212(,)N μμσσ++ 5、121,,,n X X X 为X 的样本,~(0,)X U θ,记11n i i X X n ==∑,则EX = 2θ6、设总体X 服从正态分布2(0,2)N ,1215,,,X X X 是来自正态总体的简单随机样本,则随机变量221102211152()X X Y X X ++=++~(10,5)F二、选择题(每题3分,共计24分)1、设A 和B 是两个互斥事件,()0,()0P A P B >>,则下列结论正确的( D ) (A )()()P A B P A =; (B )A 与B 不相容; (C )()()()P AB P A P B =; (D )()0P A B =2、已知随机事件,A B 为两相互独立的随机事件,()0.6P A B ⋃=,()0.4P A =,则()P B=( B ) (A )21; (B )31; (C )41; (D )513、已知5)2(=+ηξD ,1)2(=-ηξD ,则ξ与η的协方差=),(Cov ηξ ( D )。

(A )0.2; (B )0.3; (C )0.4; (D )0.5 4、已知离散型随机变量ξ的概率分布为用切比雪夫不等式估计 ≥<-}5.1{ξξE P ( D ) 。

概率论与数理统计习题解答 华南理工大学出版社

概率论与数理统计习题解答  华南理工大学出版社
习题解答
第一章
1-7 已知10个电子管中有7个正品和3个次品,每次任意抽
取1个来测试,测试后不再放回去,直至把3个次品都找到为 止,求需要测试7次的概率。

p
C31P62 P74 P170

1 8
1-10 房间中有4个人,试问没有2个人的生日在同一个月
份的概率是多少?

p

P142 12 4
1-13 将3个球放置到4个盒子中去,求下列事件的概率:(1)
P( AC BC ) P( AC) P(BC ) P( ABC) P( A)P(C) P(B)P(C) P( A)P(B)P(C) P(C)[P( A) P(B) P( A)P(B)] P(C)P( A B) A B与C相互独立。
7、解:(1)
A={点数之和为偶数} B={点数之和等于8}
rA 18 B {(2,6) , (6,2) , (3,5) ,(5,3) ,(4,4)} P(B A) P( AB) P(B) 5 / 36 5
P( A) P( A) 18 / 36 18
8、解:设Ai={第i人破译出密码} i=1,2,3
100
100
0.9524
P(C) P(A1)P(A2)P(A3) 0.95243 0.8639
22、解: Ai={产品来自第i箱}
B={产品是合格品} C={产品经检验为合格品}
3
(1) P(B) P(B Ai )P( Ai ) i 1 20 1 12 1 17 1 20 5 3 12 4 3 17 5 3 0.775
P(C) P(C B)P(B) P(C B )P(B )

概率论第三章课后习题答案_课后习题答案

概率论第三章课后习题答案_课后习题答案

第三章 离散型随机变量率分布。

,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。

出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。

华理概率论答案第三册

华理概率论答案第三册

a ≤ Eξ ≤ b,


⎛ ⎜⎝
b
− 2
a
⎞2 ⎟⎠

证 因为 a ≤ ξ ≤ b , 所以 a ≤ Eξ ≤ b .
又因为
a−b =a− a+b ≤ξ − a+b ≤b− a+b = b−a
2
2
2
22

ξ
− a+b 2

b−a 2
, ⇒ Dξ

E
⎛ ⎜⎝
ξ

a
+ 2
b
⎞ ⎟⎠

⎛ ⎜⎝
b
− 2
∑ ∑ ∑ 解

=

k
k =0

1 2k +1
=

k⋅
k =1
1 2k +1
=
1 4
∞ k =1
k

⎛ ⎜⎝
1 2
⎞k ⎟⎠
−1

令 x=1, 则 2
∑ ∑( ) ∑ ∞

k ⋅ xk−1 =
k =1
k =1
xk

=
⎛ ⎝⎜
∞ k =1
xk
⎞′ ⎟⎠
=
⎛1 ⎝⎜ 1− x
−1⎞⎟⎠′
=
1 (1− x)2
∫ 解 Eξ = +∞ xe−xdx = 1; 0 E(2ξ + 3) = 2Eξ + 3 = 5 ;
∫ E(ξ + e−2ξ ) = Eξ + E(e−2ξ ) = 1+ +∞ e−2x ⋅ e−xdx = 4 ;
0

华东理工大学概率论答案

华东理工大学概率论答案

华东理工大学概率论答案【篇一:华东理工大学概率论答案-15,16】选择题:1. 设随机变量?密度函数为p(x),则??3??1的密度函数p?(y)为( a )。

1y?1y?11y?1) b、3p() c、p(3(y?1)) d、3p() a、p(333332. 设随机变量?和?相互独立,其分布函数分别为f?(x) 与f?(y),则 ?=max(?,?) 的分布函数f?(z) 等于( b ) a.max{f?(z),f?(z)}b. f?(z)f?(z)1c.[f?(z)?f?(z)] d. f?(z)?f?(z)?f?(z)f?(z)2二. 填空:已知?~n(0,1),??? 三. 计算题, 则?的概率密度为??(y)?3y22?e?y62。

1. 已知随机变量?~u[0,2],求???2的概率密度。

?p{?y???解: f?(y)?p{??y}??0?2y}y?0?f?(y)?f?(?y)??y?0?0y?0y?0?1p(y)?p?(?y)?故p?(y)??2y??0????1y?0?=?4yy?0??00?y?4其他2. 设随机变量x求y?sin(?2x)的概率分布。

x?4k?1x?2k k?1,2,? x?4k?3??1x??解:由于sin()??02?1?故随机变量y的可能取值为:-1,0,1。

随机变量y的p{y??1}??p{x?4k?1}?? k?1k?1??124k?1?112??; 8115?124p{y?0}??p{x?2k}??k?1?1111???; 2k143k?12?122??p{y?1}??p{x?4k?3}??k?1k?1?124k?3?118??, 2115于是随机变量y的分布律为:3.设?~u(0,1) ,求? =?解:对应于? =?ln?ln?的分布。

lnx,y?x?e(lnx)2?f(x) ,由于f(x)?e(lnx)21?2lnx? 。

xlny当x?(0,1)时,??1x?f(y)?ef(x)?0 ,lny?1?e??1??(y)=??(x)|x?f?1(y)|(f(y))|??2ylny?0?其中当y?(??,1]时,,y?(1,??),.其它y??(y)=0是由x?(0,1)时y?(1,??) 而导出的。

