高三理科数学
高三理科数学试题及答案
高三理科数学试题及答案一、选择题(每题4分,共40分)1. 函数y=\(\frac{1}{x}\)的图象在第一象限内是()A. 递增函数B. 递减函数C. 先递增后递减D. 先递减后递增2. 已知向量\(\vec{a}=(3,-2)\),\(\vec{b}=(2,3)\),则\(\vec{a}\cdot\vec{b}\)的值为()A. -5B. 5C. 13D. -133. 已知双曲线的方程为\(\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\),其中a>0,b>0,若该双曲线的渐近线方程为y=±\(\frac{b}{a}\)x,则该双曲线的离心率为()A. \(\sqrt{2}\)B. \(\sqrt{3}\)C. \(\sqrt{5}\)D. 24. 已知函数f(x)=x^3-3x+1,若f(x)在区间(1,2)内有零点,则零点的个数为()A. 0B. 1C. 2D. 35. 已知等比数列{an}的前n项和为S_n,若S_3=7,S_6=28,则S_9的值为()A. 63B. 77C. 84D. 1266. 已知直线l的方程为y=kx+b,若直线l过点(1,2)且与直线y=-2x 平行,则直线l的方程为()A. y=-2x+4B. y=-2x+3C. y=2x-1D. y=2x+17. 已知函数f(x)=\(\ln(x+\sqrt{x^2+1})\),若f(x)在区间(0,+∞)上单调递增,则该函数的值域为()A. (0,+∞)B. (-∞,+∞)C. [0,+∞)D. R8. 已知抛物线C的方程为y^2=4x,若直线l与抛物线C相切,则直线l的斜率的取值范围为()A. (-∞,0]B. (0,+∞)C. [0,+∞)D. R9. 已知椭圆E的方程为\(\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\),其中a>b>0,若椭圆E的离心率为\(\frac{\sqrt{2}}{2}\),则椭圆E 的短轴长为()A. \(\sqrt{2}\)B. 1C. 2D. \(\sqrt{3}\)10. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为()A. \(\frac{7}{20}\)B. \(\frac{7}{15}\)C. \(\frac{7}{12}\)D. \(\frac{7}{10}\)二、填空题(每题4分,共20分)1. 已知函数f(x)=\(\frac{1}{x}\),若f(x)在区间[1,2]上的平均值为\(\frac{7}{12}\),则f(x)在区间[2,3]上的平均值为\(\frac{7}{20}\)。
巴蜀中学高三数学理科试卷
一、选择题(每题5分,共50分)1. 已知函数f(x)=x^3-3x+1,则f(x)的图像大致为:A. 上升的抛物线B. 下降的抛物线C. 直线D. 垂直线2. 若a、b、c是等差数列,且a+b+c=0,则下列结论正确的是:A. a+b+c=0B. a^2+b^2+c^2=0C. a^3+b^3+c^3=0D. a^2+b^2+c^2=abc3. 已知等比数列{an}的首项为2,公比为q,且q≠1,若a1+a2+a3+a4=24,则q的值为:A. 2B. 3C. 4D. 64. 已知函数f(x)=x^3-3x^2+4x,若f(x)在区间[0,2]上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 45. 已知数列{an}的通项公式为an=3^n-2^n,则数列{an}的前n项和Sn为:A. 3^n-2^nB. 3^n-2^(n-1)C. 2^n-3^nD. 2^n-3^(n-1)6. 已知函数f(x)=ln(x+1),则f(x)在区间(-1,+∞)上的单调性为:A. 单调递增B. 单调递减C. 先增后减D. 先减后增7. 已知数列{an}的通项公式为an=2n+1,则数列{an}的奇数项之和为:A. n^2+2nB. n^2+nC. n^2+2n+1D. n^2+n+18. 已知函数f(x)=x^2+2x+1,若f(x)在区间[1,2]上存在零点,则下列结论正确的是:A. f(1)=0B. f(2)=0C. f(1)≠0且f(2)≠0D. f(1)=0且f(2)=09. 已知等差数列{an}的首项为a1,公差为d,且a1+a2+a3+a4=24,则a1和d的关系为:A. a1+d=6B. a1+d=8C. a1+d=10D. a1+d=1210. 已知函数f(x)=x^3-3x^2+2x,若f(x)在区间(0,+∞)上存在极值,则f(x)的极值点个数为:A. 1B. 2C. 3D. 4二、填空题(每题5分,共25分)11. 已知函数f(x)=x^2-2x+1,若f(x)在区间[1,3]上的最大值为M,则M=______。
高三数学试卷理科及答案
一、选择题(每小题5分,共50分)1. 已知函数f(x) = x^3 - 3x,若存在实数a,使得f(a) = 0,则a的取值范围是()。
A. a > 0B. a < 0C. a = 0D. a ≠ 02. 下列函数中,是奇函数的是()。
A. y = x^2B. y = x^3C. y = |x|D. y = x^2 + 13. 在等差数列{an}中,若a1 = 2,d = 3,则第10项an的值为()。
A. 27B. 28C. 29D. 304. 若等比数列{bn}中,b1 = 2,b3 = 8,则公比q的值为()。
A. 2B. 4C. 8D. 165. 下列命题中,正确的是()。
A. 函数y = log2(x + 1)的图像在y轴上无定义B. 函数y = e^x的图像在第一象限内单调递减C. 函数y = sin(x)的周期为πD. 函数y = tan(x)的图像在y轴上无定义6. 已知直线l的方程为2x - y + 3 = 0,点P(1, 2)到直线l的距离为()。
A. 1B. 2C. 3D. 47. 在直角坐标系中,点A(1, 2),B(3, 4),C(5, 6)构成三角形ABC,则三角形ABC的面积S为()。
A. 2B. 3C. 4D. 58. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,则f(3)的值为()。
A. 6B. 8C. 10D. 129. 在等差数列{an}中,若a1 = 3,d = 2,则前n项和Sn的表达式为()。
A. Sn = n^2 + 2nB. Sn = n^2 + 3nC. Sn = n^2 + 4nD. Sn = n^2 + 5n10. 已知等比数列{bn}中,b1 = 3,b3 = 27,则前n项和Tn的表达式为()。
A. Tn = 3^nB. Tn = 3^(n+1)C. Tn = 3^(n-1)D. Tn = 3^(n-2)二、填空题(每小题5分,共25分)11. 若函数y = ax^2 + bx + c的图像开口向上,则a的取值范围是__________。
高三理科数学最难的知识点
高三理科数学最难的知识点在高三数学学科中,有一些知识点被广大理科生认为是最难掌握的。
这些知识点或涉及复杂的计算,或需要深入理解抽象概念,由于难度较大,对学生的数学素养提出了很高的要求。
本文将重点分析高三理科数学最难的知识点,并提供一些解题技巧,以帮助学生克服困难。
1. 微积分中的极限与导数微积分是高中数学中的重要分支,也是理科生必须掌握的知识点。
而其中的极限和导数概念往往是学生们感到最困惑的内容。
极限是一种非常抽象的概念,教师在讲解时常常使用数学符号和定义,给学生造成了难以理解的困扰。
而导数则需要学生理解变化率的概念,掌握求导公式以及各种特殊函数的导数运算法则。
对于这两个知识点,学生应多做相关练习,理解概念,强化运算技巧。
2. 矩阵与行列式线性代数中的矩阵与行列式也是高三理科数学中难度较大的部分。
学生需要掌握矩阵的基本概念、运算法则以及特殊矩阵的性质,并且能够熟练求解线性方程组。
同时,行列式的计算也是一个需要大量练习的环节。
学生可通过反复练习,熟悉相关技巧和运算规则,加深对矩阵与行列式的理解。
3. 空间几何与向量空间几何与向量是高中数学中的重点内容。
而其中涉及的三角形、四面体等立体几何的性质和计算,以及向量的定义和运算,是高三理科数学中的难点。
学生需通过多做几何证明题,掌握几何图形的性质,并能熟练运用向量运算法则。
此外,建议学生多画图解题,加深对空间几何的直观理解。
4. 概率与统计概率与统计是数学中的实践性较强的一个分支,也是许多学生觉得较难的内容之一。
学生需要掌握概率的基本概念、计算方法以及概率推理的思维方式。
统计方面,要求学生能够熟练计算样本的描述性统计,并能较好地理解统计推断的原理与方法。
学生在掌握了概率的基本理论后,可以通过大量练习加深对概率与统计的理解。
总之,高三理科数学的最难知识点是微积分中的极限与导数、矩阵与行列式、空间几何与向量以及概率与统计。
针对这些难点,学生应注重理解概念,掌握运算技巧,并通过大量练习将知识点牢固掌握。
高三理科数学试卷(含答案)
理科数学试卷参考答案及评分标准本试卷分第Ⅰ卷和第Ⅱ卷两部分,共11页,满分150分,考试时间120分钟.考试结束后,将本试卷和答题卡一并交回. 注意事项:1. 答题前,考生务必用0.5毫米黑色签字笔将自己的姓名、座号、准考证号、县区和科类填写在答题卡和试卷规定的位置上,并将准考证号条形码粘贴在答题卡上指定位置.2. 第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,答案不能答在试卷上.3. 第Ⅱ卷必须用0.5毫米黑色签字笔在答题卡各题的答题区域内作答;不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不能使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效.4. 填空题请直接填写答案,解答题应写出文字说明,证明过程或演算步骤.第Ⅰ卷(共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集I 是实数集R , 3{|2}{|0}1x M x x N x x -=>=≤-与都是I 的子集(如图所示), 则阴影部分所表示的集合为A .{}2x x <B .{}21x x -≤<C .{}12x x <≤D .{}22x x -≤≤2.下列函数中既不是奇函数,又不是偶函数的是A .2xy = B . (lg y x =C . 22xxy -=+ D . 1lg1y x =+ 3.若曲线x x x f -=4)(在点P 处的切线平行于直线03=-y x ,则点P 的坐标为A .(1,0)B .(1,5)C .(1,-3)D .(-1,2)4.在ABC ∆中,a b 、分别是角A B 、所对的边,条件“a b <”是使 “cos cos A B >”成立的A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 5.422142x x dx -⎛⎫-++= ⎪⎝⎭⎰ A .16 B .18 C .20 D .226. 已知函数),6cos()6sin()(ππ++=x x x f 则下列判断正确的是A .)(x f 的最小正周期为2π,其图象的一条对称轴为12π=xB .)(x f 的最小正周期为2π,其图象的一条对称轴为6π=xC .)(x f 的最小正周期为π,其图象的一条对称轴为12π=xD .)(x f 的最小正周期为π,其图象的一条对称轴为6π=x7. 一空间几何体的三视图如图所示,则该几何体的表面积为 A.2π+ B.42π+ C.6π+ D.62π+ 8. 若直线:10 l ax by ++=始终平分圆M :224210x y x y ++++=的周长,则()()2222a b -+-的最小值为AB .5C.D .109. 设b c 、表示两条直线,αβ、表示两个平面,下列命题中真命题是A .若c ∥α,c ⊥β,则αβ⊥B .若b α⊂,b ∥c ,则c ∥αC .若b α⊂,c ∥α,则b ∥cD .若c ∥α,αβ⊥,则c β⊥10.已知数列{}n x 满足3n n x x +=,21||()n n n x x x n N *++=-∈,若11x =,2 (1,0)x a a a =≤≠,则数列{}n x 的前2010项的和2010S 为A .669B .670C .1338D .134011. 在平面直角坐标系中,O 为坐标原点,设向量).3,1(),1,3(,,====其中若10,≤≤≤+=μλμλ且,C 点所有可能的位置区域用阴影表示正确的是俯视图正视图侧视图(第7题图)A .B .C .D .12.已知点F 是双曲线)0,0(12222>>=-b a by a x 的左焦点,点E 是该双曲线的右顶点,过F 且垂直于x 轴的直线与双曲线交于A B 、两点,若ABE ∆是锐角三角形,则该双曲线的离心率e 的取值范围是A . ()1,+∞B .()1,2C.(1,1+D.(2,1+第Ⅱ卷(共90分)二、填空题:本大题共4小题,每小题4分,共16分. 13. 对任意非零实数a b 、,若a b ⊗的运算原理如图所示,则()221log 82-⎛⎫⊗= ⎪⎝⎭___1___.14.在ABC ∆中,已知41AB AC ==,,ABCS AB AC ∆=⋅则的值为 ±2 .15. 设n S 表示等差数列{}n a 的前n 项和,且918S =,240n S =,若()4309n a n -=>,则n = 15 .16. 已知两个不相等的实数a b 、满足以下关系式:204a sin a cos πθθ⋅+⋅-=,204b sin b cos πθθ⋅+⋅-=,则连接A ()2a ,a 、 B ()2b ,b 两点的直线与圆心在原点的单位圆的位置关系是 相交 . 三、解答题:本大题共6个小题,共74分. 17.(本小题满分12分)已知函数2()sin cos f x x x x =. (Ⅰ)求()f x 的最小正周期;(Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值. 解:(Ⅰ)∵2()sin cos f x x x x =+)12sin cos cos 212x x x =⋅++(第13题图)1sin 2cos 2222x x =++ ……………3分sin 23x π⎛⎫=++ ⎪⎝⎭ ……………5分 ∴ 函数()f x 的最小正周期22T ππ==. ……………6分 (Ⅱ)∵ 62x ππ-≤≤,40233x ππ≤+≤∴sin 213x π⎛⎫≤+≤ ⎪⎝⎭, ……………9分 ∴0sin 213x π⎛⎫≤++≤= ⎪⎝⎭, ∴ ()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值为22,最小值为0.……………12分 18.(本小题满分12分)已知等腰直角三角形RBC ,其中∠RBC =90º, 2==BC RB .点A 、D 分别是RB 、RC 的中点,现将△RAD 沿着边AD 折起到△PAD 位置,使PA ⊥AB ,连结PB 、PC . (Ⅰ)求证:BC ⊥PB ;(Ⅱ)求二面角P CD A --的余弦值. 解:(Ⅰ)∵点D A 、分别是RB 、RC 的中点,∴ BC AD BC AD 21//=且. …… 2分∴ ∠090=∠=∠=RBC RAD PAD . ∴ AD PA ⊥又PA ⊥AB ,DA AB A =∴ ABCD PA 面⊥ ∴BC PA ⊥ ∵ A AB PA AB BC =⊥ ,,∴ BC ⊥平面PAB . …… 4分 ∵ ⊂PB 平面PAB ,∴ PB BC ⊥. …… 6分 (Ⅱ)法一:取RD 的中点F ,连结AF 、PF .PCADBR(第18题图)∵ 1==AD RA ,∴ RC AF ⊥.又由(Ⅰ)知ABCD PA 面⊥, 而⊂RC 平面ABCD ,∴ RC PA ⊥. ………………… 8分 ∵ ,A PA AF= ∴ ⊥RC 平面PAF .∴ ∠AFP 是二面角P CD A --的平面角. ………………10分 在Rt △RAD 中, 22212122=+==AD RA RD AF , 在Rt △PAF 中, 2622=+=AF PA PF , ∴ 332622cos ===∠PF AF AFP . ………………11分 ∴ 二面角P CD A --的平面角的余弦值是33. ………………12分 (Ⅱ)法二:建立如图所示的空间直角坐标系xyz A -. 则D (-1,0,0),C (-2,1,0),P (0,0,1).∴=(-1,1,0), =(1,0,1), ……8分 设平面PCD 的法向量为),,(z y x n =,则n DC x y n DP x z ⎧⋅=-+=⎪⎨⋅=+=⎪⎩……10分 令1=x ,得1,1-==z y , ∴ )1,1,1(-=n.FR ADBCP (第18题图)R(第18题图)显然,是平面ACD 的一个法向量=(,0,01-).∴ cos<n ,33131=⨯=. ∴ 二面角P CD A --的余弦值是33. ………………12分 19.(本小题满分12分)已知数列{}n a 的首项15a =,前n 项和为n S ,且125n n S S n +=++()n N *∈.(Ⅰ)设1n n b a =+,求数列{}n b 的通项公式; (Ⅱ)求数列{}n a 的前n 项和n S . 解:(Ⅰ)由125n n S S n +=++()n N *∈得 ()1215n n S S n -=+-+(,2)n N n *∈≥两式相减得 121n n a a +=+ ……………………………… 3分 ∴ ()1121n n a a ++=+即 n n b b 21=+(,2)n N n*∈≥ …………………………………… 4分 又1165111122=+=++=-=a S S S a ∴ 12122=+=a b ,6111=+=a b∴ 122b b = …………………………………… 6分 ∴ 数列{}n b 是首项为6,公比为2的等比数列 ∴ n n n b 23261⋅=⋅=- ………………………………… 8分(Ⅱ)法一由(Ⅰ)知321nn a =⋅- ……………………………… 9分 ∴ 12n n S a a a =++⋅⋅⋅+2323232nn =⨯+⨯+⋅⋅⋅+⋅- ……………………………10分()221321n n -=⨯--1626326n n n n +=⋅--=⋅--. ……………………… 12分(Ⅱ)法二由已知125n n S S n +=++()n N *∈ ① 设()()112n n S c n d S cn d ++++=++ 整理得 12n n S S cn d c +=++- ②对照① 、②,得 1,6c d == ……………………………………8分 即①等价于 ()()11626n n S n S n ++++=++∴ 数列{}6n S n ++是等比数列,首项为11161612S a ++=++=,公比为2q = ∴ 11612232n n n S n -+++=⋅=⋅∴ 1326n n S n +=⋅--. …………………………………… 12分20.(本小题满分12分)如图所示,将一矩形花坛ABCD 扩建成一个更大的矩形花坛AMPN ,要求B 点在AM 上,D 点在AN 上,且对角线MN 过C 点,已知3=AB 米,2=AD 米.(I )要使矩形AMPN 的面积大于32平方米,则DN 的长应在什么范围内? (II )当DN 的长度是多少时,矩形花坛AMPN 的面积最小?并求出最小值. 解:(I )设DN 的长为x (0x >)米,则2AN x =+米∵AMDC ANDN =,∴()32x AM x+=, ……………………2分∴ ()232AMPN x S AN AM x+=⋅=由32>AMPN S 得()23232x x+> ,(第20题图)又0x >,得 2320120x x -+>,解得:2063x x <<> 或 即DN 长的取值范围是2(0)(6)3∞ ,,+ ……………………7分(II )矩形花坛AMPN 的面积为()22323121212312x x x y x xx x+++===++1224≥= ……………………10分 当且仅当1232x x ,x==即时矩形花坛AMPN 的面积取得最小值24. 故,DN 的长度是2米时,矩形AMPN 的面积最小,最小值为24平方米.…12分 21.(本小题满分12分)已知函数22()ln ()f x x a x ax a R =-+∈.(Ⅰ)当1a =时,证明函数()f x 只有一个零点;(Ⅱ)若函数()f x 在区间()1,+∞上是减函数,求实数a 的取值范围. 解:(Ⅰ)当1a =时,2()ln f x x x x =-+,其定义域是(0,)+∞∴ 2121()21x x f x x x x --'∴=-+=- …………2分令()0f x '=,即2210x x x ---=,解得12x =-或1x =. 0x >Q ,∴ 12x ∴=-舍去. 当01x <<时,()0f x '>;当1x >时,()0f x '<.∴ 函数()f x 在区间()01,上单调递增,在区间()1,+∞上单调递减 ∴ 当x =1时,函数()f x 取得最大值,其值为2(1)ln1110f =-+=. 