(完整word版)二次函数图像与动点图形问题

合集下载

二次函数的动点问题(含答案)

二次函数的动点问题(含答案)

72x =B(0,4)A(6,0)EFxyO 二次函数与四边形一.二次函数与四边形的形状例1.(浙江义乌市) 如图,抛物线223y x x =--与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式; (2)P 是线段AC 上的一个动点,过P 点作y 轴的平 行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 这样的四个点为顶点的四边形是平行四边形?如果存在,求出所有满足条件的F 点坐标;如果不存在,请说明理由.练习1.(河南省实验区) 23.如图,对称轴为直线72x =的抛物线经过点 A (6,0)和 B (0,4). (1)求抛物线解析式及顶点坐标;(2)设点E (x ,y )是抛物线上一动点,且位于第四象限,四边形OEAF 是以OA 为对角线的平行四边形.求平行四边形OEAF 的面积S 与x 之间的函数关系式,并写出自变量x 的取值范围;①当平行四边形OEAF 的面积为24时,请判断平行四边形OEAF 是否为菱形?②是否存在点E ,使平行四边形OEAF 为正方形?若存在,求出点E 的坐标;若不存在,请说明理由.练习 2.(四川省德阳市)25.如图,已知与x 轴交于点(10)A ,和(50)B ,的抛物线1l 的顶点为(34)C ,,抛物线2l 与1l 关于x 轴对称,顶点为C '.(1)求抛物线2l 的函数关系式;(2)已知原点O ,定点(04)D ,,2l 上的点P 与1l 上的点P '始终关于x 轴对称,则当点P 运动到何处时,以点D O P P ',,,为顶点的四边形是平行四边形?(3)在2l 上是否存在点M ,使ABM △是以AB 为斜边且一个角为30的直角三角形?若存,求出点M 的坐标;若不存在,说明理由.A5-4- 3-2-1- 1 2 3 455 4 3 2 1 A EBC '1- O 2l 1lx y练习3.(山西卷)如图,已知抛物线1C 与坐标轴的交点依次是(40)A -,,(20)B -,,(08)E ,. (1)求抛物线1C 关于原点对称的抛物线2C 的解析式; (2)设抛物线1C 的顶点为M ,抛物线2C 与x 轴分别交于C D ,两点(点C 在点D 的左侧),顶点为N ,四边形MDNA 的面积为S .若点A ,点D 同时以每秒1个单位的速度沿水平方向分别向右、向左运动;与此同时,点M ,点N 同时以每秒2个单位的速度沿坚直方向分别向下、向上运动,直到点A 与点D 重合为止.求出四边形MDNA 的面积S 与运动时间t 之间的关系式,并写出自变量t 的取值范围;(3)当t 为何值时,四边形MDNA 的面积S 有最大值,并求出此最大值;(4)在运动过程中,四边形MDNA 能否形成矩形?若能,求出此时t 的值;若不能,请说明理由.二.二次函数与四边形的面积例1.(资阳市)25.如图10,已知抛物线P :y=ax 2+bx+c(a ≠0)与x 轴交于A 、B 两点(点A 在x 轴的正半轴上),与y 轴交于点C ,矩形DEFG 的一条边DE 在线段AB 上,顶点F 、G 分别在线段BC 、AC 上,抛物线P 上部分点的横坐标对应的纵坐标如下:x … -3 -2 1 2 … y…-52-4-52…(1) 求A 、B 、C 三点的坐标;(2) 若点D 的坐标为(m ,0),矩形DEFG 的面积为S ,求S 与m 的函数关系,并指出m 的取值范围;(3) 当矩形DEFG 的面积S 取最大值时,连接DF 并延长至点M ,使FM=k ·DF ,若点M 不在抛物线P 上,求k 的取值范围.练习1.(辽宁省十二市第26题).如图,平面直角坐标系中有一直角梯形OMNH ,点H 的坐标为(-8,0),点N 的坐标为(-6,-4).(1)画出直角梯形OMNH 绕点O 旋转180°的图形OABC ,并写出顶点A ,B ,C 的坐标(点M 的对应点为A , 点N 的对应点为B , 点H 的对应点为C );(2)求出过A ,B ,C 三点的抛物线的表达式;(3)截取CE =OF =AG =m ,且E ,F ,G 分别在线段CO ,OA ,AB 上,求四边形BEFG 的面积S 与m 之间的函数关系式,并写出自变量m 的取值范围;面积S 是否存在最小值?若存在,请求出这个最小值;若不存在,请说明理由;(4)在(3)的情况下,四边形BEFG 是否存在邻边相等的情况,若存在,请直接写出此时m 的值,并指出相等的邻边;若不存在,说明理由.图10练习3.(吉林课改卷)如图,正方形ABCD 的边长为2cm ,在对称中心O 处有一钉子.动点P ,Q 同时从点A 出发,点P 沿A B C →→方向以每秒2cm 的速度运动,到点C 停止,点Q 沿A D →方向以每秒1cm 的速度运动,到点D 停止.P ,Q 两点用一条可伸缩的细橡皮筋联结,设x 秒后橡皮筋扫过的面积为2cm y .(1)当01x ≤≤时,求y 与x 之间的函数关系式; (2)当橡皮筋刚好触及钉子时,求x 值;(3)当12x ≤≤时,求y 与x 之间的函数关系式,并写出橡皮筋从触及钉子到运动停止时POQ ∠的变化范围;(4)当02x ≤≤时,请在给出的直角坐标系中画出y 与x 之间的函数图象.练习4.(四川资阳卷)如图,已知抛物线l 1:y =x 2-4的图象与x 轴相交于A 、C 两点,B 是抛物线l 1上的动点(B 不与A 、C 重合),抛物线l 2与l 1关于x 轴对称,以AC 为对角线的平行四边形ABCD 的第四个顶点为D .(1) 求l 2的解析式;(2) 求证:点D 一定在l 2上;(3) □ABCD 能否为矩形?如果能为矩形,求这些矩形公共部分的面积(若只有一个矩形符合条件,则求此矩形的面积);如果不能为矩形,请说明理由. 注:计算结果不取近似值.三.二次函数与四边形的动态探究例1.(荆门市)28. 如图1,在平面直角坐标系中,有一张矩形纸片OABC ,已知O (0,0),A (4,0),C (0,3),点P 是OA 边上的动点(与点O 、A 不重合).现将△PAB 沿PB 翻折,得到△PDB ;再在OC 边上选取适当的点E ,将△POE 沿PE 翻折,得到△PFE ,并使直线PD 、PF 重合.(1)设P (x ,0),E (0,y ),求y 关于x 的函数关系式,并求y 的最大值;(2)如图2,若翻折后点D 落在BC 边上,求过点P 、B 、E 的抛物线的函数关系式;(3)在(2)的情况下,在该抛物线上是否存在点Q ,使△PEQ 是以PE 为直角边的直角三角形?若不存在,说明理由;若存在,求出点Q 的坐标.B CPO D QA BPCO DQ A y321 O1 2 x例2.已知抛物线y =ax2+bx +c 与x 轴交于A 、B 两点,与y 轴交于点C ,其中点B 在x 轴的正半轴上,点C 在y 轴的正半轴上,线段OB 、OC 的长(OB <OC )是方程x 2-10x +16=0的两个根,且抛物线的对称轴是直线x =-2.(1)求A 、B 、C 三点的坐标; (2)求此抛物线的表达式;(3)连接AC 、BC ,若点E 是线段AB 上的一个动点(与点A 、点B 不重合),过点E 作EF ∥AC 交BC 于点F ,连接CE ,设AE 的长为m ,△CEF 的面积为S ,求S 与m 之间的函数关系式,并写出自变量m 的取值范围;(4)在(3)的基础上试说明S 是否存在最大值,若存在,请求出S 的最大值,并求出此时点E 的坐标,判断此时△BCE 的形状;若不存在,请说明理由.例3..(湖南省郴州)如图,矩形ABCD 中,AB =3,BC =4,将矩形ABCD 沿对角线A 平移,平移后的矩形为EFGH (A 、E 、C 、G 始终在同一条直线上),当点E 与C 重时停止移动.平移中EF 与BC 交于点N ,GH 与BC 的延长线交于点M ,EH 与DC 交于点P ,FG 与DC 的延长线交于点Q .设S 表示矩形PCMH 的面积,S '表示矩形NFQC 的面积.(1) S 与S '相等吗?请说明理由.(2)设AE =x ,写出S 和x 之间的函数关系式,并求出x 取何值时S 有最大值,最大值是多少? (3)如图11,连结BE ,当AE 为何值时,ABE ∆是等腰三角形.练习1.如图12, 四边形OABC 为直角梯形,A (4,0),B (3,4),C (0,4). 点M 从O 出发以每秒2个单位长度的速度向A 运动;点N 从B 同时出发,以每秒1个单位长度的速度向C 运动.其中一个动点到达终点时,另一个动点也随之停止运动.过点N 作NP 垂直x 轴于点P ,连结AC 交NP 于Q ,连结MQ .(1)点 (填M 或N )能到达终点;(2)求△AQM 的面积S 与运动时间t 的函数关系式,并写出自 变量t 的取值范围,当t 为何值时,S 的值最大;(3)是否存在点M ,使得△AQM 为直角三角形?若存在,求出点M 的坐标,图2 OC A Bxy DPE F 图1 FE PD y xBA C OxN MQ PHGFEDCBA图11QPN M HGFED CBA图10图12yxP QBCNMOA若不存在,说明理由.练习2..(江西省) 25.实验与探究(1)在图1,2,3中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),写出图1,2,3中的顶点C 的坐标,它们分别是(52),, , ;(2)在图4中,给出平行四边形ABCD 的顶点A B D ,,的坐标(如图所示),求出顶点C 的坐标(C 点坐标用含a b c d e f ,,,,,的代数式表示);归纳与发现(3)通过对图1,2,3,4的观察和顶点C 的坐标的探究,你会发现:无论平行四边形ABCD 处于直角坐标系中哪个位置,当其顶点坐标为()()()()A a b B c d C m n D e f ,,,,,,,(如图4)时,则四个顶点的横坐标a c m e ,,,之间的等量关系为 ;纵坐标b d n f ,,,之间的等量关系为 (不必证明);运用与推广(4)在同一直角坐标系中有抛物线2(53)y x c x c =---和三个点15192222G c c S c c ⎛⎫⎛⎫-⎪ ⎪⎝⎭⎝⎭,,,,(20)H c ,(其中0c >).问当c 为何值时,该抛物线上存在点P ,使得以G S H P ,,,为顶点的四边形是平行四边形?并求出所有符合条件的P 点坐标.yC()A(40)D ,(12)B ,O x图1yC()A(0)D e ,()B c d ,O x图2yC()A a b , ()D e b ,()B c d ,Ox图3yC()A a b ,()D e f ,()B c d ,Ox图472x =B(0,4)A(6,0)EFxyO答案:一.二次函数与四边形的形状例1.解:(1)令y=0,解得11x =-或23x =∴A (-1,0)B (3,0);将C 点的横坐标x=2代入223y x x =--得y=-3,∴C (2,-3)∴直线AC 的函数解析式是y=-x-1 (2)设P 点的横坐标为x (-1≤x ≤2)则P 、E 的坐标分别为:P (x ,-x-1), E (2(,23)x x x --∵P 点在E 点的上方,PE=22(1)(23)2x x x x x -----=-++ ∴当12x =时,PE 的最大值=94(3)存在4个这样的点F ,分别是1234(1,0),(3,0),(470),(47,0)F F F F -+-, 练习 1.解:(1)由抛物线的对称轴是72x =,可设解析式为27()2y a x k =-+.把A 、B 两点坐标代入上式,得227(6)0,27(0) 4.2a k a k ⎧-+=⎪⎪⎨⎪-+=⎪⎩ 解之,得225,.36a k ==- 故抛物线解析式为22725()326y x =--,顶点为725(,).26-(2)∵点(,)E x y 在抛物线上,位于第四象限,且坐标适合22725()326y x =--,∴y<0,即 -y>0,-y 表示点E 到OA 的距离.∵OA 是OEAF 的对角线, ∴2172264()2522OAES SOA y y ==⨯⨯⋅=-=--+.因为抛物线与x 轴的两个交点是(1,0)的(6,0),所以,自变量x 的 取值范围是1<x <6. ①根据题意,当S = 24时,即274()25242x --+=.化简,得271().24x -=解之,得123, 4.x x == 故所求的点E 有两个,分别为E 1(3,-4),E 2(4,-4). 点E 1(3,-4)满足OE = AE ,所以OEAF 是菱形; 点E 2(4,-4)不满足OE = AE ,所以OEAF 不是菱形. ② 当OA ⊥EF ,且OA = EF 时,OEAF 是正方形,此时点E 的 坐标只能是(3,-3).而坐标为(3,-3)的点不在抛物线上,故不存在这样的点E , 使OEAF 为正方形.5-4- 3- 2- 1- 12 3 4 554321 A EBC '1- O 2l1lxy5-4-3-2-1-12 3D554 32 1 ACEM BC '1-O 2l 1l xy练习2.解:(1)由题意知点C '的坐标为(34)-,.设2l 的函数关系式为2(3)4y a x =--. 又点(10)A ,在抛物线2(3)4y a x =--上,2(13)40a ∴--=,解得1a =.∴抛物线2l 的函数关系式为2(3)4y x =--(或265y x x =-+).(2)P 与P '始终关于x 轴对称, PP '∴与y 轴平行.设点P 的横坐标为m ,则其纵坐标为265m m -+,4OD =,22654m m ∴-+=,即2652m m -+=±.当2652m m -+=时,解得36m =±.当2652m m -+=-时,解得32m =±.∴当点P 运动到(362)-,或(362)+,或(322)--,或(322)+-,时, P P OD ' ∥,以点D O P P ',,,为顶点的四边形是平行四边形.(3)满足条件的点M 不存在.理由如下:若存在满足条件的点M 在2l 上,则90AMB ∠=,30BAM ∠=(或30ABM ∠=),114222BM AB ∴==⨯=.过点M 作ME AB ⊥于点E ,可得30BME BAM ∠=∠=.112122EB BM ∴==⨯=,3EM =,4OE =. ∴点M 的坐标为(43)-,. 但是,当4x =时,246451624533y =-⨯+=-+=-≠-.∴不存在这样的点M 构成满足条件的直角三角形.练习3. [解] (1)点(40)A -,,点(20)B -,,点(08)E ,关于原点的对称点分别为(40)D ,,(20)C ,,(08)F -,. 设抛物线2C 的解析式是2(0)y ax bx c a =++≠,则16404208a b c a b c c ++=⎧⎪++=⎨⎪=-⎩,,.解得168a b c =-⎧⎪=⎨⎪=-⎩,,.所以所求抛物线的解析式是268y x x =-+-.(2)由(1)可计算得点(31)(31)M N --,,,. 过点N 作NH AD ⊥,垂足为H .当运动到时刻t 时,282AD OD t ==-,12NH t =+.根据中心对称的性质OA OD OM ON ==,,所以四边形MDNA 是平行四边形.所以2ADN S S =△.所以,四边形MDNA 的面积2(82)(12)4148S t t t t =-+=-++. 因为运动至点A 与点D 重合为止,据题意可知04t <≤.所以,所求关系式是24148S t t =-++,t 的取值范围是04t <≤. (3)781444S t ⎛⎫=--+ ⎪⎝⎭,(04t <≤). 所以74t =时,S 有最大值814. 提示:也可用顶点坐标公式来求.(4)在运动过程中四边形MDNA 能形成矩形. 由(2)知四边形MDNA 是平行四边形,对角线是AD MN ,,所以当AD MN =时四边形MDNA 是矩形.所以OD ON =.所以2222OD ON OH NH ==+.所以22420t t +-=.解之得126262t t =-=--,(舍). 所以在运动过程中四边形MDNA 可以形成矩形,此时62t =-.[点评]本题以二次函数为背景,结合动态问题、存在性问题、最值问题,是一道较传统的压轴题,能力要求较高。

