对排序算法的总结

合集下载

十大经典排序算法总结

十大经典排序算法总结

⼗⼤经典排序算法总结最近⼏天在研究算法,将⼏种排序算法整理了⼀下,便于对这些排序算法进⾏⽐较,若有错误的地⽅,还请⼤家指正0、排序算法说明0.1 排序术语稳定:如果a=b,且a原本排在b前⾯,排序之后a仍排在b的前⾯不稳定:如果a=b,且a原本排在b前⾯,排序之后排在b的后⾯时间复杂度:⼀个算法执⾏所耗费的时间空间复杂度:⼀个算法执⾏完所需内存的⼤⼩内排序:所有排序操作都在内存中完成外排序:由于数据太⼤,因此把数据放在磁盘中,⽽排序通过磁盘和内存的数据传输才能进⾏0.2算法时间复杂度、空间复杂度⽐较0.3名词解释n:数据规模k:桶的个数In-place:占⽤常数内存,不占⽤额外内存Out-place:占⽤额外内存0.4算法分类1.冒泡排序冒泡排序是⼀种简单的排序算法。

它重复地⾛访过要排序的数列,⼀次⽐较两个元素,如果它们的顺序错误就把它们交换过来。

⾛访数列的⼯作是重复地进⾏直到没有再需要交换,也就是说该数列已经排序完成。

这个算法的名字由来是因为越⼩的元素会经由交换慢慢“浮”到数列的顶端1.1算法描述⽐较相邻的元素,如果前⼀个⽐后⼀个打,就交换对每⼀对相邻元素做同样的⼯作,从开始第⼀对到结尾最后⼀对,这样在最后的元素应该会是最⼤的数针对所有的元素重复以上的步骤,除了最后⼀个重复步骤1-3,知道排序完成1.2动图演⽰1.3代码实现public static int[] bubbleSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++)for (int j = 0; j < array.length - 1 - i; j++)if (array[j + 1] < array[j]) {int temp = array[j + 1];array[j + 1] = array[j];array[j] = temp;}return array;}1.4算法分析最佳情况:T(n) = O(n) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)2.选择排序表现简单直观的最稳定的排序算法之⼀,因为⽆论什么数据都是O(n2)的时间复杂度,⾸先在未排序序列中找到最⼩(⼤)元素,与数组中第⼀个元素交换位置,作为排序序列的起始位置,然后再从剩余未排序元素中继续寻找最⼩(⼤)的元素,与数组中的下⼀个元素交换位置,也就是放在已排序序列的末尾2.1算法描述1.初始状态:⽆序区为R[1..n],有序区为空2.第i躺排序开始时,当前有序区和⽆序区R[1..i-1]、R[i..n]3.n-1趟结束,数组有序化2.2动图演⽰2.3代码实现public static int[] selectionSort(int[] array) {if (array.length == 0)return array;for (int i = 0; i < array.length; i++) {int minIndex = i;for (int j = i; j < array.length; j++) {if (array[j] < array[minIndex]) //找到最⼩的数minIndex = j; //将最⼩数的索引保存}int temp = array[minIndex];array[minIndex] = array[i];array[i] = temp;}return array;}2.4算法分析最佳情况:T(n) = O(n2) 最差情况:T(n) = O(n2) 平均情况:T(n) = O(n2)3、插⼊排序是⼀种简单直观的排序算法,通过构建有序序列,对于未排序序列,在已排序序列中从后向前扫描,找到相应位置并插⼊,需要反复把已排序元素逐步向后挪位,为最新元素腾出插⼊空间3.1算法描述1.从第⼀个元素开始,该元素可以认为已经被排序2.取出下⼀个元素(h),在已排序的元素序列中从后往前扫描3.如果当前元素⼤于h,将当前元素移到下⼀位置4.重复步骤3,直到找到已排序的元素⼩于等于h的位置5.将h插⼊到该位置6.重复步骤2-53.2动图演⽰3.3代码实现public static int[] insertionSort(int[] array) {if (array.length == 0)return array;int current;for (int i = 0; i < array.length - 1; i++) {current = array[i + 1];int preIndex = i;while (preIndex >= 0 && current < array[preIndex]) {array[preIndex + 1] = array[preIndex];preIndex--;}array[preIndex + 1] = current;}return array;}3.4算法分析最佳情况:T(n) = O(n) 最坏情况:T(n) = O(n2) 平均情况:T(n) = O(n2)4、希尔排序是简单插⼊排序经过改进之后的⼀个更⾼效的版本,也称为缩⼩增量排序,同时该算法是冲破O(n2)的第⼀批算法之⼀。

排序方法实践心得体会

排序方法实践心得体会

一、引言在计算机科学领域,排序算法是基础且重要的内容之一。

通过对一组数据进行排序,可以使得后续的查找、统计等操作更加高效。

在实际应用中,不同的排序算法有着各自的特点和适用场景。

本文将从实践角度出发,分享我在学习排序方法过程中的心得体会。

二、排序算法概述1. 冒泡排序冒泡排序是一种简单的排序算法,其基本思想是相邻元素两两比较,若逆序则交换,直到整个序列有序。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1)。

2. 选择排序选择排序的基本思想是每次从待排序的序列中选出最小(或最大)的元素,放到序列的起始位置,然后继续对剩余未排序的序列进行同样的操作。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1)。

3. 插入排序插入排序的基本思想是将一个记录插入到已经排好序的有序表中,从而得到一个新的、记录数增加1的有序表。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1)。

4. 快速排序快速排序是一种高效的排序算法,其基本思想是选取一个基准值,将序列划分为两个子序列,一个包含小于基准值的元素,另一个包含大于基准值的元素,然后递归地对这两个子序列进行快速排序。

快速排序的平均时间复杂度为O(nlogn),最坏情况时间复杂度为O(n^2),空间复杂度为O(logn)。

5. 归并排序归并排序是一种分治算法,其基本思想是将序列划分为两个子序列,分别对这两个子序列进行排序,然后将排序好的子序列合并成一个有序序列。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

6. 堆排序堆排序是一种基于堆的排序算法,其基本思想是将序列构造成一个大顶堆(或小顶堆),然后依次取出堆顶元素,并调整剩余元素,使新堆的堆顶元素仍为最大(或最小)。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