当1x ≠时,()(1)f x f <,即()0f x <.∴ 函数()f x 只有一个零点. ……………………6分(Ⅱ)显然函数22()ln f x x a x ax =-+的定义域为(0,)+∞∴ 222121(21)(1)()2a x ax ax ax f x a x a x x x-++-+-'=-+== ………7分① 当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ② 当0a >时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即1x a≥ 此时()f x 的单调递减区间为1,a ⎡⎫+∞⎪⎢⎣⎭.依题意,得11,0.a a ⎧≤⎪⎨⎪>⎩解之得1a ≥.………10分③ 当0a <时,()()00f x x '≤>等价于()()()21100ax ax x +-≥>,即12x a≥- 此时()f x 的单调递减区间为12,a ⎡⎫-+∞⎪⎢⎣⎭, ∴1120a a ⎧-≤⎪⎨⎪<⎩得12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 法二:①当0a =时,1()0,()f x f x x'=>∴在区间()1,+∞上为增函数,不合题意……8分 ②当0a ≠时,要使函数()f x 在区间()1,+∞上是减函数,只需()0f x '≤在区间()1,+∞上恒成立,0x > ∴只要22210a x ax --≥恒成立,2214210aa a a ⎧≤⎪∴⎨⎪--≥⎩解得1a ≥或12a ≤-综上,实数a 的取值范围是1(,][1,)2-∞-+∞U …………12分 22.(本小题满分14分)已知椭圆C 中心在原点、焦点在x 轴上,椭圆C 上的点到焦点的最大值为3,最小值为1.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若直线l :()0y kx m k =+≠与椭圆交于不同的两点M N 、(M N 、不是左、右顶点),且以MN 为直径的圆经过椭圆的右顶点A .求证:直线l 过定点,并求出定点的坐标. 解:(Ⅰ)设椭圆的长半轴为a ,半焦距为c ,则31a c a c +=⎧⎨-=⎩ 解得 21a c =⎧⎨=⎩∴ 椭圆C 的标准方程为 22143x y +=. ………………… 4分(Ⅱ)由方程组22143x y y kx m⎧⎪+=⎨⎪=+⎩ 消去y ,得()2223484120k xk m x m +++-= 由题意:△()()()22284344120km km=-+->整理得:22340k m +-> ① ……7分 设()()1122,,M x y N x y 、,则122834kmx x k+=-+, 212241234m x x k -=+………………… 8分 由已知,AM AN ⊥ , 且椭圆的右顶点为A (2,0) ∴()()1212220x x y y --+=………………… 10分即 ()()()2212121240kx x km x x m++-+++=也即 ()()22222412812403434m km k km m k k--+⋅+-⋅++=++ 整理得: 2271640m mk k ++= 解得: 2m k =- 或 27km =-,均满足① ……………………… 12分 当2m k =-时,直线l 的方程为 2y kx k =-,过定点(2,0),舍去当27k m =-时,直线l 的方程为 27y k x ⎛⎫=- ⎪⎝⎭,过定点2(,0)7,故,直线l 过定点,且定点的坐标为2(,0)7.……………………… 14分。
河南省2023届高三上学期第一次考试数学理科试题(解析版)
“顶尖计划”2023届高中毕业班第一次考试理科数学一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}{}223,N ,18400A x x n nB x x x ==+∈=--<∣∣,则A B 中的元素个数为()A.8B.9C.10D.11【答案】B 【解析】【分析】解一元二次不等式化简集合B ,再根据已知列出不等式,求解判断作答.【详解】解不等式218400x x --<得:220x -<<,即{|220}B x x =-<<,而{}23,N A x x n n ==+∈∣,由22320n -<+<解得:51722n -<<,又N n ∈,显然满足51722n -<<的自然数有9个,所以A B 中的元素个数为9.故选:B 2.已知复数33i2i z =+,则z =()A.1B.35C.355D.3【答案】C 【解析】【分析】利用复数的除法化简复数z ,利用复数的模长公式可求得结果.【详解】因为()()()33i 2i 3i 3i 36i 2i 2i 2i 2i 55z +====-++--+,因此,5z ==.故选:C.3.已知非零向量a 、b满足a b =r r ,且()2a b b +⊥ ,则,a b <>= ()A.π6B.π3C.2π3D.5π6【答案】C 【解析】【分析】由已知可得出()20a b b +⋅= ,利用平面向量数量积的运算性质求出cos ,a b <> 的值,结合平面向量夹角的取值范围可求得结果.【详解】因为()2a b b +⊥ ,则()222cos ,0a b b a b a b b +⋅=⋅<>+= ,a b = ,可得1cos ,2a b <>=- ,因为0,πa b ≤<>≤ ,因此,2π,3a b <>= .故选:C.4.某士兵进行射击训练,每次命中目标的概率均为34,且每次命中与否相互独立,则他连续射击3次,至少命中两次的概率为()A.2732B.916C.2764D.932【答案】A 【解析】【分析】根据相互独立事件的概率乘法公式及互斥事件的概率加法公式即可求解.【详解】解:因为每次命中目标的概率均为34,且每次命中与否相互独立,所以连续射击3次,至少命中两次的概率322333327C 144432P ⎛⎫⎛⎫⎛⎫=+-= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭,故选:A.5.已知函数()2sin 3cos f x x x =+在x ϕ=处取得最大值,则cos ϕ=()A.13 B.13C.13-D.31313-【答案】A 【解析】【分析】根辅助角公式和正弦函数最值求解即可.【详解】()()2sin 3cos f x x x x θ=+=+,其中θ为锐角,sin 13θ=.因为当x ϕ=处取得最大值,所以22πϕθπ+=+k ,k Z ∈,即22πϕθπ=-+k ,k Z ∈,所以313cos cos 2sin 213πϕθπθ⎛⎫=-+== ⎪⎝⎭k .故选:A6.已知定义域为R 的偶函数()f x 满足()(4)0f x f x +-=,且当[2,2)x ∈-时,2()4f x x =-,则(2021)f =()A.3-B.1- C.1D.3【答案】D 【解析】【分析】根据给定条件,探讨出函数()f x 的周期,再结合已知函数式求解作答.【详解】因R 上的偶函数()f x 满足()(4)0f x f x +-=,即有()()()4f x f x f x -=-=--,则(8)(4)()f x f x f x -=--=-,因此,函数()f x 是周期为8的周期函数,2(2021)(25285)(5)(1)[(1)4]3f f f f =⨯+==--=---=.故选:D7.我国古代经典数学名著《九章算术》中有一段表述:“今有圆堡壔(dăo ),周四丈八尺,高一丈一尺”,意思是有一个圆柱,底面周长为4丈8尺,高为1丈1尺.则该圆柱的外接球的表面积约为()(注:1丈=10尺,π取3)A.1185平方尺B.1131平方尺C.674平方尺D.337平方尺【答案】B 【解析】【分析】根据题意作图,再由底面周长求得底面半径,连接上下底面圆心,取中点为外接圆的圆心,根据勾股定理,可得外接圆半径,可得答案.【详解】由1丈=10尺,则4丈8尺=48尺,1丈1尺=11尺,如下图:则11,2·48BC AB π==,即8AB =,假设点D 为圆柱外接圆的圆心,即AD 为外接圆的半径,且112BD DC ==,在Rt ABD △中,222AB BD AD +=,解得294.25AD =,则外接球的表面积241131S AD π=⋅=,故选:B.8.甲、乙、丙、丁、戊五名志愿者去,,A B C 三个不同的小区参加新冠疫情防控志愿服务,每个小区至少去1人,每人只去1个小区,且甲、乙去同一个小区,则不同的安排方法有()A.28种B.32种C.36种D.42种【答案】C 【解析】【分析】先将甲、乙看成一个元素,然后先分组后排列可得.【详解】将甲、乙看成一个元素A ,然后将A 、丙、丁、戊四个元素分为3组,共有21142122C C C 6A =种,再将3组分到3个不同小区有33A =6种,所以满足条件的安排方法共有66=36⨯种.故选:C9.已知角α的顶点在坐标原点,始边与x 轴的非负半轴重合,终边经过点(,4)m -,其中0m <,若7cos 225α=-,则πtan 2m α⎛⎫+= ⎪⎝⎭()A.2B.12-C.43-D.34-【答案】D 【解析】【分析】利用三角函数定义求出tan α,再利用二倍角的余弦公式结合齐次式法求解作答.【详解】依题意,4tan 0mα=->,又22222222cos sin 1tan 7cos 2cos sin cos sin 1tan 25ααααααααα--=-===-++,解得4tan 3α=,从而得3m =-,所以3πsin()π3πcos 132tan(tan()3π22sin tan 4cos(2m ααααααα-+=-===-=---.故选:D10.过抛物线()2:20C y px p =>的焦点F 且斜率为1-的直线交C 于A 、B (其中A 在x轴上方)两点,交C 的准线于点M ,且16AB =,O 为坐标原点,则OM =()A.2B.C.D.【答案】D 【解析】【分析】将直线AB 的方程与抛物线的方程联立,利用韦达定理结合抛物线的焦点弦长公式求出p 的值,可求得点M 的坐标,再利用平面间两点间的距离公式可求得OM 的值.【详解】抛物线C 的焦点为,02p F ⎛⎫⎪⎝⎭,准线方程为2p x =-,直线AB 的方程为2⎛⎫=--⎪⎝⎭p y x ,设点()11,A x y 、()22,B x y ,联立222p y x y px⎧⎛⎫=--⎪ ⎪⎝⎭⎨⎪=⎩可得22304p x px -+=,2290p p ∆=->,由韦达定理可得123x x p +=,则12416x x p A p B =++==,可得4p =,联立22p x p y x ⎧=-⎪⎪⎨⎛⎫⎪=-- ⎪⎪⎝⎭⎩可得2p x y p ⎧=-⎪⎨⎪=⎩,即点()2,4M -,因此,OM ==.故选:D.11.已知32()2(2)3f x x a x x =+--是奇函数,则过点(1,2)P -向曲线()y f x =可作的切线条数是()A.1B.2C.3D.不确定【答案】C 【解析】【分析】根据给定条件,求出a ,再求出函数()f x 的导数,设出切点坐标,借助导数的几何意义列出方程求解作答.【详解】因函数()f x 是奇函数,则由()()0f x f x -+=得()2220a x -=恒成立,则2a =,即有3()23f x x x =-,2()63'=-f x x ,设过点(1,2)P -向曲线()y f x =所作切线与曲线()y f x =相切的切点为3000(,23)Q x x x -,而点(1,2)P -不在曲线()y f x =上,则320000232631x x x x ---=+,整理得32004610x x +-=,即2000(21)(221)0x x x ++-=,解得012x =-或0132x -±=,即符合条件的切点有3个,所以过点(1,2)P -向曲线()y f x =可作的切线条数是3.故选:C12.设双曲线2222:1(0,0)x y a b a bΓ-=>>的左、右焦点分别为点12(,0),(,0)F c F c -,过点(2,0)P c -且斜率为12的直线与双曲线的左、右两支分别交于,M N 两点,若||3||PN PM =,且直线2F N 的斜率为3,则Γ的离心率为()A.132B.2C.2D.2【答案】B 【解析】【分析】通过题意可以得到直线PN 和直线2NF 的方程,两条方程联立可以得到N 的坐标,代入双曲线即可求出答案【详解】解:由题意可得直线PN 的方程为()122y x c =+,直线2NF 的方程为()3y x c =-,所以()()1223y x c y x c ⎧=+⎪⎨⎪=-⎩,解得8595c x cy ⎧=⎪⎪⎨⎪=⎪⎩,即89,55c c N ⎛⎫ ⎪⎝⎭,将89,55c c N ⎛⎫ ⎪⎝⎭代入双曲线可得2222648112525c c a b-=即()22222648112525c c a c a -=-,所以2264811125251e e -=⎛⎫- ⎪⎝⎭,因为1,e >所以e =故选:B二、填空题:本题共4小题,每小题5分,共20分.13.已知函数2()log (1)f x x a =-+在区间(2,3)上有且仅有一个零点,则实数a 的取值范围为_____.【答案】(1,0)-【解析】【分析】结合函数的单调性和零点的存在定理,即可求解【详解】解:由对数函数的性质,可得()f x 为单调递增函数,且函数()f x 在(2,3)上有且仅有一个零点,所以()()230f f ⋅<,即(1)0a a ⋅+<,解得10a -<<,所以实数a 的取值范围是(1,0)-,故答案为:(1,0)-14.写出一个同时具有下列性质①②③的函数:()f x =_____.①()()()1212f x x f x f x =+;②当,()0x ∈+∞时,()f x 单调递减;③()f x 为偶函数.【答案】12log x (不唯一)【解析】【分析】根据对数函数性质即可做出判断.【详解】性质①显然是和对数有关,性质②只需令对数的底01a <<即可,性质③只需将自变量x 加绝对值即变成偶函数.故答案为:12log x (不唯一)15.已知平面上的动点P 到点(0,0)O 和(2,0)A 的距离之比为32,则点P 到x 轴的距离最大值为_____.【答案】【解析】【分析】设(,)P x y ,然后根据题意列方程化简可得点P 的轨迹是以(6,0)-为圆心,为半径的圆,从而可求得答案.【详解】设(,)P x y ,因为动点P 到点(0,0)O 和(2,0)A 的距离之比为32,2=,22223(2)4x y x y +=-+,2222443(44)3x y x x y +=-++,221212x y x ++=22(6)48x y ++=,所以点P 的轨迹是以(6,0)-为圆心,所以点P 到x 轴的距离最大值为故答案为:16.微型航空遥感技术以无人机为空中遥感平台,为城市经济和文化建设提供了有效的技术服务手段.如图所示,有一架无人机在空中P 处进行航拍,水平地面上甲、乙两人分别在,A B 处观察该无人机(两人的身高忽略不计),C 为无人机在水平地面上的正投影.已知甲乙两人相距100m ,甲观察无人机的仰角为45︒,若再测量两个角的大小就可以确定无人机的飞行高度PC ,则这两个角可以是_____.(写出所有符合要求的编号)①BAC ∠和ABC ∠;②BAC ∠和PAB ∠;③PAB ∠和PBA ∠;④PAB ∠和ABC ∠.【答案】①③④【解析】【分析】①:根据已知先解ABC 得AC ,然后可得;②:根据已知直接判断可知;③:先解PAB △得PA ,然后可得;④:先由最小角定理的BAC ∠,解ABC 可得AC ,然后可得.【详解】①:当已知BAC ∠和ABC ∠时,在ABC 利用内角和定理和正弦定理可得AC ,然后在Rt PAC △中,由三角函数定义可得PC ,故①正确;②:当已知BAC ∠和PAB ∠时,在ABC 已知一角一边,在PAB △中已知一角一边,显然无法求解,故②错误;③:当已知PAB ∠和PBA ∠时,在PAB △中已知两角一边,可解出PA ,然后在Rt PAC △中,由三角函数定义可得PC ,故③正确;④:当已知PAB ∠和ABC ∠时,可先由最小角定理求得BAC ∠,然后解ABC 可得AC ,最后在Rt PAC △中,由三角函数定义可得PC ,故④正确.故答案为:①③④三、解答题:共70分.解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分.17.设等差数列{}n a 的前n 项和为n S ,已知251,15a S ==.(1)求数列{}n a 的通项公式;(2)若23log 2n n n b a a +=,求数列{}n b 的前n 项和n T .【答案】(1)23n a n =-(2)1(25)210n n T n +=-⨯+【解析】【分析】(1)根据等差数列的通项公式和前n 项和公式列方程组直接求解可得;(2)由错位相减法可得.【小问1详解】设数列{}n a 的公差为d ,由题设可得111,51015a d a d +=⎧⎨+=⎩解得112,a d =-⎧⎨=⎩所以1(1)223n a n n =-+-⨯=-.【小问2详解】由(1)知2log 23n b n n =-,所以223nn bn =-可得(23)2nn b n =-⨯,所以231121232(25)2(23)2n n n T n n -=-⨯+⨯+⨯++-⨯+-⨯ ①23412121232(25)2(23)2n n n T n n +=-⨯+⨯+⨯++-⨯+-⨯ ②②减①可得:341112222(23)2n n n T n ++=⨯----+-⨯ 118(12)(23)2212n n n -+⨯-=-⨯+--1(25)210n n +=-⨯+18.某工厂共有甲、乙两个车间,为了比较两个车间的生产水平,分别从两个车间生产的同一种零件中各随机抽取了100件,它们的质量指标值m 统计如下:质量指标值m [)0,20[)20,40[)40,60[)60,80[]80,100甲车间(件)152025319乙车间(件)510153931(1)估计该工厂生产这种零件的质量指标值m 的平均数;(同一组中的数据用该组区间的中点值作代表)(2)根据所给数据,完成下面的22⨯列联表(表中数据单位:件),并判断是否有99%的把握认为甲、乙两个车间的生产水平有差异.60m <60m ≥合计甲车间乙车间合计附:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.()2P K k≥0.050.010.001k3.8416.63510.828【答案】(1)58;(2)列联表见解析,有99%把握认为甲乙两个车间的生产水平有差异.【解析】【分析】(1)根据给定的数表,求出各组数据的频率,再列式计算作答.(2)完善22⨯列联表,计算2K 的观测值,再与临界值比对作答.【小问1详解】由所给数据,各组的频率分别为0.1,0.15,0.2,0.35,0.2,所以该工厂生产这种零件的质量指标值m 的平均数的估计值为:100.1300.15500.2700.35900.258⨯+⨯+⨯+⨯+⨯=.【小问2详解】22⨯列联表如下:60m <60m ≥合计甲车间6040100乙车间3070100合计90110200所以22200(60704030)18.18210010090110K ⨯⨯-⨯=≈⨯⨯⨯因为18.182大于6.635,所以有99%把握认为甲乙两个车间的生产水平有差异.19.如图,在直三棱柱111ABC A B C -中,190,24,ACB AA AC BC M ︒∠====为棱1AA 上靠近1A 的三等分点,N 为棱AC 的中点,点P 在棱BC 上,且直线PN ∥平面1BMC .(1)求PC 的长;(2)求二面角1P BM C --的余弦值.【答案】(1)23PC =(2)22110【解析】【分析】(1)在1CC 上取一点Q ,使得CP CQ =,根据面面平行判定定理证明平面PQN平面1BMC ,再根据面面平行性质定理确定CQ 的长即可,(2)建立空间直角坐标系,求出平面PBM ,平面1BC M 的法向量,根据二面角向量公式求二面角1P BM C --的余弦值.【小问1详解】在1CC 上取一点Q ,使得CP CQ =,连接,PQ NQ .由已知得11CC AA CB ==,所以1CQ CPCC CB=所以1PQ BC ∥.因为PQ ⊄平面1BMC ,1BC ⊂平面1BMC ,所以PQ ∥平面1BMC .又因为PN ∥平面1,BMC PN PQ P ⋂=,,PN NQ ⊂平面PQN ,所以平面PQN 平面1BMC .平面11ACC A 平面PQN QN =,平面11ACC A 平面11BC M MC =,根据面面平行的性质可知1//MC QN .在矩形11ACC A 中,可得11CQN A MC ∽,所以11123A M CQ CN A C ==,所以2233PC CQ CN ===.【小问2详解】以C 为坐标原点,分别以1,,CA CB CC 所在直线为,,x y z 轴建立空间直角坐标系.