数学分析与高等代数考研真题详解--浙江大学卷
109、浙江大学2019年高等代数考研试题
Xn
Xn
jri
2
j
D
jaij
2
j
;
i D1
i;j D1
其中 ri 为 A 的特征值.
考试科目:高等代数
微信公众号:Xionger 的数学小屋
第1页 共1页
8. n 维实线性空间 V , 对于线性变换 T , 有 kerT n 2 ¤ kerT n 1, 证明: T 至多有 2 个不同 的特征值.
9. 复数域上 An n 的特征值全为 1, 证明: As A.s 1/.
10. 如果 AA D A A, A 为 A 的共轭转置, 证明: A 为正规矩阵等价于
1. 设 n n 矩阵 A D .aij / 满足: aii D i.1 Ä i Ä n/; aj;j C1 D j.1 Ä j Ä n 1/; ak;k 1 D
1.2 Ä k Ä n/, 其余元素均为 0, 求 jAj.
2. 设 B 为 m
n
Hale Waihona Puke 矩阵,且Null.B /
D
fX jBX
D 0; X
2
Rng ; Range.B/
(2) 若
jaii j Ä Xn ˇˇaij ˇˇ;
j D1,i ¤j
则 A 可逆.
4. a1; a2; ; an 为不相同的整数, a1a2 an C 1 不是某个整数的平方, 证明:
f .x/ D .x C a1/ .x C an/ C 1
不能表示成 Q 上两个次数 1 的多项式的乘积.
5. 设 A D .aij / 为 n
浙江大学
2019 年招收攻读硕士学位研究生入学统一考试试题 科目名称:高等代数
微信公众号:Xionger 的数学小屋 提供者: 翟汉硕, 董欢
浙江大学2019年高等代数试题及解答
n
x ∈ C : |x − aii| ⩽
|aij |
j=1,j̸=i
(1) 若 r 为 A 的特征值, 则 r ∈ D1 ∪ D2>
n j=1,j̸=i
|aij
|
,
∀1 ⩽ i ⩽ n,
则
A
可逆.
4. (15 分) 设 a1, a2, · · · , an 为互不相同整数, a1a2 · · · an + 1 不是某个整数的平方, 证明:
10. 必要性. A 是正规矩阵, 则用数学归纳法可证明 A 能酉相似对角化, 即存在酉矩阵 U, 使得 U ∗AU = diag{λ1, . . . , λn}, 于是 U ∗AA∗U = diag{|λ1|2, . . . , |λn|2}, 两边矩阵的迹相等可得想证 明的等式.
充分性. 用数学归纳法可证明存在酉矩阵 U, 使得
微信公众号
浙江大学 2019 年高等代数试题参考解答
小花爱数学
浙江大学 2019 年高等代数考研试题
1. (15 分) 设 n × n 矩阵 A = (aij) 满足:
aii = i
aj,j+1 = −j
其余元素均为 0, 求 |A|.
ak,k−1 = −1
(1 ⩽ i ⩽ n) (1 ⩽ j ⩽ n − 1)
3. (1) det(rE − A) = 0, 从而存在 x = (x1, x2, . . . , xn)T ∈ Cn\{0}, 使得 (rE − A)x = 0. 假设 |xk| = max1⩽i⩽n |xi|, 则由
n
(r − akk)xk −
akj xj = 0
j=1,j̸=k
移项后取绝对值并用绝对值不等式可得:
浙江大学1999年研究生高等代数试题
浙江大学1999年研究生高等代数试题一.n a a a ,,,21 是n 个不相同的整数,证明1)())(()(21+---=n a x a x a x x f 在有理数域上可约的充分必要条件是)(x f 可表示为一个整数多项式的平方二.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α,且0=ααT,求(1)T n E αα- (2)1)(--T n E αα(其中n E 为n 阶单位阵,的转置为ααT)三.矩阵n m A ⨯是行满秩)(m A =即秩,证明(1)存在可逆阵Q ,使得Q E A m )0,(= (2) 存在矩阵m n B ⨯,使得m E AB =四.设n 阶方阵A 满足A A =2,n ααα,,,21 是nP 中n 个线形无关的列向量,设2V 是由n A A A ααα,,,21 生成的子空间,1V 是0=AX 的解空间,证明:21V V P n ⊕=(21V V ⊕表示1V 与2V 的直和)五.设B A ,都是n 阶实对称矩阵,且B 正定,则存在⎪⎪⎪⎭⎫ ⎝⎛=n D S λλ 1及,使得T T SS B SDS A ==,六.设n 阶矩阵)(ij a A =,满足下列条件:)0≤ij a ≤1,j i ,∀求证:(1)A 的每一个特征值λ,都有1≤λ(2)10=λ为A 的一个特征⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛=ℜ是实数i n nx x x |1 ,阶正定阵是n A ,⎪⎪⎪⎭⎫ ⎝⎛=n x x 1α,n n y y ℜ∈⎪⎪⎪⎭⎫ ⎝⎛= 1β,求证:(1)))(()(2ββααβαA A A TTT≤等号成立当且仅当βα与线形相关时成立 (2)若是正定矩阵,则A ))(()(2ββααβαA A A TTT≤也成立八(1)设B A ,分别为复数矩阵域上的阶方阵阶和l k ,并且B A ,没有公共的特征值,求证XB AX =只有空解(这里k k ij x X ⨯=)()(2)在nn ⨯ℜ中,变换n n A XA AX X ⨯ℜ∈+A ,: ,A 为一个固定的矩阵,且A 的特征值不为(-A )的特征值,求证:A 为一个线形变换。
