2009级弹性力学及有限元试1
弹性力学与有限元分析试题及参考答案 精品
弹性力学与有限元分析试题及参考答案四、分析计算题1、试写出无体力情况下平面问题的应力分量存在的必要条件,并考虑下列平面问题的应力分量是否可能在弹性体中存在。
(1)By Ax x +=σ,Dy Cx y +=σ,Fy Ex xy +=τ; (2))(22y x A x +=σ,)(22y x B y +=σ,Cxy xy =τ; 其中,A ,B ,C ,D ,E ,F 为常数。
解:应力分量存在的必要条件是必须满足下列条件:(1)在区域内的平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy xxy y yxx τστσ;(2)在区域内的相容方程()02222=+⎪⎪⎭⎫⎝⎛∂∂+∂∂y x y x σσ;(3)在边界上的应力边界条件()()()()⎪⎩⎪⎨⎧=+=+s fl m s f m l y s xy y xs yx x τστσ;(4)对于多连体的位移单值条件。
(1)此组应力分量满足相容方程。
为了满足平衡微分方程,必须A =-F ,D =-E 。
此外还应满足应力边界条件。
(2)为了满足相容方程,其系数必须满足A +B =0;为了满足平衡微分方程,其系数必须满足A =B =-C /2。
上两式是矛盾的,因此,此组应力分量不可能存在。
2、已知应力分量312x C Qxy x +-=σ,2223xy C y -=σ,y x C y C xy 2332--=τ,体力不计,Q 为常数。
试利用平衡微分方程求系数C 1,C 2,C 3。
解:将所给应力分量代入平衡微分方程⎪⎪⎩⎪⎪⎨⎧=∂∂+∂∂=∂∂+∂∂00x yy x xy y yxx τστσ 得⎩⎨⎧=--=--+-023033322322212xy C xy C x C y C x C Qy 即()()()⎩⎨⎧=+=+--0230333222231xy C C y C Q x C C 由x ,y 的任意性,得⎪⎩⎪⎨⎧=+=+=-023030332231C C C Q C C 由此解得,61Q C =,32Q C -=,23QC = 3、已知应力分量q x -=σ,q y -=σ,0=xy τ,判断该应力分量是否满足平衡微分方程和相容方程。
弹性力学及有限元法1
Elae Element Method
机械工程与自动化学院
现代设计与分析研究所
张瑞金 Rjzhang@
弹 性 力 学 及 有 限 元 法
第一章 绪论
了解弹性力学的定义;
了解弹性力学研究方法 ; 掌握有限单元法的基本思想; 了解常用有限元计算程序; 课程计划。
绪 论
现有网格基础上,根据有限元计算结果估计计算误差、重新划分网格和 再计算的一个循环过程。 3、由求解线性问题发展到求解非线性问题 许多工程问题如材料的破坏与失效、裂纹扩展等仅靠线性理论根本不能 解决,必须进行非线性分析求解,例如薄板成形就要求同时考虑结构的 大位移、大应变(几何非线性)和塑性(材料非线性);而对塑料、橡 胶、陶瓷、混凝土及岩土等材料进行分析,则必须考虑材料非线性。 4、由单一结构场求解发展到耦合场问题的求解 求解线性结构问题,只要离散单元足够小,所得的解就可足够逼近于精 确值。现在发展方向是结构非线性、流体动力学和耦合场问题的求解。 例如由于摩擦接触而产生的热问题,金属成形时由于塑性功而产生的热 问题,需要结构场和温度场的有限元分析结果交叉迭代求解,即“热力耦 合”的问题。 5、程序面向用户的开放性 商业化的提高要求给用户一个开放的环境。
解析法:得出精确的函数解
数值法: 差分法:采用差商代替微商,将弹力中导 出的微分方程及其边界条件化为差分方程 (代数方程)进行求解。 变分法:根据变形体的能量极值原理,导 出弹性力学的变分方程,并进行求解。 有限单元法:离散模型的数值解
绪 论
弹 性 3. 有限元法基本思想 力 学 及 有 将求解区域划分为有限个互不重叠的单元,单元 之间仅依靠节点连接,单元内部点的待求量可由 限 元 单元节点量通过选定的函数关系插值求得,建立 法
弹性力学基础及有限单元法
第一章1、弹性力学的任务是什么弹性力学的任务是分析各种结构物或其构件在弹性阶段的应力和位移,校核它们是否具有所需的强度和刚度,并寻求或改进它们的计算方法。