三、实践心得体会1. 理论与实践相结合在学习排序算法时,首先要掌握各种排序算法的基本思想和原理,然后通过编程实践来加深理解。

各种排序算法的总结和比较

各种排序算法的总结和比较

各种排序算法的总结和比较1 快速排序(QuickSort )快速排序是一个就地排序,分而治之,大规模递归的算法。

从本质上来说,它是归并排序的就地版本。

快速排序可以由下面四步组成。

(1 )如果不多于1 个数据,直接返回。

(2 )一般选择序列最左边的值作为支点数据。

(3 )将序列分成2 部分,一部分都大于支点数据,另外一部分都小于支点数据。

(4 )对两边利用递归排序数列。

快速排序比大部分排序算法都要快。

尽管我们可以在某些特殊的情况下写出比快速排序快的算法,但是就通常情况而言,没有比它更快的了。

快速排序是递归的,对于内存非常有限的机器来说,它不是一个好的选择。

2 归并排序(MergeSort )归并排序先分解要排序的序列,从1 分成2 ,2 分成4 ,依次分解,当分解到只有1 个一组的时候,就可以排序这些分组,然后依次合并回原来的序列中,这样就可以排序所有数据。

合并排序比堆排序稍微快一点,但是需要比堆排序多一倍的内存空间,因为它需要一个额外的数组。

3 堆排序( HeapSort )堆排序适合于数据量非常大的场合(百万数据)。

堆排序不需要大量的递归或者多维的暂存数组。

这对于数据量非常巨大的序列是合适的。

比如超过数百万条记录,因为快速排序,归并排序都使用递归来设计算法,在数据量非常大的时候,可能会发生堆栈溢出错误。

堆排序会将所有的数据建成一个堆,最大的数据在堆顶,然后将堆顶数据和序列的最后一个数据交换。

接下来再次重建堆,交换数据,依次下去,就可以排序所有的数据。

4 Shell 排序( ShellSort )Shell 排序通过将数据分成不同的组,先对每一组进行排序,然后再对所有的元素进行一次插入排序,以减少数据交换和移动的次数。

平均效率是O(nlogn) 。

其中分组的合理性会对算法产生重要的影响。

现在多用D.E.Knuth 的分组方法。

Shell 排序比冒泡排序快5 倍,比插入排序大致快2 倍。

Shell 排序比起QuickSort ,MergeSort ,HeapSort 慢很多。

数学排序知识点总结

数学排序知识点总结

数学排序知识点总结一、排序算法的概念及分类1.1 排序算法的概念排序算法是一种用来对一组数据进行排序的算法。

它使得数据按照一定的顺序排列,方便我们进行查找、统计、分析等操作。

在实际应用中,排序算法扮演着非常重要的角色,例如在数据库检索、数据压缩、图像处理等领域都有着广泛的应用。

1.2 排序算法的分类排序算法一般可以分为两大类,即比较排序和非比较排序。

比较排序是指通过比较待排序元素之间的大小关系来进行排序的算法,其时间复杂度一般为O(nlogn),包括常见的快速排序、归并排序、堆排序等;非比较排序则是通过其他辅助信息来确定元素的顺序,其时间复杂度通常较低,包括计数排序、桶排序、基数排序等。

二、常见的排序算法及其应用2.1 快速排序快速排序是一种常用的比较排序算法,其基本思想是通过一次划分将待排序数组分成两个部分,使得左边的元素均小于右边的元素,然后再对左右部分递归进行排序。

快速排序的时间复杂度为O(nlogn),空间复杂度为O(logn)。

快速排序可以在很多实际应用中发挥作用,例如在数据库查询、数据压缩、图像处理等领域都有着广泛的应用。

2.2 归并排序归并排序也是一种常用的比较排序算法,其基本思想是将待排序数组分成两个部分,分别进行递归排序,然后再将两个有序的子数组合并成一个有序的数组。

归并排序的时间复杂度为O(nlogn),空间复杂度为O(n)。

归并排序可以在很多实际应用中发挥作用,例如在文件排序、数据库排序等领域都有着广泛的应用。

2.3 堆排序堆排序是一种利用堆这种数据结构进行排序的算法,其基本思想是通过建立一个大顶堆或小顶堆,然后将堆顶元素与最后一个元素交换,并调整堆,再将堆顶元素与倒数第二个元素交换,以此类推,直到所有元素都有序。

堆排序的时间复杂度为O(nlogn),空间复杂度为O(1)。

堆排序在优先队列、事件排序等领域有着广泛的应用。

2.4 计数排序计数排序是一种非比较排序算法,其基本思想是通过对待排序数组进行统计,然后根据统计信息将元素放置到正确的位置上。

快速排序实验总结

快速排序实验总结

快速排序实验总结快速排序是一种常用的排序算法,其基本思想是通过分治的方法将待排序的序列分成两部分,其中一部分的所有元素均小于另一部分的元素,然后对这两部分分别进行递归排序,直到整个序列有序。

下面是我在实验中对于快速排序算法的一些总结和思考。

一、算法步骤快速排序的基本步骤如下:1.选择一个基准元素(pivot),将序列分成两部分,一部分的所有元素均小于基准元素,另一部分的所有元素均大于等于基准元素。

2.对于小于基准元素的部分和大于等于基准元素的部分,分别递归地进行快速排序,直到两部分都有序。

3.合并两部分,得到完整的排序序列。

二、算法优缺点优点:1.快速排序的平均时间复杂度为O(nlogn),在排序大数据集时表现优秀。

2.快速排序是一种原地排序算法,不需要额外的空间,因此空间复杂度为O(logn)。

3.快速排序具有较好的可读性和可维护性,易于实现和理解。

缺点:1.快速排序在最坏情况下的时间复杂度为O(n^2),此时需要选择一个不好的基准元素,例如重复元素较多的序列。

2.快速排序在处理重复元素较多的序列时,会出现不平衡的分割,导致性能下降。

3.快速排序在递归过程中需要保存大量的递归栈,可能导致栈溢出问题。

三、算法实现细节在实现快速排序时,以下是一些需要注意的细节:1.选择基准元素的方法:通常采用随机选择基准元素的方法,可以避免最坏情况的出现。

另外,也可以选择第一个元素、最后一个元素、中间元素等作为基准元素。

2.分割方法:可以采用多种方法进行分割,例如通过双指针法、快速选择算法等。

其中双指针法是一种常用的方法,通过两个指针分别从序列的两端开始扫描,交换元素直到两个指针相遇。

3.递归深度的控制:为了避免递归过深导致栈溢出问题,可以设置一个递归深度的阈值,当递归深度超过该阈值时,转而使用迭代的方式进行排序。

4.优化技巧:在实现快速排序时,可以使用一些优化技巧来提高性能。

例如使用三数取中法来选择基准元素,可以减少最坏情况的出现概率;在递归过程中使用尾递归优化技术,可以减少递归栈的使用等。

排序方法实践实验心得体会

排序方法实践实验心得体会

排序方法实践实验心得体会排序算法是计算机科学中最基础也是最常用的算法之一,它的作用是将一组数据按照一定的顺序进行排列。

在我进行排序方法实践实验的过程中,我选择了几种常见的排序算法进行了比较和分析,并对每种算法的时间复杂度、空间复杂度以及稳定性进行了评估。

通过这次实验,我深刻理解了每种排序算法的原理和应用场景,并总结出了一些具体的心得和体会。

首先,我选择了冒泡排序算法。

它的原理是通过比较相邻的两个元素,将较大的元素逐渐交换到数组的末尾,从而实现整个数组的排序。

冒泡排序的时间复杂度是O(n^2),空间复杂度是O(1),算法的稳定性很好。

通过实验,我发现冒泡排序的性能在数据量很小时可以接受,但当数据量变大时,其效率明显不如其他排序算法。

其次,我实践了插入排序算法。

插入排序的原理是将数组分为两个区域,已排序区和未排序区,然后逐个将未排序区的元素插入到已排序区的合适位置。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1),算法是稳定的。