则182(0,0,0),(0,0,4),(0,4,0),2,0,,0,,033C C B M P ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭.114(0,4,4),2,0,3C B C M ⎛⎫=-=- ⎪⎝⎭ ,8102,4,,0,,033BM BP ⎛⎫⎛⎫=-=- ⎪ ⎪⎝⎭⎝⎭ ,设平面1C MB 的法向量为()111,,m x y z =r,则110,0,C B m C M m ⎧⋅=⎪⎨⋅=⎪⎩ ,所以1111440,420,3y z x z -=⎧⎪⎨-=⎪⎩,取13z =得()2,3,3.m = 设平面PMB 的法向量为()222,,n x y z =r ,则0,0,BM n BP n ⎧⋅=⎨⋅=⎩ 所以22228240,3100,3x y z y ⎧-+=⎪⎪⎨⎪-=⎪⎩取23z =-,得()4,0,3.n =- 所以22cos ,110m n m n m n ⨯++⨯-⋅===-⋅结合图可知二面角1PBM C --的余弦值为110.20.过椭圆22:143x y C +=上任意一点P 作直线:l y kx p=+(1)证明:2234p k + ;(2)若0,p O ≠为坐标原点,线段OP 的中点为M ,过M 作l 的平行线,l l ''与C 交于,A B 两点,求ABP △面积的最大值.【答案】(1)证明见解析(2)32.【解析】【分析】(1)联立椭圆方程与直线方程,消元整理一元二次方程,由题意,该方程有解,则判别式大于等于零,可得答案.(2)设出题目中的两点,根据平行,设出另一条直线,根据中点,找出两直线的截距之间的关系,联立椭圆方程与直线方程,消元整理一元二次方程,写出韦达定理,根据三角形的等积变换,利用分割法,整理函数,根据(1),可得答案.【小问1详解】联立221,43,x y y kx p ⎧+=⎪⎨⎪=+⎩,消去y 整理得:()2223484120k x kpx p +++-=,因为点P 在C 上,所以()()2222644412340,k p p k ∆=--+ 化简得2234p k + .【小问2详解】设:l y kx m '=+,点()00,P x y ,则00,22x y M ⎛⎫⎪⎝⎭.由已知得00y kx p =+,所以00222y x p k =⋅+,即点00,22x y M ⎛⎫⎪⎝⎭满足方程2p y kx =+,所以2p m =.由221,43,x y y kx m ⎧+=⎪⎨⎪=+⎩得()2223484120k x kmx m +++-=,设()()1122,,,A x y B x y ,则21212228412,3434km m x x x x k k-+=-=++.所以122.34x x k-==+∣所以121||2ABPABOSS m x x ==-==令2234m t k =+,因为2223444p k m += ,所以10,4t ⎛⎤∈ ⎥⎝⎦.所以32ABPS ==所以ABP △面积的最大值为32.21.设函数()()e xf x mx m m =--∈R .(1)讨论()f x 的单调性;(2)若()f x 有两个零点1x 和2x ,设1202x x x +=,证明:()00f x '>(()f x '为()f x 的导函数).【答案】(1)答案见解析(2)证明见解析【解析】【分析】(1)分0m ≤、0m >两种情况讨论,分析导数的符号变化,由此可得出函数()f x 的增区间和减区间;(2)由函数零点的定义可得出1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,可得出1212e e x x m x x -=-,将所证不等式等价变形为12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,构造函数()e e 2t t g t t -=--,其中0t >,利用导数分析函数()g t 的单调性,即可证得结论成立.【小问1详解】解:因为()e x f x mx m =--,则()e xf x m '=-,若0m ≤,对任意的x ∈R ,则()0f x '<,函数()f x 的单调递减区间为(),-∞+∞;若0m >,令()e 0xf x m '=-=,得ln x m =,当ln x m <时,()0f x '>,当ln x m >时,()0f x '<.所以()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.综上所述,当0m ≤时,函数()f x 的单调递减区间为(),-∞+∞;当0m >时,函数()f x 的增区间为(),ln m -∞,减区间为()ln ,m +∞.【小问2详解】证明:不妨令12x x >,由题设可得1212e 0e 0x x mx m mx m ⎧--=⎨--=⎩,两式相减整理可得1212e e x x m x x -=-.所以()1212121222012e e ee 2x x x x x x x xf x f m x x ++''+-⎛⎫==-=- ⎪-⎝⎭,要证()00f x '>,即证1212212e e e 0x x x x x x +-->-,即证12212212eex x x x x x --->-,令1202x x t -=>,即证e e 2t t t -->,其中0t >,构造函数()e e 2ttg t t -=--,其中0t >,则()e e 220t t g t -'=+->=,所以,函数()g t 在()0,∞+上单调递增,所以,当0t >时,()()00g t g >=,即e e 2t t t -->,故原不等式得证.【点睛】方法点睛:利用导数证明不等式问题,方法如下:(1)直接构造函数法:证明不等式()()f x g x >(或()()f x g x <)转化为证明()()0f x g x ->(或()()0f x g x -<),进而构造辅助函数()()()h x f x g x =-;(2)适当放缩构造法:一是根据已知条件适当放缩;二是利用常见放缩结论;(3)构造“形似”函数,稍作变形再构造,对原不等式同解变形,根据相似结构构造辅助函数.(二)选考题:共10分.请考生在22,23题中任选一题作答,如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程]22.在直角坐标系xOy 中,曲线C 的参数方程为2(cos sin )(,0),(cos sin )x m m y m ϕϕϕϕϕ=-⎧≠⎨=+⎩为参数以O 为极点,x 轴正半轴为极轴建立极坐标系,直线l 的极坐标方程为sin 504πθ⎛⎫+-= ⎪⎝⎭.(1)写出l 的直角坐标方程;(2)若l 与C 只有一个公共点,求m 的值.【答案】(1)50x y +-=(2)102=±m 【解析】【分析】(1)利用和差化积的正弦公式把直线l 的极坐标方程展开,再利用极坐标与直角坐标的互化公式即可求解.(2)先得出曲线C 的普通方程,再联立方程,利用判别式等于0即可求解.【小问1详解】由l 的极坐标方程可得sin cos 50ρθρθ+-=,由cos sin x y ρθρθ=⎧⎨=⎩可知,直角坐标方程为:50x y +-=.【小问2详解】由C 的参数方程可得2222x y m m ⎛⎫⎛⎫+= ⎪ ⎪⎝⎭⎝⎭,即C 的普通方程为222480x y m +-=.联立方程22250480x y x y m +-=⎧⎨+-=⎩得:2254010080x x m -+-=,因为直线l 与曲线C 只有一个公共点,所以()222404510081604000m m∆=-⨯⨯-=-=,解得:2=±m .[选修4-5:不等式选讲]23.已知,,a b c 均为正实数,且1abc =.(1)求124a b c++的最小值;(2)证明:222++≥+++++bc ac ab b c a c a b.【答案】(1)6(2)证明见解析【解析】【分析】(1)利用三元基本不等式求解即可.(2)利用基本不等式证明即可得到答案.【小问1详解】由基本不等式可知1246++≥==a b c ,当且仅当124a b c ==,即1,1,22a b c ===时等号成立,所以124a b c++的最小值为6.【小问2详解】因为1abc =,所以111bc ac ab a b c++=++.11242+≥=≥=++a b a b a b .同理可得114b c b c+≥+,114a c a c+≥+所以4111442⎛⎫++≥++⎪+++⎝⎭a b c b c a c a b,当且仅当a b c==时等号成立.所以111222++≥+++++a b c b c a c a b,即222. ++≥+++++ bc ac abb c a c a b。
高三数学理科选修一知识点
高三数学理科选修一知识点在高中数学学科中,高三学生将面临着重要的选择——选修一或选修二。
其中,数学理科选修一是对数学知识的深入拓展和应用,提供了更高层次的数学思维和解题技巧。
本文将深入探讨高三数学理科选修一中的一个重要知识点——概率与统计。
一、概率基础知识概率是数学中一个非常重要的概念。
在现实生活中,我们时常会遇到各种各样的学问,而概率就是帮助我们预测和描述这些学问发生的可能性的一种工具。
概率的基础知识包括事件、样本空间、随机事件以及概率的计算等。
1.1 事件在概率中,一个事件指的是样本空间中的某些元素组成的子集。
事件可以是简单的,也可以是复合的。
对于一个随机试验,它的样本空间是所有可能的结果构成的集合,而事件是样本空间的子集。
1.2 样本空间样本空间是一个包含了所有可能结果的集合。
比如,投掷一枚骰子,其样本空间就是{1, 2, 3, 4, 5, 6}。
样本空间的大小也称为这个随机实验的基本结果总数。
1.3 随机事件随机事件是对样本空间的划分或分类。
简单来说,就是我们关心的事件。
比如,投掷一枚骰子,出现奇数点数的事件可以表示为{1, 3, 5}。
1.4 概率的计算概率的计算方法有多种。
在概率问题中,我们经常使用频率概率和几何概率来计算。
频率概率指的是在随机试验的重复实验中,一个事件发生的次数与试验次数的比值。
几何概率指的是根据事件发生的空间大小来计算概率。
二、统计学基本概念统计学是一门研究样本数据的收集、分析和解释的学科。
在高三数学理科选修一中,统计学的基本概念是必须掌握的。
2.1 总体与样本在统计学中,总体是指我们想要研究的对象的全体,而样本则是总体的一部分。
总体是比较大的,而样本则是对总体的一个观察或抽样。
2.2 参数与统计量在统计学中,参数是总体特征的度量。
在实践中,我们无法观察到总体的全部信息,因此我们需要通过样本来估计总体参数。
估计总体参数的一种方法是通过统计量,即从样本数据中计算得到的数值。
高三数学试题(理科)
高三理科数学试题说明:试题满分150分,时间120分钟。
分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷为第1页至第2页,选项按要求涂在答题卡,第Ⅱ卷为第3页至第4页,按要求写在答题卡指定位置。
一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1. 定义集合运算:|xA B z z x A y B y ⎧⎫*==∈∈⎨⎬⎩⎭,,.设{}02A =,,{}12B =,,则集合A B *的所有元素之和为( )A .0B .2C .3D .62. 设集合{}12S x x =->,{}6T x a x a =<<+,S T =R ,则a 的取值范围是( ) A .31a -<<-B .31a --≤≤C .3a -≤或1a -≥D .3a <-或1a >-3. 在等差数列{}n a 中,若2006200720086a a a ++=,则该数列的前2013项的和为 ( ) A .2012 B .2013C . 4024D .40264. 在△ABC 中,cos cos A bB a=,则△ABC 一定是 ( ) A .等腰三角形B .直角三角形C .等腰直角三角形D .等腰三角形或直角三角形 5. 已知a 、b 、c∈R,下列命题正确的是( ) A .a >b ⇒ ac 2>bc 2B .b a cbc a >⇒> C .110a b ab a b >⎫⇒>⎬<⎭ D .110a b ab a b>⎫⇒>⎬>⎭ 6. 定义在R 上的偶函数()f x 满足:对任意的1212,[0,)()x x x x ∈+∞≠,有2121()()0f x f x x x -<-.则( )A. (5)(3)(1)f f f <-<B. (1)(3)(5)f f f <-<C. (3)(1)(5)f f f -<<D. (5)(1)(3)f f f <<-7. 设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2 B .12 C .12- D .2-8. 若函数()(21)()x f x x x a =+- 为奇函数,则sin 3a π=( ).A.12B.2C.34D. 19. 已知实数x ,y 满足条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,i z x y =+ (i 为虚数单位),则|12i |z -+的最小值是( ) AB.1C.2D.1210. 已知函数2sin(2)(0)y x ωϕω=+>)在区间[]02π,的图像如下:那么ω=( ) A .1B .2C .21D .31 11. 函数()sin lg f x x x =-零点的个数( )A .3B. 4C. 5D. 612. 函数3,0()log 1,0xex f x x x ⎧<⎪=⎨-≥⎪⎩的图像的是( )二、填空题:本大题共4小题,每小题4分,共16分.将答案填在题中的横线上. 13. 函数lg(5)2x y x -=-的定义域是 .14. 40(2)2x a x x ++≥>-恒成立,则a 的取值范围是______________. 15. 已知等比数列{}n a 的前n 项和为n S ,其中252,16a a ==,则2182n n nS S ++的最小值是 .16. 在下列命题中:①对于任意实数x ,有()(),()(),f x f x g x g x -=--=且x>0时,()0,()0,f x g x ''>>则x<0时()().f x g x ''> ②函数sin(2)6y x π=-图象的一个对称中心为点(,0)3π;③若函数()f x 在R 上满足1(2)()f x f x +=-,则()f x 是周期为4的函数; ④在ABC ∆中,若20OA OB OC ++=,则AOC BOC S S ∆= ;其中正确命题的序号为_________________________________。
高三好分数理科数学试卷
一、选择题(本大题共10小题,每小题5分,共50分)1. 下列函数中,在其定义域内单调递增的是()A. y = x^2 - 2x + 3B. y = -x^3 + 2x^2 - xC. y = 2^x - x^2D. y = log2(x + 1)2. 已知等差数列{an}的前n项和为Sn,若a1 = 3,S5 = 55,则公差d为()A. 4B. 5C. 6D. 73. 下列不等式中,恒成立的是()A. x^2 + 2x + 1 > 0B. x^2 - 2x + 1 > 0C. x^2 + 2x - 1 > 0D. x^2 - 2x - 1 > 04. 已知向量a = (2, 3),向量b = (1, 2),则向量a与向量b的夹角θ的余弦值为()A. 1/2B. 1/3C. 2/3D. 3/25. 已知函数f(x) = ax^2 + bx + c,若f(1) = 2,f(2) = 4,f(3) = 6,则a、b、c的值分别为()A. a = 1, b = 2, c = 1B. a = 1, b = 1, c = 2C. a = 2, b = 1, c = 1D. a = 2, b = 2, c = 26. 在直角坐标系中,若点P(2, 3)到直线y = kx + b的距离为2,则k的值为()A. 1B. -1C. 2D. -27. 已知函数f(x) = x^3 - 3x^2 + 2x,若f(x)的图像在x轴上的截距为1,则f(x)的极值点为()A. x = 1B. x = 2C. x = 3D. x = -18. 已知等比数列{an}的前n项和为Sn,若a1 = 2,S5 = 62,则公比q为()A. 2B. 3C. 4D. 59. 在三角形ABC中,角A、B、C的对边分别为a、b、c,若a = 3,b = 4,c = 5,则角A的正弦值为()A. 3/5B. 4/5C. 5/4D. 4/310. 已知函数f(x) = x^2 - 4x + 3,若f(x)在区间[1, 3]上的最大值为5,则f(x)的对称轴方程为()A. x = 2B. x = 3C. x = 1D. x = 4二、填空题(本大题共10小题,每小题5分,共50分)11. 已知等差数列{an}的前n项和为Sn,若a1 = 1,公差d = 2,则S10 =________。
届高三理科数学六大专题训练题含详解
届高三理科数学六大专题训练题含详解IMB standardization office【IMB 5AB- IMBK 08- IMB 2C】高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》一、选择题1.α为三角形的一个内角,,125tan -=α则=αcos ()A .1312-B .135-C .135D .13122.函数x y sin =和函数x y cos =都是增函数的区间是()A .)](22,232[Z k k k ∈++ππππB.)](232,2[Z k k k ∈++ππππC .)](22,2[Z k k k ∈+πππD .)](2,22[Z k k k ∈++ππππ3.已知,51)25sin(=+απ那么=αcos ()A .52-B .51-C .51D .524.在图中,A 、B 是单位圆O 上的点,C 是圆与x 轴正半轴的交点,A点的坐标为),54,53(且AOB ∆是正三角形.则COB ∠cos 的值为()A .10334+B .10334- C .10343+D .10343-5.将函数)(sin cos 3R x x x y ∈+=的图象向左平移)0(>m m 个长度单位后,所得到的图象关于y 轴对称,则m 的最小值是() A .12πB .6πC .3πD .65π6.下列关系式中正确的是() A .︒<︒<︒168sin 10cos 11sin B .︒<︒<︒10cos 11sin 168sinC .︒<︒<︒10cos 168sin 11sinD .︒<︒<︒11sin 10cos 168sin7.在锐角ABC ∆中,角A ,B 所对的边长分别为b a ,.若,3sin 2b B a =则角A 等于()A .3πB .4πC .6πD .12π8.已知函数),,0,0)(cos()(R A x A x f ∈>>+=ϕωϕω则“)(x f 是奇函数”是“=ϕ2π”的()A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件 二、填空题9.已知扇形AOB 的周长是6cm ,该扇形中心角是1弧度,则该扇形面积是____.10.设,sin 2sin αα-=),,2(ππα∈则α2tan 的值是________. 11.在锐角ABC ∆中,,1=BC ,2A B ∠=∠则AACcos 的值等于___,AC 的取值范围为___. 12.函数)cos(sin 2)2sin()(ϕϕϕ+-+=x x x f 的最大值为________. 三、解答题 13.已知函数)22,0)(sin(3)(πϕπωϕω<≤->+=x x f 的图象关于直线3π=x 对称,且图象上相邻两个最高点的距离为.π(1)求ω和ϕ的值;(2)若),326(43)2(παπα<<=f 求)23cos(πα+的值.14.已知向量),21,(cos -=x a ),2cos ,sin 3(x x b =,R x ∈设函数.)(b a x f ⋅=(1)求)(x f 的最小正周期; (2)求)(x f 在]2,0[π上的最大值和最小值.15.已知函数,),4sin()(R x x A x f ∈+=π且.23)125(=πf (1)求A 的值;(2)若),2,0(,23)()(πθθθ∈=-+f f 求).43(θπ-f16.已知函数,2cos 21cos sin 3)(x x x x f ωωω-=,0>ω,R x ∈且函数)(x f 的最小正周期为.π(1)求ω的值和函数)(x f 的单调增区间;(2)在ABC ∆中,角C B A ,,所对的边分别是,,,c b a 又,54)32(=+πA f ,2=b ABC ∆的面积等于3,求边长a 的值. 17.已知函数⋅+=2cos 34cos 4sin 2)(xx x x f(1)求函数)(x f 的最小正周期及最值;(2)令),3()(π+=x f x g 判断函数)(x g 的奇偶性,并说明理由. 18.在ABC ∆中,内角C B A 、、所对的边分别为.c b a 、、已知,3,==/c b a(1)求角C 的大小;(2)若,54sin =A 求ABC ∆的面积.高三数学(理科)专题训练二数列一、选择题1.