(完整word版)二次函数的性质与应用

(完整word版)二次函数的性质与应用

二次函数的性质与应用,主要研究:顶点、对称轴、最值、对称性、增减性、与坐标轴交点、图象平移、图象与方程(不等式)、图象信息、图象结合几何问题,实际应用问题等1、抛物线y=-x2+(m-1)x+m与y轴交于(0,3)点。

(1)求出这条抛物线解析式; (2)求它与x轴的交点和抛物线顶点的坐标;(3)求出最值、画出图象; (4)x取什么值时,y的值随x的增大而减小?(5)x取什么值时,抛物线在x轴上方?2、已知函数(1)m= 时,函数图像与x轴只有一个交点; (2)m为何值时,函数图像与x轴没有交点;3、抛物线的一部分如右上图所示,该抛物线在y轴右侧部分与x轴交点的坐标是4将抛物线向左平移2个单位,再向下平移3个单位后,所得抛物线的解析式为y=x2﹣1,则原抛物线的解析式为.5、如图,二次函数y=ax2+bx+3的图象经过点A(﹣1,0),B(3,0),那么一元二次方程ax2+bx=0的根是___________.5、二次函数y=x2﹣2(b﹣2)x+b2﹣1的图象不经过第三象限,则实数b的取值范围是( )A、b≥ B、b≥1或b≤-1 C、b≥2 D、1≤b≤2二次函数的图象如图所示,给出下列说法:①ac>0;②2a+b=0;③a+b+c=0;④当时,函数y随x的增大而增大;⑤当时,.其中,正确的说法有________ .(请写出所有正确说法的序号)抛物线顶点坐标为点C(1,4),交x轴于点A(3,0),交y轴于点B.(1)求此抛物线的解析式;(2)抛物线上是否存在点P,使S△ABP=S△ABC,若存在,求出P点坐标;若不存在,请说明理由.如图,矩形ABCD的两边长AB=18 cm,AD=4 cm,点P、Q分别从A、B同时出发,P在边AB上沿AB方向以每秒2 cm的速度匀速运动,Q在边BC上沿BC方向以每秒1 cm的速度匀速运动.设运动时间为x秒,△PBQ的面积为y(cm2).(1)求y关于x的函数关系式,并写出x的取值范围;(2)求△PBQ的面积的最大值.1、如图,四边形ABCD中,∠BAD=∠ACB=90°,AB=AD,AC=4BC,设CD的长为x,四边形ABCD的面积为y,则y与x之间的函数关系式是( )A、B、C、D、二、综合题(共2题;共25分)2、(2015•崇左)一块材料的形状是锐角三角形ABC,边BC=120mm,高AD=80mm,把它加工成正方形零件如图1,使正方形的一边在BC上,其余两个顶点分别在AB,AC上.(1)求证:△AEF∽△ABC;(2)求这个正方形零件的边长;(3)如果把它加工成矩形零件如图2,问这个矩形的最大面积是多少?3、(2016•义乌)课本中有一个例题:有一个窗户形状如图1,上部是一个半圆,下部是一个矩形,如果制作窗框的材料总长为6m,如何设计这个窗户,使透光面积最大?这个例题的答案是:当窗户半圆的半径约为0。

初三复习二次函数动点问题(含答案)

初三复习二次函数动点问题(含答案)

二次函数的动态问题(动点)1.如图①,正方形ABCD 的顶点A B ,的坐标分别为()()01084,,,,顶点C D ,在第一象限.点P 从点A 出发,沿正方形按逆时针方向匀速运动,同时,点Q 从点()40E ,出发,沿x 轴正方向以相同速度运动.当点P 到达点C 时,P Q ,两点同时停止运动,设运动的时间为t 秒. (1)求正方形ABCD 的边长.(2)当点P 在AB 边上运动时,OPQ △的面积S (平方单位)与时间t (秒)之间的函数图象为抛物线的一部分(如图②所示),求P Q ,两点的运动速度.(3)求(2)中面积S (平方单位)与时间t (秒)的函数关系式及面积S 取最大值时点P 的坐标. (4)若点P Q ,保持(2)中的速度不变,则点P 沿着AB 边运动时,OPQ ∠的大小随着时间t 的增大而增大;沿着BC 边运动时,OPQ ∠的大小随着时间t 的增大而减小.当点P 沿着这两边运动时,使90OPQ =∠的点P 有 个.(抛物线()20y ax bx c a =++≠的顶点坐标是2424b ac b aa ⎛⎫-- ⎪⎝⎭,.[解] (1)作BF y ⊥轴于F .()()01084A B ,,,,86FB FA ∴==,.10AB ∴=.(2)由图②可知,点P 从点A 运动到点B 用了10秒. 又1010101AB =÷=,.P Q ∴,两点的运动速度均为每秒1个单位.(3)方法一:作PG y ⊥轴于G ,则PG BF ∥.图①图②GA AP FA AB ∴=,即610GA t=.35GA t ∴=.3105OG t ∴=-.4OQ t =+,()113410225S OQ OG t t ⎛⎫∴=⨯⨯=+- ⎪⎝⎭.即231920105S t t =-++. 19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时4763311051555GP t OG t ===-=,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(8分)方法二:当5t =时,1637922OG OQ S OG OQ ====,,. 设所求函数关系式为220S at bt =++.抛物线过点()63102852⎛⎫ ⎪⎝⎭,,,,1001020286325520.2a b a b ++=⎧⎪∴⎨++=⎪⎩,31019.5a b ⎧=-⎪⎪∴⎨⎪=⎪⎩,231920105S t t ∴=-++.19195323210b a -=-=⎛⎫⨯- ⎪⎝⎭,且190103≤≤, ∴当193t =时,S 有最大值. 此时7631155GP OG ==,,∴点P 的坐标为7631155⎛⎫⎪⎝⎭,.(4)2.[点评]本题主要考查函数性质的简单运用和几何知识,是近年来较为流行的试题,解题的关键在于结合题目的要求动中取静,相信解决这种问题不会非常难。

(完整word版)二次函数精选练习题及答案

(完整word版)二次函数精选练习题及答案

二次函数练习题及答案一、选择题1. 将抛物线23y x =先向左平移2个单位,再向下平移1个单位后得到新的抛物线,则新抛物线的解析式是 ( )A 23(2)1y x =++B 。

23(2)1y x =+-C 。

23(2)1y x =-+ D.23(2)1y x =-- 2.将抛物线22+=x y 向右平移1个单位后所得抛物线的解析式是………………( ) A.32+=x y ; B.12+=x y ;C.2)1(2++=x y ; D.2)1(2+-=x y .3.将抛物线y= (x —1)2+3向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( )A .y=(x —2)2B .y=(x —2)2+6C .y=x 2+6D .y=x 24.由二次函数1)3(22+-=x y ,可知( )A .其图象的开口向下B .其图象的对称轴为直线3x =-C .其最小值为1D .当x<3时,y 随x 的增大而增大5.如图,抛物线的顶点P 的坐标是(1,﹣3),则此抛物线对应的二次函数有( )A .最大值1B .最小值﹣3C .最大值﹣3D .最小值16.把函数()y f x ==246x x -+的图象向左平移1个单位,再向上平移1个单位,所得图象对应的函数的解析式是( )A .2(3)3y x =-+B .2(3)1y x =-+C .2(1)3y x =-+D .2(1)1y x =-+7.抛物线c bx x y ++=2图像向右平移2个单位再向下平移3个单位,所得图像的解析式为322--=x x y ,则b 、c 的值为A . b=2, c=2 B. b=2,c=0 C 。

b= -2,c=-1 D 。

b= -3, c=2二、填空题8.二次函数y=-2(x -5)2+3的顶点坐标是 .9.已知二次函数2y x bx c =-++中函数y 与自变量x 之间的部分对应值如下表所示,点11(,)A x y 、22(,)B x y 在函数图象上,当1201,23x x <<<<时,则1y 2y (填“>”或“<”).x 0 1 2 3 y1- 2 3 210.在平面直角坐标系中,将抛物线223y x x =++绕着它与y 轴的交点旋转180°,所得抛物线的解析式为 .11.求二次函数2245y x x =--的顶点坐标(___)对称轴____。