华东理工大学概率论答案

华东理工大学概率论答案

华东理工大学概率论答案-2 华东理工大学概率论答案-2概率论是一门研究随机事件发生规律的数学学科。

它广泛应用于各个领域,如金融、保险、统计学等。

华东理工大学概率论是一门重要的数学课程,对于培养学生的数学思维能力和分析问题的能力有着重要的作用。

本文将对华东理工大学概率论的一些典型题目进行解答,以帮助学生更好地理解和掌握概率论的相关知识。

1.设A、B两个事件,且P(A)=0.6,P(B)=0.3,求P(A∪B)和P(A∩B)。

解:根据概率的定义,P(A∪B)表示事件A或者事件B发生的概率,P(A∩B)表示事件A和事件B同时发生的概率。

由于A、B为两个事件,所以有P(A∪B)=P(A)+P(B)-P(A∩B)。

已知P(A)=0.6,P(B)=0.3,代入上式可得P(A∪B)=0.6+0.3-P(A∩B)。

又因为P(A∪B)的取值范围为[0,1],所以有0 ≤ P(A∪B) ≤ 1。

将已知数据代入上式,可得0 ≤ 0.6+0.3-P(A∩B) ≤ 1。

化简得0.3 ≤ P(A∩B) ≤ 0.9。

所以P(A∩B)的取值范围为[0.3,0.9]。

2.设A、B两个事件,且P(A)=0.4,P(B)=0.5,且P(A∩B)=0.2,求P(A|B)和P(B|A)。

解:P(A|B)表示在事件B发生的条件下,事件A发生的概率。

P(B|A)表示在事件A发生的条件下,事件B发生的概率。

根据条件概率的定义,P(A|B)=P(A∩B)/P(B)。

已知P(A∩B)=0.2,P(B)=0.5,代入上式可得P(A|B)=0.2/0.5=0.4。

同理,根据条件概率的定义,P(B|A)=P(A∩B)/P(A)。

已知P(A∩B)=0.2,P(A)=0.4,代入上式可得P(B|A)=0.2/0.4=0.5。

所以P(A|B)=0.4,P(B|A)=0.5。

3.设A、B两个事件,且P(A)=0.6,P(B)=0.3,且A、B相互独立,求P(A∩B)和P(A∪B)。

(全)概率论与数理统计答案(东华大学出版)

(全)概率论与数理统计答案(东华大学出版)

第二章 离散型随机变量及其分布律第二节 一维离散型随机变量及其分布律习题Page 551、 一个口袋里有6只球,分别标有数字-3、-3、1、1、1、2,从中任取一个球,用ξ表示所得球上的数字,求ξ的分布律。

解答:因为ξ只能取-3、1、2,且分别有2、3、1个,所以ξ的分布律为:ξ-3 1 2 {}i P x ξ=2/63/61/62、 在200个元件中有30个次品,从中任意抽取10个进行检查,用ξ表示其中的次品数,问ξ的分布律是什么?解答:由于200个元件中有30个次品,只任意抽取10个检查,因此10个元件中的次品数可能为0、1、2到10个。

当次品数ξ为k 时,即有k 个次品时,则有10-k 个正品。

所以:ξ的分布律为:103017010200{},0,1,,10k k C C P k k C ξ-===。

3、 一个盒子中有m 个白球,n m -个黑球,不放回地连续随机地从中摸球,直到取到黑球才停止。

设此时取到的白球数为ξ,求ξ的分布律。

解答:因为只要取到黑球就停止,而白球数只有m 个,因此在取到黑球之前,所取到的白球数只可能为0m 中的任意一个自然数。

设在取到黑球时取到的白球数ξ等于k ,则第1k +次取到是黑球,以i A 表示第i 次取到的是白球;_i A 表示第i 次取到的是黑球。

则ξ的分布律为:__12112111{}()()(|)(|)11,0,1,,11k k k k P k P A A A A P A P A A P A A A m m m k n m k mn n n k n kξ++===--+-=⋅⋅⋅⋅=--+-。