2009--浙大数学分析考研_及答案
1
x2 2
1.4、 ( x y ) sgn( x y )dxdy ,其中 D [0,1] [0,1] 。
D
解答: 原式= =
dx
0 1 0
1
x
0 x
( x y )dy dy ( x y )dx
0 0
1
y
dx
0
( x y )dy dx ( x y )dy
0
2
总结而有
t e tx f ( x)dx C
0
t e tx [ f ( x) C ]dx
0
t e tx [ f ( x) C ]dx t e tx [ f ( x) C ]dx
0 A
A
所以
2
2
。
t 0
lim t e tx f ( x)dx C
tx而写下txtx上可积而有界设为m于是对上述任意的tx总结而有txdx上不一致连续
浙江大学 2009 年数学分析考研试卷答案
1、计算: 1.1、 解答:
cos 2 x sin 2 x dx a 2 cos 2 x b 2 sin 2 x tan 2 x dx 2 a b 2 tan 2 x
b a
dx dx ) n ( )n n n ( f ( x)) (1 )
1
1
1
由 的任意性知
n
(2 ) n 1 1 , 当n . 1
lim(
b
a
dx )n 1 n ( f ( x))
x
考研数学-浙江大学99-06年研究生高等代数试题
2000年攻读硕士学位研究生入学考试试题解答 一、()f x 是数域P 上的不可约多项式(1)()[]g x P x ∈,且与()f x 有一公共复根,证明:()|()f x g x 。
(2)若c 及1c 都是()f x 的根,b 是()f x 的任一根,证明:1b 也是()f x 的根。
Proof :(1)()f x 是数域P 上的不可约多项式,故对于P 上任一多项式()g x 只有以下两种情形:01()|()f x g x , 02 ((),())1f x g x =下证不可能是情形二。
(反证法)若不然为情形二,就是((),())1f x g x =则(),()[].()()()()1(*)u x v x P x s t u x f x v x g x ∃∈+=由已知条件,f 与g 有一公共复根(设为α),则()()0f g αα==,将α代入(*)中得到10=的矛盾,故假设不正确,得证!(2)设b 是()f x 的任一根,下证1()0f b =。
证明见《高等代数题解精粹》钱吉林编20P第42题.二、计算行列式210...000121...000........000 (012)n D =Solution:我们已经知道:1111,1(1),1n n n n αβαβαβαβαβαβαβαβαββαβαβ+++++⎧-≠⎪=+-⎨⎪+=⎩+在此结论中令1αβ==,知1n D n =+三、(1)A 是正定矩阵,C 是实对称矩阵,证明:∃可逆矩阵P .s t ,P AP P CP ''同时为对角形Proof: (1)A 正定,∴ ∃可逆矩阵T 使得T AT E '=,此时T CT '还是对称的,∴∃ 正交矩阵M 使得M T CTM ''为对角形,令P TM =,此时P AP E '=P CP '是对角形,得证!(2)由(1)知P ∃非异s.t 12n P AP E P ABP λλλ'=⎧⎪⎛⎫⎪⎨ ⎪'=⎪⎪ ⎪⎪⎝⎭⎩所以112n P BP λλλ-⎛⎫⎪= ⎪ ⎪⎝⎭,故AB 正定⇔0,1,2,,i i nλ>=得证!!四、设n 维线性空间V 的线性变换A 有n 个互异的特征值,线性变换B A 与可交换的充分必要条件是B 是121,,,,n E A A A -的线性组合,其中E 为恒等变换。
浙江大学高等代数试题解答
1。
解:由题意可知1123212233131231,1,1δλλλδλλλλλλδλλλ=++=-=++=== 从而知()()()2123121231g g g λλλδδδ++=-++=()()()()()()2212233121312312122324231g g g g g g λλλλλλδδδδδδδδδδ++=-+-+-+++=-()()()22123311223313212213g g g λλλδδδδδδδδδδδ=++++--++=-故()323p x x x x =--+2。
