热释电红外传感器简介
热释电红外传感器原理及其应用
热释电红外传感器原理及其应用热释电红外传感器原理及其应用
热释电红外传感器(thermoelectric infrared sensor,TIRS)是一种利用热释电效应(thermoelectric effect)来检测环境中红外热源的光学传感器。
它能够通过辐射能量与传感器内表面温度的差异来检测非可见的红外辐射,以实现远距离监测和测量热源发射能力的目的。
热释电红外传感器的工作原理是,当热释电芯片内的两个特定的同质金属材料互相接触时,会出现一个电压,这称为热释电效应。
热释电红外传感器将两种金属材质聚集在一起,当热源照射到传感器表面时,会让其中一种材料受热,而另一种材料不受热。
随着材料的表面温度升高,热释电效应将产生一个电压,这一区别值便可以表示出环境中红外辐射强度发生变化的情况。
热释电红外传感器广泛应用于飞机机舱设备房内的温度监控,能够检测空调系统及周边电子设备的温度变化,从而维持机舱温度在所需范围内。
此外,也常用于物流运输、医疗保健及无人机等行业对环境温度进行监控,能够有效降低安全风险,提高工作效率。
此外,热释电红外传感器还可用于检测大气污染物,能够根据环境温度及湿度两种因素来监测大气环境,提供可靠的污染数据以帮助制定行之有效的污染防治措施。
10.4 热释电红外传感器
10.4 热释电红外传感器 热释电红外探测模块
自动门控制电路
本章小结
热电偶和热电阻区别
产生信号的性质不同; 检测的温度范围不同:
热电阻一般检测0-150度温度范围,热电偶可检测0-1000度的温 度范围(甚至更高)。前者是低温检测,后者是高温检测。
热电偶有正负极,补偿导线也有正负之分; 热电阻和热电偶一样的区分类型,但是热电阻不需要补偿导线,
HN911模块典型应用
10.4 热释电红外传感器 热释电红外探测模块
无被测物体时, HN911的1端输出低电平,V2截 止,报警指示灯H不亮,2端输出高电平使继电 器K工作;
当检测到人体移动信号时, V2导通,指示灯H 亮,同时V1截止,继电器K停止工作。可利用继 电器触点的通断进行需要的控制。
辐射容易被遮挡 环境温度和人体温度接近时,灵敏度明显下降,
甚至短时失效。
10.4 热释电红外传感器
传感器主要由外壳、滤光片、热电元件、结场效应管FET、电 阻、二极管等组成。
10.4 热释电红外传感器
10.4 热释电红外传感器
10.4 热释电红外传感器
号处理电路处理后输出控制信号。此时,输出端1变为 高电平,输出端2变为低电平。 在模块的外部,可接增益调节电位器,以调节放大器的 增益。
10.4 热释电红外传感器 热释电红外探测模块
HN911模块的主要技术指标:
电源电压:5±10%V 传感器水平视角:>100度 传感器垂直视角:>80度 输出延时:>2s 监控距离:加上菲涅耳透镜达15m左右。 菲涅耳透镜:一种精密的光学系统,专门用来和热释电
10.4 热释电红外传感器
热释电红外传感器指利用热电元件的热释电效应探 测人体用的红外传感器。
热释电探测器介绍
热释电红外线传感器热释电红外线传感器主要是由一种高热电系数的材料,如锆钛酸铅系陶瓷、钽酸锂、硫酸三甘钛等制成尺寸为2*1mm的探测元件。
在每个探测器内装入一个或两个探测元件,并将两个探测元件以反极性串联,以抑制由于自身温度升高而产生的干扰。
由探测元件将探测并接收到的红外辐射转变成微弱的电压信号,经装在探头内的场效应管放大后向外输出。
为了提高探测器的探测灵敏度以增大探测距离,一般在探测器的前方装设一个菲涅尔透镜,该透镜用透明塑料制成,将透镜的上、下两部分各分成若干等份,制成一种具有特殊光学系统的透镜,它和放大电路相配合,可将信号放大70分贝以上,这样就可以测出10~20米范围内人的行动。
菲涅尔透镜利用透镜的特殊光学原理,在探测器前方产生一个交替变化的“盲区”和“高灵敏区”,以提高它的探测接收灵敏度。
当有人从透镜前走过时,人体发出的红外线就不断地交替从“盲区”进入“高灵敏区”,这样就使接收到的红外信号以忽强忽弱的脉冲形式输入,从而强其能量幅度。
人体辐射的红外线中心波长为9~10--um,而探测元件的波长灵敏度在0.2~20--um范围内几乎稳定不变。
在传感器顶端开设了一个装有滤光镜片的窗口,这个滤光片可通过光的波长范围为7~10--um,正好适合于人体红外辐射的探测,而对其它波长的红外线由滤光片予以吸收,这样便形成了一种专门用作探测人体辐射的红外线传感器。
被动式热释电红外探头的工作原理及特性:人体都有恒定的体温,一般在37度,所以会发出特定波长10UM左右的红外线,被动式红外探头就是靠探测人体发射的10UM左右的红外线而进行工作的。
人体发射的10UM 左右的红外线通过菲泥尔滤光片增强后聚集到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,后续电路经检测处理后就能产生报警信号。
1)这种探头是以探测人体辐射为目标的。
所以热释电元件对波长为10UM左右的红外辐射必须非常敏感。
热释电红外传感器讲解
具体电路应用设计分析(一)
电路中VT3、C7、R8、~R10组成开机延 时电路。当开机时,开机人的感应会使IC3 输出高电平,造成误触发。
开机延时电路在开机的瞬间,由电容C7 的充电作用而使VT3导通,这样就使IC3输出 的高电平经VT3通地,VT2可以保持截状态, 防止了开机误触发。开机延时时间由C7与 R8的时间常数决定,约20秒。
9.65um。
红外传感器的工作原理 热释电核心探头
热释电红外传感器由传感探
热电 元
测元、干涉滤光片和场效
应管匹配器三部分组成。
其内部的热电元由高热电 系数的铁钛酸铅汞陶瓷以 及钽酸锂、硫酸三甘铁等 配合滤光镜片窗口组成, 其极化产生正、负电荷,随 温度的变化而变化。
红外传感器的工作原理 热释电核心探头
热电元
D端接电源 正极,
G端接电源 负极,
S端为信号 输出
红外传感器的工作原理 热释电红外探头
热释电红外传感器在结构上引入场效应 管的目的在于完成阻抗变换。
由于热电元输出的是电荷信号,并不能 直接使用,因而需要用电阻将其转换为电压 形式,该电阻阻抗高达104MΩ,故引入的 N沟道结型场效应管应接成共漏形式即源 极跟随器来完成阻抗变换。
(三)
1.热释电应用电路原理图 2.典型电路设计分析(一) 3.典型电路设计分析(二) 4.聚光系统---菲涅尔镜片
的原理和应用
热释电红外传感器工作电路原理图
常用放大电 路有哪些 ?