数列,,11,22,5,2 的一个通项公式是()A .33-=n a nB .13-=n a n C .13+=n a n D .33+=n a n 2.已知等差数列}{n a 中,,1,16497==+a a a 则12a 的值是() A .15B .30C .31D .64 3.等比数列}{n a 中,,20,647391=+=a a a a 则11a 的值是()A .1B .64C .1或64D .1或324.ABC ∆的三边c b a ,,既成等差数列又成等比数列,则此三角形是()A .等腰三角形B .直角三角形C .等腰直角三角形D .等边三角形 5.已知数列}{n a 满足),2(11≥-=-+n a a a n n n ,3,121==a a 记,321n n a a a a S ++++= 则下列结论正确的是()A .2,120142014=-=S aB .5,320142014=-=S aC .2,320142014=-=S aD .5,120142014=-=S a6.如果在等差数列}{n a 中,,12543=++a a a 那么=+++721a a a ()A .14B .21C .28D .357.数列}{n a 中,,,10987,654,32,14321 +++=++=+==a a a a 那么=10a ()A .495B .505C .550D .5958.各项均为实数的等比数列}{n a 的前n 项和为,n S 若,1010=S ,7030=S 则=40S ()A .150B .200-C .150或200-D .400或50- 二、填空题9.在等差数列}{n a 中,,8,12543531=-=++a a a a a a 则通项=n a ________.10.设等比数列}{n a 的前n 项和为,n S 若,336=S S 则=69S S________.11.设平面内有n 条直线),2(≥n 其中任意两条直线都相交且交点不同;若用)(n f 表示这n 条直线把平面分成的区域个数,则=)2(f ______,=)3(f ______,=)4(f ______.当4>n 时,=)(n f ________. 12.已知数列}{n a 的通项公式为*).(21log 2N n n n a n ∈++=设其前n 项和为,n S 则使5-<n S 成立的最小自然数n 是________. 三、解答题13.等差数列}{n a 的前n 项和为,23,1=a S n 公差d 为整数,且第6项为正,从第7项起变为负. (1)求d 的值;(2)求n S 的最大值;(3)当n S 是正数时,求n 的最大值.14.设d a ,1为实数,首项为、1a 公差为d 的等差数列}{n a 的前n 项和为n S ,满足.01565=+S S(1)若,55=S 求6S 及;1a(2)求d 的取值范围.15.已知数列}{n a 的首项n S a a ,1=是数列}{n a 的前n 项和,且满足,0,32122=/+=-n n n n a S a n S (1)若数列}{n a 是等差数列,求a的值;(2)确定a 的取值集合M ,使M a 时,数列}{n a 是递增数列.16.已知}{n a 为递增的等比数列,且}.16,4,3,1,0,2,6,10{},,{531---⊆a a a(1)求数列}{n a 的通项公式; (2)是否存在等差数列},{n b 使得221123121--=+++++--n b a b a b a b a n n n n n 对一切*N n ∈都成立?若存在,求出n b ;若不存在,说明理由. 17.等差数列}{n a 各项均为正整数,,31=a 前n 项和为n S ,等比数列}{n b 中,,11=b 且,6422=S b }{n a b 是公比为64的等比数列. (1)求n a 与;n b(2)证明:⋅<+++4311121n S S S 18.已知数列},{n a n S 为其前n 项的和,,9+-=n n a n S .*N n ∈(1)证明数列}{n a 不是等比数列;(2)令,1-=n n a b 求数列}{n b 的通项公式n b ;(3)已知用数列}{n b 可以构造新数列.例如:},3{n b },12{+n b },{2nb },1{nb },2{n b },{sin n b …,请写出用数列}{n b 构造出的新数列}{n p 的通项公式,使数列}{n p 满足以下两个条件,并说明理由.①数列}{n p 为等差数列;②数列}{n p 的前n 项和有最大值.高三数学(理科)专题训练三<概率>一、选择题1.对满足B A ⊆的非空集合B A 、有下列四个命题:其中正确命题的个数为()①若任取,A x ∈则B x ∈是必然事件②若,A x ∉则B x ∈是不可能事件③若任取,B x ∈则A x ∈是随机事件④若,B x ∉则A x ∉是必然事件 A .4B .3C .2D .12.从1,2,…,9中任取两个数,其中在下列事件中,是对立事件的是()①恰有一个是偶数和恰有一个是奇数②至少有一个是奇数和两个都是奇数③至少有一个是奇数和两个都是偶数④至少有一个奇数和至少有一个偶数A .①B .②④C .③D .①③ 3.如图所示,设D 是图中边长为4的正方形区域,E 是D 内函数2x y =图象下方的点构成的区域,向D 中随机投一点,则该点落入E 中的概率为() A .21B .31C .41D .51 4.投掷一枚均匀硬币和一枚均匀骰子各一次,记“硬币正面向上”为事件A ,“骰子向上的点数是3”为事件B ,则事件A 、B 中至少有一件发生的概率是() A .125B .21C .127D .43 5.如图所示,圆C 内切于扇形,3,π=∠AOB AOB 若在扇形AOB内任取一点,则该点在圆C 内的概率为() A .21B .31C .32D .43 6.已知随机变量ξ服从正态分布),,0(2σN 若,023.0)2(=>ξP 则)22(≤≤-ξP 的值为()A ....7.把半径为2的圆分成相等的四弧,再将四弧围成星形放在半径为2的圆内,现在往该圆内任投一点,此点落在星形内的概率为() A .14-πB .π2C .214-πD .218.某市组织一次高三调研考试,考试后统计的数学成绩服从正态分布)10,80(~2N ξ,则下列命题中不正确的是()A .该市这次考试的数学平均成绩为80分B .分数在120分以上的人数与分数在60分以下的人数相同C .分数在110分以上的人数与分数在50分以下的人数相同D .该市这次考试的数学成绩标准差为10 二、填空题9.盒子里共有大小相同的三只白球、一只黑球,若从中随机摸出两只球,则它们颜色不同的概率是__________. 10.在集合}10,,3,2,1,6|{ ==n n x x π中任取1个元素,所取元素恰好满足方程21cos =x 的概率是__________.11.在区间]3,3[-上随机取一个数x ,使得1|2||1|≤--+x x 成立的概率为______.12.在一次教师联欢会上,到会的女教师比男教师多12人,从这些教师中随机挑选一人表演节目,若选到男教师的概率为,209则参加联欢会的教师共有____人. 13.已知,4|),{(},0,0,6|),{(≤=≥≥≤+=Ωx y x A y x y x y x 若向区域Ω上随机投一点P ,则P 落入区域A 的概率是________. 三、解答题14.袋中有12个小球,分别为红球、黑球、黄球、绿球,从中任取一球,已知得到红球的概率是,31得到黑球或黄球的概率是,125得到黄球或绿球的概率也是,125试求得到黑球、黄球、绿球的概率分别是多少?15.某企业有甲、乙两个研发小组,他们研发新产品成功的概率分别是32和53.现安排甲组研发新产品A ,乙组研发新产品B.设甲、乙两组的研发相互独立.(1)求至少有一种新产品研发成功的概率;(2)若新产品A 研发成功,预计企业可获利润120万元;若新产品B 研发成功,预计企业可获得利润100万元.求该企业可获利润的分布列和数学期望. 16.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示:将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立. (1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另一天的日销售量低于50个的概率; (2)用X 表示在未来3天里日销售量不低于100个的天数,求随机变量X 的分布列,期望()E X 及方差()D X . 17设每个工作日甲、乙、丙、丁4人需使用某种设备的概率分别为0.60.50.50.4、、、,各人是否需使用设备相互独立.(1)求同一工作日至少3人需使用设备的概率;(2)X 表示同一工作日需使用设备的人数,求X 的数学期望. 18乒乓球台面被球网分成甲、乙两部分.如图,甲上有两个不相交的区域,A B ,乙被划分为两个不相交的区域,C D .某次测试要求队员接到落点在甲上的来球后向乙回球.规定:回球一次,落点在C 上记3分,落点在D 上记1分,其它情况记0分,落点在C 上的概率为15,在D 上的概率为35.假设共有两次来球且落在,A B 上各一次,小明的两次回球互不影响.求:(I )小明两次回球的落点中恰有一次的落点在乙上的概率;(II )两次回球结束后,小明得分之和 的分布列与数学期望.高三数学(理科)专题训练四《立体几何初步》一、选择题1.已知ABC ∆的三个顶点为、、)7,3,4()2,3,3(-B A ),1,5,0(C 则BC 边上的中线长为() A .5B .4C .3D .22.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的体积为()A .6B .9C .12D .183.一个几何体的三视图形状都相同,大小均相等,那么这个几何体不可能是()A .球B .三棱锥C .正方体D .圆柱4.已知n m 、表示两条不同直线,α表示平面,下列说法中正确的是()A .若αα//,//n m ,则n m //B .若,,//n m m ⊥α,则α⊥nC .若,,n m m ⊥⊥α,则α//nD .若,,αα⊂⊥n m ,则n m ⊥ 5.已知一个几何体的三视图如图所示(单位:cm ),则该几何体的体积为() A .310cm πB .320cm πC .3310cm πD .3320cm π6.已知过球面上C B A ,,三点的截面和球心的距离等于球半径的一半,且,2===CA BC AB 则球的半径是()A .32B .34C .36D .17.用c b a ,,表示三条不同的直线,α表示平面,给出下列命题:其中正确的命题是()①若,//,//c b b a 则;//c a ②若,,c b b a ⊥⊥则;c a ⊥③若,//,//ααb a 则;//b a ④若,,αα⊥⊥b a 则.//b aA .①②B .②③C .①④D .③④ 8.一个圆锥和一个半球有公共底面,如果圆锥的体积恰好与半球的体积相等,那么这个圆锥的轴截面顶角的余弦值是() A .43B .54C .53D .53-二、填空题9.已知三棱柱111C B A ABC -的6个顶点都在球O 的球面上,若,4,3==AC AB,AC AB ⊥,121=AA 则球O 的半径为_______.10.在三棱锥ABC P -中,,1====BC PC PB PA 且,2π=∠BAC 则PA 与底面ABC 所成角为______.11.在长方体1111D C B A ABCD -中,,2,31cm AA cm AD AB ===则四棱锥D D BB A 11-的体积为____cm 3. 三、解答题12.如图所示,网格纸上正方形小格的边长为1(表示1cm ),图中粗线画出的是某零件的三视图,该零件由一个底面半径为3cm ,高为6cm 的圆柱体毛坯切削得到,求切削掉部分的体积与原来毛坯体积的比值.ABCD P -与ABCD Q -的高都是2,.4=AB(1)求证:⊥PQ 平面;ABCD (2)求四面体QAD P -的体积. 14.如图所示,在直三棱柱111C B A ABC -中,,,901CC BC AC ACB o ===∠点M 为AB 的中点,点D 在11B A 上,且.311DB D A =(1)求证:平面⊥CMD 平面;11A ABB(2)求二面角M BD C --的余弦值.中,底面ABCD 为矩形,,ABCD PA 平面⊥E 为PD 的中点. (1)证明:AEC PB 平面//;(2)设二面角C AE D --为60°,,3,1==AD AP求三棱锥ACD E -的体积.16.如图所示,直二面角E AB D --中,四边形ABCD 是边长为2的正方形,,EB AE =点F 为CE 上的点,且⊥BF 平面.ACE (1)求证:⊥AE 平面;BCE (2)求二面角E AC B --的余弦值;(3)求点D 到平面ACE 的距离. 17.如图所示,AB 是圆的直径,PA 垂直圆所在的平面,C 是圆上的点.(1)求证:平面PAC ⊥平面PBC . (2)若,1,1,2===PA AC AB 求二面角A PB C --的余弦值.18.如图所示,平行四边形ABCD中,.4,2,60===∠AD AB DAB 将CBD ∆沿BD 折起到EBD ∆的位置,使平面⊥EDB 平面ABD. (1)求证:⊥AB 平面;EBD (2)求三棱锥ABD E -的侧面积.高三数学(理科)专题训练五《圆锥曲线方程》一、选择题 1.已知双曲线)0,0(1:2222>>=-b a by a x C 的离心率为,25则C 的渐近线方程为()A .x y 41±=B .x y 31±=C .x y 21±=D .x y ±=2.已知,40πθ<<则双曲线1cos sin :22221=-θθy x C 与1sin cos :22222=-θθx y C ()A .实轴长相等B .虚轴长相等C .离心率相等D .焦距相等 3.椭圆1422=+y x的两个焦点为,,21F F 过1F 作垂直于x 轴的直线与椭圆相交,一个交点为P ,则=||2PF ()A .23B .3C .27D .4 4.已知双曲线14222=-b y x 的右焦点与抛物线x y 122=的焦点重合,则该双曲线的焦点到其渐近线的距离等于() A .5B .24C .3D .5 5.设1F 和2F 为双曲线)0,0(12222>>=-b a b y a x 的两个焦点,若)2,0(,,21b P F F 是正三角形的三个顶点,则双曲线的离心率为() A .23B .2C .25D .36.已知双曲线1222=-y x 的焦点为,,21F F 点M 在双曲线上,且,021=⋅则点M 到x 轴的距离为() A .34B .35C .332D .37.设双曲线的左焦点为F ,虚轴的一个端点为B ,右顶点为A ,如果直线FB 与BA 垂直,那么此双曲线的离心率为()A .2B .3C .213+D .215+ 8.已知F 是抛物线x y =2的焦点,点A 、B 在该抛物线上,且位于x 轴的两侧,2=⋅(其中O 为坐标原点),则ABO ∆与AFO ∆面积之和的最小值是() A .2B .3C .8217D .10 二、填空题9.已知抛物线x y 82=的准线过双曲线)0,0(12222>>=-b a by a x 的一个焦点,双曲线的离心率为2,则该双曲线的方程为_________. 10.已知21,F F 是椭圆)0(1:2222>>=+b a by a x C 的两个焦点,P 为椭圆C 上一点,且.21PF ⊥若21F PF ∆的面积为9,则=b _________.11.抛物线)0(22>=p py x 的焦点为F ,其准线与双曲线13322=-y x 相交于A ,B 两点,若ABF ∆为等边三角形,则=p _________. 12.椭圆12222=+by a x 的四个顶点为,,,,D C B A 若菱形ABCD 的内切圆恰好经过它的焦点,则此椭圆的离心率是____. 三、解答题13.如图所示,动圆)31(:2221<<=+t t y x C 与椭圆19:222=+y x C 相交于DC B A ,,,四点,点21,A A 分别为2C 的左、右顶点,当t 为何值时,矩形ABCD 的面积取得最大值?并求出其最大面积.14.已知双曲线)0,0(12222>>=-b a b y a x 的两条渐近线方程为,33x y ±=若顶点到渐近线的距离为1,求双曲线方程.15.如图,在平面直角坐标系xOy中,21,F F 分别是椭圆)0(12222>>=+b a b y a x 的左右焦点,顶点B 的坐标是),,0(b 连结2BF 并延长交椭圆于点A ,过点A 作x 轴的垂线交椭圆于另一点C ,连结.1C F(1)若点C 的坐标为),31,34(且,2||2=BF 求椭圆的方程;(2)若,1AB C F ⊥求椭圆离心率e 的值.16.椭圆)0(1:2222>>=+b a by a x C 的两个焦点分别为,,21F F 点P 在椭圆C 上,且,211F F PF ⊥ (1)求椭圆C 的方程;(2)若直线l 过圆02422=-++y x y x 的圆心M ,交椭圆C 于A ,B 两点,且A ,B 关于点M 对称,求直线l 的方程.17.若点O 和点F 分别为椭圆13422=+y x 的中心和左焦点,点P 为椭圆上的任意一点,求FP OP ⋅的最大值.18.已知抛物线C 的顶点为原点,其焦点)0)(,0(>c c F 到直线02:=--y x l 的距离为.223设P 为直线l 上的点,过点P 作抛物线C 的两条切线PA ,PB ,其中A ,B 为切点. (1)求抛物线C 的方程;(2)当点),(00y x P 为直线l 上的定点时,求直线AB 的方程;(3)当点P 在直线l 上移动时,求||||BF AF ⋅的最小值.高三数学(理科)专题训练六《导数及其应用》一、选择题1.若,)(3x x f =,6)('0=x f 则=0x () A .2B .2-C .2±D .1± 2.函数133+-=x x y 的单调递减区间是()A .)2,1(B .)1,1(-C .)1,(--∞D .),1(+∞3.与直线052=+-y x 平行的抛物线2x y =的切线方程是()A .032=+-y xB .032=--y x C .012=+-y x D .012=--y x4.已知曲线x x y ln 342-=的一条切线的斜率为,21则切点的横坐标为()A .3B .2C .1D .215.曲线x y cos =与x 轴在区间]23,2[ππ-上所围成的图形的面积是()A .1B .2C .3D .46.设)(),(x g x f 是定义域为R 的恒大于零的可导函数,且,0)(')()()('<-x g x f x g x f 则当x a <b <时,有()A .)()()()(b g b f x g x f >B .)()()()(x g a f a g x f >C .)()()()(x g b f b g x f >D .)()()()(a g a f x g x f >7.若)2ln(21)(2++-=x b x x f 在区间),1(+∞-内是减函数,则实数b 的取值范围是()A .),1[+∞-B .),1(+∞-C .]1,(--∞D .)1,(--∞8.如图,某飞行器在4千米高空水平飞行,从距着陆点A 的水平距离10千米处下降,已知下降飞行轨迹为某三次函数图象的一部分,则函数的解析式为()A .x x y 5312513-=B .x x y 5412523-= C .x x y -=31253D .x x y 5112533+-=二、填空题9.若曲线)1ln(+-=x ax y 在点)0,0(处的切线方程为,2x y =则=a ______. 10.若曲线xbax y +=2(a 、b 为常数)过点),5,2(-P 且该曲线在点P 处的切线与直线++y x 2703=平行,则=+b a ______. 11.若,)(2)(12dx x f x x f ⎰+=则=⎰dx x f )(1______.12.设,R a ∈若函数)(3R x x e y ax ∈+=有大于零的极值点,则a 的取值范围是______. 三、解答题13.设函数)0()(=/=k xe x f kx .(1)求曲线)(x f y =在点))0(,0(f 处的切线方程;(2)求函数)(x f 的单调区间.14.已知函数x=xxxf-+ln.1()1)(+(1)若,1xxf求实数ax)('2++≤ax的取值范围;(2)证明:.0f-xx)()1(≥15.设,12321ln )(+++=x x x a x f 其中,R a ∈曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴. (1)求a 的值;(2)求函数)(x f 的极值.16.如图所示,已知曲线21:x y C =与曲线)1(2:22>+-=a ax x y C 交于点O 、A ,直线)10(≤<=t t x 与曲线21C C 、分别相交于点D 、B ,联结.AB DA OD 、、(1)写出曲边四边形ABOD (阴影部分)的面积S 与t 的函数关系式);(t f S =(2)求函数)(t f S =在区间]1,0(上的最大值.17.某村庄拟修建一个无盖圆柱形蓄水池(不计厚度),设该蓄水池的底面半径为r 米,高为h 米,体积为V 立方米.