证明:由分析知()()21112221n n n n f x nx nx nx x ---'=+=+。
如果()f x 有重数大于2的非零根,在()f x '有重数大于1的非零根,根据()f x '的表达式可知()f x '没有非零重根,从而()f x 没有重数大于2的非零根 3。
解:由于()111n nk jk k k j nD x xx =≤<≤=-∏∏,又可知()()12111111121111*********112111111n ni i i i i n n n n k j k i i i i i k k j nn n i i i i i n nnnn nnn nx x x x yx x x x y y x x x x x x x y x x x x y x x x x y -------=≤<≤-+++++--=--∏∏ 从而知()()()()1111111nn i n i i i i ijk k j nD yxx y δ+-----≤<≤-=--∏即()1ni ijk k j nD xx δ≤<≤=-∏,从而知()111nnn i i j k i i k j n D x x δ==≤<≤⎛⎫⎛⎫=- ⎪ ⎪⎝⎭⎝⎭∑∑∏ 4。
解;由于11TT A E XYY X α=+=+=+从而()1当1α≠时,A 可逆()2由于当1α=时()()()111n T TE E XY E XY λλλλ--+=--=-,从而A 的特征多项式为()11n λλ--故()1rank A n =-,又()()()1TTrank A E rank X Y rank YX-===从而()()rank A rank A E n =-=,从而2A A =,故A 的最小多项式()m λ能整除()1λλ-,从而()m λ无重根,从而A 可对角化5。
最新浙江大学数学分析试题及解答汇总
2005年浙江大学数学分析试题及解答浙江大学2005年数学分析解答一 (10分)计算定积分20sin x e xdx π⎰解:2sin xe xdx π⎰=()011cos 22x e x dx π⎡⎤-⎢⎥⎣⎦⎰ ()01x e dx e ππ=-⎰ 由分部积分法0cos 2xe xdx π=⎰()1e π-+20sin 2x e xdx π=⎰()1e π-04cos 2x e xdx π-⎰所以0cos 2x e xdx π=⎰()115e π-,所以20sin x e xdx π⎰=()215e π- 解毕 二 (10分)设()f x 在[0,1]上Riemann可积,且1()2f x dx =⎰,计算 11lim 4ln[1()]nn i if n n →∞=+∑解:因为()f x 在[0,1]上Riemann 可积,所以0,()M f x M ∃>≤,所以1()0if n n→ 因为0ln(1)lim 1x x x →+=,所以114ln[1()]n i i f n n =+∑与114()ni i f n n =∑等价且极限值相等由Riemann 积分的定义:11lim 4ln[1()]nn i if n n →∞=+∑=410()f x dx =⎰解毕三 (15分)设,,a b c 为实数,且1,0b c >-≠试确定,,a b c 的值,使得30sin limln(1)x x b ax xc t dtt →-=+⎰解:若0b ≠,显然30sin lim0ln(1)x x b ax xt dtt →-=+⎰,这与0c ≠矛盾,所以0b =计算300sin limln(1)x x ax xt dtt →-+⎰,利用洛必达法则:33000sin cos lim lim ln(1)ln(1)x x x ax x a xt x dt t x→→--=++⎰,易有30ln(1)lim0x x x→+=,若1a ≠, 33000sin cos limlim ln(1)ln(1)x x x ax x a x t x dt t x →→--==∞++⎰,矛盾,所以1a =.计算301cos lim ln(1)x xx x→-+,继续利用洛必达法则:33001cos cos limlim ln(1)ln(1)x x x x x x x x x →→--=++24003321cos sin 2sin cos lim lim 3631(1)x x x x x x x x x x x x x →→-++==-++332243343cos sin 1lim(612)(1)6(63)(1)2(1)x x x x c x x x x x x x →-===-+--++ 解毕 四 (15分)设()f x 在[,]a b 上连续,且对每一个[],x a b ∈,存在[],y a b ∈,使得1()()2f y f x ≤,证明:在存在[,],a b ξ∈使得()0f ξ=证明:反证法,由于()f x 在[,]a b 上连续,由闭区间上连续函数的性质,不妨假设0()m f x M <<<对于任选的一点1x ,存在2,x 使得211()()2f x f x ≤, 存在3,x 使得321211()()()22f x f x f x ≤≤所以1111[,],()()0,()22n n n n Mx a b f x f x n --∈≤≤→→∞即lim ()0n n f x →∞=,但对所有的x, 0()m f x M <<<,矛盾.所以[,]a b 存在零点 证毕五 (20分)(1)设()f x 在[,)a +∞上连续,且()af x dx +∞⎰收敛。