典型电路设计分析(一)
reture
具体电路应用设计分析(一)
[电路工作原理] 探头接收到人体释放的热释红外信号,经
(二)
1.光谱基础 2.人体辐射 3.热释电核心探头
红外传感器的工作原理
第4讲 热释电人体红外传感器
第3讲 4)菲涅尔透镜 菲涅尔透镜 热释电人体红外传感器只有配合菲涅尔透镜使用才能发挥最大 作用。不加菲涅尔透镜时,该传感器的探测半径可能不足2m, 作用。不加菲涅尔透镜时,该传感器的探测半径可能不足 ,配 上菲涅尔透镜则可达10m,甚至更远。菲涅尔透镜是用普遍的聚乙 上菲涅尔透镜则可达 ,甚至更远。 烯制成的,安装在传感器的前面。透镜的水平方向上分成三部分, 烯制成的,安装在传感器的前面。透镜的水平方向上分成三部分, 每一部分在竖直方向上又分成若干不同的区域, 每一部分在竖直方向上又分成若干不同的区域,所以菲涅尔透镜实 际是一个透镜组,如图11. 所示。 际是一个透镜组,如图 .21(a)所示。当光线通过透镜单元后,在 所示 当光线通过透镜单元后, 其反面则形成明暗相间的可见区和盲区。每个透镜单元只有一个很 其反面则形成明暗相间的可见区和盲区。 小的视场角,视场角内为可见区,之外为盲区。 小的视场角,视场角内为可见区,之外为盲区。而相邻的两个单元 透镜的视场既不连续,更不交叠,却都相隔一个盲区。 透镜的视场既不连续,更不交叠,却都相隔一个盲区。当人体在这 一监视范围中运动时,顺次地进入某一单元透镜的视场, 一监视范围中运动时,顺次地进入某一单元透镜的视场,又走出这 一视场,热释电传感器对运动的人体一会儿看到,一会又看不到, 一视场,热释电传感器对运动的人体一会儿看到,一会又看不到, 再过一会儿又看到,然后又看不到,于是人体的红外线辐射不断改 再过一会儿又看到,然后又看不到, 变热释电体的温度,使它输出一个又一个相应的信号。 变热释电体的温度,使它输出一个又一个相应的信号。输出信号的 频率大约为0.1~10Hz,这一频率范围由菲涅尔透镜、人体运动速度 频率大约为 ,这一频率范围由菲涅尔透镜、 和热释电人体红外传感器本身的特性决定。 和热释电人体红外传感器本身的特性决定。
热释电红外传感器的工作原理
热释电红外传感器的工作原理热释电红外传感器是一种采用热释电效应来感测红外辐射的传感器。
该传感器能够感知物体的温度和运动状态,具有广泛的应用领域,如安防、自动化、机器人等。
一、热释电效应原理热释电效应是指在非均匀电介质中,当物理量(如温度)发生变化时,电介质中的电荷会发生移动,导致电势的变化。
这种现象叫做热释电效应。
利用这种效应可以制成红外传感器。
二、热释电红外传感器的结构热释电红外传感器由传感器芯片、滤光器、接收器、前置放大器、信号处理电路、输出电路等组成。
传感器芯片通常由热释电材料制成,如聚乙烯、锂铌酸锂等。
滤光器主要过滤掉不需要的光波,只让红外波通过。
接收器将红外波转化为电信号,然后通过前置放大器放大。
信号处理电路对信号进行滤波、增益等处理。
输出电路将处理后的信号转化为可用的电压或电流输出。
三、热释电红外传感器的工作原理1. 当有热源或物体进入传感器的感应区域时,将发射红外辐射波。
2. 经过滤光器的过滤,只有红外波通过,照射到传感器芯片上。
3. 传感器芯片产生电荷的移动,产生电势,经由接收器转化为电信号。
4. 通过前置放大器放大信号之后,通过信号处理电路进行滤波、增益等操作。
5. 处理后的信号通过输出电路转化为可用的电压或电流输出。
四、热释电红外传感器的优缺点1. 优点:响应速度快、结构简单、功耗低、灵敏度高、价格相对较低、在恶劣环境下也可以进行工作。
2. 缺点:受环境影响较大、易受其它电磁辐射的干扰、动态响应能力较差。
综上所述,热释电红外传感器是一种基于热释电效应工作的传感器,其工作原理主要是利用物体的红外辐射,产生电荷移动,最终产生电势并输出信号。
该传感器具有快速响应速度、低功耗、灵敏度高等优点,但受到环境影响较大、易受其它电磁辐射的干扰等缺点。
热释电红外传感器
左右范围
空调中,热释电传感器的菲涅尔透镜 做成球形状,从而能感受到屋内一定空间 角范围里是否有人,以及人是静止着还是 走动着。
谢谢聆听
共同学习相互提高
热释电感应灯
热释电传感器
热释电报警器
菲涅尔透镜
设定按钮
高分贝喇叭
热释电报警器(续)
吸顶式 热释电报警器
热释电传 感器用于自动 亮灯,当然也 可以用于防盗
热释电传感器的感应范围
18
热释电传感器在智能空调中的应用
上 下 范 围
智能空调能检测出屋内 是否有人,微处理器据此自 动调节空调的出风量,以达 到节能的目的。
金属氧化物 陶瓷及薄膜
材料
如Zn0、 BaTi03、 PMN(镁铌 酸铅)、PST (钽钪酸铅)、 BST(钛酸 锶钡)、 PbTi03、 PLT(钛酸铅 镧)、PZT (锆钛酸铅) 等
光谱基础
红外线属于一种电磁射线,其特性等同于无线电或X射 线。人眼可见的光波是380nm-780nm,发射波长为780nm-1mm的 长射线称为红外线。
径向移动反应最不敏感, 而对于横切方向 (即 与半径垂直的方向)移动则最为敏感。
在现场选择合适的安装位置是避免红外探头 误报、求得最佳检测灵敏度极为重要的一环。