假设建造成本仅与表面积有关,侧面的建造成本为100元/平方米,底面的建造成本为160元/平方米,该蓄水池的总建造成本为π12000(π为圆周率).(1)将V 表示成r 的函数V (r ),并求该函数的定义域;(2)讨论函数V (r )的单调性,并确定r 和h 为何值时该蓄水池的体积最大.18.已知函数.)2(ln )(2x a ax x x f -+-=(1)讨论)(x f 的单调性;(2)设,0>a 证明:当ax 10<<时,);1()1(x ax a f ->+(3)若函数)(x f y =的图象与x 轴交于A 、B 两点,线段AB 中点的横坐标为,0x证明:.0)('0<x f高三数学(理科)专题训练一《三角函数、三角恒等变换与解三角形》参考答案9.2cm 210.311.2,)3,2(12.1 三、解答题13.(1)因)(x f 的图象上相邻两个最高点的距离为,π所以)(x f 的最小正周期,π=T 从而.22==Tπω又因)(x f 的图象关于直线3π=x 对称,所以,,2,1,0,232 ±±=+=+⋅k k ππϕπ因≤-2π2πϕ≤得,0=k 所以⋅-=-=6322πππϕ(2)由(1)得=-⋅=)622sin(3)2(πααf ,43所以⋅=-41)6sin(πα由326παπ<<得,260ππα<-< 所以=--=-)6(sin 1)6cos(2παπα⋅=-415)41(12 因此+-==+)6sin[(sin )23cos(πααπα6sin )6cos(6cos )6sin(]6ππαππαπ-+-= 14.(1)π=T (2)21)(,1)(min max -==x f x f15.(1)==+=32sin )4125sin()125(ππππA A f ,23233sin )3sin(===-A A A πππ所以=A ,3所以).4sin(3)(π+=x x f(2))()(θθ-+f f )4sin(3)4sin(3πθπθ+-++=,23cos 6==θ所以,46cos =θ因为,0sin ),2,0(>∈θπθ则=θsin ,410)46(1cos 122=-=-θ 故=+-=-]4)43sin[(3)43(πθπθπf ⋅=⨯==-4304103sin 3)sin(3θθπ16.(1)1=ω)](3,6[Z k k k ∈+-ππππ(2)13=a17.(1)因),32sin(22cos 32sin)(π+=+=x x x x f 故)(x f 的最小正周期.4212ππ==T当1)32sin(-=+πx 时,)(x f 取得最小值;2-当1)32sin(=+πx 时,)(x f 取得最大值2.(2)由(1)知⋅+=)32sin(2)(πx x f 又⋅+=)3()(πx f x g故]3)3(21sin[2)(ππ++=x x g ⋅=+=2cos 2)22sin(2xx π故).(2cos 2)2cos(2)(x g xx x g ==-=-所以函数)(x g 是偶函数. 18.(1)由题意得,=+-+22cos 122cos 1BA ,2sin 232sin 23B A - 即=-A A 2cos 212sin 23-=--B A B B 2sin()62sin(,2cos 212sin 23π),6π 由b a =/得,,B A =/又),,0(π∈+B A 得,6262πππ=-+-B A 即,32π=+B A 所以⋅=3πC(2)由,3=c Cc A a A sin sin ,54sin ==得58=a ,由,c a <得,C A <从而,53cos =A故=+=+=C A C A C A B sin cos cos sin )sin(sin ,10334+ 所以ABC ∆的面积为==B ac S sin 21⋅+251838高三数学(理科)专题训练二《数列》参考答案9.133-n 10.3711.4;7;11;222++n n 12.63 三、解答题13.(1)由已知,0076⎩⎨⎧<>a a 得,06230523⎩⎨⎧<+>+d d 解得,623523-<<-d 又d 为整数,故.4-=d (2)nn n n n S n 252)4(2)1(232+-=-⨯-+=,8625)425(22+--=n当6=n 时,;78=n S 当7=n 时,.77=n S 取最大值为78. (3)令,0>n S 得,02522>+-n n 解得<<n 0*),(225N n ∈ 故n 的最大值为12. 14.(1)由题意知:.31556-=-=S S .8566-=-=S S a所以,85510511⎩⎨⎧-=+=+d a d a 解得,71=a 所以.7,316=-=a S(2)因为,01565=+S S 所以,015)156)(105(11=+++d a d a即.0110922121=+++d da a 故.8)94(221-=+d d a 所以.82≥d故d 的取值范围为22-≤d 或.22≥d15.(1)在21223-+=n n n S a n S 中分别令,2=n 3=n 及,1a a =得++=+a a a a a (,12)(2222.)(27)223232a a a a a ++=+因为,0=/n a 所以2a ,212a -=.233a a +=因为数列}{n a 是等差数列,所以+1a ,223a a =即,23)212(2a a a ++=-解得.3=a经检验3=a 时,,2)1(3,3+==n n S n a n n ,2)1(31-=-n n S n 满足.32122-+=n n n S a n S(2)由,32122-+=n n n S a n S 得,32212n n n a n S S =--即,3))((211n n n n n a n S S S S =-+--因为,0=/n a ,2≥n 所以,321n S S n n =+-①所以,)1(321+=++n S S n n ② ②-①得,361+=++n a a n n 所以=+-1n n a a ,3)1(6+-n两式相减得:).2(611≥=--+n a a n n即数列 642,,a a a 及数列 ,,,753a a a 都是公差为6的等差数列,因为,23,21232a a a a +=-=所以⎪⎩⎪⎨⎧+-≥-+==.,623,3,623,1,为偶数为奇数且n a n n n a n n a a n要使数列}{n a 是递增数列,须有,21a a <且当n 为大于或等于3的奇数时,1+<n n a a且当n 为偶数时,1+<n n a a 即⎪⎩⎪⎨⎧-++<+-≥+-+<-+-<为偶数为奇数且n a n a n n n a n a n a a ,62)1(36233,62)1(3623,212 解得⋅<<41549a所以M 为),415,49(当Ma ∈时,数列}{n a 是递增数列.16.(1)12-n (2)存在17.(1)设}{n a 公差为d ,由题意易知,0>d 且∈d *,N则,)1(3d n a n -+=.2)1(3d n n n S n -+=设}{n b 公比为q ,则.1-=n n q b 由,6422=S b 可得64)6(=+d q …①又}{n a b 是公比为64的等比数列,所以6411111====---+++d a a a a a a q q qq b b n n n n n n …② 由①②,且*,N d >,0>d 可解得.2,8==d q所以,12+=n a n .*,81N n b n n ∈=- (2)由(1)知),2(22)1(3+=⨯-+=n n n n n S n .*N n ∈所以),211(21)2(11+-=+=n n n n S n 所以+-=+++)311[(2111121n S S S )]211()5131()4121(+-++-+-n n 18.(1)略(2)1)21(4-=n n b (3)=n p )1(log >a b n a高三数学(理科)专题训练三《概率》参考答案一、选择题BCBCCCAB 二、填空题9.2110.5111.3212.120人13.278三、解答题14.设得到黑球、黄球的概率分别为,y x 、由题意得⎪⎪⎩⎪⎪⎨⎧=---+=+,125)311(,125y x y y x 解得⎪⎪⎩⎪⎪⎨⎧==,61,41y x 故41)6141311(=---,所以得到黑球、黄球、绿球的概率分别是⋅416141、、15解:记E ={甲组研发新产品成功},F ={乙组研发新产品成功},由题可知32)(=E P ,31)(=E P ,53)(=F P ,52)(=F P .且事件E 与F ,E 与F ,E 与F ,E 与F 都相互独立.(1)记H ={至少有一种新产品研发成功},则F E H =,于是1525231)()()(=⨯==F P E P H P ,故所求概率为15131521)(1)(=-=-=H P H P .(2)设企业可获利润为X (万元),则X 的可能取值为0,100,120,220.又因1525231)()0(=⨯===F E P X P ,1535331)()100(=⨯===F E P X P ,1545232)()120(=⨯===F E P X P ,1565332)()220(=⨯===EF P X P .11521001562201541201531001520)(==⨯+⨯+⨯+⨯=X E .16(Ⅰ)设1A 表示事件“日销售量不低于100个”,2A 表示事件“日销售量低于50个”,B 表示事件“在未来连续3天里有连续2天日销售量不低于100个且另一天的日销售量低于50个”.因此1()(0.0060.0040.002)500.6P A =++⨯=.2()0.003500.15P A =⨯=.()0.60.60.1520.108P B =⨯⨯⨯=. (Ⅱ)X 的可能取值为0,1,2,3.相应的概率为033(0)(10.6)0.064P X C ==⋅-=,123(1)0.6(10.6)0.288P X C ==⋅-=,223(2)0.6(10.6)0.432P X C ==⋅-=,333(3)0.60.216P X C ==⋅=,=,方差D (X )=3××()= 17解:记i A 表示事件:同一工作日乙、丙中恰有i 人需使用设备,0,1,2i =B 表示事件:甲需使用设备C 表示事件:丁需使用设备D 表示事件:同一工作日至少3人需使用设备(1)122D A B C A B A B C =⋅⋅+⋅+⋅⋅ 所以122()()P D P A B C A B A B C =⋅⋅+⋅+⋅⋅122()()()P A B C P A B P A B C =⋅⋅+⋅+⋅⋅ (2)X 的可能取值为0,1,2,3,40(0)()P X P B C A ==⋅⋅0()()()P B P C P A =2(10.6)(10.4)0.50.06=-⨯-⨯=. 0.25=,2(4)()P X P B C A ==⋅⋅2()()()P B P C P A =20.50.60.40.06=⨯⨯=,(3)()(4)0.25P X P D P X ==-==, 所以(X)(2)0(0)1(1)2(3)3(3)4(4)E P X P X P X P X P X P X ===⨯=+⨯=+⨯=+⨯=+⨯=0.2520.3830.2540.06=+⨯+⨯+⨯2=.18解:(I )设恰有一次的落点在乙上这一事件为A高三数学(理科)专题训练四《立体几何初步》参考答案9.21310.3π11.6三、解答题12.底面半径为3cm ,高为6cm 的圆柱体的体积为:1211h R V ⋅=π632⋅⋅=π.54π=从某零件的三视图可知:该几何体为左边是一个底面半径为2cm 、高为4cm 的圆柱体,右边是一个底面半径为3cm 、高为2cm 的圆柱体.其中左边的圆柱体的体积为:所以切削掉部分的体积为:.204322ππ=-⋅⋅=V V因此切削掉部分的体积与原来毛坯体积的比值为:⋅==271054201ππV V 13.(1)如图所示,取AD 的中点M ,连接.,QM PM因为ABCD P -与ABCDQ -都是正四棱锥,所以,,QM AD PM AD ⊥⊥ 从而.PQM AD 平面⊥又,PQM PQ 平面⊂所以.AD PQ ⊥同理,AB PQ ⊥所以.ABCD PQ 平面⊥(2)连接OM ,则,21221PQ AB OM ===所以,90o PMQ =∠即⋅⊥MQ PM由(1)知,PM AD ⊥所以,QAD PM 平面⊥从而PM 就是四面体QAD P -的高,在直角PMO ∆中,.22222222=+=+=OM PO PM又,242242121=⋅⋅=⋅=∆QM AD S QAD故⋅=⋅⋅=⋅=∆-31622243131PM S V QAD QAD P14.(1)在ABC ∆中,,BC AC =点M 为AB 的中点,故.AB CM ⊥又因三棱柱111C B A ABC -是直三棱柱,故,11ABC A ABB 平面平面⊥又,ABC CM 平面⊂故11A ABB CM 平面⊥,而,CMD CM 平面⊂故11A ABB CMD 平面平面⊥ (2)以点C 为原点,分别以1,,CC CB CA 所在直线为z y x ,,轴,建立如图所示的空间直角坐标系,令,11===CC BC AC则),0,0,0(C ),0,0,1(A ),1,0,1(1A ),0,1,0(B ),1,1,0(1B故),0,1,0(=CB )1,43,41(=CD设平面CBD 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00CD n CB n ⇒⎪⎩⎪⎨⎧=++=043410z y x y ⇒⎩⎨⎧=+=040z x y ,取,1-=z 则,4=x ,0=y 故)1,0,4(-=n ,而平面MBD 的法向量是),0,21,21(=CM故>=<n ,cos 1722)1,0,4()0,21,21(⨯-⋅⋅=17342 即二面角M BD C --的余弦值为⋅17342 15.(1)连结BD 交AC 于点O ,连结EO .因为ABCD 为矩形,所以O 为BD 的中点.又E 为PD 的中点,所以.//PB EO又,AEC EO 平面⊂,AEC PB 平面⊂/所以.//AEC PB 平面(2)因为,ABCD PA 平面⊥ABCD 为矩形,所以AP AD AB ,,两两垂直.如图所示,以A 为坐标原点,的方向为x 轴的正方向,||AP 为单位长,建立空间直角坐标系,xyz A -则),21,23,0(),0,3,0(E D ⋅=)21,23,0( 设),0)(0,0,(>m m B 则),0,3,(m C ).0,3,(m =设),,(1z y x n =为平面ACE 的法向量,则⎪⎩⎪⎨⎧=⋅=⋅011n n ,即⎪⎩⎪⎨⎧=+=+.02123,03z y y mx 可取),3,1,3(1-=m n 又)0,0,1(2=n 为平面DAE 的法向量,由题设,21|,cos |21=><n n 即=+2433m ,21解得⋅=23m因为E 为PD 的中点,所以三棱锥ACD E -的高为⋅21所以三棱锥ACD E -的体积为:⋅=⨯⨯⨯⨯=83212332131V16.(1)因⊥BF 平面.ACE 故.AE BF ⊥又因二面角E AB D --为直二面角,且,AB CB ⊥故⊥CB 平面.ABE故.AE CB ⊥⊥AE 平面.BCE (2)以点A 为原点,建立如图所示的空间直角坐标系.因⊥AE 面,BCE ⊂BE 面,BCE故.BE AE ⊥则),0,0,0(A ),0,1,1(E ,2,0(C ).2),0,1,1(=AE ⋅=)2,2,0(AC设平面AEC 的法向量为),,,(z y x n =则⎪⎩⎪⎨⎧=⋅=⋅00AC n AE n ,即,0220⎩⎨⎧=+=+z y y x 解得⋅⎩⎨⎧=-=xz x y令,1=x 得=n )1,1,1(-是平面AEC 的一个法向量,又平面BAC 的一个法向量为),0,0,1(=m且n m ,所成的角就是二面角E AC B --的平面角,因>=<n m ,cos ||||n m n m ⋅⋅,3331==故二面角E AC B --的余弦值为⋅33 (3)因),2,0,0(=AD 故点D 到平面ACE 的距离=d .33232||||==⋅n n 17.(1)略(2)4618.(1)证明:如图所示,在ABD ∆中,因,60,4,2o DAB AD AB =∠==故=∠⋅-+=DAB AD AB AD AB BD cos 2222,32故,222AD BD AB =+故.BD AB ⊥又因,ABD EBD 平面平面⊥,BD ABD EBD =平面平面,ABD AB 平面⊂故.EBD AB 平面⊥(2)解:由(1)知,//,AB CD BD AB ⊥故,BD CD ⊥从而.DB DE ⊥在DBE Rt ∆中, 因,2,32====AB DC DE DB 故.3221=⋅=∆DE DB s BDE又因,EBD AB 平面⊥,EBD BE 平面⊂故.BE AB ⊥因,4===AD BC BE 故.421=⋅=∆BE AB S ABE 因,BD DE ⊥平面EBD ⊥平面ABD ,故.ABD ED 平面⊥而,ABD AD 平面⊂故,AD ED ⊥故.421=⋅=∆DE AD S ADE 综上得三棱锥ABDE -的侧面积为.328+=S高三数学(理科)专题训练五《圆锥曲线方程》参考答案9.1322=-y x 10.3=b 11.612.215-三、解答题13.设),,(00y x A 则矩形ABCD 的面积||40x S =.||0y由192020=+y x 得,,912020x y -=故202020x y x =,49)29(91)91(22020---=-x x当21,292020==y x 时,,6max =S故当5=t 时,矩形ABCD 的面积最大,最大面积为6.14.根据几何性质有.1=cab又因,33=a b 解得⎪⎩⎪⎨⎧==34422b a 故双曲线的方程为.143422=-y x15.(1)由题意,),,0(),0,(2b B c F =||2BF ,222==+a c b又)31,34(C 在椭圆上,所以,1)31(2)34(222=+b 解得.1=b 所以椭圆方程为.1222=+y x(2)直线2BF 方程为,1=+byc x 与椭圆方程12222=+by a x 联立方程组,解得A 点坐标为),,2(223222c a b c a c a +-+则C 点坐标为,2(222c a c a +),223ca b + 又,c bk AB -=由AB C F ⊥1得⋅+3233c c a b ,1)(-=-cb 即,34224c c a b += 所以=-222)(c a ,3422c c a +化简得.55==ac e 16.(1)由于点P 在椭圆上,故.3,6||||221==+=a PF PF a 在21F PF Rt ∆中,.52||||||212221=-=PF PF F F 解得,5=c 从而.4222=-=c a b因此椭圆C 的方程为.14922=+y x (2)设A ,B 的坐标分别为).,(),,(22]1y x y x已知圆的方程为,5)1()2(22=-++y x 圆心).1,2(-设直线l 方程为,1)2(++=x k y代入椭圆C 的方程得273636)1836()94(2222-+++++k k x k k x k 0=由于A ,B 关于点M 对称,所以,29491822221-=++-=+k kk x x 解得98=k因此直线l 的方程为,1)2(98++=x y 即.02598=+-y x 17.由题意,),0,1(-F 设点),,(00y x P 则有,1342020=+y x 解得)41(32020x y -=因为),,1(00y x +=),,(00y x =所以200)1(y x x ++=⋅,34)41(3)1(0202000++=-++=x x x x x此二次函数对应的抛物线的对称轴为.20-=x因为,220≤≤-x 所以当20=x 时,⋅取得最大值.632422=++ 18.(1)y x 42=(2)02200=--y y x x (3)29高三数学(理科)专题训练六《导数及其应用》参考答案9.310.-311.31-12.)3,(--∞三、解答题13.(1),)1()('kx e kx x f +=,1)0('=f ,0)0(=f故曲线)(x f y =在点))0(,0(f 处的切线方程为.x y =(2)由0)1()('=+=kx e kx x f 得).0(1=/-=k kx ①若,0>k 则当)1,(kx --∞∈时,,0)('<x f 函数)(x f 单调递减;当),1(+∞-∈kx 时,,0)('>x f 函数)(x f 单调递增,②若,0<k 则当)1,(kx --∞∈时,,0)('>x f 函数)(x f 单调递增;当),1(+∞-∈kx 时,,0)('<x f 函数)(x f 单调递减.14.