九年级数学二次函数y=ax2(a≠0)的图像与性质(知识讲解)Word版含解析

九年级数学二次函数y=ax2(a≠0)的图像与性质(知识讲解)Word版含解析

专题2.4 二次函数y=ax2(a≠0)的图像与性质(知识讲解)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.4 二次函数y=ax2(a≠0)的图像与性质(知识讲解)【学习目标】1.理解二次函数的概念,能用待定系数法确定二次函数的解析式;2.会用描点法画出二次函数y=ax2(a≠0)的图像,并结合图像理解抛物线、对称轴、顶点、开口方向等概念;3.掌握二次函数y=ax2(a≠0)的图像的性质.【要点梳理】要点一、二次函数y=ax2(a≠0)的图像及性质1.二次函数y=ax2(a≠0)的图像用描点法画出二次函数y=ax2(a≠0)的图像,如图,它是一条关于y轴对称的曲线,这样的曲线叫做抛物线.因为抛物线y=x2关于y轴对称,所以y轴是这条抛物线的对称轴,对称轴与抛物线的交点是抛物线的顶点,从图上看,抛物线y=x2的顶点是图像的最低点.因为抛物线y =x2有最低点,所以函数y=x2有最小值,它的最小值就是最低点的纵坐标.2.二次函数y=ax2(a≠0)的图像的画法用描点法画二次函数y=ax2(a≠0)的图像时,应在顶点的左、右两侧对称地选取自变量x的值,然后计算出对应的y值,这样的对应值选取越密集,描出的图像越准确.特别说明:二次函数y=ax2(a≠0)的图像.用描点法画二次函数y=ax2(a≠0)的图像,该图像是轴对称图形,对称轴是y轴.y=ax2(a≠0)是最简单的二次函数,把y =ax2(a≠0)的图像左右、上下平行移动可以得到y=ax2+bx+c(a≠0)的图像.画草图时应抓住以下几点:1)开口方向,2)对称轴,3)顶点,4)与x轴的交点,5)与y轴的交点.3.二次函数y=ax2(a≠0)的图像的性质二次函数y=ax2(a≠0)的图像的性质,见下表:特别说明:顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.│a│相同,抛物线的开口大小、形状相同.│a│越大,开口越小,图像两边越靠近y轴,│a│越小,开口越大, 图像两边越靠近x轴.【典型例题】类型一、作出二次函数2y ax=的图像1.画函数212y x=-的图像.举一反三:【变式1】2.画出二次函数y=x2的图象.【变式2】3.画出二次函数y=﹣x2的图象.类型二、二次函数2y ax 的参数值4.如图所示四个二次函数的图象中,分别对应的是 y =ax 2; y =bx 2; y =cx 2; y =dx 2.则a 、b 、c 、d 的大小关系为_____.举一反三: 【变式1】5.如图,已知点A (-4,8)和点B (2,n )在抛物线y=ax2上.求a 的值及点B 的坐标.【变式2】6.已知四个二次函数的图象如图所示,那么a 1,a 2,a 3,a 4的大小关系是_____.(请用“>”连接排序)类型三、二次函数2y ax =的开口方向、对称轴、顶点坐标、特殊点坐标7.函数y=ax 2(a≠0)与直线y=2x -3的图象交于点(1,b ). 求:(1)a 和b 的值;(2)求抛物线y=ax 2的开口方向、对称轴、顶点坐标; (3)作y=ax 2的草图. 举一反三: 【变式】8.已知函数()2323m m y m x +-=+是关于x 的二次函数.(1)求m 的值.(2)当m 为何值时,该函数图像的开口向下? (3)当m 为何值时,该函数有最小值,最小值是多少? 类型四、二次函数2y ax =的增减性9.已知22(1)ky k x -=+是关于x 的二次函数.(1)求满足条件的k 的值;(2)k 为何值时,抛物线有最低点?求出这个最低点.当x 为何值时,y 的值随x 值的增大而增大?(3)k 为何值时,函数有最大值?最大值是多少?当x 为何值时,y 的值随x 值的增大而减小? 举一反三: 【变式1】10.已知24(2)k k y k x +-=+ 是二次函数,且函数图象有最高点.(1)求k 的值;(2)求顶点坐标和对称轴,并说明当x 为何值时,y 随x 的增大而减少. 【变式2】11.已知函数y =(k ﹣2)245k k x -+是关于x 的二次函数,求:(1)满足条件的k 的值;(2)当k 为何值时,抛物线有最高点?求出这个最高点,这时,x 为何值时,y 随x 的增大而增大?(3)当k 为何值时,函数有最小值?最小值是多少?这时,当x 为何值时,y 与x 的增大而减小?类型五、二次函数2y ax =的综合应用12.如图,梯形ABCD 的顶点都在抛物线2y x =-上,且////AB CD x 轴.A 点坐标为(a,-4),C 点坐标为(3,b ).(1)求a ,b 的值; (2)求B ,D 两点的坐标; (3)求梯形的面积. 举一反三: 【变式1】13.在平面直角坐标系中,若抛物线22y x =与直线1y x =+交于点(,)A a b 和点(,)B c d ,其中a c >,点O 为原点,求ABO ∆的面积.【变式2】14.抛物线y=ax2(a>0 )上有A 、B两点,A、B两点的横坐标分别为-1,2.求a为何值时, AOB为直角三角形.参考答案:1.见解析【分析】利用列表、描点、连线的方法作出函数的图像即可.【详解】解:列表:描点、连线如下图所示:【点睛】本题考查了二次函数的画法,做题的关键是列出表格、描点、连线即可.2.图像见解析.【分析】建立平面直角坐标系,然后利用五点法作出大致函数图象即可.【详解】函数y=x2的图象如图所示:【点睛】本题考查了二次函数的图象的作法,五点法作图是常用的方法,要熟练掌握并灵活运用.3.见解析【分析】首先列表,再根据描点法,可得函数的图象.【详解】列表:描点:以表格中对应的数值作为点的坐标,在直角坐标系中描出;连线:用平滑的线顺次连接,如图:【点睛】本题考查了二次函数图象,正确在坐标系中描出各点是解题的关键.4.a>b>d>c【分析】设x=1,函数值分别等于二次项系数,根据图象,比较各对应点纵坐标的大小.【详解】因为直线x=1与四条抛物线的交点从上到下依次为(1,a),(1,b),(1,d),(1,c),所以,a>b>d>c.故答案为:a>b>d>c.【点睛】本题考查了二次函数的图象,采用了取特殊点的方法,比较字母系数的大小.5.a=1, B(2,2)2【详解】试题分析:先把A点坐标代入二次函数解析式即可求出a的值和二次函数解析式;再B点坐标代入二次函数解析式,即可求出n的值,从而确定点B的坐标.解:把点A(-4,8)代入y=ax2,得:16a=8a=12y=1x2.2x2得:再把点B(2,n)代入y=12n=2.B(2,2).6.a1>a2>a3>a4【分析】直接利用二次函数的图象开口大小与a的关系进而得出答案.【详解】解:如图所示: y=a1x2的开口小于 y=a2x2的开口,则a1>a2>0,y=a3x2的开口大于 y=a4x2的开口,开口向下,则a4<a3<0,故a1>a2>a3>a4.故答案是:a1>a2>a3>a4.【点睛】考查了二次函数的图象,正确记忆开口大小与a的关系是解题关键.7.(1)a=b=-1(2)y轴,(0,0)(3)图像见解析【详解】试题分析:(1)把点(1,b)代入y=2x-3中解得b的值,再把(1,b)代入y=ax2,中可解得a的值;(2)由(1)中所求得的a的值,可得y=ax2的解析式,从而可确定抛物线y=ax2的开口方向,对称轴和顶点坐标;(3)根据(2)中求得的抛物线y=ax2的开口方向、对称轴和顶点坐标可画出其草图.试题解析:(1)把(1,b)代入直线y=2x-3中,得b=2-3=-1,把点(1,-1)代入y=ax 2中,得a=-1; (2) 在y=-x 2中,a=-1<0, 抛物线开口向下;抛物线y=ax 2的对称轴为y 轴,顶点坐标为(0,0); (3)作函数y=ax 2的草图如下:8.(1)m 1=−4,m 2=1;(2)当m =−4时,该函数图象的开口向下;(3)当m =1时,函数为24y x =,该函数有最小值,最小值为0.【分析】(1)根据二次函数的定义求出m 的值即可解决问题. (2)运用当二次项系数小于0时,抛物线开口向下;(3)运用当二次项系数大于0时,抛物线开口向上,图象有最低点,函数有最小值; 【详解】解:(1) 函数()2323m m y m x +-=+是关于x 的二次函数,m 2+3m−2=2,m +3≠0, 解得:m 1=−4,m 2=1; (2) 函数图象的开口向下, m +3<0, m <−3,当m =−4时,该函数图象的开口向下; (3) m =−4或1,当m +3>0时,抛物线有最低点,函数有最小值, m >−3, m =−4或1,当m =1时,函数为24y x =,该函数有最小值,最小值为0.【点睛】该题主要考查了二次函数的定义及其性质的应用问题;牢固掌握定义及其性质是解题的关键.9.(1)k=±2; (2) 见解析; (3)见解析.【分析】(1)直接利用二次函数定义得出符合题意的k 的值;(2)抛物线有最低点,所以开口向上,k+1大于0,再根据(1)中k 的值即可确定满足条件的值,再根据二次函数性质,即可得最低点的坐标和函数的单调区间;(3)函数有最大值,可得抛物线的开口向下,k+1小于0,再根据(1)中k 的值即可确定满足条件的值,然后根据二次函数性质可求得最大值和函数单调区间.【详解】(1) 根据二次函数的定义得 22210k k ⎧-=⎨+≠⎩ 解得k=±2. 当k=±2时,原函数是二次函数.(2) 根据抛物线有最低点,可得抛物线的开口向上,k+1>0,即k >-1,根据第(1)问得:k=2.该抛物线的解析式为2y 3x =, 抛物线的顶点为(0,0),当x >0时,y 随x 的增大而增大.(3) 根据二次函数有最大值,可得抛物线的开口向下,k+1<0,即k <-1,根据第(1)问得:k=-2.该抛物线的解析式为2y x =-,顶点坐标为(0,0),当k=-2时,函数有最大值为0. 当x >0时,y 随x 的增大而减小.【点睛】此题主要考查了二次函数的性质以及二次函数的定义,正确掌握二次函数的性质是解题关键,是基础题型.10.(1)k=﹣3;(2)当k=﹣3时,y=﹣x2顶点坐标(0,0),对称轴为y 轴,当x >0时,y 随x 的增大而减少.【详解】试题分析:(1)根据二次函数的定义得出k 2+k ﹣4=2,再利用函数图象有最高点,得出k +2<0,即可得出k 的值;(2)利用(1)中k 的值得出二次函数的解析式,利用形如y =ax 2(a ≠0)的二次函数顶点坐标为(0,0),对称轴是y 轴即可得出答案.试题解析:解:(1) 24(2)k k y k x +-=+是二次函数, k 2+k ﹣4=2且k +2≠0,解得k =﹣3或k =2. 函数有最高点, 抛物线的开口向下, k +2<0,解得k <﹣2, k =﹣3;(2)当k =﹣3时,二次函数为y =﹣x 2,顶点坐标为(0,0),对称轴为y 轴,当x >0时,y 随x 的增大而减少.11.(1)1213k k =,=;(2)k =1,最高点为(0,0),当x <0时,y 随x 的增大而增大;(3)k =3,最小值为0,当x <0时,y 随x 的增大而减小.【分析】(1)由于函数是二次函数,所以x 的次数为2,且系数不为0,即可求得满足条件的k 的值;(2)抛物线有最高点,所以开口向下,系数小于0,再根据(1)中k 的值即可确定满足条件的值,再根据二次函数性质即可知函数的单调区间;(3)函数有最小值,则开口向上,然后根据二次函数性质可求得最小值,即可知函数单调区间.【详解】解:(1) 函数y =(k ﹣2)245kk x -+是关于x 的二次函数,k 满足2452k k +﹣=,且k ﹣2≠0,解得:1213k k =,=;(2) 抛物线有最高点,图象开口向下,即k ﹣2<0,结合(1)所得,k =1,最高点为(0,0),当x <0时,y 随x 的增大而增大.(3) 函数有最小值,图象开口向上,即k ﹣2>0,k =3,最小值为0,当x <0时,y 随x 的增大而减小.【点睛】本题考查了二次函数的定义、待定系数法求解析式、解一元二次方程以及二次函数图像的性质;解决本题的关键在于知道二次函数的表达形式,用待定系数法求解析式,熟练掌握二次函数图像的性质.12.(1)2a =-,9b =-;(2)(2,4)-B ,(3,9)D --;(3)25.【分析】(1)把点A ,点C 坐标分别代入解析式,即可求出a ,b 的值;(2)由B 与A 的纵坐标相等,D 与C 的纵坐标相等,由对称关系,即可求出B ,D 的坐标;(3)分别求出AB ,CD 和梯形的高,即可得到答案.【详解】解:(1)当4y =-时,24a -=-,2a =±.点A 在第三象限,2a =-.当3x =时,9y =-,9b =-.(2) ////AB CD x 轴,A 点与B 点,C 点与D 点的纵坐标相同.2y x =-关于y 轴对称,(2,4)-B ,(3,9)D --.(3)由题意,得AB 4CD 6==,,梯形的高为5, 1(46)5252ABCD S =⨯+⨯=梯形. 【点睛】本题考查了二次函数与四边形的综合,解题的关键是熟练掌握二次函数的性质.13.34. 【分析】首先求得两个交点的坐标,然后求得直线1y x =+与y 轴的交点坐标,再根据三角形的面积公式即可得出答案.【详解】解:由题意得:221y x y x ⎧=⎨=+⎩解得:12x =-或1x = 点(,)A a b 和点(,)B c d ,其中a c >(1,2)A ,11(,)22B - 直线1y x =+与y 轴的交点坐标为:(0,1) 11131112224ABO S ∆=⨯⨯+⨯⨯=. 【点睛】考查了二次函数的性质,解题的关键是了解如何求得两个图象的交点坐标.141【分析】先求出AB两点坐标,再根据 AOB为直角三角形,根据勾股定理分情况列出含a 的方程进行求解.【详解】 x=-1, y=a,x=2, y=4a,A(-1,a),B(2,4a)当AB为斜边时,AB2=AO2+BO2,即32+(3a)2=(1+a2)+(4+16a2),解得a2=12,a=a>当BO为斜边时,OB2=AB2+AO2,得a=±1,a>0, a=1,AO2=1+a2<9+9a2= AB2,AO2=1+a2<4+16a2= OB2AO不是斜边,1.【点睛】此题主要考查二次函数的图像,解题的关键是根据勾股定理列出方程解出a的值.。