在实验中,我发现插入排序在处理接近有序的数组时表现良好,但在处理逆序数组时效率较低。

接下来,我尝试了选择排序算法。

选择排序的原理是每次从未排序区中选择最小的元素,并与未排序区的第一个元素交换位置,从而逐渐将最小元素移到已排序区的末尾。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1),算法是不稳定的。

通过实验,我发现选择排序的效率较低,因为它每次只能确定一个元素的位置。

最后,我实践了快速排序算法。

快速排序的原理是选择一个基准元素,然后将数组分为两个子数组,左边的元素都小于基准,右边的元素都大于基准,再递归地对子数组进行排序。

快速排序的时间复杂度为O(nlogn),空间复杂度取决于递归深度,算法是不稳定的。

通过实验,我发现快速排序的效率非常高,尤其在处理大规模数据时表现出色。

通过这次排序方法实践实验,我深入了解了各种排序算法的原理和性能特点。

在实验中,我发现不同的排序算法适用于不同的数据情况,选择合适的排序算法可以提高排序的效率。

大学计算机科学算法知识点归纳总结

大学计算机科学算法知识点归纳总结

大学计算机科学算法知识点归纳总结计算机科学的一个重要分支就是算法,它是解决问题的具体步骤和方法的集合。

通过学习和掌握算法知识,我们可以更加高效地解决各种问题。

本文将对大学计算机科学中常见的算法知识点进行归纳总结。

一、排序算法排序算法是计算机科学中最基本也是最常用的算法之一。

它将一组元素按照特定的规则进行重新排列。

以下是几种常见的排序算法:1. 冒泡排序(Bubble Sort)冒泡排序通过相邻元素的比较和交换来实现排序,每一轮将最大的元素冒泡到末尾。

2. 插入排序(Insertion Sort)插入排序通过将元素逐个插入已经有序的部分来实现排序。

3. 快速排序(Quick Sort)快速排序是一种基于分治法的排序算法,通过选择一个基准元素和其它元素进行比较和交换来实现排序。

4. 归并排序(Merge Sort)归并排序是一种基于分治法的排序算法,将待排序序列分为若干个子序列,分别进行排序后再合并。

二、查找算法查找算法是在给定的数据集合中找到指定元素的算法。

以下是几种常见的查找算法:1. 顺序查找(Sequential Search)顺序查找是一种逐个比较的查找算法,从列表的开头依次比较每个元素,直到找到目标元素或遍历完整个列表。

2. 二分查找(Binary Search)二分查找是一种基于分治法的查找算法,通过将待查找的区间不断缩小,最终找到目标元素。

三、图算法图是由节点和边组成的一种数据结构,图算法是解决图相关问题的一种算法。

以下是几种常见的图算法:1. 深度优先搜索(Depth First Search)深度优先搜索是一种遍历和搜索图的算法,它以深度优先的方式访问节点。

2. 广度优先搜索(Breadth First Search)广度优先搜索是一种遍历和搜索图的算法,它以广度优先的方式访问节点。

3. 最小生成树(Minimum Spanning Tree)最小生成树是一个无环连通子图,它是图中边的一种子集,使得树上所有边的权值之和最小。

排序技术实验报告总结

排序技术实验报告总结

一、实验背景随着信息技术的飞速发展,数据量呈爆炸式增长,对数据的处理和分析提出了更高的要求。

排序作为数据预处理的重要环节,在数据库、搜索引擎、数据分析等领域有着广泛的应用。

本实验旨在通过对比几种常见的排序算法,了解其原理和特点,提高对排序技术的理解和应用能力。

二、实验目的1. 理解排序算法的基本原理和特点。

2. 掌握冒泡排序、选择排序、插入排序、快速排序、归并排序等常用排序算法。

3. 分析不同排序算法的时间复杂度和空间复杂度。

4. 提高编程能力和对算法的理解。

三、实验内容1. 冒泡排序(1)原理:冒泡排序是一种简单的排序算法,它重复地遍历待排序的序列,比较相邻的元素,如果它们的顺序错误就把它们交换过来。

遍历序列的工作是重复进行的,直到没有再需要交换的元素为止。

(2)代码实现:```pythondef bubble_sort(arr):n = len(arr)for i in range(n):for j in range(0, n-i-1):if arr[j] > arr[j+1]:arr[j], arr[j+1] = arr[j+1], arr[j]return arr```2. 选择排序(1)原理:选择排序是一种简单直观的排序算法。

它的工作原理是:首先在未排序序列中找到最小(大)元素,存放到排序序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(大)元素,然后放到已排序序列的末尾。

以此类推,直到所有元素均排序完毕。

(2)代码实现:```pythondef selection_sort(arr):n = len(arr)for i in range(n):min_index = ifor j in range(i+1, n):if arr[j] < arr[min_index]:min_index = jarr[i], arr[min_index] = arr[min_index], arr[i]return arr```3. 插入排序(1)原理:插入排序是一种简单直观的排序算法。

数据排序知识点总结

数据排序知识点总结

数据排序知识点总结一、排序算法的分类根据排序算法的实现方式和思想,可以将排序算法分为以下几类:1. 冒泡排序:冒泡排序是一种简单的排序算法,它的基本思想是通过比较相邻的元素并交换它们的位置,从而使较大(小)的元素逐渐“浮”到数组的一端。

2. 选择排序:选择排序是一种简单的排序算法,它的基本思想是在未排序的序列中选择最小(大)的元素并与序列的第一个元素交换位置,然后从剩余的未排序序列中继续进行此操作,直到整个序列排序完成。

3. 插入排序:插入排序是一种简单的排序算法,它的基本思想是将未排序的元素逐个插入到已排序的序列中,直到整个序列排序完成。

4. 快速排序:快速排序是一种高效的排序算法,它的基本思想是通过一个基准值将序列分成左右两个子序列,然后对左右子序列分别进行递归排序,直到整个序列排序完成。

5. 归并排序:归并排序是一种高效的排序算法,它的基本思想是将待排序的序列分成若干个子序列,然后分别对子序列进行排序,最后将排好序的子序列合并成一个完整的有序序列。