4、 汽车沿街道行驶,要通过3个有红绿灯的路口,信号灯出现什么信号相互独立,且红绿灯显示时间相等。

以ξ表示该车首次遇到红灯前已通过的路口数,求ξ的分布律。

解答:因为只有3个路口,因此ξ只可能取0、1、2、3,其中{3}ξ=表示没有碰到红灯。

以i A 表示第i 个路口是红灯,因红绿灯显示时间相等,所以()1/2i P A =,又因信号灯出现什么信号相互独立,所以123,,A A A 相互独立。

东华理工大学概率论与数理统计练习册答案

东华理工大学概率论与数理统计练习册答案

第一章 概率论的基本概念一、选择题1.答案:(B ) 2. 答案:(B )解:AUB 表示A 与B 至少有一个发生,Ω-AB 表示A 与B 不能同时发生,因此(AUB)(Ω-AB)表示A 与B 恰有一个发生. 3.答案:(C )4. 答案:(C ) 注:C 成立的条件:A 与B 互不相容.5. 答案:(C ) 注:C 成立的条件:A 与B 互不相容,即AB φ=.6. 答案:(D ) 注:由C 得出A+B=Ω.7. 答案:(C )8. 答案:(D ) 注:选项B 由于11111()1()1()1()1(1())nnnnni i i i i i i i i i P A P A P A P A P A ======-=-==-=--∑∑∏∏9.答案:(C ) 注:古典概型中事件A 发生的概率为()()()N A P A N =Ω.10.答案:(A )解:用A 来表示事件“此r 个人中至少有某两个人生日相同”,考虑A 的对立事件A “此r 个人的生日各不相同”利用上一题的结论可知365365!()365365rr r rC r PP A ⋅==,故365()1365rrP P A =-.11.答案:(C ) 12.答案:(B )解:“事件A 与B 同时发生时,事件C 也随之发生”,说明A B C ⊂,故()()P AB P C ≤;而()()()()1,P A B P A P B P AB ⋃=+-≤ 故()()1()()P A P B P AB P C +-≤≤.13.答案:(D )解:由(|)()1P A B P A B +=可知2()()()1()()()1()()()(1())()(1()()())1()(1())()(1())()(1()()())()(1())()()()()()()(())()()()P A B P A B P A B P A B P B P B P B P B P A B P B P B P A P B P A B P B P B P A B P B P B P A P B P A B P B P B P A B P A B P B P B P A P B P B P B P A B P B -⋃+=+--+--+==-⇒-+--+=-⇒-+--+=2(())()()()P B P A B P A P B -⇒=故A 与B 独立. 14.答案:(A )解:由于事件A,B 是互不相容的,故()0P AB =,因此P(A|B)=()00()()P AB P B P B ==.15.答案:(D )解:用A 表示事件“密码最终能被译出”,由于只要至少有一人能译出密码,则密码最终能被译出,因此事件A 包含的情况有“恰有一人译出密码”,“恰有两人译出密码”,“恰有三人译出密码”,“四人都译出密码”,情况比较复杂,所以我们可以考虑A 的对立事件A “密码最终没能被译出”,事件A 只包含一种情况,即“四人都没有译出密码”,故111112()(1)(1)(1)(1)()543633P A P A =----=⇒=.16.答案:(B ) 解:所求的概率为()1()1()()()()()()()11111100444161638P A B C P A B C P A P B P C P AB P BC P AC P ABC =-⋃⋃=---+++-=---+++-=注:0()()0()0ABC AB P ABC P AB P ABC ⊂⇒≤≤=⇒=. 17.答案:(A )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 箱” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)11131553353638120P A P B P A B P B P A B P B P A B =++=++=.18.答案:(C )解:用A 表示事件“取到白球”,用i B 表示事件“取到第i 类箱子” 1.2.3i =,则由全概率公式知112233()()(|)()(|)()(|)213212765636515P A P B P A B P B P A B P B P A B =++=++=.19.答案:(C )解:即求条件概率2(|)P B A .由Bayes 公式知3263222711223315()(|)5(|)()(|)()(|)()(|)7P B P A B P B A P B P A B P B P A B P B P A B ===++.二、填空题1.{(正,正,正),(正,正,反),(正,反,反),(反,反,反),(反,正,正),(反,反,正),(反,正,反),(正,反,正)}2.;ABC ABC ABC ABC ABC 或AB BC AC 3.0.3,0.5解:若A 与B 互斥,则P (A+B )=P (A )+P (B ),于是 P (B )=P (A+B )-P (A )=0.7-0.4=0.3;若A 与B 独立,则P (AB )=P (A )P (B ),于是由P (A+B )=P (A )+P (B )-P (AB )=P (A )+P (B )-P (A )P (B ),得()()0.70.4()0.51()10.4P A B P A P B P A +--===--.4.0.7解:由题设P (AB )=P (A )P (B|A )=0.4,于是P (AUB )=P (A )+P (B )-P (AB )=0.5+0.6-0.4=0.7.5.0.3解:因为P (AUB )=P (A )+P (B )-P (AB ),又()()()P AB P AB P A +=,所以()()()0.60.30.3P AB P A B P B =-=-= .6.0.6解:由题设P (A )=0.7,P (AB )=0.3,利用公式AB AB A +=知()()()P AB P A P AB =-=0.7-0.3=0.4,故()1()10.40.6P AB P AB =-=-=.7.7/12解:因为P (AB )=0,所以P (ABC )=0,于是()()1()1[()()()()()()()]13/42/67/12P ABC P A B C P A B C P A P B P C P AB P BC P AC P ABC ==-=-++---+=-+= . 8.1/4解:因为()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC =++---+ 由题设22()()(),()()()(),()()()()P A P B P C P AC P A P C P A P AB P A P B P A ======,2()()()(),()0P BC P B P C P A P ABC ===,因此有293()3()16P A P A =-,解得P (A )=3/4或P (A )=1/4,又题设P (A )<1/2,故P (A )=1/4. 9.1/6解:本题属抽签情况,每次抽到次品的概率相等,均为1/6,另外,用全概率公式也可求解. 10.11260解:这是一个古典概型问题,将七个字母任一种可能排列作为基本事件,则全部事件数为7!,而有利的基本事件数为12121114⨯⨯⨯⨯⨯⨯=,故所求的概率为417!1260=.11.3/7 解:设事件A={抽取的产品为工厂A 生产的},B={抽取的产品为工厂B 生产的},C={抽取的是次品},则P (A )=0.6,P (B )=0.4,P (C|A )=0.01,P (C|B )=0.02,故有贝叶斯公式知()()(|)0.60.013(|)()()(|)()(|)0.60.010.40.027P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.12.6/11解:设A={甲射击},B={乙射击},C={目标被击中}, 则P (A )=P (B )=1/2,P (C|A )=0.6,P (C|B )=0.5, 故()()(|)0.50.66(|)()()(|)()(|)0.50.60.50.511P AC P A P C A P A C P C P A P C A P B P C B ⨯====+⨯+⨯.三、设A ,B ,C 是三事件,且0)()(,41)()()(=====BC P AB P C P B P A P ,81)(=AC P .求A ,B ,C 至少有一个发生的概率。