2019年浙江大学数学分析试题及解答word资料5页
浙江大学2019年数学分析解答一 (10分)计算定积分20sin x e xdx π⎰解:2sin xe xdx π⎰=()011cos 22xe x dx π⎡⎤-⎢⎥⎣⎦⎰()01x e d x e ππ=-⎰由分部积分法cos 2xe xdx π=⎰()1e π-+20sin 2xe xdx π=⎰()1e π-04cos 2x e xdx π-⎰所以cos 2x e xdx π=⎰()115e π-,所以20sin x e xdx π⎰=()215e π- 解毕 二 (10分)设()f x 在[0,1]上Riemann可积,且1()2f x dx =⎰,计算 11lim 4ln[1()]nn i if n n →∞=+∑解:因为()f x 在[0,1]上Riemann 可积,所以0,()M f x M ∃>≤,所以1()0if n n→ 因为0ln(1)lim 1x x x →+=,所以114ln[1()]n i i f n n =+∑与114()ni i f n n =∑等价且极限值相等由Riemann 积分的定义:11lim 4ln[1()]nn i if n n →∞=+∑=410()f x dx =⎰ 解毕三 (15分)设,,a b c 为实数,且1,0b c >-≠试确定,,a b c 的值,使得30sin limln(1)x x b ax xc t dtt →-=+⎰解:若0b ≠,显然30sin lim0ln(1)x x b ax xt dtt →-=+⎰,这与0c ≠矛盾,所以0b =计算300sin limln(1)x x ax xt dtt →-+⎰,利用洛必达法则:33000sin cos lim lim ln(1)ln(1)x x x ax x a xt x dt t x→→--=++⎰,易有30ln(1)lim0x x x→+=,若1a ≠, 33000sin cos limlim ln(1)ln(1)x x x ax x a x t x dt t x →→--==∞++⎰,矛盾,所以1a =.计算301cos lim ln(1)x x x x→-+,继续利用洛必达法则:3322430343cos sin 1lim(612)(1)6(63)(1)2(1)x x x x c x x x x x x x →-===-+--++ 解毕四 (15分)设()f x 在[,]a b 上连续,且对每一个[],x a b ∈,存在[],y a b ∈,使得1()()2f y f x ≤,证明: 在存在[,],a b ξ∈使得()0f ξ=证明:反证法,由于()f x 在[,]a b 上连续,由闭区间上连续函数的性质,不妨假设0()m f x M <<<对于任选的一点1x ,存在2,x 使得211()()2f x f x ≤, 存在3,x 使得321211()()()22f x f x f x ≤≤所以1111[,],()()0,()22n n n n Mx a b f x f x n --∈≤≤→→∞即lim ()0n n f x →∞=,但对所有的x, 0()m f x M <<<,矛盾.所以[,]a b 存在零点 证毕五 (20分)(1)设()f x 在[,)a +∞上连续,且()af x dx +∞⎰收敛。
浙江大学1数学分析考研试题解答
浙江大学 数学分析考研试题解答一、(1)证明 l i m c o s c o s c o s 222n n tt t →∞⋅⋅⋅ (cos cos cos )sin 2222limsin 2n nn nt t t t t→∞⋅⋅⋅= sin lim2sin2n n nt t →∞=sin sin limsin 22n n nt tt tt t-→∞-==; (2)利用1cos42π=,及111cos cos 2222n n ππ+=+, 2312lim coscoscos222n n ππππ+→∞=⋅⋅⋅,即得2111111111222222222π=+++。
二、解 101()()()xg x f xt dt f u du x==⎰⎰,(0x ≠);显然10(0)(0)0g f dt ==⎰ 102000()1lim ()lim xx x f u du f xt dt x x →→=⎰⎰ 00()1()(0)15limlim (0)22022x x f x f x f f x x →→-'====- 。