6. 堆排序:堆排序是一种高效的排序算法,它的基本思想是利用堆这种数据结构进行排序,通过不断调整堆的结构,将待排序的序列转换成一个大顶堆(或小顶堆),然后逐个将堆顶元素取出并重新调整堆的结构,直到整个序列排序完成。

7. 基数排序:基数排序是一种非比较排序算法,它的基本思想是将待排序的元素按照每个位上的数字进行分组,然后依次对每个分组进行排序,直到整个序列排序完成。

二、排序算法的时间复杂度和空间复杂度排序算法的时间复杂度是衡量排序算法性能的重要指标之一。

时间复杂度表示了排序算法的执行时间与输入规模之间的关系,通常用大O记号表示。

常见的排序算法的时间复杂度如下所示:1. 冒泡排序的时间复杂度为O(n^2)。

2. 选择排序的时间复杂度为O(n^2)。

3. 插入排序的时间复杂度为O(n^2)。

4. 快速排序的时间复杂度取决于基准值的选择,平均情况下为O(nlogn)。

排序工作总结范文

排序工作总结范文

一、前言随着社会经济的快速发展,数据量呈爆炸式增长,如何高效、准确地处理海量数据已成为各行各业关注的焦点。

作为数据处理的重要环节,排序工作在数据分析、决策支持等方面发挥着至关重要的作用。

在过去的一段时间里,我积极参与了排序工作,现将工作总结如下。

二、工作内容1. 排序算法研究与应用为了提高排序效率,我深入研究了几种常用的排序算法,包括冒泡排序、快速排序、归并排序等。

通过对算法原理和优缺点的分析,选择适合实际场景的排序算法,并对其进行优化,以提高排序效率。

2. 数据预处理在排序过程中,数据预处理是保证排序质量的关键环节。

我负责对数据进行清洗、去重、去噪等预处理工作,确保输入数据的准确性。

3. 排序结果分析与优化对排序结果进行分析,评估排序算法的优劣。

针对存在的问题,对排序算法进行优化,提高排序的准确性和稳定性。

4. 排序性能测试为验证排序算法的性能,我编写了测试用例,对排序算法进行性能测试。

通过对比不同算法的执行时间、内存占用等指标,筛选出性能最优的排序算法。

5. 排序系统设计与实现根据实际需求,我设计了排序系统,包括数据输入、排序算法选择、结果输出等模块。

在实现过程中,注重代码的可读性、可维护性和可扩展性。

三、工作成果1. 排序效率提升通过优化排序算法和预处理工作,使排序效率提高了30%以上,满足了实际业务需求。

2. 排序质量提高通过数据预处理和排序算法优化,提高了排序结果的准确性,降低了错误率。

3. 排序系统稳定可靠设计的排序系统在多种场景下均能稳定运行,满足了实际业务需求。

四、工作反思1. 排序算法选择需根据实际需求进行,不能盲目追求算法的复杂度。

2. 数据预处理是保证排序质量的关键环节,需充分重视。

3. 排序系统设计要注重模块化、可扩展性,以提高系统的适应性和可维护性。

五、展望在今后的工作中,我将继续关注排序领域的最新动态,不断优化排序算法,提高排序系统的性能。

同时,拓展排序应用场景,为更多行业提供高效、准确的排序服务。

排序算法设计实验报告总结

排序算法设计实验报告总结

排序算法设计实验报告总结1. 引言排序算法是计算机科学中最基础的算法之一,它的作用是将一组数据按照特定的顺序进行排列。

在现实生活中,我们经常需要对一些数据进行排序,比如学生成绩的排名、图书按照标题首字母进行排序等等。

因此,了解不同的排序算法的性能特点以及如何选择合适的排序算法对于解决实际问题非常重要。

本次实验旨在设计和实现几种经典的排序算法,并对其进行比较和总结。

2. 实验方法本次实验设计了四种排序算法,分别为冒泡排序、插入排序、选择排序和快速排序。

实验采用Python语言进行实现,并通过编写测试函数对算法进行验证。

测试函数会生成一定数量的随机数,并对这些随机数进行排序,统计算法的执行时间和比较次数,最后将结果进行记录和分析。

3. 测试结果及分析3.1 冒泡排序冒泡排序是一种简单且常用的排序算法,其基本思想是从待排序的数据中依次比较相邻的两个元素,如果它们的顺序不符合要求,则交换它们的位置。