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

九年级数学 二次函数y=ax2bxc(a≠0)的图像与性质(知识讲解1)Word版含解析

专题2.12 二次函数y=ax2+bx+c(a≠0)的图像与性质(知识讲解1)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.12 二次函数y=ax²+bx+c(a≠0)的图象与性质(知识讲解1) 【学习目标】1.会用描点法画二次函数2(0)y ax bx c a =++≠的图象;会用配方法将二次函数2y ax bx c =++的解析式写成2()y a x h k =-+的形式;2.通过图象能熟练地掌握二次函数2y ax bx c =++的性质;3.经历探索2y ax bx c =++与2()y a x h k =-+的图象及性质紧密联系的过程,能运用二次函数的图象和性质解决简单的实际问题,深刻理解数学建模思想以及数形结合的思想. 【要点梳理】要点一、二次函数2(0)y ax bx c a =++≠与2(1)(0)y a x t k a =-+≠之间的相互关系 1.顶点式化成一般式从函数解析式2()y a x h k =-+我们可以直接得到抛物线的顶点(h ,k),所以我们称2()y a x h k =-+为顶点式,将顶点式2()y a x h k =-+去括号,合并同类项就可化成一般式2y ax bx c =++. 2.一般式化成顶点式 22222()()()22b b b b y ax bx c a x x c a x x c a a a a ⎡⎤=++=++=++-+⎢⎥⎣⎦224()24b ac b a x a a-=++.对照2()y a x h k =-+,可知2b h a =-,244ac b k a-=.∴抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--. 特别说明:1.抛物线2y ax bx c =++的对称轴是直线2b x a =-,顶点坐标是24(,)24b ac b a a--,可以当作公式加以记忆和运用.2.求抛物线2y ax bx c =++的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.要点二、二次函数2(0)y ax bx c a =++≠的图象的画法 1.一般方法:列表、描点、连线; 2.简易画法:五点定形法. 其步骤为:(1)先根据函数解析式,求出顶点坐标和对称轴,在直角坐标系中描出顶点M ,并用虚线画出对称轴.(2)求抛物线2y ax bx c =++与坐标轴的交点,当抛物线与x 轴有两个交点时,描出这两个交点A 、B 及抛物线与y 轴的交点C ,再找到点C 关于对称轴的对称点D ,将A 、B 、C 、D 及M 这五个点按从左到右的顺序用平滑曲线连结起来. 特别说明:当抛物线与x 轴只有一个交点或无交点时,描出抛物线与y 轴的交点C 及对称点D ,由C 、M 、D 三点可粗略地画出二次函数图象的草图;如果需要画出比较精确的图象,可再描出一对对称点A 、B ,然后顺次用平滑曲线连结五点,画出二次函数的图象, 要点三、二次函数2(0)y ax bx c a =++≠的图象与性质 1.二次函数2(0)y ax bx c a =++≠图象与性质2.二次函数2(0)y ax bx c a =++≠图象的特征与a 、b 、c 及b2-4ac 的符号之间的关系要点四、求二次函数2(0)y ax bx c a =++≠的最大(小)值的方法如果自变量的取值范围是全体实数,那么函数在顶点处取得最大(或最小)值,即当2b x a =-时,244ac b y a-=.特别说明:如果自变量的取值范围是x1≤x≤x2,那么首先要看2ba-是否在自变量的取值范围x1≤x≤x2内,若在此范围内,则当2b x a =-时,244ac b y a-=,若不在此范围内,则需要考虑函数在x1≤x≤x2范围内的增减性,如果在此范围内,y 随x 的增大而增大,则当x =x2时,22y bx c ++;当x =x1时,211y ax bx c =++,如果在此范围内,y 随x 的增大而减小,则当x =x1时,2max 11y ax bx c =++;当x =x2时,2min 22y ax bx c =++,如果在此范围内,y 值有增有减,则需考察x =x1,x =x2,2bx a=-时y 值的情况. 特别说明: 【典型例题】类型一、二次函数2(0)y ax bx c a =++≠化为顶点式1.已知抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0). (1)求抛物线的解析式; (2)求抛物线的顶点坐标. 举一反三: 【变式1】2.用配方法把二次函数y=12x 2–4x+5化为y=a(x+m)2+k 的形式,再指出该函数图象的开口方向、对称轴和顶点坐标. 【变式2】3.已知二次函数2y x 4x 3=-+.()1用配方法将其化为2y a(x h)k =-+的形式;()2在所给的平面直角坐标系xOy 中,画出它的图象.【变式3】4.已知二次函数y =﹣2x 2+bx +c 的图象经过点A (0,4)和B (1,﹣2). (1)求此抛物线的解析式;(2)求此抛物线的对称轴和顶点坐标; (3)设抛物线的顶点为C ,试求∴CAO 的面积. 类型二、画二次函数2(0)y ax bx c a =++≠的图象5.已知:二次函数243y x x =++ (1)求出该函数图象的顶点坐标; (2)在所提供的网格中画出该函数的草图.举一反三: 【变式1】6.已知二次函数y =﹣x 2+4x .(1)写出二次函数y =﹣x 2+4x 图象的对称轴;(2)在给定的平面直角坐标系中,画出这个函数的图象(列表、描点、连线); (3)根据图象,写出当y <0时,x 的取值范围. 【变式2】7.已知二次函数y =12x 2﹣x ﹣32. (1)在平面直角坐标系内,画出该二次函数的图象; (2)根据图象写出:①当x 时,y >0; ②当0<x <4时,y 的取值范围为 .【变式3】8.已知抛物线22232(0)y ax ax a a =--+≠. (1)求这条抛物线的对称轴;(2)若该抛物线的顶点在x 轴上,求其解析式;(3)设点()1,P m y ,()23,Q y 在抛物线上,若12y y <,求m 的取值范围. 类型三、二次函数2(0)y ax bx c a =++≠的性质9.把抛物线21:23C y x x =++先向右平移4个单位长度,再向下平移5个单位长度得到抛物线2C .(1)直接写出抛物线2C 的函数关系式;(2)动点(),6P a -能否在拋物线2C 上?请说明理由;(3)若点()()12,,,A m y B n y 都在抛物线2C 上,且0m n <<,比较12,y y 的大小,并说明理由. 举一反三: 【变式1】10.在平面直角坐标系xOy 中,关于x 的二次函数2y x px q +=+的图象过点(1,0)-,(2,0).(1)求这个二次函数的表达式;(2)求当21x -≤≤时,y 的最大值与最小值的差;(3)一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,且3a b <<,求m 的取值范围. 【变式2】11.如图,已知抛物线y=x 2-2x -3与x 轴交于A 、B 两点.(1)当0<x <3时,求y 的取值范围;(2)点P 为抛物线上一点,若S △PAB =10,求出此时点P 的坐标.【变式3】12.已知抛物线2y ax bx c =++,如图所示,直线1x =-是其对称轴,()1确定a ,b ,c ,24b ac =-的符号;()2求证:0a b c -+>;()3当x 取何值时,0y >,当x 取何值时0y <.类型四、二次函数的图象及各项的系数13.如图,抛物线y=﹣x2+(m﹣1)x+m与y轴交于点(0,3).(1)m的值为________;(2)当x满足________时,y的值随x值的增大而减小;(3)当x满足________时,抛物线在x轴上方;(4)当x满足0≤x≤4时,y的取值范围是________.举一反三:【变式1】14.已知二次函数y=ax2+bx+c的图象如图所示,给出下列结论:∴abc>0;∴a﹣b+c<0;∴2a+b﹣c<0;∴4a+2b+c>0,∴若点(﹣23,y1)和(73,y2)在该图象上,则y1>y2.其中正确的结论是_____(填入正确结论的序号)类型五、一次函数、二次函数图象的综合判断15.如图,已知直线y=-2x+m与抛物线y=ax2+bx+c相交于A,B两点,且点A(1,4)为抛物线的顶点,点B在x轴上.(1)求m 的值; (2)求抛物线的解析式;(3)若点P 是x 轴上一点,当∴ABP 为直角三角形时直接写出点P 的坐标. 举一反三: 【变式1】16.已知二次函数()2229y mx m x m =++++.()1如果二次函数的图象与x 轴有两个交点,求m 的取值范围;()2如图,二次函数的图象过,点()4,0A ,与y 轴交于点B ,直线AB 与这个二次函数图象的对称轴交于点P ,求点P 的坐标.【变式2】17.如图所示,已知直线y=12-x 与抛物线y=2164x -+交于A 、B 两点,点C 是抛物线的顶点.(1)求出点A 、B 的坐标; (2)求出∴ABC 的面积;(3)在AB 段的抛物线上是否存在一点P ,使得∴ABP 的面积最大?若存在,请求出点P 的坐标;若不存在,请说明理由.参考答案:1.(1)2y x 2x 3=-++(2)(1,4)【详解】解:(1)∴抛物线2y x bx c =-++经过点A (3,0),B (-1,0), ∴抛物线的解析式为;()()y x 3x 1=--+,即2y x 2x 3=-++, (2)∴抛物线的解析式为()22y x 2x 3x 14=-++=--+, ∴抛物线的顶点坐标为:(1,4).(1)根据抛物线2y x bx c =-++经过点A (3,0),B (﹣1,0),直接由交点式得出抛物线的解析式.(2)将抛物线的解析式化为顶点式,即可得出答案.2.抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3). 【分析】用配方法把一般式化为顶点式,根据二次函数的性质解答即可. 【详解】解:∵y =12x 2-4x +5=12(x -4)2-3,∴抛物线的开口向上,对称轴是直线x =4,顶点坐标是(4,-3).【点睛】本题考查的是二次函数的三种形式,正确利用配方法把一般式化为顶点式是解题的关键.3.(1)2(x 2)1--;(2)见解析.【分析】(1)利用配方法把二次函数解析式化成顶点式即可; (2)利用描点法画出二次函数图象即可.【详解】解:()21y x 4x 3=-+=222x 4x 223-+-+ =2(x 2)1--()22y (x 2)1=--,∴顶点坐标为()2,1-,对称轴方程为x 2=.函数二次函数2y x 4x 3=-+的开口向上,顶点坐标为()2,1-,与x 轴的交点为()3,0,()1,0, ∴其图象为:故答案为(1)2(x 2)1--;(2)见解析.【点睛】本题考查二次函数的配方法,用描点法画二次函数的图象,掌握配方法是解题的关键.4.(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)∴CAO 的面积为2.【分析】(1)利用待定系数法把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c 中,可以解得b ,c 的值,从而求得函数关系式即可; (2)利用配方法求出图象的对称轴和顶点坐标;(3)由(2)可得顶点C 的坐标,再根据三角形的面积公式即可求出△CAO 的面积. 【详解】解:(1)把A (0,4)和B (1,﹣2)代入y =﹣2x 2+bx +c ,得:24212c b c =⎧⎨-⨯++=-⎩,解得:44b c =-⎧⎨=⎩, 所以此抛物线的解析式为y =﹣2x 2﹣4x +4; (2)∴y =﹣2x 2﹣4x +4 =﹣2(x 2+2x )+4 =﹣2[(x +1)2﹣1]+4 =﹣2(x +1)2+6,∴此抛物线的对称轴为直线x =﹣1,顶点坐标为(﹣1,6); (3)由(2)知:顶点C (﹣1,6), ∴点A (0,4),∴OA =4, ∴S △CAO =12OA •|xc |=12×4×1=2,即△CAO 的面积为2.故答案为(1)y =﹣2x 2﹣4x +4;(2)对称轴为直线x =﹣1,顶点坐标为(﹣1,6);(3)△CAO 的面积为2.【点睛】本题考查了用待定系数法求二次函数的解析式,二次函数解析式的三种形式,二次函数的性质以及三角形的面积,难度适中.正确求出函数的解析式是解题的关键. 5.(1) (-2,-1);(2)见解析【分析】(1)将二次函数化为顶点式即可得出顶点坐标; (2)利用五点法画二次函数的图象即可.【详解】(1)243y x x =++化为顶点式为2(2)1y x =+- 则该函数图象的顶点坐标为(2,1)--;(2)先求出自变量x 在4,3,2,1,0----处的函数值,再列出表格 当4x =-和0x =时,3y =当3x =-和=1x -时,2(1)4(1)30y =-+⨯-+= 当2x =-时,1y =- 列出表格如下:由此画出该函数的草图如下:【点睛】本题考查了二次函数的顶点式、画二次函数的图象,掌握函数图象的画法是解题关键.6.(1)对称轴是过点(2,4)且平行于y轴的直线x=2;(2)见解析;(3)x<0或x>4.【详解】试题分析:(1)把一般式化成顶点式即可求得;(2)首先列表求出图象上点的坐标,进而描点连线画出图象即可.(3)根据图象从而得出y<0时,x的取值范围.试题解析:(1)∴y=-x2+4x=-(x-2)2+4,∴对称轴是过点(2,4)且平行于y轴的直线x=2;(2)列表得:描点,连线.(3)由图象可知,当y<0时,x的取值范围是x<0或x>4.7.(1)见解析;(2)①x<﹣1或x>3;②﹣2≤y<52.【分析】(1)先把解析式配成顶点式得到抛物线的顶点坐标为(1,2);再分别求出抛物线与坐标轴的交点坐标,然后利用描点法画二次函数图象;(2)∴利用函数图象写出抛物线在x轴上方所对应的自变量的范围即可;∴先确定x=4时,y=52,然后利用函数图象写出当0<x<4时对应的函数值的范围.