热释电红外传感器在结构上引入场效应管的目的在于 完成阻抗变换。
由于热电元输出的是电荷信号,并不能直接使用,因而 需要用电阻将其转换为电压形式,该电阻阻抗高达104M Ω,故引入的N沟道结型场效应管应接成共漏形式即源 极跟随器来完成阻抗变换。
♣任何发热体都会产生红外线 辐射的红外线波长跟物体温度有关。表面温度越高 ,辐射 能量越强。 ♣最强波长和温度的关系满足λm*T=2989(um.k) ♣人体的正常体温为36~37.5。C ,其辐射的最强的红外线的 波长为9.67~9.64um,中心波长为9.65um。
热释电红外传感器
产品名称:热释电红外传感器产品价格:在线订购:热释电红外传感器是一种能检测人或动物发射的红外线而输出电信号的传感器。
早在1938年,有人提出过利用热释电效应探测红外辐射,但并未受到重视,直到六十年代,随着激光、红外技术的迅速发展,才又推动了对热释电效应的研究和对热释电晶体的应用。
热释电晶体已广泛用于红外光谱仪、红外遥感以及热辐射探测器,它可以作为红外激光的一种较理想的探测器。
它目标正在被广泛的应用到各种自动化控制装置中。
除了在我们熟知的楼道自动开关、防盗报警上得到应用外,在更多的领域应用前景看好。
比如:在房间无人时会自动停机的空调机、饮水机。
电视机能判断无人观看或观众已经睡觉后自动关机的机构。
开启监视器或自动门铃上的应用。
结合摄影机或数码照相机自动记录动物或人的活动等等……。
您可以根据自己的奇思妙想,结合其它电路开发出更加优秀的新产品。
或自动化控制装置。
热释电传感器基本知识热释电效应同压电效应类似,是指由于温度的变化而引起晶体表面荷电的现象。
热释电传感器是对温度敏感的传感器。
它由陶瓷氧化物或压电晶体元件组成,在元件两个表面做成电极,在传感器监测范围内温度有ΔT的变化时,热释电效应会在两个电极上会产生电荷ΔQ,即在两电极之间产生一微弱的电压ΔV。
由于它的输出阻抗极高,在传感器中有一个场效应管进行阻抗变换。
热释电效应所产生的电荷ΔQ会被空气中的离子所结合而消失,即当环境温度稳定不变时,ΔT=0,则传感器无输出。
当人体进入检测区,因人体温度与环境温度有差别,产生ΔT,则有ΔT 输出;若人体进入检测区后不动,则温度没有变化,传感器也没有输出了。
所以这种传感器检测人体或者动物的活动传感。
由实验证明,传感器不加光学透镜(也称菲涅尔透镜),其检测距离小于2m,而加上光学透镜后,其检测距离可大于7m。
为了缩短产品研发周期,快速应用热释电传感技术。
电子制作实验室网站批量供应以下几种热释电传感器成品组件。
红外模块使用注意事项:1、人体感应器模块属于高度敏感的器件,它对电源要求很高,必须经过良好的稳压滤波,例如9V的层叠电池就可能因为内阻较大不能正常工作,建议客户用LM7808稳压芯片稳压后再通过220UF和0.1UF的电容滤波后供电。
第六章、 热释电红外传感器及其应用
热释电效应:当一些晶体受热时,在晶体两端将会 产生数量相等而符号相反的电荷。这种由于热变化 而产生的电极化现象称为热释电效应。 通常,晶体自发极化所产生的束缚电荷被空气中 附集在晶体外表面的自由电子所中和,其自发极化 电矩不能显示出来。当温度变化时,晶体结构中的 正、负电荷重心产生相对位移,晶体自发极化值就 会发生变化,在晶体表面就会产生电荷,对外显示 电性。 若温度对时间的变化率为Dt/dt,极化强度PS 对 时间的变化率为dPs/dt,它相当于外电路上流动的 电流。射电极面积为A,则信号电压的大小为:
第六章、 热释电红外传感器及其应用
热释电红外传感器是一种被动式调制型温度 敏感器件,利用热释电效应工作,它是通过目标 与背景的温差来探测目标的。其响应速度虽不如 光子型,但由于它可在室温下使用、光谱响应宽、 工作频率宽,灵敏度与波长无关,容易使用。这 种探测器,灵敏度高,探测面广,是一种可靠性 很强的探测器。因此广泛应用于各类入侵报警器, 自动开关、非接触测温、火焰报警器等,目前生 产有单元、双元、四元、180°等传感器和带有 PCB控制电路的传感器。常用的热释电探测器如: 硫酸三甘钛(TGS)探测器、铌酸锶钡(SBN) 探测器、钽酸锂(LiTaO3)探测器、锆钛酸铅 (PZT)探测器等。
表10.1.1
TWH95系列控制电路内部设计有两个高阻抗输入低噪声运算 放大器,其总增益限制在67dB之内,灵敏度可通过外接电阻进行 调整。比较器为一个典型的窗口比较电路,其上下阈值经若干次 选择后,确定出最佳门限值。其比较放大电路由内部4V稳压电路 供电,设有温度补偿电路,因此增益不会随外界温度的变化而改 变。这种电路能抑制热气团流动所产生的红外干扰,误报率低, 其探测距离达12米以上。TWH95系列电路,均有使能控制端RD, 该脚悬空时为自动状态,接入光控元件可使电路白天待机,晚上 恢复自动工作。 电路内部均有为PIR预热的开机自动延时电路,延迟时间为45 秒,使PIR预热后建立稳定的工作状态。内部还设置了输出延时系 统电路,
热释电红外传感器原理教程通用课件
包括探测器的结构、材料的热电性能、制造工艺等。
热释电红外传感器的噪声与干扰
噪声与干扰概述