经过多轮的比较和交换,最小值会逐渐冒泡到前面。

测试结果显示,冒泡排序在排序1000个随机数时,平均执行时间为0.981秒,比较次数为499500次。

从执行时间和比较次数来看,冒泡排序的性能较差,对于大规模数据的排序不适用。

3.2 插入排序插入排序是一种简单但有效的排序算法,其基本思想是将一个待排序的元素插入到已排序的子数组中的正确位置。

通过不断将元素插入到正确的位置,最终得到排序好的数组。

测试结果显示,插入排序在排序1000个随机数时,平均执行时间为0.892秒,比较次数为249500次。

插入排序的性能较好,因为其内层循环的比较次数与待排序数组的有序程度相关,对于近乎有序的数组排序效果更好。

3.3 选择排序选择排序是一种简单但低效的排序算法,其基本思想是在待排序的数组中选择最小的元素,将其放到已排序数组的末尾。

通过多次选择和交换操作,最终得到排序好的数组。

测试结果显示,选择排序在排序1000个随机数时,平均执行时间为4.512秒,比较次数为499500次。

排序心得体会

排序心得体会

排序心得体会排序是计算机科学中一种非常重要的算法,它的应用广泛,在各个领域都有着重要的地位。

经过一段时间的学习和实践,我对排序算法有了一些体会和认识,下面我将结合自己的经验,谈谈我对排序算法的理解和感悟。

首先,排序算法是一种数据处理的基本操作,它可以将无序的数据按照某种规则重新排列,从而使得数据有序。

无论是在日常生活中还是在计算机应用中,我们都需要对数据进行排序,以便于查找、比较和分析。

因此,学习并掌握排序算法对于我们的日常生活和工作都非常重要。

其次,排序算法是一种高效的算法,能够快速地对大量数据进行排序。

在实际应用中,我们往往需要处理大型数据,如果使用不合适的排序算法,那么就会造成时间和空间的浪费。

因此,在选择排序算法时,我们需要综合考虑算法的时间复杂度和空间复杂度,以便选择最适合当前情况的算法。

再次,排序算法是一种常用的算法,存在着多种不同的排序算法。

每种算法都有其独特的特点和适用的场景。

例如,冒泡排序通过相邻元素的比较和交换来实现排序,适用于小规模的数据;快速排序通过选取一个基准元素,将数据分为两个部分并递归地对其进行排序,适用于大规模的数据。

不同的排序算法有着不同的优点和局限性,我们需要根据实际需求来选择合适的算法。

此外,排序算法是一种需要不断学习和改进的算法。

随着计算机科学的发展和需求的变化,排序算法也在不断地改进和发展。

例如,归并排序和堆排序是对原有排序算法的改进和完善,它们能够更好地处理大规模数据的排序问题。

因此,我们需要不断学习和了解最新的排序算法,在实际应用中不断改进和优化算法,以提高排序的效率和准确性。

最后,排序算法是一种需要技巧和经验的算法。

要想掌握好排序算法,除了要了解其原理和实现细节,还需要进行大量的实践和总结。

在实际应用中,我们可能会面对各种各样的数据类型和排序需求,要想选择和使用合适的排序算法,还需要具备一定的技巧和经验。

这就需要我们不断地进行实践和总结,通过积累经验来提高自己的排序能力。

软考排序算法总结

软考排序算法总结

软考排序算法总结排序算法是计算机科学中的一个重要主题,旨在将一组元素按照特定的顺序排列。

以下是几种常见的排序算法及其主要特点和应用场景的总结:1. 冒泡排序(Bubble Sort):- 特点:比较相邻元素,按照规定的顺序交换位置,直到整个序列排序完成。

- 时间复杂度:最好情况O(n),最坏情况O(n^2)。

- 应用场景:适用于小规模数据,实现简单,但效率较低。

2. 选择排序(Selection Sort):- 特点:每次从未排序的部分中找到最小(或最大)元素,将其放在已排序的末尾。

- 时间复杂度:始终为O(n^2)。

- 应用场景:适用于小规模数据,相对于冒泡排序而言,移动数据的次数更少,因此性能相对较好。

3. 插入排序(Insertion Sort):- 特点:将未排序的元素逐个插入已排序的部分,保持已排序的部分一直有序。

- 时间复杂度:最好情况O(n),最坏情况O(n^2)。

- 应用场景:适用于部分有序的数据,对于小规模数据或近乎有序的数据效果较好。

4. 快速排序(Quick Sort):- 特点:通过选择一个基准元素,将序列分为两个部分,其中一部分小于基准元素,另一部分大于基准元素,然后对这两部分进行递归排序。

- 时间复杂度:平均情况O(nlogn),最坏情况O(n^2)。

- 应用场景:适用于大规模数据,实现简单,性能较好。

5. 归并排序(Merge Sort):- 特点:将序列分为两半,对每个子序列进行递归排序,然后将两个已排序的子序列合并为一个有序序列。

- 时间复杂度:始终为O(nlogn)。

- 应用场景:适用于大规模数据,稳定且效率较高。

6. 堆排序(Heap Sort):- 特点:将序列构建成一个最大(或最小)堆,然后将堆顶元素与最后一个元素交换,并重新调整堆,重复此过程直到整个序列有序。

- 时间复杂度:始终为O(nlogn)。

- 应用场景:适用于大规模数据,效率较高。

以上是几种常见的排序算法的总结,其中每种算法都有其特定的应用场景和性能特点。

6种排序的心得体会

6种排序的心得体会

6种排序的心得体会排序是计算机科学中最基础也是最重要的算法之一,它的使用非常广泛。

通过对多种排序算法的学习和实践,我深刻地认识到了排序的重要性以及不同排序算法的特点和适用场景。

在本文中,我将分享6种排序算法的心得体会,并总结出它们的优缺点以及在实际应用中的适用范围。

首先,插入排序是一种简单直观的排序算法,适用于数据量较小的情况。

我个人认为它的最大优点在于实现简单,不需要额外的存储空间。

插入排序的基本思路是将待排序的数据一个个插入到已经排序好的数据列中,并保持已排序列的有序性。

然而,插入排序的缺点也很明显,即时间复杂度为O(n^2),在处理大规模数据时效率较低。

其次,冒泡排序是一种交换排序的算法,它通过相邻元素之间的比较和交换来进行排序。

冒泡排序的核心思想是将最大(最小)的元素不断往后(或往前)冒泡,直到整个数组有序。

我的体会是冒泡排序虽然简单易懂,但是时间复杂度为O(n^2),效率不高。

尤其是在处理逆序序列时,冒泡排序的性能表现尤为差劲。

接下来,选择排序是一种简单直观的排序算法,它的核心思想是找到数据中最小(或最大)的元素并将其放在起始位置,然后再从剩余的未排序元素中找到最小(或最大)的元素放在已排序序列的末尾。

选择排序的主要优点是比较次数固定,适用于数据量不大且对内存空间要求较高的情况。

然而,选择排序的时间复杂度仍为O(n^2),而且它每次只能移动一个元素,因此在处理大规模数据时效率低下。

再次,快速排序是一种高效的排序算法,它采用了分治的思想。

快速排序的基本思路是通过一个主元(一般为待排序数组的第一个元素)将数组分成两个部分,左边的部分都小于主元,右边的部分都大于主元,然后在两个部分分别进行快速排序,直到整个数组有序。

快速排序的时间复杂度为O(nlogn),具有较好的平均性能。

我的体会是快速排序在处理大规模数据时具有明显的优势,而且它是原地排序算法,不需要额外的存储空间。

然而,快速排序的最坏情况下时间复杂度为O(n^2),需要进行优化。

排序算法总结

排序算法总结

排序算法总结【篇一:排序算法总结】1、稳定排序和非稳定排序简单地说就是所有相等的数经过某种排序方法后,仍能保持它们在排序之前的相对次序,我们就说这种排序方法是稳定的。

反之,就是非稳定的。

比如:一组数排序前是a1,a2,a3,a4,a5,其中a2=a4,经过某种排序后为a1,a2,a4,a3,a5,则我们说这种排序是稳定的,因为a2排序前在a4的前面,排序后它还是在a4的前面。

假如变成a1,a4,a2,a3,a5就不是稳定的了。

2、内排序和外排序在排序过程中,所有需要排序的数都在内存,并在内存中调整它们的存储顺序,称为内排序;在排序过程中,只有部分数被调入内存,并借助内存调整数在外存中的存放顺序排序方法称为外排序。

3、算法的时间复杂度和空间复杂度所谓算法的时间复杂度,是指执行算法所需要的计算工作量。

一个算法的空间复杂度,一般是指执行这个算法所需要的内存空间。

功能:选择排序输入:数组名称(也就是数组首地址)、数组中元素个数算法思想简单描述:在要排序的一组数中,选出最小的一个数与第一个位置的数交换;然后在剩下的数当中再找最小的与第二个位置的数交换,如此循环到倒数第二个数和最后一个数比较为止。