【详解】解:(1)∴y=12(x﹣1)2﹣2,∴抛物线的对称轴为直线x=1,顶点坐标为(1,2);当x=0时,y=12x2﹣x﹣32=﹣32,则抛物线与y轴交点坐标为(0,﹣32)当y =0时,12 x 2﹣x ﹣32=0,解得x 1=﹣1,x 2=3,抛物线与x 轴的交点坐标为(﹣1,0)、(3,0), 如图,(2)∴当x <﹣1或x >3时,y >0; ∴当0<x <4时,﹣2≤y <52;故答案为x <﹣1或x >3;﹣2≤y <52.【点睛】本题考查了抛物线与x 轴的交点:把求二次函数y =ax 2+bx +c (a ,b ,c 是常数,a ≠0)与x 轴的交点坐标问题转化解关于x 的一元二次方程即可求得交点横坐标.也考查了二次函数的性质.8.(1)1x =;(2)233322y x x =-+或221y x x =-+-;(3)当a >0时,13m -<<;当a <0时,1m <-或3m >.【分析】(1)将二次函数化为顶点式,即可得到对称轴;(2)根据(1)中的顶点式,得到顶点坐标,令顶点纵坐标等于0,解一元二次方程,即可得到a 的值,进而得到其解析式;(3)根据抛物线的对称性求得点Q 关于对称轴的对称点,再结合二次函数的图象与性质,即可得到m 的取值范围.【详解】(1)∴22232y ax ax a =--+, ∴22(1)32y a x a a =---+, ∴其对称轴为:1x =.(2)由(1)知抛物线的顶点坐标为:2(1,23)a a --,∴抛物线顶点在x 轴上, ∴2230a a --=, 解得:32a =或1a =-, 当32a =时,其解析式为:233322y x x =-+, 当1a =-时,其解析式为:221y x x =-+-, 综上,二次函数解析式为:233322y x x =-+或221y x x =-+-. (3)由(1)知,抛物线的对称轴为1x =, ∴()23,Q y 关于1x =的对称点为2(1,)y -, 当a >0时,若12y y <, 则-1<m <3;当a <0时,若12y y <, 则m <-1或m >3.【点睛】本题考查了二次函数对称轴,解析式的计算,以及根据二次函数的图象性质求不等式的取值范围,熟知相关计算是解题的关键.9.(1)2(3)3y x =--;(2)不在,见解析;(3)12y y >,见解析【分析】(1)先求出抛物线1C 的顶点坐标,再根据向右平移横坐标加,向下平移纵坐标减求出平移后的抛物线的顶点坐标即可;(2)根据抛物线2C 的顶点的纵坐标为3-,即可判断点()6P a -,不在拋物线2C 上; (3)根据抛物线2C 的增减性质即可解答.【详解】(1)抛物线221:23(1)2C y x x x =++=++,∴抛物线1C 的顶点坐标为(﹣1,2),根据题意,抛物线2C 的顶点坐标为(-1+4,2-5),即(3,﹣3), ∴抛物线2C 的函数关系式为:2(3)3y x =--; (2)动点P 不在抛物线2C 上. 理由如下:∴抛物线2C 的顶点为()3,3-,开口向上, ∴抛物线2C 的最低点的纵坐标为3-. ∴63P y =-<-,∴动点P 不在抛物线2C 上; (3)12y y >. 理由如下:由(1)知抛物线2C 的对称轴是3x =,且开口向上, ∴在对称轴左侧y 随x 的增大而减小. ∴点()()12,,,A m y B n y 都在抛物线2C 上,且03m n <<<, ∴12y y >.【点睛】本题考查了二次函数图象与几何变换,二次函数图象上点的坐标特征,熟练掌握平移的规律“左加右减,上加下减”以及熟练掌握二次函数的性质是解题的关键. 10.(1)2y x x 2=--;(2)254;(3)1m <. 【分析】(1)利用待定系数法将点(1,0)-,(2,0)代入解析式中解方程组即可; (2)根据(1)中函数关系式得到对称轴12x =,从而知在21x -≤≤中,当x=-2时,y 有最大值,当12x =时,y 有最小值,求之相减即可; (3)根据两函数相交可得出x 与m 的函数关系式,根据有两个交点可得出∆>0,根据根与系数的关系可得出a ,b 的值,然后根据3a b <<,整理得出m 的取值范围. 【详解】解:(1)∴2y x px q +=+的图象过点(1,0)-,(2,0),∴10420p q p q -+=⎧⎨++=⎩解得12p q =-⎧⎨=-⎩ ∴2y x x 2=--(2)由(1)得,二次函数对称轴为12x =∴当21x -≤≤时,y 的最大值为(-2)2-(-2)-2=4,y 的最小值为21192224⎛⎫--=- ⎪⎝⎭ ∴y 的最大值与最小值的差为925444⎛⎫--= ⎪⎝⎭;(3)由题意及(1)得()2222y m x my x x ⎧=-+-⎨=--⎩整理得()()2340x m x m ----=即()(1)40x x m +--=⎡⎤⎣⎦∴一次函数(2)2y m x m =-+-的图象与二次函数2y x px q +=+的图象交点的横坐标分别是a 和b ,∴()()23440m m ∆=-+-> 化简得210250m m -+> 即()250m -> 解得m≠5∴a ,b 为方程()(1)40x x m +--=⎡⎤⎣⎦的两个解 又∴3a b << ∴a=-1,b=4-m 即4-m>3 ∴m<1综上所述,m 的取值范围为1m <.【点睛】本题考查了利用待定系数法求二次函数解析式,二次函数图象的性质,根与系数的关系等知识.解题的关键是熟记二次函数图象的性质. 11.(1) ﹣4≤y <0;(2) P 点坐标为(﹣2,5)或(4,5)【详解】分析:(1)、首先将抛物线配成顶点式,然后根据x 的取值范围,从而得出y 的取值范围;(2)、根据题意得出AB 的长度,然后根据面积求出点P 的纵坐标,根据抛物线的解析式求出点P 的坐标.详解:(1)∴抛物线的解析式为y=x 2﹣2x ﹣3,∴y=x 2﹣2x ﹣3=(x ﹣1)2﹣4, ∴顶点坐标为(1,﹣4),由图可得当0<x <3时,﹣4≤y <0. (2)当y=0时,x 2﹣2x ﹣3=0, 解得:x 1=-1 x 2=3 ∴A (﹣1,0)、B (3,0), ∴AB=4.设P (x ,y ),则S △PAB =AB•|y|=2|y|=10, ∴|y|=5, ∴y=±5. ∴当y=5时,x 2﹣2x ﹣3=5,解得:x 1=﹣2,x 2=4, 此时P 点坐标为(﹣2,5)或(4,5); ∴当y=﹣5时,x 2﹣2x ﹣3=﹣5,方程无解; 综上所述,P 点坐标为(﹣2,5)或(4,5).点睛:本题主要考查的是二次函数的性质,属于基础题型.求函数值取值范围时,一定要注意自变量的取值范围是否是在对称轴的一边.12.(1)0a <,0b <,0c >,240b ac =->;(2)详见解析;(3)当31x -<<时,0y >;当3x <-或1x >时,0y <.【分析】(1)根据开口方向确定a 的符号,根据对称轴的位置确定b 的符号,根据抛物线与y 轴的交点确定c 的符号,根据抛物线与x 轴交点的个数确定b 2-4ac 的符号; (2)根据图象和x=-1的函数值确定a -b+c 与0的关系; (3)抛物线在x 轴上方时y >0;抛物线在x 轴下方时y <0. 【详解】()1∵抛物线开口向下, ∴0a <, ∵对称轴12bx a=-=-, ∴0b <,∵抛物线与y 轴的交点在x 轴的上方, ∴0c >,∵抛物线与x 轴有两个交点, ∴240b ac =->;()2证明:∵抛物线的顶点在x 轴上方,对称轴为1x =-,∴当1x =-时,0y a b c =-+>;()3根据图象可知,当31x -<<时,0y >;当3x <-或1x >时,0y <.【点睛】本题考查了二次函数图象与系数的关系,解题的关键是熟练的掌握二次函数图象与系数的关系.13.(1)3;(2)x >1;(3)-1<x <3;(4)-5≤y ≤4 【分析】根据函数的图象和性质即可求解.【详解】解:(1)将(0,3)代入y =﹣x 2+(m ﹣1)x +m 得,3=m , 故答案为3;(2)m =3时,抛物线的表达式为y =﹣x 2+2x +3, 函数的对称轴为直线x =2ba-=1, ∴﹣1<0,故抛物线开口向下,当x >1时,y 的值随x 值的增大而减小, 故答案为x >1;(3)令y =﹣x 2+2x +3,解得x =﹣1或3, 从图象看,当﹣1<x <3时,抛物线在x 轴上方; 故答案为﹣1<x <3;(4)当x =0时,y =3;当x =4时,y =﹣x 2+2x +3=﹣5, 而抛物线的顶点坐标为(1,4),故当x 满足0≤x ≤4时,y 的取值范围是﹣5≤y ≤4, 故答案为﹣5≤y ≤4.【点睛】本题主要考查二次函数的图像与性质及系数的关系,熟练掌握二次函数的图像与性质及系数的关系是解题的关键. 14.∴∴∴【详解】解:∴抛物线开口向下, ∴a <0,∴对称轴在y 轴右边, ∴b >0,∴抛物线与y 轴的交点在x 轴的上方, ∴c >0,∴abc <0,故∴错误;∴二次函数y =ax 2+bx +c 图象可知,当x =﹣1时,y <0,∴a ﹣b +c <0,故∴正确;∴二次函数图象的对称轴是直线x =1,c >0, ∴2b a-=1, ∴2a +b =0,∴2a +b <c ,∴2a +b ﹣c <0,故∴正确;∴二次函数y =ax 2+bx +c 图象可知,当x =2时,y >0,∴4a +2b +c >0,故∴正确;∴二次函数图象的对称轴是直线x =1,∴抛物线上x =23-时的点与当x =83时的点对称, ∴x >1,y 随x 的增大而减小,∴y 1<y 2,故∴错误;故答案为∴∴∴.【点睛】本题考查了二次函数的图象与系数的关系,要熟练掌握,解答此题的关键是要明确:∴二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;∴一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右.(简称:左同右异)∴常数项c 决定抛物线与y 轴交点. 抛物线与y 轴交于(0,c ).15.(1)m =6;(2)y =﹣x 2+2x +3;(3)点P 的坐标为(7,0)或(1,0).【分析】(1)将点A 坐标代入y=-2x+m ,即可求解;(2)y=-2x+6,令y=0,则x=3,故点B (3,0),则二次函数表达式为:y=a (x -1)2+4,将点B 的坐标代入上式,即可求解;(3)分∴BAP=90°、∴AP (P′)B=90°两种情况,求解即可.【详解】解:(1)将点A 坐标代入y =﹣2x+m 得:4=﹣2+m ,解得:m =6;(2)y =﹣2x+6,令y =0,则x =3,故点B (3,0),则二次函数表达式为:y =a (x ﹣1)2+4,将点B 的坐标代入上式得:0=a (3﹣1)2+4,解得:a =﹣1,故抛物线的表达式为:y =﹣(x ﹣1)2+4=﹣x 2+2x+3;(3)∴当∴BAP =90°时,直线AB 的表达式为:y =﹣2x+6,则直线PB 的表达式中的k 值为12,设直线PB 的表达式为:y =12x+b ,将点A 的坐标代入上式得:4=12×1+b , 解得:b =72, 即直线PB 的表达式为:y =12x+72, 当y =0时,x =﹣7,即点P (7,0);∴当∴AP (P′)B =90°时,点P′(1,0);故点P 的坐标为(7,0)或(1,0).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的基本知识,要注意类讨论,避免遗漏,本题较为简单.16.(1)45m <且0m ≠;(2)P 点坐标为()1,6. 【分析】解:(1)根据题意得0m ≠且()24(2)490m m m =+-⋅+>;(2)先求二次函数的解析式,再求抛物线的对称轴,用待定系数法求直线AB 的解析式,再求AB 与对称轴的交点P.【详解】解:()1根据题意得0m ≠且()24(2)490m m m =+-⋅+>, 所以45m <且0m ≠; ()2把()4,0A 代入()2229y mx m x m =++++得()168290m m m ++++=,解得1m =-,所以抛物线解析式为2228(1)9y x x x =-++=--+,所以抛物线的对称轴为直线1x =,当0x =时,2288y x x =-++=,则()0,8B ,设直线AB 的解析式为y kx b =+,把()4,0A ,()0,8B 代入得{408k b b +==,解得{28k b =-=,所以直线AB 的解析式为28y x =-+,当1x =时,286y x =-+=,所以P 点坐标为()1,6.【点睛】本题考核知识点:二次函数与一次函数. 解题关键点:理解二次函数图象的交点问题.17.(1)点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)30;(3)当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234). 【分析】(1)由直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点,可得方程211x x 624-=-+,解方程即可求得点A 、B 的坐标;(2)首先由点C 是抛物线的顶点,即可求得点C 的坐标,又由S △ABC =S △OBC +S △OAC 即可求得答案;(3)首先过点P 作PD∴OC ,交AB 于D ,然后设21P a,a 64⎛⎫-+ ⎪⎝⎭,即可求得点D 的坐标,可得PD 的长,又由S △ABP =S △BDP +S △ADP ,根据二次函数求最值的方法,即可求得答案.【详解】解:(1)∴直线1y x 2=-与抛物线21y x 64=-+交于A 、B 两点, ∴211x x 624-=-+, 解得:x =6或x =﹣4,当x =6时,y =﹣3,当x =﹣4时,y =2,∴点A 、B 的坐标分别为:(6,﹣3),(﹣4,2);(2)∴点C 是抛物线的顶点.∴点C 的坐标为(0,6),∴S △ABC =S △OBC +S △OAC =12×6×4+12×6×6=30;(3)存在.过点P 作PD∴OC ,交AB 于D ,设P(a ,﹣14a 2+6), 则D(a ,﹣12a), ∴PD =﹣14a 2+6+12a , ∴S △ABP =S △BDP +S △ADP =12×(﹣14a 2+6+12a)×(a+4)+12×(﹣14a 2+6+12a)×(6﹣a)=25125(a 1)44--+ (﹣4<a <6), ∴当a =1时,∴ABP 的面积最大,此时点P 的坐标为(1,234).【点睛】此题考查了二次函数与一次函数的交点问题,三角形面积的求解以及二次函数的最值问题等知识.此题综合性很强,难度较大,解题的关键是方程思想与数形结合思想的应用.。