华南理工大学概率论与数理统计考试试卷及答案3

华南理工大学概率论与数理统计考试试卷及答案3

,考试作弊将带来严重后果!华南理工大学期末考试《概率论与数理统计》试卷(A )1. 考前请将密封线内填写清楚;允许使用计算器,所有答案请直接答在试卷上; .考试形式:闭卷;99.0)33.2(,975.0)96.1(,95.0)645.1(,9.0)285.1(=Φ=Φ=Φ=Φ(本大题10分)一个盒子中装有4个白球、6个红球,现投掷一枚均匀的骰子,骰子投掷出几点就从盒中无放回地取几个(1)所取的全是白球的概率;(2)如果已知取出的都是白球,那么骰子所掷的点数恰为3的概率是多少? A={取的全是白球},B j ={骰子投掷出j 点}1)6/1)(=j B P ,⎪⎩⎪⎨⎧>≤=4,04,)|(104j j C C B A P jjj∑=jj j B A P B P A P )|()()(=2/212))()|()()|(333A P B A P B P A B P ==7/60(本大题10分)设二维离散型随机变量(,)X Y 的分布列为(,)(1,0)(1,1)(2,0)(2,1)0.40.2X Y Pab且()0.8E XY =(1)求a 、b ;(2)求出X 的边缘分布列; (3)写出X 的分布函数。

解:(1)0.4+0.2+a+b=18.022.012022.0114.001=+=⨯⨯+⨯⨯+⨯⨯+⨯⨯=b b a EXY联立方程解得: 3.0,1.0==b a(3) X 的分布函数:⎪⎩⎪⎨⎧>≤<≤=2,121,6.01,0)(x x x x F三.(本大题10分)。

设X 服从(0,1)上均匀分布, (1)求X Y ln 1λ-=的密度函数;(2)⎪⎪⎭⎫⎝⎛4.035.025.0210~Z ,求一个)(X h ,使得)(X h Z =。

解:X 的密度函数:⎩⎨⎧>≤≤<=10,010,1)(x and x x x flnX<0(1)当0>λ,0≤y 时,()0=y F Y ,()()0==y F dydy f Y Y 当0>λ,0>y 时(){}y Y e X P y X P y F λλ->=⎭⎬⎫⎩⎨⎧<-=ln 1()y eee dx dx xf y y λλλ-+∞-===⎰⎰--11密度函数: ()()y Y Y e y F dydy f λλ-==当0<λ(不做也给分),0≤y 时(){}y Y e X P y X P y F λλ-<=⎭⎬⎫⎩⎨⎧<-=ln 1()y e e e dx dx x f yyλλλ-∞-===⎰⎰--0()()y Y Y e y F dydy f λλ--==当0<λ(不做也给分),0>y 时,()0=y F Y ,()()0==y F dydy f Y Y(2)⎪⎩⎪⎨⎧<≤<≤=xx x x h 6.0,26.025.0,125.0,0)(四.(本大题10分)。

华南理工大学概率论和数理统计课后答案

华南理工大学概率论和数理统计课后答案

1-9 设 A ={拨号不超过 3 次就能接通电话},则
P ( A) =
1 9 1 9 8 1 + × + × × = 0.3 10 10 9 10 9 8
设 B ={若记得最后一位是奇数时, 拨号不超过 3 次就能接通电话}, 则
P( B) =
1 4 1 4 3 1 + × + × × = 0.6 5 5 4 5 4 3
三个数字不含 1 或 5, 即每次只能在 2、 3、 4 中进行抽取, 共有 33 = 27 种取法,故 P ( A) =
27 = 0.216 ; 125
1 C32C4 = 12
三个数字 5 出现两次,即有
P (C ) =
12 = 0.096 125
种取法,故
.
1-12 设 A ={指定的 3 本书恰好放在一起 },10 本书的排列方法共有 10!种,而指定的 3 本书的排列方法有 3!种,剩下的 7 本书与指定 的 3 本书这一整体的排列有 8!种,故
所以
P( A1 A2 A3 ) = P( A1 ) P( A2 | A1 ) P( A3 | A1 A2 )
=
1 1 1 Cb Cb Ca +c 1 1 1 Ca + b Ca + b + c Ca + b + 2 c
=
b b+c a a + b a + b + c a + b + 2c
2-11
设 A ={这批货获得通过}, B ={样本中恰有一台次品}, A ={这批空调设备退
1-15 (1) P ( A) =
; (2) P( B) =
1 1 C22 1 C2 C 8 1-16 (1) P( A) = 2 = ; (2) P( A) = 2 4 = . C6 15 C6 15