热释电红外传感器的噪声指的是 其输出信号中随机变化的部分, 干扰则是指外部因素对传感器输
出的影响。
噪声的来源
热释电红外传感器的噪声主要来源 于探测器材料的热涨落、电路噪声 、环境辐射等。
干扰的来源
热释电红外传感器的干扰主要来源 于电磁干扰、电源噪声、机械振动 等。
04
热释电红外传感器的 应用实例与实验方法
热释电红外传感器在人体感应中的应用实例
智能照明控制
利用热释电红外传感器检测人体活动,实现自动 开关灯,节省能源。
智能家居系统
通过热释电红外传感器监测家庭成员活动,实现 自动化家务管理。
医疗护理
在病房、卫生间等场所安装热释电红外传感器, 实现自动呼叫系统,方便病人使用。
刘洋, 王丽, 李明等. 基于热释电效应的红外传感器研究进展. 物理 学报, 2022; 61(3): 1-10.
致谢
01
对参与本教程编写的所有作者表示衷心的感谢。他们在百 忙之中对教程进行了仔细的编写和校对,为读者提供了宝 贵的知识和经验。
02
感谢北京电子工业出版社的编辑们,他们在整个教程的编 写过程中给予了极大的支持和帮助,提供了宝贵的意见和 建议。
早期火灾预警
利用热释电红外传感器检测火灾初期的 热辐射,及时发出预警信号,降低火灾 发生的风险。
VS
工业生产安全
在工厂、仓库等场所安装热释电红外传感 器,提高火灾预警能力传感器的 调试与校准方法
热释电红外传感器的调试步骤
硬件连接
确认传感器与主机之间的连接是否牢固,避 免接触不良导致信号传输受阻。
红外热释电传感器
红外热释电传感器什么是红外热释电传感器红外热释电传感器是一种被广泛使用在安防监控中的传感器,可以检测并识别人体的红外辐射信号。
它可通过检测人体辐射的红外线来判断人体的存在,从而实现人体感应的应用。
与其他传感器相比,它在检测精度、灵敏度和稳定性方面都有很优秀的表现。
红外热释电传感器的原理红外热释电传感器采用的是“热释电效应”,当红外线照射在热释电传感器的各个区域上,红外线会通过吸收、反射、透过等过程,转化成电信号输出。
热释电材料在吸收红外线照射后,自身温度会提高,并且电荷的分布状态也会发生改变,从而产生输出电信号。
通过对红外辐射信号的检测和分析,可以判断出人体的存在与否。
红外热释电传感器的优劣势优势:1.高精度。
红外热释电传感器可以检测人体的移动方向、速度、距离等,准确度较高。
2.环境适应性强。
在各种天气环境下,红外热释电传感器都可以保持稳定的检测效果。
3.无线控制。
红外热释电传感器可以实现与其他设备的无线联动和控制。
劣势:1.价格较高。
红外热释电传感器的经济性不如其他传感器。
2.局限性。
红外热释电传感器只能检测人体等物品的红外辐射信号,无法判断物品的其他特征。
红外热释电传感器的应用红外热释电传感器主要应用于安防现场,例如办公室、居民小区、道路、停车场等。
具体应用如下:1.报警。
红外热释电传感器可以在特定的区域内检测人体的存在,当检测到非法闯入时,会即时发送信号到安全系统进行报警。
2.自动开关灯。
在开启了自动感应的灯具中,红外热释电传感器可以检测人体的存在,从而实现灯具的自动开关。
3.智能家居。
将红外热释电传感器应用到家居中,可以通过对家具的感知,实现智能化的控制管理。
红外热释电传感器与其他传感器的区别与其他传感器相比,红外热释电传感器的最大优势在于检测的是人体的红外辐射信号。
与光线传感器、声音传感器等其他传感器相比,红外热释电传感器可以在低光照、较弱声音等条件下工作,并且抗干扰能力较强。
但是,它也有自己的局限性,如无法检测人体之外的物体,且价格和功耗较高。
详解热释电红外传感器
详解热释电红外传感器
被动式热释电红外探头的优缺点: 优点:本身不发任何类型的辐射,器 件功耗很小,隐蔽性好。价格低廉。 缺点:◆容易受各种热源、光源干扰 ◆被动红外穿透力差,人体的红外辐射容 易被遮挡,不易被探头接收。◆环境温度 和人体温度接近时,探测和灵敏度明显下 降,有时造成短时失灵。详解热释 Nhomakorabea红外传感器
详解热释电红外传感器
1
详解热释电红外传感器
菲涅尔透镜利用透镜的特殊光学原理,在 探测器前方产生一个交替变化的“盲区” 和“高灵敏区”,以提高它的探测接收灵 敏度。当有人从透镜前走过时,人体发出 的红外线就不断地交替从“盲区”进入 “高灵敏区”,这样就使接收到的红外信 号以忽强忽弱的脉冲形式输入,从而强其 能量幅度。
详解热释电红外传感器
人体辐射的红外线中心波长为9~10--um, 人体辐射的红外线中心波长为9~10--um, 而探测元件的波长灵敏度在0.2~20--um范 而探测元件的波长灵敏度在0.2~20--um范 围内几乎稳定不变。在传感器顶端开设了 一个装有滤光镜片的窗口,这个滤光片可 通过光的波长范围为7~10--um,正好适合 通过光的波长范围为7~10--um,正好适合 于人体红外辐射的探测,而对其它波长的 红外线由滤光片予以吸收,这样便形成了 一种专门用作探测人体辐射的红外线传感 器。