(1)因为),0(1ln 1ln 1)('>+=-++=x xx x x x x f 所以.1ln )('+=x x x xf 由,1)('2++≤ax x x xf 得.ln x x a -≥令,ln )(x x x g -=则11)('-=xx g 当10<<x 时,;0)('>x g 当1>x 时,.0)('<x g所以1=x 是最大值点,.1)1()(max -==g x g 故,1-≥a即a 的取值范围是).,1[+∞- (2)由(1)知,1)1(ln )(-=≤-=g x x x g 故.01ln ≤+-x x当10<<x 时,x x x x x x f ln 1ln )1()(=+-+=;01ln ≤+-+x x当1≥x 时,+=+-+=x x x x x f ln 1ln )1()(.0)111(ln ln 1ln ≥-+-=+-xx x x x x x综上,.0)()1(≥-x f x15.(1)因为,12321ln )(+++=x x x a x f 故⋅+-=2321)('2x x a x f由于曲线)(x f y =在点))1(,1(f 处的切线垂直于y 轴,故该切线斜率为0,即,0)1('=f 从而,02321=+-a 解得.1-=a(2)由(1)知)0(12321ln )(>+++-=x x x x x f 令,0)('=x f 解得,11=x 312-=x (因312-=x 不在定义域内,舍去).当)1,0(∈x 时,,0)('<x f 故)(x f 在)1,0(上为减函数;当),1(+∞∈x 时,,0)('>x f 故)(x f 在,1()∞+上为增函数.故)(x f 在1=x 处取得极小值.3)1(=f16.(1)由⎩⎨⎧+-==axx y x y 222得点).,(),0,0(2a a A O又由已知得).,(),2,(22t t D at t t B +-故)(t f S =+⋅⋅-+-=⎰2221)2(t t dx ax x t)()2(2122t a t at t -⋅-+-(2).221)('22a at t t f +-=令,0)('=t f即,022122=+-a at t 解得a t )22(-=或.)22(a t +=因为,10≤<t ,1>a 所以a t )22(+=舍去.若,1)22(≥-a 即222221+=-≥a 时,对,10≤<t 有.0)('≥t f故)(t f 在区间]1,0(上单调递增,S 的最大值是⋅+-=61)1(2a a f若,1)22(<-a 即2221+<<a 时,对,)22(0a t -<<有;0)('>t f当t a <+)22(1≤时,有.0)('<t f 故)(t f 在))22(,0(a -上单调递增,在]1,)22((a +上单调递减,)(t f 的最大值是.3222))22((3a a f -=- 综上所述,=max)]([t f ⎪⎪⎩⎪⎪⎨⎧+<<-+≥+-222132222226132a a a a a 17.(1)),4300(5)(3r r r V -=π定义域为);35,0((2))(r V 在区间)5,0(上单调递增,在区间)35,5(上单调递减;当,5=r 8=h 时,蓄水池的体积最大18.(1))(x f 的定义域为-=+∞xx f 1)('),,0(⋅-+-=-+xax x a ax )1)(12()2(2若,0≤a 则,0)('>x f 所以)(x f 在),0(+∞单调递增.若,0>a 则由0)('=x f 得,1ax =且当∈x )1,0(a时,,0)('>x f 当ax 1>时,.0)('<x f 所以)(x f 在)1,0(a单调递增,在),1(+∞a单调递减.(2)设函数),1()1()(x af x a f xg --+=则,2)1ln()1ln()(ax ax ax x g ---+=.12211)('2223x a x a a axa ax a x g -=--++=当ax 10<<时,,0)('>x g 而,0)0(=g 所以.0)(>x g故当ax 10<<时,⋅->+)1()1(x af x a f (3)由(1)可得,当0≤a 时,函数)(x f y =的图象与x 轴至多有一个交点,故,0>a 从而)(x f 的最大值为),1(a f 且.0)1(>af 不妨设,0),0,(),0,(2121x x x B x A <<则⋅<<<2110x ax 由(2)得=>-+=-)()11()2(111x f x a a f x a f ).(02x f =又,1,1221ax a x a >>-从而,212x ax ->于是⋅>+=ax x x 12210由(1)知,.0)('0<x f。
高三理科数学试卷+答案
理科数学试题一、选择题(每题5分,共60分)1.已知i 是虚数单位,复数z 满足2(1i)1i z-=+则z =()B.2C.12.已知全集{}2|230,{3}U x x x A =+-≤=-,则U A =ð()A.(,3](1,)-∞⋃+∞B.(3,1]- C.[3,1)- D.[3,1]-3.已知0.30.3121,log 0.3,0.32a b c ⎛⎫=== ⎪⎝⎭,则,,a b c 的大小关系是()A.a b c<< B.c a b<< C.a c b << D.a c b<<4.函数2()cos ln f x x x =的图象大致为()A. B.C.D.5.已知向量,a b 的夹角为π4,且2,a b == ,则a b -= ()A.1B.2C.4D.66.若曲线e 1xy =+在0x=处的切线,也是ln y x b =+的切线,则b =()A.-1B.2C.4D.37.在等差数列{}n a 中,12018a =-,其前n 项和为n S ,若151051510S S -=则2020S =()A.0B.2018C.-2019D.20208、一个几何体的三视图如图所示,则该几何体的体积为()A.8π3+ B.8π+ C.82π3+D.89.如图,已知点()2,2A 与反比例函数2y x=,在正方形ABOC 内随机取一点P ,则点P 取自图中阴影部分的概率为()10.已知抛物线2:2(0)C y px p =>的焦点为F ,过F 且倾斜角为120的直线与抛物线C 交于,A B 两点,若,AF BF 的中点在y 轴上的射影分别为,M N ,且||43MN =,则抛物线C 的准线方程为()A.32x =-B.2x =- C.3x =- D.4x =-11.已知函数2,0()2ln ,0x x f x x x ⎧⎪<=⎨⎪>⎩,若函数()()1g x f x kx =--有且只有三个零点,则实数k 的取值范围()A.21(0,)eB.1(,0)2- C.(0,e)D.211(,)2e-12.已知等边ABC △的边长为23,,M N 分别为,AB AC 的中点,将AMN △沿MN 折起得到四棱锥A MNCB -.点P 为四棱锥A MNCB -的外接球球面上任意一点,当四棱锥A MNCB -的体积最大时,P 到平面MNCB 距离的最大值为()A.1312+ B.1312+ C.33+ D.35+二、填空题(每题5分,共20分)13.太极图被称为"中华第一图".从孔庙大成殿梁柱,到楼观台,三茅宫等的标记物,太极图无不跃居其上,这种广为人知的太极图,其形状如阴阳两鱼互抱在一起,因而被称为"阴阳鱼太极图".在如图所示的阴阳鱼图案中,阴影部分的区域可用不等式组222240(1)1x y x x y ⎧+⎪≤≤≥⎨⎪++⎩或22(1)1x y +-≤来表示,设(),x y 是阴影中任意一点,则z x y =+的最大值为_______.A.ln 22B.1ln 22+ C.2ln 22- D.1ln 22-14.某校举行歌唱比赛,高一年级从6名教师中选出3名教师参加,要求李老师,王老师两名老师至少有一人参加,则参加的三名老师不同的唱歌顺序的种数为______.(用数字作答)15.已知函数()2sin()(0)f x x ωϕω=+>满足π2,(π)04f f ⎛⎫== ⎪⎝⎭,且()f x 在区间ππ(,43上单调,则ω的值有_____个.16.已知双曲线2222:1(0,0)x y C a b a b-=>>的左,右顶点12,A A ,右焦点为1,F B 为虚轴的上端点,在线段1BF 上(不含端点)有且只有一点P满足120PA PA ⋅=,则双曲线的离心率为________.三、解答题(共70分)17、(本题12分)设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.(1)求数列{}n a 的通项公式;(2)记()12121log log 1n n n a b a S ++=⋅+,求数列{}n b 的前n 项和n T .18、(本题12分)如图,在四棱锥P ABCD -中,底面ABCD 是菱形,120ABC ∠=︒,PA PB PC ==.(1)证明:PBD △为直角三角形;(2)若2PD =,E 是PC 的中点,且二面角P AB E --的余弦值为5714,求三棱锥P ABE -的体积.19、(本题12分)《山东省高考改革试点方案》规定:从2017年秋季高中入学的新生开始,不分文理科;2020年开始,高考总成绩由语数外3门统考科目和物理、化学等六门选考科目构成.将每门选考科目的考生原始成绩从高到低划分为A B B C C D D E +++、、、、、、、共8个等级.参照正态分布原则,确定各等级人数所占比例分别为371624241673%、%、%、%、%、%、%、%.选考科目成绩计入考生总成绩时,将A 至E 等级内的考生原始成绩,依照等比例转换法则,分别转换到[]91,100、[]81,90、[]71,80、[]61,70、[]51,60、[]41,50、[]31,40、[]21,30八个分数区间,得到考生的等级成绩.某校高一年级共2000人,为给高一学生合理选科提供依据,对六个选考科目进行测试,其中物理考试原始成绩基本服从正态分布()60,169N .(1)求物理原始成绩在区间()47,86的人数;(2)按高考改革方案,若从全省考生中随机抽取3人,记X 表示这3人中等级成绩在区间[]61,80的人数,求X 的分布列和数学期望.(附:若随机变量()2,N ξμσ~,则()0.682P μσξμσ-<<+=,()220.954P μσξμσ-<<+=,()330.997P μσξμσ-<<+=)20、(本题12分)已知椭圆2222:1(0)x y E a b a b+=>>的左、右焦点分别为12,F F ,下顶点为M ,直线2MF 与E 的另一个交点为P ,连接1PF ,若1PMF △的周长为12PF F △的面积为313b .(1)求椭圆E 的标准方程;(2)若直线:(1)l y kx m m =+≠-与椭圆E 交于A ,B 两点,当m 为何值时,MA MB ⊥恒成立?21、(本题12分)已知函数213()e3x a f x x -=-,其中常数a ∈R .(1)若()f x 在(0,)+∞上是增函数,求实数a 的取值范围;(2)当1a =时,求证:导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.(本题10分)在平面直角坐标系xOy 中,曲线C的参数方程为4cos 24sin x y αα=+⎧⎨=⎩(α为参数),以O 为极点以x 轴的非负半轴为极轴的极坐标系中,直线l 的极坐标方程为π6θ=.(1)求曲线C 的极坐标方程;(2)设直线l 与曲线C 相交于,A B 两点,求AB 的值.理科数学参考答案1.答案:A 解析:复数z 满足2(1i)1i z -=+,2(1i)2i 2i(1i)1i 1i 1i 2z ----∴====--++,||z ∴==2.答案:B 解析:全集{|(3)(1)0}[3,1],{3}U x x x A =+-≤=-=-,则(3,1]U A =-ð.3.答案:B 解析:0.3.311221110.31,log 0.3log 1222a ⎛⎫⎛⎫<<=>= ⎪ ⎪⎝⎭⎝⎭ ,c a b ∴<<.4.答案:C解析:易知()(),()f x f x f x -=∴为偶数,当(0,1)x ∈时,2cos 0,ln 0x x ><,所以当(0,1)x ∈时,()0f x <,故只有C 选项满足条件.5.答案:B解析:||82a b -===+= 6.答案:D解析: e 1x y =+的导数为'e x y =,曲线 e 1x y =+在0x =处的切线斜率为1k =,则曲线 e 1x y =+在0x =处的切线方程为2,ln y x y x b -==+的导数为1y x '=设切点为(),m n .则11m=解得1,3m n ==,即有3ln1b =+解得3b =.7.答案:D 解析:设等差数列{}n a 的公差为d ,由等差数列的性质可得112n S n a d n -=+为等差数列,n S n ⎧⎫⎨⎬⎩⎭的公差为2d .15105,5515102S S d -=∴⨯=.解得2d =.则2020202020192020(2018)220202S ⨯=⨯-+⨯=.8.答案:A 解析:该几何体是由一个四棱锥和一个圆柱的一半组成的几何体,体积为2118π12222π233⨯⨯⨯+⨯⨯⨯=+.9.答案:D解析:由题意可得正方形的面积为4,联立,22y y x =⎧⎪⎨=⎪⎩解得12x y =⎧⎨=⎩.所以阴影部分面积为221122d 22ln (42ln 2)(20)22ln 2x x x x ⎛⎫-=-=---=- ⎪⎝⎭⎰,所以所求概率22ln 21ln 242P --==.10.答案:C 解析:抛物线2(:20)C y px p =>的焦点为,02p F ⎛⎫⎪⎝⎭,过F 且倾斜角为120的直线方程设为)2py x =-联立抛物线的方程可得2220py +-=.设A 的纵坐标为1y ,B 的纵坐标为2y ,,M N 的纵坐标为1211,22y y ,可得21212y y y p +==-,则121||2y y -=,可得()212124192y y y y +-=,即为22192443p p =+解得6p =,则抛物线的准线方程为3x =-.11.答案:A解析:如图,作出函数,0()2ln ,0xx f x x x ⎧-<⎪=⎨⎪>⎩的图象,函数()()1g x f x kx =--有且只有三个零点,则函数()f x 与函数1y kx =+的图象有且只有三个交点,函数1y kx =+图象恒过点()0,1则直线1y kx =+在图中阴影部分内时,函数()f x 与1y kx =+有三个或两个交点.当直线1y kx =+与ln y x =的图象相切时,设切点为()00,ln x x 切线斜率为000011,ln 1k x x x x =∴=⋅+解得202211e ,,0,e ex k k ⎛⎫=∴=∴∈ ⎪⎝⎭.12.答案:A 解析:如图,由题意,易知,CM BM BN CN ⊥⊥,所以取BC 的中点E ,则E 是等腰梯形MNCB 外接圆圆心.AMN △为等边三角形,所以取MN 中点D ,连接AD ,在AD 上取点F 使2AF FD =,所以点为F AMN △外心.易知13,,1,.22AD MN DE MN DF AF DE ⊥⊥===设点O 为四棱锥A MNCB -的外接球球心OE ∴⊥平面MNCB ,OF ⊥平面AMN .当四棱锥A MNCB -的体积最大时,平面AMN ⊥平面MNCB .π31,,222ADE OF ED OE FD ∴∠=====设四棱锥A MNCB -的外接球半径R,则222134R AF OF =+=.所以当四棱锥A MNCB -的体积最大时,P 到平面MNCB距离的最大值为max d R OE =+=.13.答案:1解析:依题意,,,z x y y x z z =+∴=-+表示直线y x z =-+在y 轴上的截距,所以当直线y x z =-+与圆22(1)1x y +-=切于如图的点A 时,z 最大(1)z >.因为直线y x z =-+与圆相切,所以点()0,1到直线0x y z +-=的距离为1,即11z =>,1=,解得1z =+.14.答案:96解析:第一步:先选3人,李老师与王老师至少有一人参加,用间接法,有3364C C 20416-=-=种;第二步,将3人排序,有336A =种.故不同发言顺序的种数为16696⨯=.15.答案:9解析:由π2,(π)04f f ⎛⎫== ⎪⎝⎭知,*π3ππ,N 4244T kT k +=-=∈,*3π2(12),,N 123k T k k ω+∴==∈+又因为()f x 在区间ππ(,)43上单调,ππ342T ∴-≤故π2π,126T Tω≥∴=≤,即2(12)1712,32k k +≤∴≤,*N ,0,1,2,8k k ∈∴= 符合条件的ω的值有9个.16.解析:由题意1(,0),(0,)F c B b ,则直线1BF 的方程为0bx cy bc +-=,在线段1BF 上(不含端点)有且只有一点满足120PA PA ⋅=,则1PO BF ⊥,且PO a =,a ∴=即22222222b c a a b c b c =⋅+=+ ,42244230,310c a c a e e ∴-+=-+=,解得2351522e e ++=∴=.17.答案:(1) 设n S 为数列{}n a 的前n 项和,且12n na a +=,149a a +=.∴数列{}n a 为等比数列,公比2=q ,又149a a +=,11a ∴=.因此数列{}n a 的通项公式为12n n a -=,*n N ∈.(2)由()12121log log 1n n n a b a S ++=⋅+,得1221111(1)1log 2log 2n n n b n n n n +===-++.11111122311n n T n n n =-+-+-=++ .18.解析:(1)因为四边形ABCD 是菱形,120ABC ∠=︒,所以AD BD CD ==,取AB 的中点M ,连接DM ,PM ,易知DM AB ⊥,因为PA PB =,所以PM AB ⊥,因为PM DM M ⋂=,所以AB ⊥平面PDM ,又PD ⊂平面PDM ,所以PD AB ⊥.取BC 的中点N ,连接DN ,PN ,同理得PD BC ⊥,又AB BC B ⋂=,所以PD ⊥平面ABCD ,又BD ⊂平面ABCD ,所以PD BD ⊥,故PBD △为直角三角形.(2)由(1)可知,直线DM ,DC ,DP 两两垂直,故可以D 为坐标原点,DM ,DC ,DP 所在直线分别为x ,y ,z 轴建立空间直角坐标系D xyz -,如图所示.设AB a =,则,,02a A ⎫-⎪⎪⎝⎭,,,02a B ⎫⎪⎪⎝⎭,(0,,0)C a ,(0,0,2)P ,因为E 是PC 的中点,所以0,,12a E ⎛⎫⎪⎝⎭,则(0,,0)AB a =,,,222aPA a ⎛⎫=-- ⎪ ⎪⎝⎭,,0,12BE a ⎛⎫=- ⎪ ⎪⎝⎭,设平面PAB 的法向量为()111,,x y z =m ,则0,0,AB PA ⎧⋅=⎪⎨⋅=⎪⎩m m 得11110,320,22ay a ax y z =⎧--=⎪⎩令12x =,则2a ⎛⎫= ⎪ ⎪⎝⎭m .设平面ABE 的法向量为()222,,x y z =n ,则0,0,AB BE ⎧⋅=⎪⎨⋅=⎪⎩n n 得2220,30,2ay z =⎧⎪⎨-+=⎪⎩令21x =,则⎛⎫= ⎪ ⎪⎝⎭n,所以2324|cos ,|a +〈〉=m n .令2314t a =+,则14=,解得73t =或4t =,所以237143a +=或23144a +=,所以43a =或2a =.连接AC ,因为12P ABC P ABCD V --=,12E ABC P ABC V V --=,所以2111344312P ABE E ABC P ABCD V V AB DM PD a ---===⨯⨯⨯⨯=.当2AB =时,三棱锥P ABE -;当43AB =时,三棱锥P ABE -19.答案:(1)因为物理原始成绩()260,13N ξ~,所以()()()478647606086P P P ξξξ<<=<<+≤<()()1160136013602136021322P P ξξ=-<<++-⨯≤<+⨯0.6820.95422=+0.818=.所以物理原始成绩在()47,86的人数为20000.8181636⨯=(人).(2)由题意得,随机抽取1人,其成绩在区间[]61,80内的概率为25.所以随机抽取三人,则X 的所有可能取值为0,1,2,3,且23,5X B ⎛⎫~ ⎪⎝⎭,所以()332705125P X ⎛⎫=== ⎪⎝⎭;()21323541C 55125P X ⎛⎫==⋅⋅= ⎪⎝⎭;()22323362C 55125P X ⎛⎫==⋅⋅=⎪⎝⎭;()32835125P X ⎛⎫=== ⎪⎝⎭.所以X 的分布列为X 0123P2712554125361258125所以数学期望()26355E X =⨯=.20.解析:(1)设122F F c =.由椭圆的定义可知,1PMF △的周长为4a =a =直线2MF 的方程为by x b c =-,与22221x y a b +=联立可得点2322222,a c b P a c a c ⎛⎫ ⎪++⎝⎭,12PF F ∴△的面积为333222112223b b c c b a c c ⨯⨯==++,即232c c =+,解得1c =或2c =(舍),则2221b a c =-=,∴椭圆E 的标准方程为2212x y +=.(2)联立22,1,2y kx m x y =+⎧⎪⎨+=⎪⎩消去y 得()222214220k x kmx m +++-=,()228210k m ∆=-+>.