2、弹性力学的基本假设是什么?为什么要采用这些假设?(1) 假设物体是连续的——物体内部由连续介质组成,物体中没有空隙,因此物体中的应力、应变、位移等量是连续的•可以用坐标的连续函数表示。
实际上,所有的物体均由分子构成,但分子的大小及分子间的距离与物体的尺寸相比是很微小的,故可以不考虑物体内的分个构造。
根据这个假设所得的结果与实验结果是符合的。
(2) 假设物体是匀质的和各向同性的一一物体内部各点与各方向上的介质相同,因此,物体各部分的物理性质是相同的。
这样,物体的弹性常数(弹性模量、泊松比)不随位置坐标和方向而变化。
钢材由微小结晶体组成,晶体本身是各向异性的、但由于晶体很微小而排列又不规则,按其材料的平均性质,可以认为钢材是各向同性的。
木材不是各向同性的。
(3) 假设物体是完全弹性的一一物体在外加因家(裁荷、温度变化等)的作用下发生变形,在外加固素去除后,物体完全恢复其原来形状而没有任何剩余变形。
同时还假定材料服从胡克定律,即应力与形变成正比。
(4) 假设物体的变形是很小的——在载荷或温度变化等的作用下,物体变形而产生的位移,与物体的尺寸相比,是很微小的。
在研究物体受力后的平衡状态时,可以不考虑物体尺寸的改变。
在研究物体的应变时,可以赂去应变的乘积,因此,在微小形变的情况下弹性理论中的微分方程将是线性的。
(5) 假设物体内无初应力一一认为物体是处于自然状态,即在载荷或温度变化等作用之前,物体内部没合应力。
也就是说,出弹性理论所求得的应力仅仅是由于载荷或温度变化等所产生的。
物体中初应力的性质及数值与物体形成的历史有关。
若物体中有韧应力存在,则由弹性理论所求得的应力加上初应力才是物体中的实际应力。
上面基本假设中•假设(4)是属于几何假设,其他假设是属于物理假设。
有限元考试精彩试题及问题详解——第一组
有限元考试试题及答案一、简答题(5道,共计25分)。
1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。
2. 在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。
3.轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。
4.有限元空间问题有哪些特征?(5分)答:(1)单元为块体形状。
常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。
(2)结点位移3个分量。
(3)基本方程比平面问题多。
3个平衡方程,6个几何方程,6个物理方程。
5.简述四节点四边形等参数单元的平面问题分析过程。
(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
二、论述题(3道,共计30分)。
1. 简述四节点四边形等参数单元的平面问题分析过程。
(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2) 通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变 分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
有限元考试试题及答案——第一组
有限元考试试题及答案一、简答题(5道,共计25分)。
1.有限单元位移法求解弹性力学问题的基本步骤有哪些?(5分)答:(1)选择适当的单元类型将弹性体离散化;(2)建立单元体的位移插值函数;(3)推导单元刚度矩阵;(4)将单元刚度矩阵组装成整体刚度矩阵;(5)代入边界条件和求解。
2。
在划分网格数相同的情况下,为什么八节点四边形等参数单元精度大于四边形矩形单元?(5分)答:在对于曲线边界的边界单元,其边界为曲边,八节点四边形等参数单元边上三个节点所确定的抛物线来代替原来的曲线,显然拟合效果比四边形矩形单元的直边好。
3。
轴对称单元与平面单元有哪些区别?(5分)答:轴对称单元是三角形或四边形截面的空间的环形单元,平面单元是三角形或四边形平面单元;轴对称单元内任意一点有四个应变分量,平面单元内任意一点非零独立应变分量有三个。