二次函数的动点问题(等腰、直角三角形的存在性问题)

二次函数的动点问题(等腰、直角三角形的存在性问题)

_ Q_ G_P_ O二次函数中的动点问题 三角形的存在性问题一、技巧提炼1、利用待定系数法求抛物线解析式的常用形式〔1〕、【一般式】抛物线上任意三点时,通常设解析式为,然后解三元方程组求解; 〔2〕、【顶点式】抛物线的顶点坐标和抛物线上另一点时,通常设解析式为求解;2、二次函数y=ax 2+bx+c 与x 轴是否有交点,可以用方程ax 2+bx+c = 0是否有根的情况进展判定;判别式ac b 42-=∆ 二次函数与x 轴的交点情况一元二次方程根的情况 △ > 0与x 轴交点 方程有的实数根△ < 0 与x 轴交点 实数根 △ = 0与x 轴交点方程有的实数根3、抛物线上有两个点为A 〔x 1,y 〕,B 〔x 2,y 〕 (1)对称轴是直线2x 21x x +=(2)两点之间距离公式: 两点()()2211y ,x Q ,y ,x P , 那么由勾股定理可得:221221)()(y y x x PQ -+-=练一练:A 〔0,5〕和B 〔-2,3〕,那么AB =。

4、 常见考察形式1〕A 〔1,0〕,B 〔0,2〕,请在下面的平面直角坐标系 坐标轴上找一点C ,使△ABC 是等腰三角形; 总结:两圆一线方法规律:平面直角坐标系中一条线段,构造等腰三角形,用的是“两圆一线〞:分别以线段的两个端点为圆心,线段长度为半径作圆,再作线段的垂直平分线;2〕A 〔-2,0〕,B 〔1,3〕,请在平面直角坐标系中坐标轴 上找一点C ,使△ABC 是直角三角形;总结: 两线一圆方法规律{平面直角坐标系中一条线段,构造直角三角形,用的是“两线一圆〞:分别过线段的两个端点作线段的垂线,再以线段为直径作圆; 5、求三角形的面积:〔1〕直接用面积公式计算;〔2〕割补法;〔3〕铅垂高法; 如图,过△ABC 的三个顶点分别作出与水平线垂直的三条直线, 外侧两条直线之间的距离叫△ABC 的“水平宽〞〔a 〕,中间的 这条直线在△ABC 内部线段的长度叫△ABC 的“铅垂高〞〔h 〕. 我们可得出一种计算三角形面积的新方法:S △ABC =12ah ,即三角形面积等于水平宽与铅垂高乘积的一半。

二次函数的存在性问题(Word版解析+答案)

二次函数的存在性问题(Word版解析+答案)