抗干扰性能:①防小动物干扰:探测器安 装在推荐地使用高度,对探测范围内地面 上地小动物,一般不产生报警。②抗电磁 干扰:探测器的抗电磁波干扰性能符合 GB10408中4.6.1要求,一般手机电磁干扰 GB10408中4.6.1要求,一般手机电磁干扰 不会引起误报。③抗灯光干扰:探测器在 正常灵敏度的范围内,受3米外H4卤素灯 正常灵敏度的范围内,受3米外H4卤素灯 透过玻璃照射,不产生报警。
热释电人体红外传感器
热释电人体红外传感器摘要:热释电红外传感器是基于热电效应原理的热电型红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以放大,便可驱动各种控制电路。
因此可以用热释电红外传感器用于做电源开关控制器及防盗防火报警器等。
其主要采用被动红外报警的结构,不需要发出任何形式能量,只需要接收自然的能量来达到探测的目的。
关键词:热释电;红外;人体;应用引言:目前我国的传感器很多需要长时间利用电能启动而且灵敏度不高,热释电红外传感器是一种不需要外界能量只需要接收自然能量的传感器且具有很高的灵敏度,是一款结构简单价格低廉而且很节能的产品。
1、热释电陶瓷的性能原理当一些晶体受热时,在晶体两端将会产生数量相等而符号相反的电荷。
这种由于热变化而产生的电极化现象称为热释电效应。
通常,晶体自发极化所产生的束缚电荷被空气中附集在晶体外表面的自由电子所中和,其自发极化电矩不能显示出来。
当温度变化时,晶体结构中的正、负电荷重心产生相对位移,晶体自发极化值就会发生变化,在晶体表面就会产生电荷耗尽。
能产生热释电效应的晶体称为热释电体,又称为热电元件。
热电元件常用的材料有单晶(LiTaO3等)、压电陶瓷(PZT等)及高分子薄膜(PVF2等)。
如果在热电元件两端并联上电阻,当元件受热时,则电阻上就有电流流过,在电阻两端也能得到电压信号。
热释电陶瓷若不考虑温度的不均匀性,热释电体一般具有一级和二级热释电效应。
其中二级热释电效应是由于温度变化引起材料形变,再由压电效应产生电荷的二级效应。
一般情况下,若温度变化率相同,升降温过程中产生的热释电电荷大小相等,但符号相反,其能把光能或热能变成电能。
热释电效应在近10年被用于热释电红外传感器中,广泛地用于辐射和非接触式温度测量、红外光谱测量、激光参数测量、工业自动控制、空间技术、红外摄像中。
热释电红外传感器简介
热释电红外传感器简介被动式红外探测器不需要附加红外辐射光源,本身不向外界发射任何能量,而是由探测器直接探测来自移动目标的红外辐射,因此才有被动式之称。
被动式红外探测器是利用热释电效应进行探测的。
被动式红外探测器又称为热释电红外探测器,其主要工作原理便是热释电效应。
热释电效应是指如果使某些强介电质材料(如钦酸钡、钦错酸铅P(zT)等)的表面温度发生变化,则随着温度的上升或下降,材料表面发生极化,即表面上就会产生电荷的变化,从而使物质表面电荷失去平衡,最终电荷变化将以电压或电流形式输出。
热释电红外传感器通过接收移动人体辐射出的特定波长的红外线,可以将其转化为与人体运动速度,距离,方向有关的低频电信号。
当热释电红外传感器受到红外辐射源的照射时,其内部敏感材料的温度将升高,极化强度减弱,表面电荷减少,通常将释放掉的这部分电荷称为热释电电荷。
由于热释电电荷的多少可以反映出材料温度的变化,所以由热释电电荷经电路转变成的输出电压也同样可以反映出材料温度的变化,从而探测出红外辐射能量的变化。
红外探测器的光学系统可以将来自多个方向的红外辐射能量聚焦在探测器上,这样红外探测器就可以探测到某一个立体探测空间内热辐射的变化。
当防范区域内没有移动的人体时,由于所有的背景物体(如墙壁、家具等)在室温下红外辐射的能量比较小,而且基本上是稳定的,所以不能触发报警器。
当有人体突然进入探测区域时,会造成红外辐射能量的突然变化,红外探测器将接收到的活动人体与背景物体之间的红外热辐射能量的变化转化为相应的电信号,电信号的大小,决定于敏感元件温度变化的快慢,经过后级比较器与状态控制器产生相应的输出信号U,送往报警器,发出报警信号。
红外探测器的探测波长为8~14um,人体的红外辐射波长正好处于这个范围之内,因此能较好的探测到活动的人体。
被动式红外探测器属于空间控制型探测器,其警戒范围在不同方向呈多个单波束状态,组成锥体感热区域,构成立体警戒。
热释电红外传感器
一、引言
二、热释电红外探测器工作原典型应用 四、热释电红外传感器的优缺点
五、结束语
一、引 言
红外线传感器是将红外辐射能转换成电能的一种光 敏元件, 红外线传感器包括光学系统、检测元件和转换电路。 光学系统按结构不同可分为透射式和反射式两类。热 敏元件应检测元件按工作原理可分为热敏检测元件和 光电检测元件,用最多的是热敏电阻。热敏电阻受到红 外线辐射时温度升高,电阻发生变化,通过转换电路 变成电信号输出。 根据红外传感器的工作原理,可分为热型和量子型 两类。
热释电红外传感器广泛应用于各种自动化控制装置中, 既可作为红外激光的一种较理想的探测器,又可用于一 般的家用防盗报警、来客告知及非接触开关等红外领域, 还可用于宾馆、饭店、商场的门口来代替迎宾小等。其 中最简单的一个利用就是红外报警器。 红外报警器又称为被动式红外报警器。所谓“被动”是 指探测器本身不发出任何形式的能量,只是靠接收自然 界能量或能量变化来完成探测目的 。 其组成 简图如 图3所 示。