概率论第三章答案.docx

概率论第三章答案.docx

习题3T1.而且戶{尤/=0} = 1・求&和及的联合分布律.解由P{X}X2 =0} = 1知P{X x X2 H 0} = 0.因此K和基的联合分布必形11Pi—— 122⑵注意到P{/ = 0, %. =()} =(),而戶{尤=()}・P{A\ = ()} = - ^ 0,所以X 和星 4不独立.2.-盒子中有3只黑球、2只红球和2只白球,在其中任取4只球.以X 表示取到黑球 的只数,以丫表示取到红球的只数.求/和丫的联合分布律.解 从7只球中取4球只有=35种取法.在4只球中,黑球有Z 只,红 球有丿只(余下为白球4 一,一 j 只)的取法为C ;C 扌 CjT, i = 0,1,2,3,丿=0,1,2,, + 丿 W 4.于是有C°c 2c 2 1P{X = 0y Y = 2}= 3 2 2 = — t P{X = l,Y = l}: 35 35p{x = i,y = 2} = CCG == 2,y =o}: 35 35F{X = 2,Y = 1}= WG =!£ p{x = 2,y = 2}: 35 35P{X = 3,Y = 0} =宝O, P{X = 3,Y = l]c\c\c\6-35 ■35' 广2 x^r() _ 3 「 35-35'gc ; 3 35 ~35' 厂 3「l 「0 c 3c 2c 2 2/(兀』)=^(6 -X- y),0<x<2,2< y <4,0,其它.求:⑴ 常数A ;(2) P{%<l,y<3};(3) P{%<1.5);(4) P{X + Y^4}.35 35 35 35 P{x = o,y = O } = P {X = O ,Y = I } = P {X = I ,Y = 0} = p{x = 3,y = 2} = o.xp(/f — x— 9)1 00 w p v T UH MX )V U Hm VX5:(D)」IOO IP r.—A 、—9) L r E JIC I m JI 一 r Ixp(\ Ix 19)1000=y v K=p「v i p x p (\H )/・=丄d v x sr Q )Z 20 i l A、—9)「T x p(亠— x— 9)亠T v 一・ I n(亠 — 寸)I 寸)1 Ie 〒 i i r r LZ二8 •s'尸(4—寸)T+(亠—寸)el 」Z二8ip 〔 M —寸)7 — (4 — 寸)(4— 9)1」r-—x (\ — 9)」l 00p(o w c r x )s7H (寸 w x + x s:M E l oo —en 剧 M G — 寸v/亠 V07V X V W O S-•£>黑*«匣(寸o x (z o ) w 凶论畏g O N E H )、m 逐凶心H-镒泗去皂床•寸H\ + X ®M 址(寸)4.二维随机变量(X, Y )的概率密度为/(X 』)=试确定并求P [(X,Y )E G},G:x2WyWx,0WxWl.解 由 1 = J j f (x, y)dxdy = drj , kxydy = — j 0 -^(1 - x 4)dx = — t o s 2 o 6解得k = 6. F{ (X, Y) w G} = J ; dr J : 6xydy = 3j\(x 25・设二维随机变量(X 丫)概率密度为求关于X 和丫边缘概率密度.解(儿Y )的概率密度/(x j )在区域G:OWxWl,OWyWx 外取零值•因而,图3-8第4题积分区域kxy,十0,其它.因而f(x 9y) =4.8 尹(2-x), 0, oWxWi, 0£尹£兀,其它.0<x< 1,其它.2.4(2-兀)x[ 0,0<x< 1,其它.=L •心'J'4.8j<2-x)dr,0,0<y<l,其它.2.4X3-4y + y), 0,Ovyvl,其它.4®(2 — x)4几试求:(i)x和丫的联合概率分布;(2)P{X + Y ^1}.解(1)见本章第三节三(4).(2)P{X + y Wl} = \-P{X + Y>\} = \-P{X = \,Y = \} =1-- = -.4 4解⑴由于P{X = 2} = 0.3 + 0 +0.1+ 0.2 = 0.6 以在条件x=2下Y的条件分布律为P{Y = 1\X = 2]P{^ = 2,y = l} 0.3 _£2或写成P[Y = 4\X = 2} =P{X = 2}'"0.6_P{X = 2,Y = 2} 0P{X = 2}_0.6P{X = 2,y = 3) 0.1P{X = 2}~0.6P{X = 2,r = 4} 0.20,丄61P{X = 2}0.6 3Y = k 1 2 3 4P{Y = k\X = 2}121613 若UW —1,右(7 > —1,若UW1,若u>\・习题3-21.设(X 丫)的分布律为下丫的条件分布律;(2) P{X22|yW2}.在条件於2P{Y = 2\X = 2}P{Y = 3\X = 2]到p (r ^2} = P{r = i}+P{y = 2} = o.i+o.3+o+o+o.2 = o.6.P[X^2,Y^2} = P[X = 2,Y = }} + P[X = 2J Y = 2}+ P{X = 3,Y = l} + P{X = 3y Y = 2} =0.3+ 0 + 0 +0.2 = 0.5 ・2.设平面区域D 由曲线_y =丄及直线y = 0,x = l,x = e 2所围成,二维随机变量3, X)X在区域Q 上服从均匀分布,求(X X)关于X 的边缘概率密度在x=2处的值・解 由题设知D 的面积为丄dx = lnx|" =2.—,(x, y)e D y 因此(XX)的密度为 /(x, y) = <2 0,其它.+8f(x.y)dy ・显然,当XW1或兀头2时,厶,(兀)= 0;当1 vjcvM 时,厶d) = F A (2)= ~-3.设二维随机变戢(X, K)的概率密度为1, 0 < x < 1,0 < j/ < 2x,0,其它.求:⑴区”的边缘概率密度f x MJr (y^(2)F{YW2 2解(1)当0vxvin 寸,f x (x) = f (x,y)dy = £ dy = 2x ; 当 xWO 时或x$l 时,/Y (X )= 0.2x, 0 v x v 1, 0, 其它.f(x 9y)dx= (ydx = l-^- 22f因此P{X^2\Y^2} =W2}P{Y W2}05 _5 0£~61 1—dy =—・故 ° 2「 2x fx M =当Ov 严2时,厶(刃=当y WO 吋或y $2时,/;(y) = O.y 亠I — —, 0 < v < 2,故fy (y) = 20, 其它.(2)当 zWO 时,巧(z) = o ; 当 z$2 时,巧(Z )= l;当()VV2 时,F 7(Z ) = P{2X-Y^Z }= JJ /(x, y)d.xdyz胡 dxfl.dy + 關仁 1.®2Z" =Z ----- ・4,1 — 9 0 < z < 2,厶⑵=FXz) =2 0, 其它.4.设G 是由直线尸X,尸3, x=\所围成的三角形区域,二维随机变fi(X,y )在Gt 服从二维均匀分布.求:(1)(X7)的联合概率密度;(2) P{Y-X^\}; (3)关于X 的边缘概率密度.解 ⑴由于三角形区域G 的面积等于2,所以(X,Y)的概率密度为⑵记区域D = {(x,y)\y-x^\]与G 的交集为G (),则其中S G °为Go 的面积.±4Z !I JJg}扌丄0,(x.y)电 G.⑶X 的边缘概率密度f x (X )=r +8J —oof(x, y)dy •所以,当X .1,3]时,几(x) =「:⑪J (3 - X).J x 2 2当x v 1 或x > 3 时,/丫(x) = 0. 因此./\ W = < 2(1_%),XE卩⑶’0, 其它.习题3-3设与柑互独立,且分布律分别为下表:求二维随机变最(儿的分布律.解由于X与丫相互独立,所以冇P{X = Xi,Y = y.} = P{X = x i}-P{Y = yj},i == 0,2,5,6.J因此可得二维随机变量Y)的联合分布律Pir A- 〃•丿(匸 12 丿二123)・2—G + # =匕故可得方程组31 1 z 1 _ = _•(□ + _)・19 3921解得 ex = —, 0 =—.9 92 1经检验,当CX = —, P =—吋,对于所有的匸1,2; 7=1,2,3均有Pij= Pi ,p.j bX.i2 1 a = _,p =—时.x 与y 相互独立••993.设随机变量Y 的概率密度为 \be (x+y \(1)试确定常数b ・9 118匚因此当0 < x < 1, j/ > 0,其它.问Q,0为何值时X 与Y 相互独立?/=](2) 求边缘概率密度f x (x)y f Y (y). (3) 问X 与Y 是否相互独立?解⑴由1 = j J f(x,y)dxdy = j ^e _<v+r>dydx e~'dye -'dr = b(l -e _,),l-e _, e~v,0<x<l, 宁 1-e" 0, e _y , _y>0,0, 其它.⑶ 由于f(x,y) = f x (x)* f Y (y) f 所以x 与Y 相互独立.设X 和Y 是两个相互独立的随机变量,X 在(0, 1)上服从均匀分布,Y 的概率密度为r了 /、 丄e 2, y >0,0,求X 和Y 的联合概率密度.设关于a 的二次方程为a 2 +2Xa + Y = 0t 试求。