选择排序是不稳定的。

【篇二:排序算法总结】在计算机科学所使用的排序算法通常被分类为:计算的复杂度(最差、平均、和最好性能),依据列表(list)的大小(n)。

一般而言,好的性能是O(nlogn),且坏的性能是O(n2)。

对于一个排序理想的性能是O(n)。

仅使用一个抽象关键比较运算的排序算法总平均上总是至少需要O(nlogn)。

内存使用量(以及其他电脑资源的使用)稳定度:稳定排序算法会依照相等的关键(换言之就是值)维持纪录的相对次序。

也就是一个排序算法是稳定的,就是当有两个有相等关键的纪录R和S,且在原本的列表中R出现在S之前,在排序过的列表中R也将会是在S之前。

一般的方法:插入、交换、选择、合并等等。

交换排序包含冒泡排序和快速排序。

各种排序算法的稳定性和时间复杂度小结

各种排序算法的稳定性和时间复杂度小结

各种排序算法的稳定性和时间复杂度小结选择排序、快速排序、希尔排序、堆排序不是稳定的排序算法,冒泡排序、插入排序、归并排序和基数排序是稳定的排序算法。

冒泡法:这是最原始,也是众所周知的最慢的算法了。

他的名字的由来因为它的工作看来象是冒泡:复杂度为O(n*n)。

当数据为正序,将不会有交换。

复杂度为O(0)。

直接插入排序:O(n*n)选择排序:O(n*n)快速排序:平均时间复杂度log2(n)*n,所有内部排序方法中最高好的,大多数情况下总是最好的。

归并排序:log2(n)*n堆排序:log2(n)*n希尔排序:算法的复杂度为n的1.2次幂关于快速排序分析这里我没有给出行为的分析,因为这个很简单,我们直接来分析算法:首先我们考虑最理想的情况1.数组的大小是2的幂,这样分下去始终可以被2整除。

假设为2的k次方,即k=log2(n)。

2.每次我们选择的值刚好是中间值,这样,数组才可以被等分。

第一层递归,循环n次,第二层循环2*(n/2)......所以共有n+2(n/2)+4(n/4)+...+n*(n/n) = n+n+n+...+n=k*n=log2(n)*n所以算法复杂度为O(log2(n)*n)其他的情况只会比这种情况差,最差的情况是每次选择到的middle都是最小值或最大值,那么他将变成交换法(由于使用了递归,情况更糟)。

但是你认为这种情况发生的几率有多大??呵呵,你完全不必担心这个问题。

实践证明,大多数的情况,快速排序总是最好的。

如果你担心这个问题,你可以使用堆排序,这是一种稳定的O(log2(n)*n)算法,但是通常情况下速度要慢于快速排序(因为要重组堆)。

本文是针对老是记不住这个或者想真正明白到底为什么是稳定或者不稳定的人准备的。

首先,排序算法的稳定性大家应该都知道,通俗地讲就是能保证排序前2个相等的数其在序列的前后位置顺序和排序后它们两个的前后位置顺序相同。

在简单形式化一下,如果Ai = Aj, Ai原来在位置前,排序后Ai还是要在Aj位置前。

数字排序知识点梳理总结

数字排序知识点梳理总结

数字排序知识点梳理总结数字排序是数学和计算机领域中一个重要的基本问题,它在生活和工作中有着广泛的应用。

数字的排列顺序不仅仅是一种简单的排序算法,更是背后数学理论和计算机算法的结合体。

本文将从基本概念、常见算法、优化方法以及应用场景等方面进行梳理总结,希望能够全面了解数字排序相关知识。

一、基本概念1. 数字排序的定义数字排序是指将一组数字按照一定的规则进行排列,使得它们按照从小到大或者从大到小的顺序排列。

排序的对象可以是整数、小数、甚至是字符串等。

2. 排序算法的稳定性排序算法的稳定性是指相同大小元素的相对位置在排序后不会改变。

例如,对于相同大小的元素a和b,如果a在b之前,在排序后a仍然在b之前,则排序算法是稳定的。

3. 排序算法的时间复杂度排序算法的时间复杂度表示对n个元素进行排序所需的时间。

不同的排序算法具有不同的时间复杂度,它影响着算法的执行效率。

4. 排序算法的空间复杂度排序算法的空间复杂度是指在排序过程中所需要的额外的存储空间。

不同的排序算法具有不同的空间复杂度,也会影响着算法的执行效率。

二、常见的排序算法1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地走访要排序的数列,一次比较两个相邻的元素,如果它们的顺序错误就交换它们的位置。

直到没有元素需要交换,排序完成。

冒泡排序的时间复杂度为O(n^2),空间复杂度为O(1),它是稳定的排序算法。

2. 选择排序选择排序是一种简单的排序算法,它首先在未排序序列中找到最小(大)元素,然后将该元素放到已排序序列的末尾。

重复这个过程,直到所有元素都排好序。

选择排序的时间复杂度为O(n^2),空间复杂度为O(1),它是不稳定的排序算法。

3. 插入排序插入排序是一种简单的排序算法,它将未排序序列的元素逐个插入到已排序序列中的适当位置,直到全部元素都插入完毕。

插入排序的时间复杂度为O(n^2),空间复杂度为O(1),是稳定的排序算法。

4. 快速排序快速排序是一种排序算法,它通过一趟排序将要排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分的小。

几种排序算法的稳定性归纳

几种排序算法的稳定性归纳

⼏种排序算法的稳定性归纳
排序算法的稳定性定义:
⼀个数组中⼏个相同的关键字经过排序以后相对位置仍然不变,那么称改排序算法的是稳定的。

举个例⼦,在⼀个数组中,紫⾊的10排在红⾊的10前⾯,经过排序算法之后,紫⾊的10位置仍然排序红⾊的10之前,那么这个算法就是稳定的。

下⾯是⼏种排序算法的总结:
1.冒泡排序:
稳定
2.选择排序:
2.1.若为交换数值式的排序算法,则为不稳定
2.2.若为插⼊式的排序算法(多应⽤于链表当中),则稳定
3.插⼊排序:
稳定
4.快速排序:
不稳定
5.希尔排序:
不稳定
6.归并排序:
稳定
7.堆排序:
不稳定
8.基数排序:
稳定。

数据结构课程设计排序算法总结

数据结构课程设计排序算法总结

排序算法:(1) 直接插入排序 (2) 折半插入排序(3) 冒泡排序 (4) 简单选择排序 (5) 快速排序(6) 堆排序 (7) 归并排序【算法分析】(1)直接插入排序;它是一种最简单的排序方法,它的基本操作是将一个记录插入到已排好的序的有序表中,从而得到一个新的、记录数增加1的有序表。

(2)折半插入排序:插入排序的基本操作是在一个有序表中进行查找和插入,我们知道这个查找操作可以利用折半查找来实现,由此进行的插入排序称之为折半插入排序。

折半插入排序所需附加存储空间和直接插入相同,从时间上比较,折半插入排序仅减少了关键字间的比较次数,而记录的移动次数不变。

(3)冒泡排序:比较相邻关键字,若为逆序(非递增),则交换,最终将最大的记录放到最后一个记录的位置上,此为第一趟冒泡排序;对前n-1记录重复上操作,确定倒数第二个位置记录;……以此类推,直至的到一个递增的表。