三、解 令sin .n a nx =,111(1),2n b n n=+++ 由于1n n b b +-=111111(1)(1)2121n n n n +++-+++++1111111(1)(1)(1)12121n n n n n =++++-++++++1111111(1)(1)012(1)121n n n n n n >++++-+++>++++, 所以{}n b 单调递减. 又因为1lim0,n n →∞=所以111lim lim (1)0.2n n n b n n→∞→∞=+++= 而 1121|||sin |,|sin |nnk xk k a kx ===≤∑∑ (2)x k π≠ 即 1k k a ∞=∑的部分和有界,于是,由Dirichlet 判别法可知级数收敛; 当 2x k π=时,显然级数收敛。
浙江大学99-06年研究生数学分析试题
浙江大学1999年研究生数学分析试题一.求极限)(ln )1(∞→-n nn n Limn 二.在xy 平面上求一点,使它到三条直线0,0==y x 及0162=-+y x 的距离平方和最小三.计算二重积分⎰⎰Dxydxdy ,其中D 由曲线 y x y x +=+22 所围城的区域四.设)(x f 在>x 时连续,3)1(=f ,并且⎰⎰⎰+=x yxydt t f y dt t f x dt t f 111)()()(,)0,0(>>y x ,试求函数)(x f五.设函数),()(b a t f 在连续,若有数列)),(,(,b a y x a y a x n n n n ∈→→使)()()()(∞→=∞→=n B y Limf n A x Limf n n 及,则对A,B 之间的任意数μ,可找到数列a x n →,使得μ=)(n z Limf六.设∑===<≤nk k n k a s n k a a 1,....,2,1,0令,证明不等式n nnk kk s n ns a a -≥-∑=11 七.设函数f 在nab v a f f f b a n n vn -=+=>δδ),(,0],[记上连续,且,试证明:)}()(ln 1exp{∞→-=⎰n dx x f a b ba并利用上述等式证明下式r dx r x r ln 2)cos 21ln(21202=+-⎰ππ )1(>r 八.从调和级数 +++++n131211中去掉所有在分母的十进表示中含数码9的项,证明由此所得余下的级数必定是收敛的浙江大学2000年研究生数学分析试题一.(共10分)(1)求极限10(1)limxx e x x →-+(2)设2101,,,2,3,,lim 2n n n nn x x x a x b x n x --→∞-====求二.(共10分)1.设Kab a f b f K f b a =--=+-→→)()(lim ,)0(00试证明‘2.设()f x 在[,]a b 上连续,()f x ''在(,)a b 内存在,试证明存在(,)a b ξ∈,使得)(4)()2(2)()(2ξf a b b a f a f b f ''-=+-+三.(共15分)1.求数项级数∑∞=12n nn的和S2.试证明∑∞==11)(n xn x s 在),1(∞上的连续函数 四.(共15分)1.设方程组⎩⎨⎧=+=+++0sin sin 0v y u x v u y x ,确定了可微函数⎩⎨⎧==),(),(y x v v y x u u ,试求y vx v du ∂∂∂∂,, 2.设2)()d yx y F y x x =,求)1(F '五.(共30分)1.计算定积分2sin cos 1cos x xI dx x π=+⎰2.求以曲面22y x e z --=为顶,以平面0=z 为底,以柱面122=+y x 为侧面的曲顶柱体的体积V 3.设∑+表示半球面)1(12222≤+--=y x y x z 的上侧,求第二类曲面积分⎰⎰∑++-++=+dxdy y z x dzdx z y x dydz z y x J 222)2()2()(六.(共20分)1.将函数x x f =)( )(ππ≤≤-x 展开成Fourier 级数2.求级数∑∞=121n n 的和 3.计算广义积分⎰-10)1ln(dx xx浙江大学2000年研究生数学分析试题一.(共10分)(1)求极限10(1)limxx e x x →-+解:原式=12(1)ln(1)2(1)lim(1)xx x xe x x x x ++-+→+=(2)设2101,,,2,3,,lim 2n n n nn x x x a x b x n x --→∞-====求解:)(21211-----=-n n n n x x x x ,这可以构造成为一个压缩映象,则数列收敛,以下求解就按照}{1--n n x x 这个数列来进行即可。
904数学分析与高等代数