4。
有限元空间问题有哪些特征? (5分)答:(1)单元为块体形状.常用单元:四面体单元、长方体单元、直边六面体单元、曲边六面体单元、轴对称单元。
(2)结点位移3个分量.(3)基本方程比平面问题多。
3个平衡方程,6个几何方程,6个物理方程。
5.简述四节点四边形等参数单元的平面问题分析过程。
(5)分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
二、论述题(3道,共计30分)。
1。
简述四节点四边形等参数单元的平面问题分析过程。
(10分)答:(1)通过整体坐标系和局部坐标系的映射关系得到四节点四边形等参单元的母单元,并选取单元的唯一模式;(2)通过坐标变换和等参元确定平面四节点四边形等参数单元的几何形状和位移模式;(3)将四节点四边形等参数单元的位移模式代入平面问题的几何方程,得到单元应变分量的计算式,再将单元应变代入平面问题的物理方程,得到平面四节点等参数单元的应力矩阵;(4)用虚功原理求得单元刚度矩阵,最后用高斯积分法计算完成。
第2章_弹性力学基础及有限元法的基本原理1
W U
当外力的形式是多样的时,外力的虚功等于:
W f Pc f Pv dV f Ps dS
T T T v s
• 1.4 平面问题定义
严格地讲,任何结构都是空间的。对于某些特殊情 况,空间问题可以转化为平面问题。
(1)平面应力问题 满足条件: 1)几何条件 厚度尺寸远远小于截面尺寸; 2)载荷条件 载荷平行于板平面且沿厚度方向均匀 分布,而板平面不受任何外力作用。
1)位移函数 分片插值→ 假设一种函数来表示单元位移分布 一般选取多项式(简单而且易求导)
可用于离散的单元: • 三角形单元; • 矩形单元; • 不规则四边形单元。 DOF 节点的自由度:节点所具有的位移分量的数量。 一个单元所有节点的自由度总和称为单元自由度。 (1)单元参数只能通过节点传递到相邻单元 (2)单元和节点必须统一编号
2.2 单元分析(位移、应力、应变) 任务:形成单元刚度矩阵,建立单元特性方程 因此必须建立坐标系,如下图:
1D问题的弹性模量
E杨氏弹性模量
泊松比是指材料在单向受拉或受压时,横向正应变与轴向 正应变的绝对值的比值,也叫横向变形系数,它是反映材 料横向变形的弹性常数。 若在弹性范围内加载,横向应变εx与纵向应变εy之间存 在下列关系: εx=- νεy 式中ν为材料的一个弹性常数,称为泊松比。泊松比是 量纲为一的量。 可以这样记忆:空气的泊松比为0,45#钢0.3,水的泊松 比为0.5,中间的可以推出。
• 未知数 应力 6个+应变 6个+位移 3个=15个 • 方程个数 平衡方程 3个+几何方程6个+物理方程6个=15个 原则上可以根据15个方程求出15个未知物理量 但实际求解时先求出一部分再通过方程求解剩下的。 目前有限元法主要采用的是位移法,以三个位移 分量为基本未知量。位移-应变-应力,应力和外力平衡
弹性力学与有限元分析试题及其答案
一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512 MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
弹性力学及有限元习题参考答案(赵均海、汪梦甫)汇编
xy
x
xz
X 0
x
y
z
yx
y
yz
Y 0
x
y
z
zx
z
zy
Z 0
x
y
z
已知:
x
2f1
2f2
E(1 )
E
(
2A)
x (1 )(1 2)x2 (1 )(1 2) xy
τN =55.2Mpa;
习题 1.3
解:(1)应力不变量:
2 − 2 − 2
因为 I 1 = x + + ; I 2 = y + + −
将已知代入上式,得:I 1 = 25 MPa ,I 2 = −3250 MPa
(2)求主应力:
x −
y
2f2
2f1
E(1 )
E
(
2B)
y (1 )(1 2) y 2 (1 )(1 2) xy
z
z
0
xy
2f
2f2
E
( 21
)
y
(
2 1 ) x
xy
xz
0 , yz 0
z
z
+
z 2 z =
(1 )(1 2) (1 )
xy xy
E
xy
(
2 1 )