中考压轴题解析二次函数的存在性问题【典例分析】【考点 1】二次函数与相似三角形问题例1】已知抛物线y ax2 bx 3与 x轴分别交于A( 3,0),B(1,0)两点,与 y轴交于点 C.2)点 F 是线段 AD 上一个动点.1AD .2ABC 相似?若相似,求出点 F 的坐标;若不相似,请说明理由.变式1-1】如图,抛物线y ax2 2x c经过A( 1,0),B两点,且与y轴交于点C(0,3) ,抛物线与直线y x 1交于A,E 两点.(1)求抛物线的解析式;(2)坐标轴上是否存在一点Q,使得AQE是以AE为底边的等腰三角形?若存在,请直接写出点Q 的坐标;若不存在,说明理由.(3)P点在x轴上且位于点B 的左侧,若以P,B,C为顶点的三角形与ABE相似,求点P的坐AF①如图 1,设k ,当 k 为何值时,CFAD1)求抛物线的表达式及顶点 D 的坐标;标.1【变式1-2】如图,已知抛物线y m(x 2)(x m)(m > 0)与 x 轴相交于点 A,B,与 y轴相交于点 C,且点 A 在点 B 的左侧 .( 1)若抛物线过点( 2, 2),求抛物线的解析式;(2)在( 1)的条件下,抛物线的对称轴上是否存在一点H ,使 AH+CH 的值最小,若存在,求出点 H 的坐标;若不存在,请说明理由;(3)在第四象限内,抛物线上是否存在点M ,使得以点 A,B,M 为顶点的三角形与△ACB 相似?若存在,求出 m 的值;若不存在,请说明理由 .考点 2】二次函数与直角三角形问题BC交于点D,连接AC 、AD ,求VACD的面积;3 点E为直线BC上的任意一点,过点E作x轴的垂线与抛物线交于点F ,问是否存在点E使VDEF 为直角三角形?若存在,求出点E 坐标,若不存在,请说明理由.例2】如图,抛物线y ax2bx c a 0的顶点坐标为2, 1 ,图象与y 轴交于点C 0,3 ,与x轴2 设抛物线对称轴与直线【变式2-1】如图,经过x 轴上A( 1,0), B(3,0)两点的抛物线y m(x 1)2 4m (m 0)交y 轴于点C ,设抛物线的顶点为D ,若以DB 为直径的⊙ G 经过点C ,求解下列问题:1)用含m的代数式表示出C,D 的坐标;2)求抛物线的解析式;3)能否在抛物线上找到一点Q,使△BDQ 为直角三角形?如能,求出Q点的坐标,若不能,请说明理由。

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题(解析版)