由(1)可知(0,1)M -,设()()1122,,,A x y B x y ,则2121222422,2121km m x x x x k k -+=-=++,()212122242222121k m my y k x x m m k k +=++=-+=++,()()()2212121212y y kx m kx m k x x mk x x m =++=+++()22222222222242212121k m k m m k m k k k --=-+=+++,()()1122,1,1 MA MB x y x y ∴⋅=+⋅+uuu r uuu r ()()121211x x y y =+++1212121x x y y y y =++++22222222221212121m m k mk k k --=++++++.由MA MB ⊥得0MA MB ⋅=uuu r uuu r ,故23210m m +-=,解得13m =或1m =-(舍),∴当13m =时,MA MB ⊥恒成立.21.解析:(1)因为()f x 在(0,)+∞上是增函数,所以212()2e 0x f x ax -'=-≥在(0,)+∞上恒成立,即212e 2x a x -≤恒成立,只需使212mine 2x a x -⎛⎫≤ ⎪⎝⎭即可.设212e ()(0)x h x x x -=>,则2122121432e 2e 2(1)e ()x x x x x x h x x x -----'==.当(0,1)x ∈时,()0h x '<,函数()h x 在(0,1)上单调递减;当(1,)x ∈+∞时,()0h x '>,函数()h x 在(1,)+∞上单调递增,所以()h x 的最小值为(1)e h =,所以e 2a≤,解得2e a ≤,故实数a 的取值范围是(,2e]-∞.(2)证明:当1a =时,212()2e x f x x -'=-.令()221()()412e 41x g x f x x x x -'=--+=--,则21()44x g x e -'=-.令()0g x '>得12x >;令()0g x '<得12x <,所以()g x 在1,2⎛⎫+∞ ⎪⎝⎭上单调递增,在1,2⎛⎫-∞ ⎪⎝⎭上单调递减,所以()g x 在12x =处取极小值,1102g ⎛⎫=-< ⎪⎝⎭.因为32(1)410e g -=+->,3(2)290g e =->,所以存在12111,,,222x x ⎛⎫⎛⎫∈-∈ ⎪ ⎪⎝⎭⎝⎭,使得()()120,0g x g x ==,所以()g x 有两个零点,即导函数()y f x '=与函数241y x x =-+的图象有两个交点.22.答案:(1)曲线C 的参数方程为4cos 24sin x y αα=+⎧⎨=⎩.得曲线C 的普通方程为224120x y x +--=.所以曲线C 的极坐标方程为24cos 12ρρθ-=.(2)设,A B 两点的极坐标方程分别为12ππ(,,66ρρ,12||AB ρρ=-,又,A B 在曲线C 上,则12,ρρ是2π4cos 1206ρρ--=的两根.12121212,||AB ρρρρρρ∴+==-∴=-=.23.答案:(1).∵0,0a b >>,1a b +=由基本不等式得:2124a b ab +⎛⎫≤= ⎪⎝⎭,当且仅当12a b ==时等号成立,由ab m ≤恒成立,14m ∴≥(2).∵(),0,a b ∈+∞()4141459b a a b a b a b a b ⎛⎫∴+=++=++≥ ⎪⎝⎭故要使41212x x a b+≥--+恒成立,第7页共7页则2129x x --+≤当2x ≤-时,不等式化为:1229x x -++≤,解得62x -≤≤-当122x -<<时,不等式化为:1229x x ---≤,解得122x -<<当12x ≥时,不等式化为:2129x x ---≤,解得1122x ≤≤故 x 的取值范围[]6,12-.。
高三数学理科试题参考答案
高三理科数学试题参考答案CADDC ADACA BC 13.{}52x x x <≠且 14.6a ≥- 15. 9 16.①③④17答案:解:(Ⅰ)()1cos 22f x x x ωω=-π2sin 216x ω⎛⎫=-+ ⎪⎝⎭. 因为函数()f x 的最小正周期为π,且0ω>, 所以2ππ2ω=,解得1ω=. (Ⅱ)由(Ⅰ)得π()2sin 216f x x ⎛⎫=-+ ⎪⎝⎭. 因为2π03x ≤≤, 所以ππ7π2666x --≤≤, 所以π1sin 226x ⎛⎫-- ⎪⎝⎭≤2≤. 因此π0sin 216x ⎛⎫-+ ⎪⎝⎭≤≤3,即()f x 的取值范围为[]03,. 18解:(1)由3cos()cos 2A CB -+=及π()B AC =-+得 3cos()cos()2A C A C --+=,-------2分 3cos cos sin sin (cos cos sin sin )2A C A C A C A C +--=, 3sin sin 4A C =. 又由题知2b ac =及正弦定理得2sin sin sin B A C =, 故23sin 4B =,-------4分sin 2B =或sin 2B =-(舍去), 于是π3B =或2π3B =.又由2b ac =知b a ≤或b c ≤, 所以π3B =.------------6分 由以上知:π3B =代入3cos()cos 2A C B -+=得:cos()1A C -=; 即3A C π==;因此ABC △为等边三角形,-------9分(2)因为ABC △为等边三角形,π83b B ==,. 所以ABC △的面积为21sin 2ABCS b B ∆==分 19.解:设1(1)n a a n d =+-,则1125,613,a d a d +=⎧⎨+=⎩解得11,2a d ==.………………4分 所以}{n a 的通项公式为1(1)221n a n n =+-⨯=-.…………………………………6分(2)解:依题意得2133n a n n b -==.……………………………………………………8分 因为21121393n n n n b b ++-==,所以}{n b 是首项为1133b ==,公比为9的等比数列,……10分 所以}{n b 的前n 项和3(19)3(91)198n n n T ⨯-==--.………………………………12分 20解:(1)21,3nn n a n b =-=。
高三理科数学答案
理科数学参考答案一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 二、填空题(本大题共4小题,每小题5分,共20分。
将答案填在题后的横线上。
)13、160 14、3π15、()∞+,116、2131+ 三、解答题(本大题共6小题,共70分。
解答应写出文字说明、证明过程或演算步骤。
)17、解:(Ⅰ)设数列{}n a 的公差为d ,由21=a 和1,,432+a a a 成等比数列,得()()d d d 332)22(2++=+, 解得2=d ,或1-=d , ………………………………2分 当1-=d 时,03=a ,与1,,432+a a a 成等比数列矛盾,舍去. ……………………4分 2=∴d , ()(),212211n n d n a a n =-+=-+=∴即数列{}n a 的通项公式.2n a n = ……6分 (Ⅱ))2(2+⋅=n n a n b =111)1(1)22(2+-=+=+n n n n n n , …………………………………8分 11113121211+=+-+⋅⋅⋅+-+-=n nn nS n ………………………………12分 18、证明:(Ⅰ)证明:连结BC 1,交B 1C 于E ,连结DE .∵ 直三棱柱ABC-A 1B 1C 1,D 是AB 中点,∴侧面BB 1C 1C 为矩形,DE 为△ABC 1的中位线,∴ DE// AC 1. …………………2分 ∵DE ⊂平面B 1CD , AC 1⊄平面B 1CD ,∴AC 1∥平面B 1CD . ………………………………………………………………4分(Ⅱ)∵ AC ⊥BC , 所以如图,以C 为原点建立空间直角坐标系C -xyz .则B (3, 0, 0),A (0, 4, 0),A 1 (0, 4, 4),B 1 (3, 0, 4). ……………………6分 设D (a, b, 0)(0a >,0b >),题号 1 2 3 4 5 6 7 8 9 10 11 12 答案BCDBAABDCBCD∵点D 在线段AB 上,且15BD AB =, 即15BD BA =. ∴124,55a b ==. 1(3,0,4)B C =--,(3,4,0)BA =-,124(,,0)55CD =. ……8分平面BCD 的法向量为.()1,0,0=n , 设平面B 1CD 的法向量为2(,,1)n x y =,由 120BC n ⋅=,20CD n ⋅=, 得 340124055x z x y --=⎧⎪⎨+=⎪⎩, 所以4,43x y =-=,24(,4,1)3n =-.…………………10分 设二面角1B CD B --的大小为θ, 133cos 2121=⋅=n n n n θ 所以二面角1B CD B --的余弦值为313. ……………………………………12分 19、解:(Ⅰ)设“从甲组内选出的2个同学均为男同学;从乙组内选出的2个同学中,1个是男同学,1个为女同学”为事件A ,“从乙组内选出的2个同学均为男同学;从甲组 内选出的2个同学中1个是男同学,1个为女同学”为事件B ,由于事件A 、B 互斥,且21112324342222464641()()155C C C C C P A P B C C C C ====, ----------------------------------------------4分∴选出的4个同学中恰有1个女生的概率为:417()()()15515P A B P A P B +=+=+= ----------------------------------------------------------6分 (Ⅱ)X 可能的取值为0,1,2,3,1731(0),(1),(2),(3)5151030P X P X P X P X ======== -----------------------------8分∴X 的分布列为-----------------------10分∴X 的数学期望7317231510306EX =+⨯+⨯= ---------------------------- 12分 X 0 1 2 3 P15 715 310 13020、解:(Ⅰ)设(c,0)F ,由题意3322==c k AF , ∴3c =,又∵离心率32c a=,∴2a =, ∴221b a c =-=,椭圆C 的方程为2214xy +=; --------------------------------4分(Ⅱ)由题意知,直线l 的斜率存在,设直线l 的斜率为k ,方程为2y kx =-,联立直线与椭圆方程:22142x y y kx ⎧+=⎪⎨⎪=-⎩,化简得:22(14k )16120x kx +-+=,由216(43)0k ∆=->,∴234k >, 设1122(,),(,)P x y Q x y ,则 1212221612,1414k x x x x k k +=⋅=++,----------------------- 6分 ∴222122443=1=11+4k PQ k x x k k-+-+⋅, 坐标原点O 到直线l的距离为221d k =+,22222214432443121+41+41OPQk k S k k k k ∆--=+⋅⋅=+,-------------------------------- 8分 令243(0)t k t =->,则24444OPQ t S t t t∆==++,∵44t t+≥,当且仅当4t t=,即2t =时等号成立, ∴1OPQ S ∆≤,故当2t =, 即2432k -=,43472>=k , ∴72k =±时OPQ ∆的面积最大,------------------------------------------------ 10分 此时直线l 的方程为722y x =±- ------------------------------------------------12分 21、解:(Ⅰ)'1()(1)f x a x a x =-+- 2(1)1a x ax x-+-= 1(1)()(1)1a x x a x----=----------2分 当111a =-,即2a =时,2'(1)()0,x f x x-=-≤ ()f x 在定义域上是减函数;当111a <-,即2a >时,令'()0,f x <得101x a <<-或1;x >令'()0,f x >得1 1.1x a <<- 当111a >-,即12a <<时,令'()0,f x <得01x <<或1;1x a >-令'()0,f x >得11.1x a <<- 综上,当2a =时,()f x 在(0,)+∞上是减函数;当2a >时,()f x 在1(0,)1a -和(1,)+∞单调递减,在1(,1)1a -上单调递增; 当12a <<时,()f x 在(0,1)和1(,)1a +∞-单调递减,在1(1,)1a -上单调递增;--------------- 6分 (Ⅱ)由(Ⅰ)知,当(3,4)a ∈时,()f x 在[1,2]上单调递减,(1)f 是最大值,(2)f 是最小值;123()()(1)(2)ln 222a f x f x f f ∴-≤-=-+,--------------------------------------------------------- 10分 ∴2(1)l n 22a m -+>3l n 222a -+,而0a >,经整理得231a m a ->-, 由34a <<得2310115a a -<<-,所以1.15m ≥.-------------------------------------------------12分 22、解:(Ⅰ)因为AB 为切线,AE 为割线,2AB AD AE =⋅,又因为AC AB =,所以2AD AE AC ⋅=.所以AD ACAC AE=,又因为EAC DAC ∠=∠, 所以ADC △∽ACE △,所以ADC ACE ∠=∠,又因为ADC EGF ∠=∠,所以EGF ACE ∠=∠,所以AC FG //-----------------------------------------5分 (Ⅱ)由题意可得:F D E G ,,,四点共圆,CED CFG CDE CGF ∠=∠∠=∠∴,. C G F ∆∴∽CDE ∆.CG CD GF DE =∴. 又∵4,1==CD CG , ∴GFDE=4 -------------------------------------------------------10分 23、解:(Ⅰ)曲线C 的普通方程为2:2,C y ax =直线l 的普通方程为20x y --= -------------------4分(Ⅱ)将直线的参数表达式代入抛物线得()2142216402t a t a -+++=,12128222,328t t a t t a ∴+=+=+,-----------------------------------------------------------------6分 又|||||,||||,|||2121t t MN t PN t PM -===,由题意知,21221212215)(||||t t t t t t t t =+⇒=-,代入得1=a ---------------------------------------------------------------------------------------10分 24、解:(Ⅰ)当x 4≥时f(x)=2x+1-(x-4)=x+5>0得x >-5,所以x 4≥成立当421<≤-x 时,f (x )=2x +1+x -4=3x -3>0得x >1,所以1<x <4成立当21-<x 时f (x )=-x -5>0得x <-5所以x <-5成立,综上,原不等式的解集为{x |x >1或x <-5} -----------------------------------------5分(Ⅱ)f (x )+43-x =|2x +1|+2|x -4|9|)82(12|=--+≥x x当时等号成立421≤≤-x所以m≤9 --------------------------------------------------------------------------10分。
高考理科数学必考知识点
高考理科数学必考知识点理科数学的考点1.【数列】【解三角形】数列与解三角形的知识点在解答题的第一题中,是非此即彼的状态,近些年的特征是大题第一题两年数列两年解三角形轮流来, 2014、2015年大题第一题考查的是数列,2016年大题第一题考查的是解三角形,故预计2017年大题第一题较大可能仍然考查解三角形。
数列主要考察数列的定义,等差数列、等比数列的性质,数列的通项公式及数列的求和。
解三角形在解答题中主要考查正、余弦定理在解三角形中的应用。
2.【立体几何】高考在解答题的第二或第三题位置考查一道立体几何题,主要考查空间线面平行、垂直的证明,求二面角等,出题比较稳定,第二问需合理建立空间直角坐标系,并正确计算。
3.【概率】高考在解答题的第二或第三题位置考查一道概率题,主要考查古典概型,几何概型,二项分布,超几何分布,回归分析与统计,近年来概率题每年考查的角度都不一样,并且题干长,是学生感到困难的一题,需正确理解题意。
4.【解析几何】高考在第20题的位置考查一道解析几何题。
主要考查圆锥曲线的定义和性质,轨迹方程问题、含参问题、定点定值问题、取值范围问题,通过点的坐标运算解决问题。
5.【导数】高考在第21题的位置考查一道导数题。
主要考查含参数的函数的切线、单调性、最值、零点、不等式证明等问题,并且含参问题一般较难,处于必做题的最后一题。
6.【选做题】今年高考几何证明选讲已经删除,选考题只剩两道,一道是坐标系与参数方程问题,另一道是不等式选讲问题。
坐标系与参数方程题主要考查曲线的极坐标方程、参数方程、直线参数方程的几何意义的应用以及范围的最值问题;不等式选讲题主要考查绝对值不等式的化简,求参数的范围及不等式的证明。
怎样提高理科数学成绩备考的方向。
很多考生觉得多做题就行了,还有一些考生进行“题海战术”,每天面对大量的习题,同时也有好像永远都做不完题,结果是成绩没有提升上去。
那么这个方向,当然也有一些考生走向了另一个极端,不喜欢做题甚至很少做题,这些考生有的觉得自己很聪明,应该能学好理科,特别是数学,结果拿到试卷后,觉得生疏,在短时间内很难把题目做好,对以上两类考生,都是属于备考方向的问题。
高三数学试题(理科)