yz yz
E
yz
(
2 1 )
xz xz
2009-2010弹性力学及有限元试卷
四川大学期考试试题A
(2009 ——2010 学年第 1 学期)
课程号:30620030 课序号:0 课程名称:弹性力学及有限元任课教师:张建海成绩:适用专业年级:水工03 学生人数:印题份数:学号:姓名:
注:1试题字迹务必清晰,书写工整。
本题 2 页,本页为第 1 页
2 题间不留空,一般应题卷分开教务处试题编号:
3务必用A4纸打印
学号:姓名:
2 题间不留空,一般应题卷分开教务处试题编号:
3务必用A4纸打印
四川大学期考试试题B
(2009 ——2010 学年第 1 学期)
课程号:30620030 课序号:0 课程名称:弹性力学及有限元任课教师:张建海成绩:适用专业年级:水工03 学生人数:印题份数:学号:姓名:
注:1试题字迹务必清晰,书写工整。
本题2 页,本页为第 2 页
2 题间不留空,一般应题卷分开教务处试题编号:
3务必用A4纸打印。
弹性力学例题
f 3 ( x) A2 x B2 x C2 x
4 3
2
包含9个待定常数,由边界条件确定。
(2) 应力分量的确定
x
2
y
xy
2
2 2
x 2 2 b(3 Ay 2 By C ) xy
y
2
bx(6 Ay 2 B) 12 A1 y 6 B1 y 2C1
l cos( N , x) cos(90 ) sin
l (2) BC段(x = l): l 1, m 0
y 0
m cos( N , y ) cos
u | x l 0, v | x l 0
u y
x l
x ( sin ) xy cos 0 y cos yx ( sin ) 0
例6:悬臂梁,厚度为单位1, =常数。求: O 应力函数 及梁内应力。 解: (2) 应力分量的确定
x
2
b
x
l
x
2
y
2
bx(6 Ay 2 B) 12 A1 y 6 B1 y 2C1
y
M
y
xy
2 2
x 2 2 b(3 Ay 2 By C ) xy
12 A2 x 6 B2 x 2C2
2
Q
(3) 利用边界条件确定常数
A B A1 B1 C1 0 A2 B2 C2 0
C 1 b
x xl
0, xy
0, xy
x l
b 2
弹性力学与有限元法1ppt课件
➢ 瞬态分析 确定以时间为函数的温度等。 可模拟相变(融化及凝固)。
熨斗的瞬态热分析
28
本课程涉及到的高等数学及线性代数知识
1、泰勒级数
如果函数 f(x) 在点x0的某邻域内具有各阶导数 f ' (x), f '' (x),L , f (n) (x),L ,则可以将 f(x) 按照 泰勒级数展开为
应力种类
一次局部薄膜应 力
薄膜加弯曲应力
应力水平/MPa 限制值/MPa
41.12
167×1.5=250.5
73.81
167×3.0=511
评定结果 通过 通过
路径2
一次局部薄膜应 力
薄膜加弯曲应力
48.43 163.5
167×1.5=250.5 167×3.0=511
通过 通过
路径3
一次局部薄膜应 力
个坐标轴上的投影u、v、w来表示。以沿坐
标轴正方向的为正,沿坐标轴负方向的为负。
B
y
40
第一章 绪论
弹性力学的基本方法
从取微元体入手,综合考虑静力(或运动)、几 何、物理三方面条件,得出其基本微分方程,再进行求 解,最后利用边界条件确定解中的常数。
按照方程中保留的未知量,求解方法可分为 应力法(以应力为未知量) 位移法(以位移为未知量) 混合法(同时以应力和位移为未知量)
zy x
b
xxyz zx
yz
y yx
B
o
A PA dx, PBz dy, PC dz y
x
同样,可以列出另两个力矩平衡方程。得出
yz zy , zx xz , xy yx
38
第一章 绪论
《弹性力学与有限元》第1章弹性力学的基础知识
(五)小应变位移假设 物体在外加因素作用下,物体变形产生的位移与物体尺寸相比极其微小,因 而应变分量和转角均远小于 1。这样,在建立物体变形后的平衡方程时,可以不 考虑由于变形引起的物体尺寸和位置的变化;在建立几何方程和物理方程时,可 以略去应变、转角的二次幂或二次乘积以上的项,使得到的基本方程是线性偏微 分方程组。这个假设又称为几何线性的假设。