从结构图2上可以看出,红外感应源通常由两个串联 或者并联的热释电元件组成,这两个热释电元件的电极 相反,环境背景辐射对两个热释电元件几乎具有相同的 作用,使其产生的热释电效应相互抵消,输出信号接近 为零。一旦有需要的特定光线进入,特定的红外光线通 过部分镜面聚焦,并被热释电元件接收,由于角度不同, 两片热释电元件接收到的热量不同,热释电能量也不同, 不能完全抵消,经处理电路处理后输出控制信号。 而在这里,光学滤镜的主要作用是只允许波长在特 定的红外线(比如人体发出的红外线波长)通过,而将 灯光、太阳光及其他辐射滤掉,以抑制外界的干扰。
红外线热释电传感器的安装要求: 正确的安装应满足下列条件: 1 、红外线热释电传感器远离空调, 冰箱,火炉等空 气温度变化敏感的地方; 2、红外线热释电传感器探测范围内不得隔屏、家具、 大型盆景或其他隔离物; 3、红外线热释电传感器不要直对窗口,否则窗外的 热气流扰动和人员走动会引起误报,有条件的最好把 窗帘拉上。红外线热释电传感器也不要安装在有强气 流活动的地方。
热释电红外传感器说明
热释电红外传感器说明热释电红外传感器,这名字听起来是不是挺高大上的?它就是一种能“感知”温度变化的小玩意儿。
它就像是那种“灵敏的探子”,只要有热量经过,它立马就能感应到,真的是太厉害了!想想,如果你家里有个热释电传感器,它就能帮你发现那些“潜伏者”,比如偷偷溜进你家的小猫咪,或者是你正在忙着做饭却忘了关的电炉。
它的原理其实很简单,热释电材料在受到温度变化时,会产生电信号,传递给其他设备。
简单说,它就是一个温度的“侦探”,随时待命,等着捕捉热量的“踪迹”。
这玩意儿广泛应用于各个领域,尤其是安全监控。
想象一下,家里装了这样一个传感器,当有人靠近的时候,它会发出警报,简直就像是家里的“守护神”。
它还能搭配摄像头,瞬间变身为“全能侦探”,让你再也不怕漏掉任何可疑的动静。
你要是晚上睡觉,突然听到一声“嘀嘀”,别紧张,可能是热释电传感器在向你报告:有人来了!这东西也很省电,长时间工作也不用担心它会“罢工”,真是个节能的小能手。
再说说它的应用场景吧,真的是五花八门。
从家居到商业,再到智能交通,几乎无处不在。
在商场里,很多时候你都不知道,其实你身边就有它的身影。
比如说,当你走进一家店里,门口的传感器就会感应到你,自动开门,像个热情的迎宾员。
这种科技感,真让人忍不住想多逛逛。
还有那种智能家居系统,靠着热释电传感器,你的灯可以实现自动开关,晚上起床的时候再也不用摸黑了,想想就觉得方便!热释电红外传感器的优点可真不少。
它的响应速度极快,瞬间就能捕捉到热量变化,简直不费吹灰之力。
它的安装也超级简单,没啥技术含量,几乎人人都能搞定。
只要把它装在一个合适的位置,就能开始“工作”了!这让不少人都爱上了这个小家伙,像是给家里增添了一个“聪明的小助手”。
也有人觉得它可能会误报,比如当空调突然开起来时,它也许会“以为”有个人在活动,结果发出警报,哈哈,这时候就得自认倒霉了。
不过,热释电红外传感器也有一些小缺点。
比如,价格有点小贵,尤其是高精度的产品。
热释电红外传感器
菲涅尔透镜利用透镜的特殊光学原理, 在探测器前方产生一个交替变化的“盲 区”和“高灵敏区”,以提高它的探测 接收灵敏度。当有人从透镜前走过时, 人体发出的红外线就不断地交替从“盲 区”进入“高灵敏区”,这样就使接收 到的红外信号以忽强忽弱的脉冲形式输 入,从而强其能量幅度。如果我们在热 电元件接上适当的电阻,当元件受热时, 电阻上就有电流流过,在两端得到电压 信号。
体辐射的红外线中心波长为9~10--um,而探 测元件的波长灵敏度在0.2~20--um范围内 几乎稳定不变。在传感器顶端开设了一个装 有滤光镜片的窗口,这个滤光片可通过光的 波长范围为7~10--um,正好适合于人体红 外辐射的探测,而对其它波长的红外线由滤 光片予以吸收,这样便形成了一种专门用作 探测人体辐射的红外线传感器。
热释电红外传感器
前言
热释电红外传感器是一种非常有应用潜力的 传感器。它能检测人或某些动物发射的红外 线并转换成电信号输出。热释电红外传感器 是利用红外辐射的热辐射作用引起的元件本 身的温度变化, 其探测率、响应速度都不如 光子型传感器。但由于热释电型传感器可在 室温下使用, 灵敏度与波长无关, 所以应用领 域广,民用领域已经普及了。
实物图
内部电路如图2所示。传感器主要有外壳、滤光片、热释电元件PZT、 场效应管FET等组成。
• 其中,滤光片设置在窗口处,组成红外线 通过的窗口。滤光片为6mm多层膜干涉滤 光片,对太阳光和荧光灯光的短波长(约 5mm以下)可很好滤除。热释电元件PZT 将波长在8mm~12mm之间的红外信号的 微弱变化转变为电信号,为了只对人体的 红外辐射敏感,在它的辐射照面通常覆盖 有特殊的菲涅耳滤光片,使环境的干扰受 到明显的抑制作用。
热释电红外感应自动灯电路
如图所示是采用TWH9512热释电红外传感专用模块 制作而成的感应自动灯,可用于卫生间、储藏室、楼 梯走道等场合照明灯自动控制,可做到有人灯亮,人 走灯灭。同时它还设有光控电路,白天电路自动封闭, 电灯不会点亮。该开关另一特点是它采用二线制接法, 因此不必更改室内原有布线,就可直接取代普通电源 开热释电红外传感器和热电偶都是基于热电效应原理的热电 型红外传感器。不同的是热释电红外传感器的热电系数 远远高于热电偶。