(4)简单选择排序:通过n-i次关键字间的比较,从n-i+1个记录中选出关键字最小的记录,并和第i(1<=i<=n)个记录交换之。

(5)快速排序:它是对冒泡排序的一种改进,基本思想是,通过一趟排序将待排序的记录分割成独立的两部分,其中一部分记录的关键字均比另一部分记录的关键字小,则可分别对这两部分记录继续进行排序,以达到整个序列有序。

(6)堆排序: 使记录序列按关键字非递减有序排列,在堆排序的算法中先建一个“大顶堆”,即先选得一个关键字为最大的记录并与序列中最后一个记录交换,然后对序列中前n-1记录进行筛选,重新将它调整为一个“大顶堆”,如此反复直至排序结束。

(7)归并排序:归并的含义是将两个或两个以上的有序表组合成一个新的有序表。

假设初始序列含有n个记录,则可看成是n个有序的子序列,每个子序列的长度为1,然后两两归并,得到n/2个长度为2或1的有序子序列;再两两归并,……,如此重复,直至得到一个长度为n的有序序列为止,这种排序称为2-路归并排序。

排序算法总结(PDF)

排序算法总结(PDF)

十大排序算法选择排序选择排序的基本思想是对待排序的记录序列进行n-1遍的处理,第i遍处理是将L[i..n]中最小者与L[i]交换位置。

这样,经过i遍处理之后,前i个记录的位置已经是正确的了。

选择排序是不稳定的。

算法复杂度是O(n ^2 )。

class SelectionSorter{private int min;public void Sort(int[] arr){for (int i = 0; i < arr.Length - 1; ++i){min = i;for (int j = i + 1; j < arr.Length; ++j){if (arr[j] < arr[min])min = j;}int t = arr[min];arr[min] = arr[i];arr[i] = t;}}}冒泡排序冒泡排序方法是最简单的排序方法。

这种方法的基本思想是,将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮。

在冒泡排序算法中我们要对这个“气泡”序列处理若干遍。

所谓一遍处理,就是自底向上检查一遍这个序列,并时刻注意两个相邻的元素的顺序是否正确。

如果发现两个相邻元素的顺序不对,即“轻”的元素在下面,就交换它们的位置。

显然,处理一遍之后,“最轻”的元素就浮到了最高位置;处理二遍之后,“次轻”的元素就浮到了次高位置。

在作第二遍处理时,由于最高位置上的元素已是“最轻”元素,所以不必检查。

一般地,第i遍处理时,不必检查第i高位置以上的元素,因为经过前面i-1遍的处理,它们已正确地排好序。

冒泡排序是稳定的。

算法时间复杂度是O(n ^2){public void Sort(int[] arr){int i, j, temp;bool done = false;j = 1;while ((j < arr.Length) && (!done))//判断长度{done = true;for (i = 0; i < arr.Length - j; i++){if (arr[i] > arr[i + 1]){done = false;temp = arr[i];arr[i] = arr[i + 1];//交换数据arr[i + 1] = temp;}}j++;}}}快速排序快速排序是对冒泡排序的一种本质改进。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于排序算法的总结排序的定义:输入:n个数:a1,a2,a3,...,an输出:n个数的排列:a1',a2',a3',...,an',使得a1'<=a2'<=a3'<=...<=an'。

In-place sort(不占用额外内存或占用常数的内存):插入排序、选择排序、冒泡排序、堆排序、快速排序。

Out-place sort:归并排序、计数排序、基数排序、桶排序。

当需要对大量数据进行排序时,In-place sort就显示出优点,因为只需要占用常数的内存。

设想一下,如果要对10000个数据排序,如果使用了Out-place sort,则假设需要用200G的额外空间,则一台老式电脑会吃不消,但是如果使用In-place sort,则不需要花费额外内存。

stable sort:插入排序、冒泡排序、归并排序、计数排序、基数排序、桶排序。

unstable sort:选择排序(5 8 5 2 9)、快速排序、堆排序。

为何排序的稳定性很重要?在初学排序时会觉得稳定性有这么重要吗?两个一样的元素的顺序有这么重要吗?其实很重要。

在基数排序中显得尤为突出,如下:如果对于不稳定的算法进行改进,使得那些不稳定的算法也稳定?其实很简单,只需要在每个输入元素加一个index,表示初始时的数组索引,当不稳定的算法排好序后,对于相同的元素对index排序即可。

基于比较的排序都是遵循“决策树模型”,而在决策树模型中,我们能证明给予比较的排序算法最坏情况下的运行时间为Ω(nlgn),证明的思路是因为将n个序列构成的决策树的叶子节点个数至少有n!,因此高度至少为nlgn。

线性时间排序虽然能够理想情况下能在线性时间排序,但是每个排序都需要对输入数组做一些假设,比如计数排序需要输入数组数字范围为[0,k]等。

在排序算法的正确性证明中介绍了”循环不变式“,他类似于数学归纳法,"初始"对应"n=1","保持"对应"假设n=k成立,当n=k+1时"。

一、插入排序特点:stable sort、In-place sort最优复杂度:当输入数组就是排好序的时候,复杂度为O(n),而快速排序在这种情况下会产生O(n^2)的复杂度。

最差复杂度:当输入数组为倒序时,复杂度为O(n^2)插入排序比较适合用于“少量元素的数组”。

其实插入排序的复杂度和逆序对的个数一样,当数组倒序时,逆序对的个数为n(n-1)/2,因此插入排序复杂度为O(n^2)。

在算法导论2-4中有关于逆序对的介绍。

伪代码:证明算法正确性:循环不变式:在每次循环开始前,A[1...i-1]包含了原来的A[1...i-1]的元素,并且已排序。

初始:i=2,A[1...1]已排序,成立。

保持:在迭代开始前,A[1...i-1]已排序,而循环体的目的是将A[i]插入A[1...i-1]中,使得A[1...i]排序,因此在下一轮迭代开始前,i++,因此现在A[1...i-1]排好序了,因此保持循环不变式。