物体的弹性性质是客观存在的,人类很早就可以利用物体的弹性性质了,比 如在树枝上荡漾,古代的弓箭等等。
了解掌握弹性物体的客观规律,并形成弹性力学这样一门学科,则经过了三 个发展时期:
弹性力学的发展初期。17 世纪开始,主要是通过实践,尤其是通过实验来 探索弹性力学的基本规律。英国的胡克和法国的马略特于 1680 年分别独立地提 出了弹性体的变形和所受外力成正比的定律,后被称为胡克定律。牛顿于 1687 年确立了力学三定律,奠定了力学的发展基础。
《弹性力学与有限元》
第 1 章 弹性力学的基础知识
第 1 章 弹性力学的基础知识
弹性力学(Elastic Mechanics)是固体力学的重要分支,它研究弹性物体在外力 和其它外界因素作用下产生的变形和内力,也称为弹性理论。它是材料力学、结 构力学、塑性力学和某些交叉学科的基础,广泛应用于建筑、机械、化工、航天 等工程领域。
材料力学的研究对象主要是杆状构件(一维弹性杆件),而且常采用一些关 于变形的近似假设,如“平面截面”的假设等等,使得计算简化。
而弹性力学的分析方法在一开始并不考虑平面截面的假设,而是从变形连续 性的观念出发列出几何方程,所谓变形连续性是指在变形前的连续物体在变形后 仍保持连续,物体的任一部分及单元体均保持连续。在保持变形连续的情况下, 平面界面变形以后可能不再保持平面,
弹性力学及有限元试题
弹性力学及有限元试题(一) 问答题(20分)1、什么是圣维南原理?举例说明怎样把它应用于工程问题的简化中。
2、什么叫做一点的应力状态?如何表示一点的应力状态(要求具体说明或表达)。
3、何谓逆解法和半逆解法?它们的理论依据是什么?4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。
5、要保证有限元方法解答的收敛性,位移模式必须满足那些条件?(二) (10分)1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。
2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。
(三)已知,其他应力分量为零,求位移场。
(10分)(四)设有矩形截面的悬臂粱,在自由端受有集中荷载F;体力可以不计。
试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。
(五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。
提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ).(六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。
设μ=0,试取位移分量的表达式为用瑞利—里茨法求解(15分)。
(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。
(八)用刚度集成法求下图所示结构的整体刚度矩阵K。
(10分)要求:单元刚度矩阵元素用ek形式表示;单元刚度矩阵用e K形式表ij示,其中e为单元号。
弹性力学及有限元考试复习简答题
弹性力学及有限元考试复习简答题1、简述有限单元法常分析的问题。
答:有限单元法是一种用于连续场分析的数值模拟技术,他不仅可以对机械、建筑结构的位移场和应力场进行分析,还可以对电磁学中的电磁场、传热学中的温度场、流体力学中的流体场进行分析。
2、在有限单元法中,位移模式应满足哪些基本条件。
答:1位移函数在单元节点的值应等于节点位移(即单元内部是连续的)2所选位移函数必须保证有限元的解收敛于真实解3、简述有限单元法结构刚度矩阵的特点。
答:对称矩阵奇异矩阵稀疏矩阵具有相对独立性4、简述有限单元法中单元刚度矩阵的性质。
答:1.单元刚度矩阵是对阵矩阵2.单元刚度矩阵的主对角线元素恒为正值3.单元刚度矩阵是奇异矩阵4.单元刚度矩阵仅与本身有关5、简述有限元法中选取单元位移函数(多项式)的一般原则。
答:必须假定一个函数,所假定的位移函数必须满足两个条件:其一,它在单元节点上的值应等于节点位移;其二,由该函数出发得到的有限元解收敛于真实解。