浙江师范大学硕士研究生入学考试初试科目考试大纲科目代码、名称: 904数学分析与高等代数适用专业: 420104学科教学(数学)一、考试形式与试卷结构(一)试卷满分及考试时间本试卷满分为150分,考试时间为180分钟。
(二)答题方式答题方式为闭卷、笔试。
试卷由试题和答题纸组成;答案必须写在答题纸相应的位置上;答题纸一般由考点提供。
(三)试卷内容结构各部分内容所占分值为:数学分析约100分高等代数约50分(四)试卷题型结构计算题:7大题,约100分。
分析论述题:3大题,约50分。
二、考查目标(复习要求)全日制攻读教育硕士专业学位入学考试数学分析与高等代数考试内容包括数学分析、高等代数二门数学学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,理解数学分析和高等代数中反映出的数学思想与方法,并能运用相关理论和方法分析、解决具有一定实际背景的数学问题。
三、考查范围或考试内容概要第一部分:数学分析考查内容1、数列极限数列极限概念、收敛数列的定理、数列极限存在的条件2、函数极限函数极限概念、函数极限的定理、两个重要极限、无穷大量与无穷小量3、函数的连续性连续性概念、连续函数的性质4、导数与微分导数的概念、求导法则、微分、高阶导数与高阶微分5、中值定理与导数应用微分学基本定理、函数的单调性与极值6、不定积分不定积分概念与基本积分公式、换元法积分法与分部积分法7、定积分定积分概念、可积条件、定积分的性质、定积分的计算8、定积分的应用平面图形的面积、旋转体的侧面积9、级数正项级数、函数项级数、幂级数、傅里叶级数10、多元函数微分学偏导数与全微分、复合函数微分法、高阶偏导数与高阶全微分、泰勒公式与极值问题第二部分:高等代数考查内容多项式、行列式、线性方向组、矩阵、线性空间、线性变换参考教材或主要参考书:华东师范大学编:《数学分析》(上、下),高等教育出版社,2001年,第三版。
北京大学编:《高等代数》,高等教育出版社,2003年,第三版。
精编浙江大学99-06年研究生高等代数试题资料
浙江大学1999年研究生高等代数试题一.n a a a ,,,21 是n 个不相同的整数,证明1)())(()(21+---=n a x a x a x x f 在有理数域上可约的充分必要条件是)(x f 可表示为一个整数多项式的平方二.设⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n a a a 21α,且0=ααT,求(1)T n E αα- (2)1)(--T n E αα(其中n E 为n 阶单位阵,的转置为ααT) 三.矩阵n m A ⨯是行满秩)(m A =即秩,证明: (1)存在可逆阵Q ,使得Q E A m )0,(= (2) 存在矩阵mn B ⨯,使得mE AB =四.设n 阶方阵A 满足A A =2,n ααα,,,21 是n P 中n 个线形无关的列向量,设2V 是由n A A A ααα,,,21 生成的子空间,1V 是0=AX 的解空间,证明:21V V P n⊕=(21V V ⊕表示1V 与2V 的直和)五.设B A ,都是n 阶实对称矩阵,且B 正定,则存在⎪⎪⎪⎭⎫ ⎝⎛=n D S λλ 1及,使得T T SS B SDS A ==, 六.设n 阶矩阵)(ij a A =,满足下列条件:(1)0≤ij a ≤1,j i ,∀ (2)121=+++in i i a a a (i=1,2, ,n)求证:(1)A的每一个特征值λ,都有1≤λ(2)10=λ为A 的一个特征⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧⎪⎪⎪⎭⎫ ⎝⎛=ℜ是实数i n nx x x |1 ,阶正定阵是n A ,⎪⎪⎪⎭⎫ ⎝⎛=n x x 1α,n n y y ℜ∈⎪⎪⎪⎭⎫⎝⎛= 1β,求证:(1)))(()(2ββααβαA A A T T T ≤等号成立当且仅当βα与线形相关时成立(2)若是正定矩阵,则A ))(()(2ββααβαA A A TTT≤也成立八(1)设B A ,分别为复数矩阵域上的阶方阵阶和l k ,并且B A ,没有公共的特征值,求证XB AX =只有空解(这里k k ij x X ⨯=)()(2)在nn ⨯ℜ中,变换nn A XA AX X ⨯ℜ∈+A ,: ,A 为一个固定的矩阵,且A 的特征值不为(-A )的特征值,求证:A 为一个线形变换。
《浙江大学高等代数2007-2019年考研真题及答案解析》