终止:最后i=n+1,并且A[1...n]已排序,而A[1...n]就是整个数组,因此证毕。

问:快速排序(不使用随机化)是否一定比插入排序快?答:不一定,当输入数组已经排好序时,插入排序需要O(n)时间,而快速排序需要O(n^2)时间。

递归版插入排序二、冒泡排序特点:stable sort、In-place sort思想:通过两两交换,像水中的泡泡一样,小的先冒出来,大的后冒出来。

最坏运行时间:O(n^2)最佳运行时间:O(n^2)(当然,也可以进行改进使得最佳运行时间为O(n))算法导论思考题2-2中介绍了冒泡排序。

伪代码:证明算法正确性:运用两次循环不变式,先证明第4-6行的内循环,再证明外循环。

内循环不变式:在每次循环开始前,A[j]是A[j...n]中最小的元素。

初始:j=n,因此A[n]是A[n...n]的最小元素。

保持:当循环开始时,已知A[j]是A[j...n]的最小元素,将A[j]与A[j-1]比较,并将较小者放在j-1位置,因此能够说明A[j-1]是A[j-1...n]的最小元素,因此循环不变式保持。

终止:j=i,已知A[i]是A[i...n]中最小的元素,证毕。

接下来证明外循环不变式:在每次循环之前,A[1...i-1]包含了A中最小的i-1个元素,且已排序:A[1]<=A[2]<=...<=A[i-1]。

初始:i=1,因此A[1..0]=空,因此成立。

保持:当循环开始时,已知A[1...i-1]是A中最小的i-1个元素,且A[1]<=A[2]<=...<=A[i-1],根据内循环不变式,终止时A[i]是A[i...n]中最小的元素,因此A[1...i]包含了A中最小的i个元素,且A[1]<=A[2]<=...<=A[i-1]<=A[i]终止:i=n+1,已知A[1...n]是A中最小的n个元素,且A[1]<=A[2]<=...<=A[n],得证。

“冒泡排序和插入排序哪个更快”呢?一般的人回答:“差不多吧,因为渐近时间都是O(n^2)”。

但是事实上不是这样的,插入排序的速度直接是逆序对的个数,而冒泡排序中执行“交换“的次数是逆序对的个数,因此冒泡排序执行的时间至少是逆序对的个数,因此插入排序的执行时间至少比冒泡排序快。

递归版冒泡排序改进版冒泡排序最佳运行时间:O(n)最坏运行时间:O(n^2)三、选择排序特性:In-place sort,unstable sort。

思想:每次找一个最小值。

最好情况时间:O(n^2)。

最坏情况时间:O(n^2)。

伪代码:证明算法正确性:循环不变式:A[1...i-1]包含了A中最小的i-1个元素,且已排序。

初始:i=1,A[1...0]=空,因此成立。

保持:在某次迭代开始之前,保持循环不变式,即A[1...i-1]包含了A中最小的i-1个元素,且已排序,则进入循环体后,程序从 A[i...n]中找出最小值放在A[i]处,因此A[1...i]包含了A中最小的i个元素,且已排序,而i++,因此下一次循环之前,保持循环不变式:A[1..i-1]包含了A 中最小的i-1个元素,且已排序。

终止:i=n,已知A[1...n-1]包含了A中最小的i-1个元素,且已排序,因此A[n]中的元素是最大的,因此A[1...n]已排序,证毕。

递归版选择排序递归式:T(n)=T(n-1)+O(n)=> T(n)=O(n^2)四、归并排序特点:stable sort、Out-place sort思想:运用分治法思想解决排序问题。

最坏情况运行时间:O(nlgn)最佳运行时间:O(nlgn)分治法介绍:分治法就是将原问题分解为多个独立的子问题,且这些子问题的形式和原问题相似,只是规模上减少了,求解完子问题后合并结果构成原问题的解。

分治法通常有3步:Divide(分解子问题的步骤)、 Conquer(递归解决子问题的步骤)、 Combine(子问题解求出来后合并成原问题解的步骤)。

假设Divide需要f(n)时间,Conquer分解为b个子问题,且子问题大小为a,Combine需要g(n)时间,则递归式为:T(n)=bT(n/a)+f(n)+g(n)就如归并排序,Divide的步骤为m=(p+q)/2,因此为O(1),Combine步骤为merge()函数,Conquer步骤为分解为2个子问题,子问题大小为n/2,因此:归并排序的递归式:T(n)=2T(n/2)+O(n)而求解递归式的三种方法有:(1)替换法:主要用于验证递归式的复杂度。

(2)递归树:能够大致估算递归式的复杂度,估算完后可以用替换法验证。

(3)主定理:用于解一些常见的递归式。

伪代码:证明算法正确性:其实我们只要证明merge()函数的正确性即可。

merge函数的主要步骤在第25~31行,可以看出是由一个循环构成。

循环不变式:每次循环之前,A[p...k-1]已排序,且L[i]和R[j]是L和R中剩下的元素中最小的两个元素。

初始:k=p,A[p...p-1]为空,因此已排序,成立。

保持:在第k次迭代之前,A[p...k-1]已经排序,而因为L[i]和R[j]是L和R 中剩下的元素中最小的两个元素,因此只需要将L[i]和R[j]中最小的元素放到A[k]即可,在第k+1次迭代之前A[p...k]已排序,且L[i]和R[j]为剩下的最小的两个元素。

终止:k=q+1,且A[p...q]已排序,这就是我们想要的,因此证毕。

归并排序的例子:问:归并排序的缺点是什么?答:他是Out-place sort,因此相比快排,需要很多额外的空间。

问:为什么归并排序比快速排序慢?答:虽然渐近复杂度一样,但是归并排序的系数比快排大。

问:对于归并排序有什么改进?答:就是在数组长度为k时,用插入排序,因为插入排序适合对小数组排序。

在算法导论思考题2-1中介绍了。

复杂度为O(nk+nlg(n/k)) ,当k=O(lgn)时,复杂度为O(nlgn)五、快速排序Tony Hoare爵士在1962年发明,被誉为“20世纪十大经典算法之一”。

算法导论中讲解的快速排序的PARTITION是Lomuto提出的,是对Hoare的算法进行一些改变的,而算法导论7-1介绍了Hoare的快排。

特性:unstable sort、In-place sort。

最坏运行时间:当输入数组已排序时,时间为O(n^2),当然可以通过随机化来改进(shuffle array 或者 randomized select pivot),使得期望运行时间为O(nlgn)。

最佳运行时间:O(nlgn)快速排序的思想也是分治法。

当输入数组的所有元素都一样时,不管是快速排序还是随机化快速排序的复杂度都为O(n^2),而在算法导论第三版的思考题7-2中通过改变Partition函数,从而改进复杂度为O(n)。

注意:只要partition的划分比例是常数的,则快排的效率就是O(nlgn),比如当partition的划分比例为10000:1时(足够不平衡了),快排的效率还是O(nlgn)“A killer adversary for quicksort”这篇文章很有趣的介绍了怎么样设计一个输入数组,使得quicksort运行时间为O(n^2)。

伪代码:随机化partition的实现:改进当所有元素相同时的效率的Partition实现:证明算法正确性:对partition函数证明循环不变式:A[p...i]的所有元素小于等于pivot,A[i+1...j-1]的所有元素大于pivot。

相关文档
最新文档