热释电人体红外传感器
热释电人体红外传感器概述热释电人体红外传感器(Pyroelectric Infrared Sensor, PIS)是一种能够检测人体红外辐射的传感器。
它基于热释电效应,当有人或动物经过时,会发生温度变化,进而引起电荷分布的改变,使得能够检测到人体的存在。
热释电传感器使用非常广泛,主要应用于安防领域,能够检测并报警区域内是否有人体活动。
同时,还可以应用于自动化控制、智能家居、医学检测等领域。
工作原理热释电红外传感器由两个部分组成:感应电容和热敏电阻。
当有人体经过时,感应电容会感应到人体红外辐射,将其转化为电荷信号。
然后,该信号输入到热敏电阻上,产生电压信号。
进而,经过放大和处理,输出为控制电路所能接受的信号。
技术特点灵敏度高热释电传感器对人体红外辐射具有很高的灵敏度。
特别是对于热红外辐射,其灵敏度可以达到0.1°C以下,可以检测到非常微小的温度变化。
抗扰动能力强热释电传感器采用差分电路进行信号处理,从而可以降低系统的噪声干扰和环境电磁干扰,提高系统的抗扰动性。
体积小热释电传感器集成度高,体积小,可以方便地布置在需要检测的区域内。
通过组合成阵列,可以形成全向性的监测。
节能热释电传感器的工作电流非常低,一般不超过1 mA。
因此,它可以工作在长时间不间断的状态下,并且不会对电力造成过大的负担。
应用领域安防领域热释电传感器可以应用于安防领域,检测室内外是否有人经过,控制闸门的打开和关闭。
尤其在智能家居系统中的安防领域,热释电传感器可以组成监控网络,实现长时间的无缝监控。
自动化控制热释电传感器可以应用于自动化控制领域,在机器人、工业控制等领域中进行热释电传感器的应用,可以提高系统的自动化程度和智能化程度。
医学检测热释电传感器可以应用于医学检测领域。
例如,可以用于人体体温检测,检测人体多个部位的温度变化,监测人的健康状况。
优缺点优点1.灵敏度高,能够检测到非常微小的温度变化。
2.抗干扰能力强,减少了系统的外部干扰,提高了系统的稳定性。
热释电红外线传感器
红外线传感器是将红外辐射能转换成电能的一种光敏元件,根据红外传感器的工作原理,可分为红外热传感器和红外光子传感器两类。
其中热释电红外传感器 ( P I R)是红外热传感器应用广泛的一类。
热释电红外(PIR)传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以放大,便可驱动各种控制电路。
热释电红外传感器采用的材料是一种具有极化现象的热晶体,其内部的热电元件通常由高热电系数的钽酸锂(LiTaO3)、钛酸钡(BaTiO3)、锆钛酸铅(PZT)等材料组成。
这种热晶体的极化强度 (单位而积的电荷)随温度变化而变化。
当红外光照射到已经极化的热晶体薄片表面上时,引起薄片温度升高,使其极化强度降低表面电荷减少,这相当于释放一部分电荷,所以叫做热释电红外传感器。
如果将负载电阻与铁电体薄片相连,则负载电阻上会产生一个电信号输出。
输出信号的大小取 决于薄片温度变化的快慢,从而反映出入射的红外光的强度。
由此可知,热释电红外传感器的电压响应率正比于入射红外光的变化率,当恒定的红外光照射在热释电红外传感器上时,传感器没有电信号输出,而只有热晶体处于变化过程中才有电信号输出。
所以,必须有交变的红外光照射,不断引起传感器的温度变化,才能导致热释电产生并输出交变信号。
热释电探测器的响应速度比其他热探测器快得多。
由于热释电红外传感器具有远红外线不受可见光影响,故可不分昼夜连续检测,由于被测对象自身发射红外线,故可不必另设光源。
它不但可以工作于低频,而且能工作于高频,目前最好的热释电探测器的探测率可以高达,已经超过了所有的室温热探测器。
因而热释电探侧器不仅具有室温工作、光谱响应宽,隐蔽性好,可流动安装等热探测器的共同优点,而且也是探测率最高、频率响应最宽的热探测器。
热释电红外传感器选择不同的带通滤波片,就可以检测不同的对象,实现不同的目的,比如监测火源,安全检查,防盗防窃,以及军事上的应用。
热释电红外传感器
热释电红外传感器热释电红外(PIR)传感器,亦称为热红外传感器,是一种能检测人体发射的红外线的新型高灵敏度红外探测元件。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将输出的电压信号加以放大,便可驱动各种控制电路,如作电源开关控制、防盗防火报警、感应水龙头,感应灯等。
目前市场上常见的热释电人体红外线传感器主要有上海赛拉公司的SD02、PH5324,德国Perkinelmer 公司的LHi954、LHi958,美国Hamastsu公司的P2288,日本Nippon Ceramic公司的SCA02-1、RS02D等。
虽然它们的型号不一样,但其结构、外型和特性参数大致相同,大部分可以彼此互换使用。
敏感元件热释电红外线传感器由探测元、滤光片和场效应管阻抗变换器等三大部分组成,如图1所示。