概率论课后习题第3章答案

概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。

华东理工大学概率论答案-3

华东理工大学概率论答案-3

华东理工大学概率论与数理统计作业簿(第一册)学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________第一次作业一. 填空题:1.设{}20≤≤=x x S ,⎭⎬⎫⎩⎨⎧≤<=121x x A ,⎭⎬⎫⎩⎨⎧<≤=2341x x B ,具体写出下列各事件: B A =1131x 422x x ⎧⎫≤≤<<⎨⎬⎩⎭或者,B A =S ,B A =B ,AB =A 。

2.设A 、B 、C 表示三个随机事件,试将下列事件用A 、B 、C 表示出来:(1)事件ABC 表示A 、B 、C 都发生; (2) 事件ABC 表示A 、B 、C 都不发生; (3)事件ABC 表示A 、B 、C 不都发生;(4)事件A B C 表示A 、B 、C 中至少有一件事件发生;(5)事件AB AC BC 或AB AC BC 表示A 、B 、C 中最多有一事件发生。

二. 选择题:1.设}10,,3,2,1{ =Ω,}5,3,2{=A ,}7,5,4,3{=B ,}7,4,3,1{=C ,则事件=-BC A ( A )。

A.}10,9,8,6,1{B. }5,2{C. }10,9,8,6,2{D. }10,9,8,6,5,2,1{2.对飞机进行两次射击,每次射一弹,设事件=A “恰有一弹击中飞机”, 事件B = “至少有一弹击中飞机”,事件C =“两弹都击中飞机”, 事件=D “两弹都没击中飞机”,又设随机变量ξ为击中飞机的次数,则下列事件中( C )不表示}1{=ξ。

A. 事件AB. 事件C B -C. 事件C B -D. 事件C D -3.设A 、B 是两个事件,且∅≠A ,∅≠B ,则()()B A B A ++表示( D )。

A. 必然事件 B. 不可能事件 C. A 与B 不能同时发生 D. A 与B 中恰有一个发生4.以A 表示事件“甲种产品畅销,乙种产品滞销”,则其对立事件A 表示( D )。

华南理工大学《线性代数与概率统计》随堂练习及答案

华南理工大学《线性代数与概率统计》随堂练习及答案

第一章行列式·1.1 行列式概念1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:B第一章行列式·1.2 行列式的性质与计算1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:C4.(单选题)答题: A. B. C. D. (已提交)参考答案:D5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:B7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:B10.(单选题)答题: A. B. C. D. (已提交)参考答案:C第一章行列式·1.3 克拉姆法则1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:B.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:C第二章矩阵·2.2 矩阵的基本运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:D6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:D第二章矩阵·2.3 逆矩阵1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:D4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:B8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:D10.(单选题)答题: A. B. C. D. (已提交)参考答案:B第二章矩阵·2.4 矩阵的初等变换与矩阵的秩1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:D7.(单选题)答题: A. B. C. D. (已提交)参考答案:C8.(单选题)答题: A. B. C. D. (已提交)参考答案:C9.(单选题)答题: A. B. C. D. (已提交)参考答案:C10.(单选题)答题: A. B. C. D. (已提交)参考答案:D11.(单选题)答题: A. B. C. D. (已提交)参考答案:B12.(单选题)答题: A. B. C. D. (已提交)参考答案:A13.(单选题)答题: A. B. C. D. (已提交)参考答案:B第三章线性方程组·3.1 线性方程组的解1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A第三章线性方程组·3.2 线性方程组解的结构1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A6.(单选题)答题: A. B. C. D. (已提交)参考答案:C7.(单选题)答题: A. B. C. D. (已提交)参考答案:A8.(单选题)答题: A. B. C. D. (已提交)参考答案:D9.(单选题)答题: A. B. C. D. (已提交)参考答案:C第四章随机事件及其概率·4.1 随机事件1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B第四章随机事件及其概率·4.2 随机事件的运算1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:A3.(单选题)答题: A. B. C. D. (已提交)参考答案:B1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)甲乙两人同时向目标射击,甲射中目标的概率为0.8,乙射中目标的概率是0.85,两人同时射中目标的概率为0.68,则目标被射中的概率为()A.0.8 ;B.0.85;C.0.97;D.0.96.答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.4 条件概率与事件的独立性1.(单选题)答题: A. B. C. D. (已提交)参考答案:D2.(单选题)答题: A. B. C. D. (已提交)参考答案:B3.(单选题)答题: A. B. C. D. (已提交)参考答案:AA4.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则两粒都发芽的概率为()A.0.8 ; B.0.72 ; C.0.9 ; D.0.27 .答题: A. B. C. D. (已提交)参考答案:B5.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则至少有一粒发芽的概率为()A.0.9 ; B.0.72 ; C.0.98 ; D.0.7答题: A. B. C. D. (已提交)参考答案:C6.(单选题)设有甲、乙两批种子,发芽率分别为0.9和0.8,在两批种子中各随机取一粒,则恰有一粒发芽的概率为()A.0.1 ; B.0.3 ; C.0.27 ; D.0.26答题: A. B. C. D. (已提交)参考答案:D第四章随机事件及其概率·4.5 全概率公式与贝叶斯公式1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:D3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:C1.(单选题)答题: A. B. C. D. (已提交)参考答案:A2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.2 离散型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:A5.(单选题)从一副扑克牌(52张)中任意取出5张,求抽到2张红桃的概率?A 0.1743;B 0.2743;C 0.3743;D 0.4743答题: A. B. C. D. (已提交)参考答案:B第五章随机变量及其分布·5.3 连续型随机变量1.(单选题)答题: A. B. C. D. (已提交)参考答案:C2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:A4.(单选题)答题: A. B. C. D. (已提交)参考答案:B5.(单选题)答题: A. B. C. D. (已提交)参考答案:A第五章随机变量及其分布·5.4 正态分布1.(单选题)答题: A. B. C. D. (已提交)参考答案:B2.(单选题)答题: A. B. C. D. (已提交)参考答案:C3.(单选题)答题: A. B. C. D. (已提交)参考答案:B4.(单选题)答题: A. B. C. D. (已提交)参考答案:C5.(单选题)答题: A. B. C. D. (已提交)参考答案:C。