6、要保证有限单元法计算结果的收敛性,位移函数必须满足那些条件?答:1、完备性条件:要求单元的位移函数必须能够满足刚性位移和常量应变状态2、协调性条件:要求单元的位移函数在单元内部必须是连续函数,且必须保证相邻单元间位移协调9、用有限元法分析实际工程问题有哪些基本步骤?需要注意什么问题?1)建立实际工程问题的计算模型2)选择适当的分析工具侧重考虑以下几个方面1)前处理(Preproceing)2)求解(Solution)3)后处理(Potproceing10、在弹性力学中根据什么分别推导出平衡微分方程、几何方程、物理方程,这三个方程分别表示什么关系?答:根据静力学、几何学和物理学三方面条件,分别推导出平衡方程、几何方程和物理方程;三组方程分别表示:应力与载荷关系、应变与位移关系、应力与应变关系。
11、什么是平面应力问题?什么是平面应变问题?分别写出平面应力问题和平面应变问题的物理方程。
有限元2009期末考试试卷b卷
诚实答卷,舞弊后果严重
华南理工大学机械与汽车工程学院 2009-2010年第 1 学期期末考试
《 汽车有限元法 》全日制本科 试卷(B 卷)
(.本试卷共有 三大题,满分 100 分,考试时间 120 分钟)
一.简答题(共24分)
1.弹性力学与材料力学在研究对象上的区别(2分)
2.弹性力学中的五点假设(5分)
3.列出应力-应变之间的物理方程(6分)
题号 一 二 三 总分 得分 评卷人
办学单位:机械与汽车工程学院 年级专业: 姓名: 学号: 成绩:
4.列出应力-外力之间的运动平衡方程(3分)
5.弹性力学的求解方法有哪几种?(2分)
6.有限元法分析工程问题的基本步骤(6分)
二.计算题(20分)
1.求解等截面直杆在自重作用下的拉伸,已知:单位杆长重量为q=80KN/m,
杆长为L=5m,截面面积为A=100mm2,弹性模数为E=200GPa,分别用材料力学和有限元法(5个单元)
三.推导题
1.推导三节点三角形平面单元的位移函数(16分)
2.推导三节点三角形平面单元的单元刚度矩阵(15分)
3.在上题基础上分析整体刚度矩阵并计算该平面应力问题。
P y1=100KN ,P y3=50KN ,a =1M ,P x2=100KN ,P x3=50KN ,E =210GPa ,t=0.1,u=0.3,求出各节点处的位移与应力。
(25分)
2
¢Û¢
Ü¢
Ù¢
Ú3
y P 3
x P 3
1
4
5
2
x P 1
y P a
a。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
弹性力学及有限元试题
(一) 问答题(20分)
1、什么是圣维南原理?举例说明怎样把它应用于工程问题
的简化中。
2、什么叫做一点的应力状态?如何表示一点的应力状态(要
求具体说明或表达)。
3、何谓逆解法和半逆解法?它们的理论依据是什么?
4、什么是平面应力问题?什么是平面应变问题?分别写出弹性力学平面应力问题和平面应变问题的物理方程。
5、要保证有限元方法解答的收敛性,位移模式必须满足那些条
件?
(二) (10分)
1.利用坐标变换从直角坐标的平衡方程推导极坐标下平衡方程(无体力)。
2.利用坐标变换从直角坐标下几何方程推导极坐标下几何方程。
(三)已知,其他应力分量为零,求位移场。
(10分)
(四)设有矩形截面的悬臂粱,在
自由端受有集中荷载F;体力可以不
计。
试根据材料力学公式,写出弯应力σx和切应力τxy的表达式,并取挤压应力σy=0,然后证明,这些表达式满足平衡微分方程和相容方程,再说明,这些表达式是否就表示正确的解答(10分)。
(五)设半平面体在直边界上受有集中力偶,单位宽度上力偶矩为M,试求应力分量(10分)。
提示:单位厚度上的力偶矩M的量纲是LMT-2,应力只能是M/ρ2的形式,所以可假设应力函数由:Φ=Φ(φ).
(六) 铅直平面内的正方形薄板,边长为2a,四边固定,图5—18,只受重力的作用。
设μ=0,试取位移分量的表达式为
用瑞利—里茨法求解(15分)。
(七)试按图示网格求解结点位移,取t =1m,μ= 0(15分)。
(八)用刚度集成法求下图所示结构的整体刚度矩阵K。
(10分)
要求:单元刚度矩阵元素用e
k形式表示;单元刚度矩阵用e K形式表
ij
示,其中e为单元号。