对不同的传感器来说,探测元的制造材料有所不同。
如SD02的敏感单元由锆钛酸铅制成;P2288由LiTaO3 制成。
将这些材料做成很薄的薄片,每一片薄片相对的两面各引出一根电极,在电极两端则形成一个等效的小电容。
因为这两个小电容是做在同一硅晶片上的,因此形成的等效小电容能自身产生极化,在电容的两端产生极性相反的正、负电荷。
传感器中两个电容是极性相反串联的。
图1双探测元热释电红外传感器当传感器没有检测到人体辐射出的红外线信号时,在电容两端产生极性相反、电量相等的正、负电荷,所以,正负电荷相互抵消,回路中无电流,传感器无输出。
当人体静止在传感器的检测区域内时,照射到两个电容上的红外线光能能量相等,且达到平衡,极性相反、能量相等的光电流在回路中相互抵消,传感器仍然没有信号输出。
当人体在传感器的检测区域内移动时,照射到两个电容上的红外线能量不相等,光电流在回路中不能相互抵消,传感器有信号输出。
综上所述,传感器只对移动或运动的人体和体温近似人体的物体起作用。
滤光片滤光片是由一块薄玻璃片镀上多层滤光层薄膜而成的,能够有效地滤除7.0~14um波长以外的红外线。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
热释电红外传感器简介
被动式红外探测器不需要附加红外辐射光源,本身不向外界发射任何能量,而是由探测器直接探测来自移动目标的红外辐射,因此才有被动式之称。
被动式红外探测器是利用热释电效应进行探测的。
被动式红外探测器又称为热释电红外探测器,其主要工作原理便是热释电效应。
热释电效应是指如果使某些强介电质材料(如钦酸钡、钦错酸铅P(zT)等)的表面温度发生变化,则随着温度的上升或下降,材料表面发生极化,即表面上就会产生电荷的变化,从而使物质表面电荷失去平衡,最终电荷变化将以电压或电流形式输出。
热释电红外传感器通过接收移动人体辐射出的特定波长的红外线,可以将其转化为与人体运动速度,距离,方向有关的低频电信号。
当热释电红外传感器受到红外辐射源的照射时,其内部敏感材料的温度将升高,极化强度减弱,表面电荷减少,通常将释放掉的这部分电荷称为热释电电荷。
由于热释电电荷的多少可以反映出材料温度的变化,所以由热释电电荷经电路转变成的输出电压也同样可以反映出材料温度的变化,从而探测出红外辐射能量的变化。
红外探测器的光学系统可以将来自多个方向的红外辐射能量聚焦在探测器上,这样红外探测器就可以探测到某一个立体探测空间内热辐射的变化。
当防范区域内没有移动的人体时,由于所有的背景物体(如墙壁、家具等)在室温下红外辐射的能量比较小,而且基本上是稳定的,所以不能触发报警器。
当有人体突然进入探测区域时,会造成红外辐射
能量的突然变化,红外探测器将接收到的活动人体与背景物体之间的红外热辐射能量的变化转化为相应的电信号,电信号的大小,决定于敏感元件温度变化的快慢,经过后级比较器与状态控制器产生相应的输出信号U,送往报警器,发出报警信号。
红外探测器的探测波长为8~14um,人体的红外辐射波长正好处于这个范围之内,因此能较好的探测到活动的人体。
被动式红外探测器属于空间控制型探测器,其警戒范围在不同方向呈多个单波束状态,组成锥体感热区域,构成立体警戒。
由于被动式红外技术具有监测距离较远,灵敏度较高,节能价廉等优点,本课题采用红外探测器作为报警探测器,并在设计中增加了自动声光报警的功能,使报警系统更加趋于完善。
2 热释电红外传感器电路图
热释电红外线(PIR)传感器是80年代发展起来的一种新型高灵敏度探测元件。
是一种能检测人体发射的红外线而输出电信号的传感器,它能组成防入侵报警器或各种自动化节能装置。
它能以非接触形式检测出人体辐射的红外线能量的变化,并将其转换成电压信号输出。
将这个电压信号加以放大,便可驱动各种控制电路。
图2-3为热释电红外传感器的内部电路框图。
图 1热释电红外传感器的内部电路框图
3 被动式热释电红外探头的工作原理及特性
人体的体温一般在37℃,所以会发出特定波长10um左右的红外线,被动式红外探头就是靠探测人体发射的10um左右的红外线而进行工作的。
人体发射的红外线通过菲尼尔滤光增强后聚焦到红外感应源上。
红外感应源通常采用热释电元件,这种元件在接收到人体红外辐射温度发生变化时就会失去电荷平衡,向外释放电荷,经后续电路检测处理后就能产生报警信号民。
该探头具有如下特点:
(1)由于这种探头是以探测人体辐射为目标的,所以热释电元件对波长为10um左右的红外辐射必须非常敏感。
(2)为了仅仅对人体的红外辐射敏感,在它的辐射面通常覆盖有特殊的菲尼尔滤光片,使环境的干扰受到明显的控制作用。
(3)被动红外探头的传感器包含两个互相串联的热释电元,而且制成的两个电极化方向正好相反,环境背景辐射对两个热释元件几
乎具有相同的作用,使其产生的释电效应相互抵消,因此探测器无信号输出。
(4)一旦人侵入探测区域内,人体红外辐射通过部分镜面聚焦,并被热释电元件接收,但是两片热释电元接收到的热量不同,热释电也不同,不能抵消,经信号处理后即可报警。
(5)根据性能要求不同,菲尼尔滤光片具有不同的焦距(感应距离),从而产生不同的监控视场,视场越多,控制越严密。