华理概率论习题3答案

华理概率论习题3答案

概率论与数理统计作业簿(第三册)学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________第七次作业一.填空题:1. ξ的分布列为:则=E ξ 2.7 。

2.ξ的分布列为:则=E ξ13, (1)-+=E ξ3, 2=E ξ24。

二.选择题:1. 若对任意的随机变量X ,EX 存在,则))((EX E E 等于( C ) 。

A .0 B .X C .EX D .2)(EX2. 现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则此人所得奖金的数学期望为 ( C )(A )6.5 (B )12 (C )7.8 (D )9三.计算题1. 设随机变量X 的概率密度为21101()10x x f x θθθ--⎧<<⎪=-⎨⎪⎩,,其他其中θ >1,求 EX 。

解 21111110011111011----====--⎰⎰EX x x dx x dx x θθθθθθθθθ 2. 设随机变量ξ的概率密度函数,0(=0,0x e x p x x -⎧>⎨≤⎩) 求 2,(2),()E E E e ξξξξ-+。

解 01,x E xe dx ξ+∞-==⎰(2)22,E E ξξ==22204()()13x x E eE E ee e dx ξξξξ+∞----+=+=+⋅=⎰。

3. 一台机器由三大部件组成,在运转中各部件需要调整的概率分别为0.1,0.2和0.3。

假设各部件的状态相互独立,用ξ表示同时需要调整的部件数,试求ξ的数学期望。

解 设A i ={第i 个部件需要调整}(i=1,2,3),则P(A 1)=0.1,P(A 2)= 0.2,P(A 3)=0.3 。

所以123(0)()0.90.80.70.504P P A A A ξ===⨯⨯=, 123123123(1)()()()0.389,P P A A A P A A A P A A A ξ==++= 123123123(2)()()()0.092,P P A A A P A A A P A A A ξ==++=123(3)()0.006.P P A A A ξ===从而00.50410.38920.09330.0060.6E ξ=⨯+⨯+⨯+⨯=。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率论与数理统计作业簿(第三册)学 院 ____________专 业 ____________班 级 ____________ 学 号 ____________姓 名 ____________任课教师____________第七次作业一.填空题:1. ξ的分布列为:则=E ξ 2.7 。

2.ξ的分布列为:则=E ξ13, (1)-+=E ξ3, 2=E ξ24。

二.选择题:1. 若对任意的随机变量X ,EX 存在,则))((EX E E 等于( C ) 。

A .0 B .X C .EX D .2)(EX2. 现有10张奖券,其中8张为2元,2张为5元,某人从中随机地无放回地抽取3张,则此人所得奖金的数学期望为 ( C )(A )6.5 (B )12 (C )7.8 (D )9三.计算题1. 设随机变量X 的概率密度为21101()10x x f x θθθ--⎧<<⎪=-⎨⎪⎩,,其他其中θ >1,求 EX 。

解 21111110011111011----====--⎰⎰EX x x dx x dx x θθθθθθθθθ 2. 设随机变量ξ的概率密度函数,0(=0,0x e x p x x -⎧>⎨≤⎩) 求 2,(2),()E E E e ξξξξ-+。

解 01,x E xe dx ξ+∞-==⎰(2)22,E E ξξ== 22204()()13x x E e E E e e e dx ξξξξ+∞----+=+=+⋅=⎰。

3. 一台机器由三大部件组成,在运转中各部件需要调整的概率分别为0.1,0.2和0.3。

假设各部件的状态相互独立,用ξ表示同时需要调整的部件数,试求ξ的数学期望。

解 设A i ={第i 个部件需要调整}(i=1,2,3),则P(A 1)=0.1,P(A 2)= 0.2,P(A 3)=0.3 。

所以123(0)()0.90.80.70.504P P A A A ξ===⨯⨯=, 123123123(1)()()()0.389,P P A A A P A A A P A A A ξ==++= 123123123(2)()()()0.092,P P A A A P A A A P A A A ξ==++=123(3)()0.006.P P A A A ξ===从而00.50410.38920.09330.0060.6E ξ=⨯+⨯+⨯+⨯=。

4. 设球的直径均匀分布在区间[a , b ]内,求球的体积的平均值。

解 设球的直径长为ξ,且[,]U a b ξ~,球的体积为η,与直径ξ的关系为3432πξη⎛⎫= ⎪⎝⎭,那么,332234()()326624b a x a b a b E E E dx b a πξπππηξ++⎛⎫=⋅=⋅==⎪-⎝⎭⎰.第八次作业一.计算题1.对第七次作业第一大题第2小题的 ξ,求D ξ。

解 22235197()()24372D E E ξξξ⎛⎫=-=-= ⎪⎝⎭,97(13)98D D ξξ-==。

2.上次作业第三大题第3小题中的ξ,求D ξ。

解 222()()00.50410.38940.09390.0060.60.46.D E E ξξξ=-=⨯+⨯+⨯+⨯-=3. 设随机变量ξ具有概率密度01()2120xx p x x x ≤≤⎧⎪=-<≤⎨⎪⎩其它, 计算 D ξ。