目录Ⅰ历年考研真题试卷 (2)浙江大学2007年招收攻读硕士学位研究生入学考试试题 (2)浙江大学2008年招收攻读硕士学位研究生入学考试试题 (5)浙江大学2009年招收攻读硕士学位研究生入学考试试题 (7)浙江大学2010年招收攻读硕士学位研究生入学考试试题 (9)浙江大学2011年招收攻读硕士学位研究生入学考试试题 (11)浙江大学2012年招收攻读硕士学位研究生入学考试试题 (13)浙江大学2014年招收攻读硕士学位研究生入学考试试题 (15)浙江大学2015年招收攻读硕士学位研究生入学考试试题 (16)浙江大学2016年招收攻读硕士学位研究生入学考试试题 (17)浙江大学2017年招收攻读硕士学位研究生入学考试试题 (18)浙江大学2018年招收攻读硕士学位研究生入学考试试题 (19)浙江大学2019年招收攻读硕士学位研究生入学考试试题 (21)Ⅱ历年考研真题试卷答案解析 (23)浙江大学2007年招收攻读硕士学位研究生入学考试试题答案解析 (23)浙江大学2008年招收攻读硕士学位研究生入学考试试题答案解析 (31)浙江大学2009年招收攻读硕士学位研究生入学考试试题答案解析 (39)浙江大学2010年招收攻读硕士学位研究生入学考试试题答案解析 (46)浙江大学2011年招收攻读硕士学位研究生入学考试试题答案解析 (52)浙江大学2012年招收攻读硕士学位研究生入学考试试题答案解析 (57)浙江大学2014年招收攻读硕士学位研究生入学考试试题答案解析 (64)浙江大学2016年招收攻读硕士学位研究生入学考试试题答案解析 (70)Ⅰ历年考研真题试卷浙江大学2007年招收攻读硕士学位研究生入学考试试题考试科目:高等代数编号:601注意:答案必须写在答题纸上,写在试卷或草稿纸上均无效。
一、(17分)设整系数的线性方程组为),..2,1(,1n i b x ai j nj ij==∑=,证明该方程组对任意整数n b b b ,..,,21都有整数解的充分必要条件是该方程组的系数行列式等于1±。
浙江大学2003年数学分析考研试题解答
2
(1 − cos 2 x ) dx = π 4sin 4 x dx ∫0 ( 2 − cos 2 x )3 ∫0 1 + 2sin 2 x 3 ( )
π
2
= 2∫
π
2 0
4sin 4 x
( 3sin
2
x + cos x )
2
3
dx
= 8∫ 2
0
π
dx sin 2 x ( 3 + cot 2 x )
( x 2 − 1)m
( m)
dx
1 m − ∫ ( x 2 − 1) −1 −1
(m)
( x 2 − 1)m
( m +1)
( m −1) 1
( m +1)
( x 2 − 1)m
( m −1)
dx
1 m 2 = −∫ x − 1 ( ) −1
(2)
、解:做坐标变换
y2 x
u = xy , v =
,
y x ∂ ( u, v ) ∂ ( x, y ) 1 = y 2 2 y = 3v , = , ∂ ( x, y ) − 2 ∂ ( u , v ) 3v x x
∫∫ y
D
3 xdxdy 2 + xy 3
3
=∫ =∫
1
∫
3
1
3 1 ⋅ dudv v + uv 3v
n m n n
x →+∞
可知 F ( x ) 在 [ a, +∞ ) 上一致连续, 又 f ( x ) 在 [ a, +∞ ) 上一致连续, 所以ϕ ( x ) = f ( x ) − F ( x ) 在 [ a, +∞ ) 上一致连续. 3. 证明:因为当 x > a 时, f ′′ ( x ) ≤ 0 , 所以 f ′ ( x ) 在 [ a, +∞ ) 上单调递减, 当 x > a 时, f ′ ( x ) ≤ f ′ ( a ) < 0 , 从而 f ( x ) 在 [ a, +∞ ) 上严格单调递减, 又 f ( x ) = f ( a ) + f ′ ( a )( x − a ) + 1 f ′′ (ξ )( x − a )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∴(αT Aβ )2 = (α TCTCβ )2 = (Cα ,Cβ )2 ≤ (Cα ,Cα )(Cβ ,Cβ ) = (αTCTCα )(β TCTCβ ) = (α T Aα )(β T Aβ )
由于上述不等式,等号成立时候当且仅当,存在数 k1, k2 ,使
k1Cα + k2Cβ = 0 ,即 k1α + k2β = 0 ,即α , β 线性相关
2
浙江大学
1999 年招收硕士研究生入学考试《高等代数》试题及解答
3
1999 年招收硕士研究生入学考试《高等代数》试题解答
一:证明:充分性:若 f ( x) 能表示成一个整数多项式的平方,显然 f ( x) 在有理数域上可
约
必要性:由于 f ( x) 在有理数域上可约,在存在整数系数多项式 g ( x), h ( x) 有
所以 Α 是一个线性变换,
由于 A 和 − A 无公共特征根,即根据 (1) 的结论就有
AX = X (− A) 只有零解,即 AX + XA = 0 只有零解,从而 Α 可逆,即
八:证明:(1) 设 A 的特征多项式为 f (λ ) , B 的特征多项式为 g (λ ) ,由于 A, B 无公共特
( 征值,从而 f (λ ), g (λ )) = 1,所以 f ( B) 可逆,由于 AX = XB ,故对于 ∀n ∈ ∗ ,均有