高三数学试题(理科)本试卷分Ⅰ、Ⅱ两卷,第Ⅰ卷1至2页,第Ⅱ卷3到6页,共150分,考试时间120分注意事项:1.考生必须将自己的姓名、学号、考试科目用铅笔涂写在答题卡上,并在答卷前将班别、姓名、学号、等填写在试卷上.2.第一大题每小题选出答案后,用铅笔把答题卡上对应的答案标号涂黑. 3.请用蓝色或黑色钢笔或圆珠笔答卷.考试结束后,试卷必须全部上交.参考公式:如果事件A 、B 互斥,那么P (A+B )=P (A )+P (B ) 如果事件A 、B 相互独立,那么P (A ·B )=P (A )·P (B ) 如果事件A 在一次试验中的发生的概率是P ,那么n 次独立重复试验中恰好发生k 次的概率为:P n (k )=C n k P k (1-p )n-k球的表面积公式为:S=4πR 2,其中R 表示球的半径. 球的体积公式为:V=34πR 3,其中R 表示球的半径. 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的4个选项中,只有一项是符合题目要求的.1.已知U 为全集,若集合A 、B 、C 满足A ∩B=A ∩C ,则可以推出( ) A . B=C B .A ∪B=A ∪C C .A ∪(U C B)=A ∪(U C C) D .(U C A)∪B=(U C A)∪C 2.函数g (x )满足g (x )g (-x )=1,且g (x )≠1,g (x )不恒为常数,则函数f (x)=g(x)+1g(x)-1( )A .是奇函数不是偶函数B .是偶函数不是奇函数C .既是奇函数又是偶函数D .既不是奇函数也不是偶函数3.已知函数f (x)=223(1)131(1)x x x x x x ⎧+->⎪-⎨⎪+≤⎩,则f –1(3)=( ) A .10 B .12 C . 23 D . -124.设f (x)=1()0x x ⎧⎨⎩为有理数(为无理数),使所有x 均满足x ·f (x)≤g (x)的函数g(x)是( )A .g (x)=sinxB .g (x)=xC .g (x)=x 2D .g (x)=|x| 5.二项式(1x-)n 展开式中含有x 4项,则n 的可能取值是( )A .5B .6C .3D .76.设OA u u u v =a v ,OB uuu v =b v ,OC u u u v =c v ,当c v =λa v +μb v (λ,μ∈R),且λ+μ=1时,点C 在( )A .线段AB 上 B .直线AB 上C .直线AB 上,但除去点AD . 直线AB 上,但除去点B7.从17个相异的元素中选出2a -1个不同元素的选法记为P ,从17个相异的元素中选出2a 个不同元素的选法记为Q ,从18个相异的元素中选出12个不同元素的选法记为S ,若P+Q=S ,则a 的值为( )A . 6B . 6或8C .3D .3或68.若一个平面与正方体的12条棱所成的角均为θ,那么cos θ等于( ) A.3 B .3 C .2 D.69.设OM u u u u v =(1,12),ON u u u v =(0,1),则满足条件0≤OP uuu v ·OM u u u u v ≤1,0≤OP uuu v ·ON u u u v ≤1的10.已知函数f k图象上相邻的一个最大值点与一个最小值点恰好在x 2+y 2=k 2上,则f (x)的最小正周期为( )A .1B .2C .3D .411.2003年12月,全世界爆发“禽流感”,科学家经过深入的研究终于发现了一种细菌M在杀死“禽流感”病毒N 的同时能够自我复制,已知1个细菌M 可以杀死1个病毒N ,并生成2个细菌M ,那么1个细菌M 和2047个“禽流感”病毒N 最多可生成细菌M 的数值是( )A . 1024B .2047C .2048D .204912.已知抛物线的一条过焦点F 的弦PQ ,点R 在直线PQ 上,且满足OR uuu v =12(OP uuu v +OQ uuu v),R 在抛物线准线上的射影为S ,设α,β是ΔPQS 中的两个锐角,则下面4个式子中不一定正确的是( )A .tan α·tan β=1B .sin α+sinC .cos α+cos β>1D .|tan(α-β)|>tan2αβ+高三(1-12班)数学试题(理科)班别____________ 学号______________ 姓名___________ 得分___________第II 卷 (非选择题 共90分)二、填空题13.把函数sin y x x =-的图象,按向量(),m n =-va (m >0)平移后所得的图象关于y 轴对称,则m 的最小正值为__________________14.若关于x 的不等式2-2x >|x -a | 至少有一个负数解,则a 的取值范围为__________________. 15.利用函数f (t)=12+3sin[2365π(t -81)]可用来估计某一天的白昼时间的长短,其中f (t)表示白昼的小时数,t 是某天的序号,t=0表示1月1日,依此类推0≤t ≤365,若二月份28天,则这一地区一年中白昼最长的大约是 月 日.16.在平面几何里,有勾股定理“设ΔABC 的两边AB 、AC 互相垂直,则AB 2+AC 2=BC 2”.拓展到空间,类比平面几何的勾股定理,研究三棱锥的侧面面积与底面面积间的关系,可以得出的正确结论是:“设三棱锥O -ABC 的三个侧面OAB 、OAC 、OBC 两两相互垂直, 则______________________________________________.” 三、解答题:本大题6个小题,共74分17.(本小题满12分)已知A 、B 是ΔABC 的两个内角,a v sin 22A B A B i j +-+v v ,其中i j v v 、为互相垂直的单位向量,若||a =v.(Ⅰ) 试问tanA ·tanB 是否为定值? 若为定值,请求出;否则请说明理由. (Ⅱ) 求tanC 的最大值,并判断此时三角形的形状.18. (本小题12分)设数列{a n }的前n 项和为S n ,已知a 1=1,S n =na n ﹣2n(n ﹣1),(n ∈N*)(Ⅰ) 求证数列{a n }为等差数列,并写出通项公式; (Ⅱ) 是否存在自然数n ,使得40032321=++++nS S S S n Λ?若存在,求出n 的值; 若不存在,说明理由;19.(本小题满分12分)甲、乙两人进行乒乓球比赛,在每一局比赛中,甲获胜的概率为P . (Ⅰ)如果甲、乙两人共比赛4局,甲恰好负2局的概率不大于其恰好胜3局的概率,试求P的取值范围; (Ⅱ)如果P=13,当采用3局2胜制的比赛规则时,求甲获胜的概率.20. (本小题满分12分)在正四棱柱ABCD —A 1B 1C 1D 1中,侧棱是底面边长的2倍,P 是侧棱CC 1上的一点. (Ⅰ)求证:不论P 在侧棱CC 1上任何位置,总有BD ⊥AP ;(Ⅱ)若CC 1=3C 1P ,求平面AB 1P 与平面ABCD 所成二面的余弦值. (Ⅲ)当P 点在侧棱CC 1上何处时,AP 在平面B 1AC 上的射影是∠B 1AC 的平分线.21. (本小题满分14分)已知点Q 位于直线3x =-右侧,且到点()1,0F -与到直线3x =-的距离之和等于4. (Ⅰ) 求动点Q 的轨迹C ;(Ⅱ) 直线l 过点()1,0M 交曲线C 于A 、B 两点,点P 满足1()2FP FA FB =+u u u r u u u r u u u u r ,0EP AB =u u ur u u u r g ,又OE uuu r=(0x ,0),其中O 为坐标原点,求0x 的取值范围;(Ⅲ) 在(Ⅱ)的条件下,PEF ∆能否成为以EF 为底的等腰三角形?若能,求出此时直线l 的方程;若不能,请说明理由.ABCDA 1 D 1C 1 B 1P22.(本小题满分12分)已知函数f(x)满足f(x+y)= f(x)·f(y)且f(1)=1 2 .(Ⅰ)当n∈N+时,求f(n)的表达式.(Ⅱ)设a n=n·f(n),n∈N+,求证a1+a2+…+a n<2.答案:1.D 由A ∩B=A ∩C 知B ,C 在A 内部的元素相同,由韦恩图可得. 2.A3.C 2231x x x +--=(1)(3)1x x x -+-=x+3 依题意 当x>1时 f(x)>4当x ≤1时 f(x)=3x+1≤4 令t= f -1(3) ∴f(t)=3<4 即3t+1=3 ∴t=234.D 将f(x)拆成:当x 是有理数时,f(x)=1;当x 是无理数时,f(x)=0,然后一一验证即可5.C 展开式的通项为r nC (1x)n-r ·(-)r =(-1)r ·r n C 4()3r n r x --(r=0,1,2,…n )即存在自然数r ,使43r -(n -1) =4即7r=3n+12且n ≥r,故选C. 6.B ∵n+μ=1 ∴λ=1-μ,∵c v =λa v +μb v =a v +μ(b v -a v )=a v +μAB u u u v∴AC u u u v =c v -a v =μAB u u u v ,即AC u u u v 与AB u u u v共线.7.D 法一:反代法.分别取a=6,8代入验证。
2024届高三第一次统一考试(全国乙卷)理科数学试题
一、单选题1.如图,该几何体为两个底面半径为1,高为1的相同的圆锥形成的组合体,设它的体积为,它的内切球的体积为,则()A.B.C.D.2. 已知函数且存在三个不同的实数,使得,则的取值范围为( )A.B.C.D.3. 已知:,:,则是的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件4. 已知双曲线:的右焦点为,左顶点为,以为圆心,为半径的圆交的右支于,两点,且线段的垂直平分线经过点,则的离心率为A .2B.C.D.5.已知函数,若,则的取值范围是( )A.B.C.D.6. 的展开式中所有有理项的系数和为( )A .85B .29C.D.7.甲、乙两名同学参加一项射击比赛游戏,其中任何一人每射击一次击中目标得分,未击中目标得分.若甲、乙两人射击的命中率分别为和,且甲、乙两人各射击一次得分之和为的概率为.假设甲、乙两人射击互不影响,则值为( )A.B.C.D.8. 在如图所示的空间几何体中,下面的长方体的三条棱长,,上面的四棱锥中,,,则过五点、、、、的外接球的表面积为2024届高三第一次统一考试(全国乙卷)理科数学试题2024届高三第一次统一考试(全国乙卷)理科数学试题二、多选题三、填空题四、解答题A.B.C.D.9. 关于函数,则( )A .是的极大值点B .函数有且只有1个零点C .存在正实数,使得恒成立D.对任意两个正实数,,且,若,则10. 在正方体中,分别为的中点,若过点且与直线垂直的平面截正方体所得截面图形为三角形,则直线可以是( )A.B .CEC.D.11. 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )A.B.C.D.12. 某科技攻关青年团队有人,他们年龄分布的茎叶图如图所示,已知这人年龄的极差为,则()A.B .人年龄的平均数为C .人年龄的分位数为D .人年龄的方差为13. 抛物线上一点到焦点F 的距离|MF |=5,则抛物线的方程为_______________..14.若数列满足,则称数列为“差半递增”数列.若数列为“差半递增”数列,且其通项与前项和满足,则实数的取值范围是______.15. 已知函数,其中为自然对数的底数.若函数有个不同的零点,则实数的取值范围是__________________.16. 已知函数的图象在处的切线经过点.(1)求的值及函数的单调区间;(2)若关于的不等式在区间上恒成立,求正实数的取值范围.17. 已知抛物线的焦点为,点在抛物线上,且.(1)求抛物线的方程;(2)设是抛物线上异于原点的一点,过点作圆的两条切线与抛物线分别交于异于点的,两点,若切线互相垂直,求的面积.18. 已知,证明:(1);(2).19. 如图所示,在平行四边形中,有:.(1)求的大小;(2)若,求平行四边形的面积.20.如图所示,设有底面半径为的圆锥.已知圆锥的侧面积为,为中点,.(1)求圆锥的体积;(2)求异面直线与所成角.21.如图,三棱锥的平面展开图中,,,,,为的中点.(1)在三棱锥中,证明:;(2)求平面与平面夹角的余弦值.。
高三河南省理科数学知识点
高三河南省理科数学知识点高三是学生们承受了努力了整个中学阶段的累积知识,也是迎接高考的最后冲刺阶段。
在高三阶段特别是理科数学,学生要将所有的数学知识点综合起来,进行串联与运用。
接下来,我将介绍一些高三河南省理科数学的重要知识点。
1.函数与方程在高三数学中,函数与方程是最基础且重要的知识点之一。
首先要掌握的是一次函数和二次函数的性质和图像,包括定义域、值域、单调性、极值点等等。
然后要了解指数函数和对数函数的性质,掌握其图像和应用。
最后还要学习三角函数的定义、性质和相关公式。
2.数列与数学归纳法数列和数学归纳法是高三数学中的重要概念。
学生要掌握等差数列和等比数列的性质和公式,以及特殊的算术数列和几何数列。
在解题过程中,常常会用到数学归纳法,因此要熟练掌握数学归纳法的原理和应用方法。
3.几何与向量在几何与向量的学习中,重点是学习平面几何和立体几何的相关概念、定理和性质。
特别是对于直线和平面的相交、垂直和平行关系,要掌握几何图形的判定方法和计算技巧。
此外,向量的加法、减法和数量积、向量积的运算相当重要,要熟练掌握其性质和运用方法。
4.概率与统计在概率与统计的学习中,重点是掌握事件的概率计算和统计图表的读取与解读。
要学会使用排列组合、加法原理和乘法原理解决概率问题,同时要掌握正态分布的概念和性质。
此外,统计图表的解读要结合实际问题进行分析,并运用统计学知识进行合理推断和判断。
5.导数与微分导数与微分是高三数学的难点之一,也是数学知识的重要应用。
学生首先要掌握导数的定义和求导法则,包括基本函数的导数和常用的求导公式。
然后要学习微分的概念和性质,理解导数和微分的关系。
在应用中,要运用导数和微分的知识解决实际问题,特别是最大值、最小值和优化问题。
6.积分与积分应用积分与积分应用是高三数学中的重要概念和技巧。
学生要掌握不定积分和定积分的计算方法,包括基本积分公式、换元积分法和分部积分法等。
此外,要熟练运用积分的应用解决曲线长度、曲线面积、体积和物理问题。
高三年数学试卷(理科)(附答案)
高三年数学试卷(理科)(完卷时间:120分钟; 满分:150分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1、复数i z +=31,i z -=12,则1z ·2z 在复平面内的对应点位于( )A .第一象限B .第二象限 C.第三象限 D.第四象限2、等差数列{}n a 中,若752a a =-,则1715a a -=( ) A .2- B .2 C .1- D .13、函数)1(121>+=+x y x 的反函数是( )A .)5(2log 2>-=x x yB .())5(11log 2>--=x x yC .)1(2log 2>-=x x yD . ())1(11log 2>--=x x y 4、为真命题的且为真命题是或""""q p q p 条件 A .充分非必要条件 B .必要非充分条件 C .既非充分也非必要条件 D .充要条件 5、一个容量为20的样本数据,分组后,组距与频数如下:A .201. B .41. C .107. D .21 6、关于x 的不等式0<-b ax 的解集为(1,+∞),则关于x 的不等式2--x bax >0的解集为( ) A .(-1,2) B .(-∞,-1)∪(2,+∞)C .(1,2)D .(―∞,―2)∪(1,+∞)7、已知函数)(x f 的导数为,44)(3x x x f -='且)(x f 图象过点(0,-5),当函数)(x f 取得极小值-6时,x 的值应为( ) A .0B .-1C .±1D . 18、设函数⎪⎩⎪⎨⎧>≤-=)0(log )0(8)31()(3x x x x f x,若f (a )>1,则实数a 的取值范围是( )A .)3,2(-B .)2,(--∞∪),3(+∞C .(3,+∞)D .)3,(--∞∪(0,+∞) 9、已知等差数列{a n }中,若1201210864=++++a a a a a ,则=1515S 项和前 ( ) A .240- B .360- C .240 D .360 10、已知数列{n a }中,*N n ∈,11-=a ,1121--+=n n n a a (2≥n ),则∞→n lim =+++)(21n a a a ( )A .2-B .2C . 32-D .3211、已知函数f (x )的定义域为[a ,b ],函数f (x )则函数f (| x |)的图象是( )A . B. C. D.12、已知()x f 为偶函数,且()()x f x f -=+22,当02≤≤-x 时()x x f 2=,若*N n ∈,()n f a n =则=2006a ( ) A . 2006 B .4 C .41D .4- 二、填空题:本大题共4小题,每小题4分,共16分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三理科数学
TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】
浦东新区2008学年度第一学期期末质量抽测试卷
高三数学 (理科)
考生注意:
1. 本次测试有试题纸和答题纸,作答必须在答题纸上,写在试题纸上的解答无效.
2. 答卷前,考生务必在答题纸上将姓名、学校、考试号,以及试卷类型等填写清楚,并在规定区域内贴上条形码.
3. 本试卷共有21道试题,满分150分.考试时间120分钟.
一、填空题(本题满分60分)本大题共有12题,要求在答题纸相应题序的空格内直接填写
结果,每个空格填对得5分,否则一律得零分。
1.计算:=+-∞→1
212lim n n n . 2.函数x
x x f +-=11)(的定义域是 . 3.用数学归纳法证明等式:a
a a a a n n --=++++++1112
12 (1≠a ,*N n ∈),验证1=n
时,等式左边= .
4.若函数)0(1)(>-=x x x x f 的反函数为)(1x f -,则)2(1--f = .
5.等差数列}{n a 中,公差1=d ,143=+a a ,则2042a a a +++ = .
6.函数())(cos 22sin 32R x x x x f ∈-=的最小正周期为 .
7.在二项式10)1(+x 的展开式中任取一项,则该项的系数为奇数的概率是 .
8.无穷等比数列}{n a 各项和S 的值为2,公比0<q ,则首项1a 的取值范围是 .
9.如图,ABC ∆中, 90=∠C , 30=∠A ,1=BC .在三角形内挖去半圆
(圆心O 在边AC 上,半圆与BC 、AB 相切于点C 、M ,与AC 交于N ),则图 中阴影部分绕直线AC 旋转一周所得旋转体的体积为 .
10.关于x 的方程0)5(6241=-+⋅-⋅+k k k x x 在区间]1,0[上有解,则实数k
的取值范围是 .
11.对于函数n x x mx x f ++-=2)(2(),2[+∞-∈x ),若存在闭区间
],[b a ),2[+∞-)(b a <,使得对任意],[b a x ∈,恒有)(x f =c (c 为实常数),则实数n m ,的值依次..
为 . ≠
⊂
12.研究问题:“已知关于x 的不等式02>+-c bx ax 的解集为)2,1(,解关于x 的不等式
02>+-a bx cx ”,有如下解法:
解:由02>+-c bx ax ⇒0)1()1(2>+-x c x b a ,令x y 1=,则)1,2
1(∈y , 所以不等式02>+-a bx cx 的解集为)1,2
1(. 参考上述解法,已知关于x 的不等式
0<++++c x b x a x k 的解集为)3,2()1,2( --,则 关于x 的不等式01
11<--+-cx bx ax kx 的解集为 . 二、选择题(本题满分16分)本大题共有4题,每题都给出四个结论,其中有且只有一个结论
是正确的,必须把答题纸上相应题序内的正确结论代号涂黑,选对得 4分,否则一律得零分.
13.从4名男生和3名女生中选出4人参加迎新座谈会,若这4人中必须既有男生又有女生,
不同的选法共有………………………………………………………………………( )
A .140种
B . 120种
C .35种
D .34种
14.“41=
a ”是“对任意的正数,x 均有1≥+x
a x ”的 …………………………………( )
A .充分非必要条件
B .必要非充分条件
C .充要条件
D .既非充分也非必要条件
15.直角POB ∆中, 90=∠PBO ,以O 为圆心、OB 为半径作圆弧
交OP 于A 点.若弧AB 等分△POB 的面积,且∠AOB =α弧度,
则 …………………………………………………………( )
A. tan α=α
B. tan α=2α
C. sin α=2cos α
D. 2 sin α= cos α
16.函数21(2)y x =-+图像上存在不同的三点到原点的距离构成等比
数列,则以下不可能成为公比的数是 ………………………………………… ( )
A .23
B .2
1 C .33 D .3 三、解答题(本题满分74分)本大题共有5题,解答下列各题必须在答题纸的规定区域(对
应的题号)内写出必要的步骤。
17.(满分12分)本题有2小题,第1小题满分5分,第2小题满分7分.
若集合2)2(log |{2>--=x x x A a ,0>a 且}1≠a
(1)若2=a ,求集合A ;
(2)若A ∈4
9,求a 的取值范围. 18.(满分12分)本题共有2小题,第1小题满分6分,第2小题满分6分.
如图:三棱锥ABC P -中,PA 底面ABC ,若底面ABC 是边长为2的正三角形,且PB 与底面ABC 所成的角为3
π.若M 是BC 的中点,求: (1)三棱锥ABC P -的体积;
(2)异面直线PM 与AC 所成角的大小(结果用反三角函数值表示).
19.(满分14分)本题共有2小题,第1小题满分6
ABC ∆中,三个内角A 、B 、C 所对的边分别为a 、b 、c a )13(-=.
(1)求角A 的大小;
(2)已知当]2
,6[π
π∈x 时,函数x a x x f sin 2cos )(+=. 20.(满分16分)本题共有3小题,第1小题满分4分,第2小题满分6分,第3小题
满分6分.
已知函数()ax x x f -+=12,其中0>a .
(1)若)1()1(2-=f f ,求a 的值;
(2)证明:当且仅当1≥a 时,函数)(x f 在区间),0[+∞上为单调函数;
(3)若函数)(x f 在区间),1[+∞上是增函数,求a 的取值范围.
P
21.(满分20分)本题共有4小题,第1小题满分4分,第2小题满分5分,第3小题满
分5分,第4小题满分6分.
对于给定数列{}n c ,如果存在实常数,p q 使得1n n c pc q +=+对于任意*n N ∈都成立,我们称数列{}n c 是 “M 类数列”.
(1)若n a n 2=,32n n b =⋅,*n N ∈,数列{}n a 、{}n b 是否为“M 类数列”若是,指出它对应的实常数,p q ,若不是,请说明理由;
(2)证明:若数列{}n a 是“M 类数列”,则数列}{1++n n a a 也是“M 类数列”;
(3)若数列{}n a 满足12a =,)(23*1N n t a a n n n ∈⋅=++,t 为常数.求数列{}n a 前2009项的和.并判断{}n a 是否为“M 类数列”,说明理由;
(4)根据对(2)(3)问题的研究,对数列{}n a 的相邻两项n a 、1+n a ,提出一个条件或结论与“M 类数列”概念相关的真命题,并探究其逆命题的真假.。