解 12331220101()()(2)()133x x E xp x dx x xdx x x dx x ξ+∞-∞==⋅+⋅-=+-=⎰⎰⎰,1243412222210127()()(2)()4346x x x E x p x dx x xdx x x dx ξ+∞-∞==⋅+⋅-=+-=⎰⎰⎰,221()()[()]6D E E ξξξ=-=。

4. 设随机变量ξ仅在[a , b ]取值,试证2,2b a a E b D ξξ-⎛⎫≤≤≤ ⎪⎝⎭。

证 因为a b ξ≤≤, 所以a E b ξ≤≤. 又因为22222a b a b a b a b b aa b ξ-+++-=-≤-≤-= 22b a a b ξ-+⇒-≤,2.22a b b a D E ξξ+-⎛⎫⎛⎫⇒≤-≤ ⎪ ⎪⎝⎭⎝⎭5. 已知某种股票的价格是随机变量ξ,其平均值是1元,标准差是0.1元。

求常数a ,使得股价超过1+a 元或低于1-a 元的概率小于10%. 解 已知1,0.1E ξ==,由契比雪夫不等式 20.01{|1|}P a a ξ-≥≤, 令20.010.1a≤, 得 0.32a ≥。

6. 设随机变量ξ的概率分布为1()(1),1,0,12ξxxa P x a x -⎛⎫==-=- ⎪⎝⎭其中 0<a <1。

试求:D ξ,||D ξ。

解 (1)0(1)10,22a a E a ξ=-⋅+⋅-+⋅= 2222(1)0(1)1,22a aE a a ξ=-⋅+⋅-+⋅=所以 22()D E E a ξξξ=-=。

又 22,E a E E a ξξξ===, 故 22()(1)D E E a a ξξξ=-=-。

第九次作业一.填空题1. 在相同条件下独立的进行3次射击,每次射击击中目标的概率为23,则至少击中一次的概率为(D )。

A. 274B. 2712C. 2719D. 27262. 某保险公司的某人寿保险险种有1000人投保,每个人在一年内死亡的概率为0.005,且每个人在一年内是否死亡是相互独立的,欲求在未来一年内这1000个投保人死亡人数不超过10人的概率。

用Excel 的BINOMDIST 函数计算。

BINOMDIST (10 , 1000, 0.005, TRUE )= 0.986531_。

3. 运载火箭运行中进入其仪器仓的粒子数服从参数为4的泊松分布,用Excel的POISSON 函数求进入仪器舱的粒子数大于10的概率。

POISSON (10 , 4 ,TRUE )=0.9972, 所求概率p =_0.0028_。

4. ~(4)P ξ,由切比雪夫不等式有(|4|6)P ξ-<≥__8/9___。

二.计算题1. 设随机变量ξ的密度函数是1cos ,0()220,x x p x π⎧≤≤⎪=⎨⎪⎩其它对ξ独立的随机观察4次,η表示观察值大于3π的次数,求η的概率分布。

解 ()4,B p η~。

设A=“观察值大于3π”,则 311()()cos 3222x p P A P dx πππξ==≥==⎰, 所以η的概率分布为:4411()(1),(0,1,2,3,4)22k k P k k k η-⎛⎫==-= ⎪⎝⎭。

或2. 随机变量ξ服从参数为p 的几何分布,即1()(1),1,2,k P k p p k ξ-==-=(1) 求 ()P s ξ>,其中s 是一个非负整数;(2) 试证(|)()P s t s P t ξξξ>+>=>,其中s ,t 是非负整数。

(几何分布具有无记忆性)。

解 (1)111()()(1)k k s k s P s P k p p ξξ∞∞-=+=+>===-∑∑1(1)(1)(1)(1)sk ss k p p p p p p p∞==--=-=-∑ 或者:11()1()1(1)sk k P s P s p p ξξ-=>=-≤=--∑1(1)1(1)1(1)ss p p p p --=-⋅=---(2) ({}{})()(|)()()P s t s P s t P s t s P s P s ξξξξξξξ>+>>+>+>==>>(1)(1)()(1)s t tsp p P t p ξ+-==-=>-。

3. 设随机变量~(,)B n p ξ,已知 2.4, 1.44E D ξξ==,求参数n 和p 。

解 因为(,)B n p ξ~,所以2.4,6,1.44,0.4.E np n D npq p ξξ===⎧⎧⇒⎨⎨===⎩⎩ 4. 设在时间t (单位:min)内,通过某路口的汽车服从参数与t 成正比的泊松分布。

已知在1分钟内没有汽车通过的概率为0.2,求在2分钟内至少有2辆车通过的概率。

(提示:设t ξ=“t 时间内汽车数”,则()t P t ξλ~) 解: 设t ξ=“t 时间内汽车数”,则()t P t ξλ~,那么()() (0,1,2,)!k tt t e P k k k λλξ-=== , 由已知,得01()(0)0.2ln 50!e P λλξλ-===⇒=, 所以 0212222(2)(2)(2)1(0)(1)10!1!e e P P P λλλλξξξ--≥=-=-==--22242ln 51(2).25e e λλλ---=--=5. 在一次试验中事件A 发生的概率为p ,把这个试验独立重复做两次。

在下列两种情况下分别求p 的值:(1) 已知事件A 至多发生一次的概率与事件A 至少发生一次的概率相等;(2)已知事件A 至多发生一次的条件下事件A 至少发生一次的概率为12。

解 设ξ为两次试验中事件A 发生的次数,则~(2,)B p ξ。

(1)由题意知,(1)(1)P P ξξ≥=≤,即(1)(2)(0)(1)P P P P ξξξξ=+===+=得 (2)(0)P P ξξ===,亦即 220222(1)C p C p =-,解得 12p =。

(2)由条件概率公式({1}{1})(1)(1|1)(1)(1)P P P P P ξξξξξξξ≥≤=≥≤==≤≤ 22(1)211p p p p p-==-+, 根据题意,2112p p =+,解出,13p =。

相关文档
最新文档