An X = XBn ,就有 f ( A) X = Xf ( B) ,所以 Xf ( B) = 0 ⇒ X = 0 ,
⎡⎣En − αα T ⎤⎦−1 = ⎡⎣En + αα T ⎤⎦
三:证明: (1) 由于存在 m 阶可逆矩阵 P1 和 n 阶可逆矩阵 P2 ,有 A = P1 [Em 0] P2 ,即
A = [P1
0] P2 = [Em
0]
⎡ ⎢ ⎣
P1 0
0 En−m
⎤ ⎥ ⎦
P2
,令
Q
=
⎡ P1
⎢ ⎣
0
0⎤
( ) A( x − Ax) = A − A2 x = 0 ,从而可知 x − Ax ∈V1
即 x ∈V1 + V2 ,即 Pn ⊆ V1 + V2 ,任取 x ∈V1 ∩V2 ,所以 Ax = 0 ,
n
∑ 且存在 k1, , kn ,有 x = ki Aαi ,又 A2 = A ,从而可知 i =1
F ( x) = 0 的根,从而 F ( x) 为零多项式,即 g ( x) = h( x) ,即
f ( x) = g2 ( x) ,就有
f ( x) 能表示成一个整数多项式的平方
二:解;
(1) En − αα T = 1− α Tα = 1
(2) 由于 ⎡⎣En − αα T ⎤⎦ ⎡⎣En + αα T ⎤⎦ = En − αα T + αα T − αα Tαα T = En ,从而
f ( x) = g ( x) h( x) , ∂ ( g ( x)) > 0,∂ (h( x)) > 0 ,由于 ∀1≤ i ≤ n ,
f (ai ) = 1,即 g (ai ) h(ai ) = 1 ,则 g (ai ) − h(ai ) = 0
令 F ( x) = g ( x) − h( x) ,则 ∂ ( F ( x)) < n, 或 F ( x) = 0 ,由于有 n 个不同的数为
全国重点名校数学专业考研真题及解答
数学分析与高等代数 考研真题详解
浙江大学数学专卷
2
数学分析与高等代数考研真题详解 浙江大学考研数学专卷 目录
1999 年招收硕士研究生入学考试《高等代数》试题及解答 2002 年招收硕士研究生入学考试《数学分析》试题及解答 2003 年招收硕士研究生入学考试《数学分析》试题及解答 2005 年招收硕士研究生入学考试《数学分析》试题及解答 2005 年招收硕士研究生入学考试《高等代数》试题及解答 2007 年招收硕士研究生入学考试《数学分析》试题及解答 2007 年招收硕士研究生入学考试《高等代数》试题及解答 2008 年招收硕士研究生入学考试《高等代数》试题及解答 2009 年招收硕士研究生复试试题常微分,复变,实变部分 2010 年招收硕士研究生入学考试《数学分析》试题 2010 年招收硕士研究生入学考试《数学分析》试题解答
即 AX = XB 只有零解;
(2) ∀x, y ∈ n×n , k ∈ ,由
Α( x + y) = A( x + y) + ( x + y) A = Ax + xA + Ay + yA = Αx + Αy
A(kx) = A(kx) + (kx) A = kAx + kxA = k ( Ax + xA) = kΑx
n
n
∑ ∑ Ax = ki A2αi = ki Aαi = x ,从而 x = 0 ,即V1 ∩V2 = {0} ,所以
i =1
i =1
Pn = V1 ⊕ V2
五:证明:由于 B 正定,则存在可逆矩阵 C 有 CT BC = En ,又由于 A 对称,从而
CT AC 也对称,即存在正交矩阵 F ,使 FT CT ACF = diag {λ1, , λn} = D ,即
En−m
⎥ ⎦
P2
,显然
Q
可逆,则
A = [Em 0]Q
(
2)
令
B
=
Q−1
⎡ ⎢ ⎣
Байду номын сангаас
Em 0
⎤ ⎥ ⎦
,显然可知
AB
=
Em
4
n
∑ 四:证明: ∀x ∈ Pn ,不妨设 x = aiαi ,又 x = x − Ax + Ax ,则 i =1
n
∑ Ax = ai Aαi ,从而 Ax ∈V2 ,又 i =1
( ) (CF )T BCF = D, (CF )T ACF = En ,若取 S = F −1C−1 T ,则有
B = SST , A = SDST
六:证明: (1) 若 A的一个特征值 λ0 ,有 λ0 > 1,则此时
λ0En − A 为严格对角占优矩阵,即 λ0En − A 可逆,这与 λ0 为 A的特征值矛盾,从而, λ ≤1
(2) ,令 x = [1
1 1]T ,则
⎡n ⎤
∑∑ Ax
=
⎢ ⎢ ⎢ ⎢ ⎢ ⎢⎣
i =1 n i =1
a1i ani
⎥ ⎥ ⎥ ⎥ ⎥ ⎥⎦
=
⎡1⎤ ⎢⎥ ⎢⎥ ⎢⎣1⎥⎦
=
x
=
λ0
x
,从而
λ0
为
A的一个特征值
七:证明:由于 A正定,从而,存在可逆矩阵 C 有, A = CT C ,
5
博士家园系列内部资料