二次函数与几何的动点及最值、存在性问题目录题型01平行y轴动线段最大值与最小值问题题型02抛物线上的点到某一直线的距离问题题型03已知点关于直线对称点问题题型04特殊角度存在性问题题型05将军饮马模型解决存在性问题题型06二次函数中面积存在性问题题型07二次函数中等腰三角形存在性问题题型08二次函数中直角三角形存在性问题题型09二次函数中全等三角形存在性问题题型10二次函数中相似三角形存在性问题题型11二次函数中平行四边形存在性问题题型12二次函数中矩形存在性问题题型13二次函数中菱形存在性问题题型14二次函数中正方形存在性问题二次函数常见存在性问题:(1)等线段问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再利用点到点或点到直线的距离公式列出方程或方程组,然后解出参数的值,即可以将线段表示出来.【说明】在平面直角坐标系中该点在某一函数图像上,设该点的横坐标为m,则可用含m字母的函数解析式来表示该点的纵坐标,简称“设横表纵”或“一母式”.(2)平行y轴动线段最大值与最小值问题:将动点坐标用函数解析式以“一母式”的结构表示出来,再用纵坐标的较大值减去较小值,再利用二次函数的性质求出动线段的最大值或最小值.(3)求已知点关于直线对称点问题:先求出直线解析式,再利用两直线垂直的性质(两直线垂直,斜率之积等于-1)求出已知点所在直线的斜率及解析式,最后用中点坐标公式即可求出对称点的坐标.(4)“抛物线上是否存在一点,使其到某一直线的距离为最值”的问题:常常利用直线方程与二次函数解析式联立方程组,求出切点坐标,运用点到直线的距离公式进行求解.(5)二次函数与一次函数、特殊图形、旋转及特殊角度综合:图形或一次函数与x 轴的角度特殊化,利用与角度有关知识点求解函数图像上的点,结合动点的活动范围,求已知点与动点是否构成新的特殊图形.2.二次函数与三角形综合(1)将军饮马问题:本考点主要分为两类:①在定直线上是否存在点到两定点的距离之和最小;②三角形周长最小或最大的问题,主要运用的就是二次函数具有对称性.(2)不规则三角形面积最大或最小值问题:利用割补法将不规则三角形分割成两个或以上的三角形或四边形,在利用“一母式”将动点坐标表示出来,作线段差,用线段差来表示三角形的底或高,用面积公式求出各部分面积,各部分面积之和就是所求三角形的面积.将三角形的面积用二次函数的结构表示出来,再利用二次函数的性质求出面积的最值及动点坐标.(3)与等腰三角形、直角三角形的综合问题:对于此类问题,我们可以利用两圆一线或两线一圆的基本模型来进行计算.问题分情况找点画图解法等腰三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为等腰三角形以AB为腰分别以点A ,B 为圆心,以AB 长为半径画圆,与已知直线的交点P 1,P 2,P 4,P 5即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标以AB 为底作线段AB 的垂直平分线,与已知直线的交点P 3即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB =AP ;②AB =BP ;③BP =AP 列方程解出坐标问题分情况找点画图解法直角三角形已知点A ,B 和直线l ,在l 上求点P ,使△PAB 为直角三角形以AB为直角边分别过点A ,B 作AB 的垂线,与已知直线的交点P 1,P 4即为所求分别表示出点A ,B ,P 的坐标,再表示出线段AB ,BP ,AP 的长度,由①AB 2=BP 2+AP 2;②BP 2=AB 2+AP 2;③AP 2=AB 2+BP 2列方程解出坐标以AB 为斜边以AB 的中点Q 为圆心,QA 为半径作圆,与已知直线的交点P 2,P 3即为所求注:其他常见解题思路有:①作垂直,构造“三垂直”模型,利用相似列比例关系得方程求解;②平移垂线法:若以AB 为直角边,且AB 的一条垂线的解析式易求(通常为过原点O 与AB 垂直的直线),可将这条直线分别平移至过点A 或点B 得到相应解析式,再联立方程求解.(4)与全等三角形、相似三角形的综合问题:在没有指定对应点的情况下,理论上有六种情况需要讨论,但在实际情况中,通常不会超过四种,要注意边角关系,积极分类讨论来进行计算.情况一探究三角形相似的存在性问题的一般思路:解答三角形相似的存在性问题时,要具备分类讨论思想及数形结合思想,要先找出三角形相似的分类标准,一般涉及动态问题要以静制动,动中求静,具体如下:①假设结论成立,分情况讨论.探究三角形相似时,往往没有明确指出两个三角形的对应点(尤其是以文字形式出现求证两个三角形相似的题目),或者涉及动点问题,因动点问题中点的位置的不确定,此时应考虑不同的对应关系,分情况讨论;②确定分类标准.在分类时,先要找出分类的标准,看两个相似三角形是否有对应相等的角,若有,找出对应相等的角后,再根据其他角进行分类讨论来确定相似三角形成立的条件;若没有,则分别按三种角对应来分类讨论;③建立关系式,并计算.由相似三角形列出相应的比例式,将比例式中的线段用所设点的坐标表示出来(其长度多借助勾股定理运算),整理可得一元一次方程或者一元二次方程,解方程可得字母的值,再通过计算得出相应的点的坐标.情况二探究全等三角形的存在性问题的思路与探究相似三角形的存在性问题类似,但是除了要找角相等外,还至少要找一组对应边相等.3.二次函数与四边形的综合问题特殊四边形的探究问题解题步骤如下:①先假设结论成立;②设出点坐标,求边长;③建立关系式,并计算.若四边形的四个顶点位置已确定,则直接利用四边形边的性质进行计算;若四边形的四个顶点位置不确定,需分情况讨论:a.探究平行四边形:①以已知边为平行四边形的某条边,画出所有的符合条件的图形后,利用平行四边形的对边相等进行计算;②以已知边为平行四边形的对角线,画出所有的符合条件的图形后,利用平行四边形对角线互相平分的性质进行计算;③若平行四边形的各顶点位置不确定,需分情况讨论,常以已知的一边作为一边或对角线分情况讨论.b.探究菱形:①已知三个定点去求未知点坐标;②已知两个定点去求未知点坐标,一般会用到菱形的对角线互相垂直平分、四边相等的性质列关系式.c.探究正方形:利用正方形对角线互相垂直平分且相等的性质进行计算,一般是分别计算出两条对角线的长度,令其相等,得到方程再求解.d.探究矩形:利用矩形对边相等、对角线相等列等量关系式求解;或根据邻边垂直,利用勾股定理列关系式求解.题型01平行y轴动线段最大值与最小值问题1(2023·广东东莞·一模)如图,抛物线y=x2+bx+c与x轴交于A、B两点,与y轴交于点C,OA=OC =3,顶点为D.(1)求此函数的关系式;(2)在AC 下方的抛物线上有一点N ,过点N 作直线l ∥y 轴,交AC 与点M ,当点N 坐标为多少时,线段MN 的长度最大?最大是多少?(3)在对称轴上有一点K ,在抛物线上有一点L ,若使A ,B ,K ,L 为顶点形成平行四边形,求出K ,L 点的坐标.(4)在y 轴上是否存在一点E ,使△ADE 为直角三角形,若存在,直接写出点E 的坐标;若不存在,说明理由.【答案】(1)y =x 2+2x -3(2)当N 的坐标为-32,-154 ,MN 有最大值94(3)K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12(4)存在,点E 的坐标为0,32 或0,-72或0,-1 或0,-3【分析】(1)由OA =OC =3求得A -3,0 ,C 0,-3 ,再分别代入抛物线解析式y =x 2+bx +c ,得到以b ,c 为未知数的二元一次方程组,求出b ,c 的值即可;(2)求出直线AC 的解析式,再设出M 、N 的坐标,把MN 表示成二次函数,配方即可;(3)根据平行四边形的性质,以AB 为边,以AB 为对角线,分类讨论即可;(4)设出E 的坐标,分别表示出△ADE 的平分,再分每一条都可能为斜边,分类讨论即可.【详解】(1)∵抛物线y =x 2+bx +c 经过点A ,点C ,且OA =OC =3,∴A -3,0 ,C 0,-3 ,∴将其分别代入抛物线解析式,得c =-39-3b +c =0,解得b =2c =-3 .故此抛物线的函数表达式为:y =x 2+2x -3;(2)设直线AC 的解析式为y =kx +t ,将A -3,0 ,C 0,-3 代入,得t =-3-3k +t =0 ,解得k =-1t =-3 ,∴直线AC 的解析式为y =-x -3,设N 的坐标为n ,n 2+2n -3 ,则M n ,-n -3 ,∴MN =-n -3-n 2+2n -3 =-n 2-3n =-n +32 +94,∵-1<0,∴当n =-32时,MN 有最大值,为94,把n =-32代入抛物线得,N 的坐标为-32,-154,当N 的坐标为-32,-154 ,MN 有最大值94;(3)①当以AB 为对角线时,根据平行四边形对角线互相平分,∴KL 必过-1,0 ,∴L 必在抛物线上的顶点D 处,∵y =x 2+2x -3=x +1 2-4,∴K -1,4 ,L -1,-4②当以AB 为边时,AB =KL =4,∵K 在对称轴上x =-1,∴L 的横坐标为3或-5,代入抛物线得L -5,12 或L 3,12 ,此时K 都为-1,12 ,综上,K -1,4 ,L -1,-4 或K -1,12 ,L -5,12 或K -1,12 ,L 3,12 ;(4)存在,由y =x 2+2x -3=x +1 2-4,得抛物线顶点坐标为D -1,-4 ∵A -3,0 ,∴AD 2=-3+1 2+0+4 2=20,设E 0,m ,则AE 2=-3-0 2+0-m 2=9+m 2,DE 2=-1-0 2+-4-m 2=17+m 2+8m ,①AE 为斜边,由AE 2=AD 2+DE 2得:9+m 2=20+17+m 2+8m ,解得:m =-72,②DE 为斜边,由DE 2=AD 2+AE 2得:9+m 2+20=17+m 2+8m ,解得:m =32,③AD 为斜边,由AD 2=ED 2+AE 2得:20=17+m 2+8m +9+m 2,解得:m =-1或-3,∴点E 的坐标为0,32 或0,-72或0,-1 或0,-3 .【点睛】本题主要考查待定系数法求二次函数解析式,二次函数图象与性质,平行四边形的判定与性质以及勾股定理等知识,会运用待定系数法列方程组,两点间距离公式求MN 的长,由平行四边形的性质判定边相等,运用勾股定理列方程.2(2023·河南南阳·统考一模)如图,抛物线与x 轴相交于点A 、B (点A 在点B 的左侧),与y 轴的交于点C 0,-4 ,点P 是第三象限内抛物线上的一个动点,设点P 的横坐标为m ,过点P 作直线PD ⊥x 轴于点D ,作直线AC 交PD 于点E .已知抛物线的顶点P 坐标为-3,-254.(1)求抛物线的解析式;(2)求点A 、B 的坐标和直线AC 的解析式;(3)求当线段CP =CE 时m 的值;(4)连接BC ,过点P 作直线l ∥BC 交y 轴于点F ,试探究:在点P 运动过程中是否存在m ,使得CE =DF ,若存在直接写出m 的值;若不存在,请说明理由.【答案】(1)y =14x 2+32x -4(2)A -8,0 ,B 2,0 ,y =-12x -4(3)-4(4)存在,m =2-25或m =-4【分析】(1)运用待定系数法即可求得抛物线的解析式;(2)令y =0,解方程即可求得点A 、B 的坐标,再运用待定系数法即可求得直线AC 的解析式;(3)过点C 作CF ⊥PE 于点F ,根据等腰三角形的性质可得点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,可得F m ,18m 2+12m -4 ,再由点F 与点C 的纵坐标相同建立方程求解即可;(4)过C 作CH ⊥PD 于H ,设P m ,14m 2+32m -4 ,由PF ∥BC ,可得直线PF 解析式为y =2x +14m 2-12m -4,进而可得OF =14m 2-12m -4 ,再证得Rt △CHE ≅Rt △DOF HL ,得出∠HCE =∠FDO ,进而推出∠FDO =∠CAO ,即tan ∠FDO =tan ∠CAO ,据此建立方程求解即可.【详解】(1)解:∵抛物线的顶点坐标为-3,-254∴设抛物线的解析式为y =a x +3 2-254,把点C 0,-4 代入,得:-4=9a -254,解得:a =14,∴y =14x +3 2-254=14x 2+32x -4,∴该抛物线的解析式为y =14x 2+32x -4.(2)解:令y =0,得14x 2+32x -4=0,解得:x 1=-8,x 2=2,∴A -8,0 ,B 2,0 ,,设直线AC 的解析式为y =kx +b ,则-8k +b =0b =-4 ,解得:k =-12b =-4 ,∴直线AC 的解析式为y =-12x -4.(3)解:如图,过点C 作CF ⊥PE 于点F ,∵CP =CE ,∴EF =PF ,即点F 是PE 的中点,设P m ,14m 2+32m -4 ,则E m ,-12m -4 ,∴F m ,18m 2+12m -4 ,∵PE ∥y 轴,CF ⊥PE ,∴CF ∥x 轴,∴18m 2+12m -4=-4,解得:m =-4或m =0(不符合题意,舍去),∴m =-4.(4)解:存在m ,使得CE =DF ,理由如下:如图:过C 作CH ⊥PD 于H ,设P m,14m2+32m-4,由B2,0,C0,-4,由待定系数法可得直线BC解析式为y=2x-4,根据PF∥BC,设直线PF解析式为y=2x+c,将P m,14m2+32m-4代入得:1 4m2+32m-4=2m+c,∴c=14m2-12m-4,∴直线PF解析式为y=2x+14m2-12m-4,令x=0得y=14m2-12m-4,∴F0,14m2-12m-4,∴OF=14m2-12m-4,∵∠CHD=∠PDO=∠COD=90°,∴四边形CODH是矩形,∴CH=OD,∵CE=DF,∴Rt△CHE≅Rt△DOF HL,∴∠HCE=∠FDO,∵∠HCE=∠CAO,∴∠FDO=∠CAO,∴tan∠FDO=tan∠CAO,∴OF OD =OCOA,即14m2-12m-4-m=48=12,∴1 4m2-12m-4=-12m或14m2-12m-4=12m,解得:m=-4或m=4或m=2-25或m=2+25,∵P在第三象限,∴m=2-25或m=-4.【点睛】本题属于二次函数综合题,主要考查了待定系数法求函数解析式、二次函数综合应用、等腰三角形性质、矩形判定及性质、相似三角形判定及性质、解直角三角形等知识点,解题的关键是用含m的代数式表示相关点坐标和相关线段的长度.3(2023·山东聊城·统考三模)抛物线y=-x2+bx+c与x轴交于点A3,0,与y轴交于点C0,3,点P 为抛物线上的动点.(2)若P 为直线AC 上方抛物线上的动点,作PH ∥x 轴交直线AC 于点H ,求PH 的最大值;(3)点N 为抛物线对称轴上的动点,是否存在点N ,使直线AC 垂直平分线段PN ?若存在,请直接写出点N 的纵坐标;若不存在,请说明理由.【答案】(1)b =2,c =3(2)PH 取得最大值为94(3)存在,2-2或2+2【分析】(1)将坐标代入解析式,构建方程求解;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,则PM =m ;待定系数法确定直线AC 的解析式为y =-x +3,从而确定PH =m -m 2-2m =-m 2+3m =-m -32 2+94,解得PH 最大值为94;(3)如图,设PN 与AC 交于点G ,可设直线PN 的解析式为y =x +p ,设点N (1,n ),求得y =x +(n -1);联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1,所以点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n2+1 -n =2,由二次函数解析式构建方程-(-n +3)2+2(-n +3)+3=2,解得n =2±2;【详解】(1)∵抛物线y =-x 2+bx +c 与x 轴交于点A 3,0 ,与y 轴交于点C 0,3 ,∴-9+3b +c =0c =3,解得:b =2c =3 ,∴b =2,c =3;(2)设PH 交y 轴于点M ,P m ,-m 2+2m +3 ,∴PM =m ,∵PH ∥x 轴,∴点H 的纵坐标为-m 2+2m +3,设直线AC 的解析式为y =kx +n ,∴3k +n =0n =3 ,解得:k =-1n =3 ,∴直线AC 的解析式为y =-x +3.∴-m 2+2m +3=-x +3,∴x =m 2-2m ,∴H m 2-2m ,-m 2+2m +3 ,∴PH =m -m 2-2m =-m 2+3m =-m -322+94,∴当m =32时,PH 取得最大值为94(3)存在点N ,使直线AC 垂直平分线段PN ,点N 的纵坐标为2-2或2+2如图,设PN 与AC 交于点G ,∵AC 垂直平分PN ,直线AC 的解析式为y =-x +3∴可设直线PN 的解析式为y =x +p 设点N (1,n ),则n =1+p ∴p =n -1,∴y =x +(n -1)联立y =-x +3y =x +(n -1) ,解得x =-n 2+2y =n 2+1∴点P 的横坐标为2×-n 2+2 -1=-n +3,纵坐标为2×n 2+1 -n =2∴-(-n +3)2+2(-n +3)+3=2,解得n =2±2∴点N 的纵坐标为2-2或2+2.【点睛】本题考查利用二次函数解析式及点坐标求待定参数、待定系数法确定函数解析式、二次函数极值及其它二次函数综合问题,利用直线间的位置关系、点线间的位置关系,融合方程的知识求解坐标是解题的关键.题型02抛物线上的点到某一直线的距离问题1(2023·广东梅州·统考二模)探究求新:已知抛物线G 1:y =14x 2+3x -2,将抛物线G 1平移可得到抛物线G 2:y =14x 2.(1)求抛物线G 1平移得到抛物线G 2的平移路径;(2)设T 0,t ,直线l :y =-t ,是否存在这样的t ,使得抛物线G 2上任意一点到T 的距离等于到直线l 的距离?若存在,求出t 的值;若不存在,试说明理由;(3)设H 0,1 ,Q 1,8 ,M 为抛物线G 2上一动点,试求QM +MH 的最小值.参考公式:若点M x 1,y 1 ,N x 2,y 2 为平面上两点,则有MN =x 1-x 22+y 1-y 2 2.【答案】(1)将G 1向左平移-6个单位,向上平移11个单位(2)存在,1(3)9【分析】(1)设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,列方程组即可求解;(2)设P x 0,x 204为抛物线G 2上的一点,根据题意列方程即可;(3)点H 坐标与(2)中t =1时的T 点重合,过点M 作MA ⊥l ,垂足为A ,如图所示,则有MH =MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值.【详解】(1).解:设G 1向左平移a 个单位,向上平移b 个单位得到函数G 2,由平移法则可知14(x +a )2+3(x +a )-2+b =14x 2,整理可得14x 2+3+12a x +14a 2+3a -2+b =14x 2,可得方程组3+12a =014a 2+3a -2+b =0,解得a =-6b =11 ;∴平移路径为将G 1向左平移-6个单位,向上平移11个单位;(2)解:存在这样的t ,且t =1时满足条件,设P x 0,x 204为抛物线G 2上的一点,则点P 到直线l 的距离为x 204+t ,点P 到点T 距离为(x 0-0)2+x 204-t2,联立可得:x 204+t =(x 0-0)2+x 204-t2,两边同时平方合并同类项后可得x 20-x 20t =0解得:t =1;(3)解:点H 坐标与(2)中t =1时的T 点重合,作直线l :y =-1,过点M 作MA ⊥直线l ,垂足为A ,如图所示,则有MH =MA ,此时QM +MH =QM +MA ,当且仅当Q ,M ,A 三点共线时QM +MA 取得最小值即QM +MA =QA =8-(-1)=9∴QM +MH 的最小值为9;【点睛】本题考查二次函数综合题,涉及到线段最小值、平移性质等,灵活运用所学知识是关键.2(2023·湖北宜昌·统考一模)如图,已知:点P 是直线l :y =x -2上的一动点,其横坐标为m (m 是常数),点M 是抛物线C :y =x 2+2mx -2m +2的顶点.(1)求点M 的坐标;(用含m 的式子表示)(2)当点P 在直线l 运动时,抛物线C 始终经过一个定点N ,求点N 的坐标,并判断点N 是否是点M 的最高位置?(3)当点P 在直线l 运动时,点M 也随之运动,此时直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),A ,B 两点到y 轴的距离之和为d .①求m 的取值范围;②求d 的最小值.【答案】(1)M -m ,-m 2-2m +2(2)N (1,3),点N 是点M 的最高位置(3)①m ≤-52或m ≥32;②d 取得最小值为2【分析】(1)将抛物线解析式写成顶点式即可求解;(2)根据解析式含有m 项的系数为0,得出当x =1时,y =3,即N (1,3),根据二次函数的性质得出-m 2-2m +2=-m +1 2+3的最大值为3,即可得出点N 是点M 的最高位置;(3)①根据直线与抛物线有交点,联立方程,根据一元二次方程根的判别式大于等于0,求得m 的范围,即可求解;②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,根据x 1+x 2=-2m +1,分情况讨论,求得d 是m 的一次函数,进而根据一次函数的性质即可求解.【详解】(1)解:y =x 2+2mx -2m +2=x +m 2-m 2-2m +2,∴顶点M -m ,-m 2-2m +2 ,(2)解:∵y =x 2+2mx -2m +2=x 2+2+2m x -1 ,∴当x =1时,y =3,抛物线C 始终经过一个定点1,3 ,即N (1,3);∵M -m ,-m 2-2m +2 ,-m 2-2m +2=-m +1 2+3,∴M 的纵坐标最大值为3,∴点N 是点M 的最高位置;(3)解:①联立y =x -2y =x 2+2mx -2m +2 ,得x 2+2mx -x -2m +4=0,∵直线l 与抛物线C 有两个交点A ,B (A ,B 可以重合),∴Δ=b 2-4ac =2m -1 2-4-2m +4 ,=4m 2+4m -15≥0,∵4m 2+4m -15=0,解得m 1=-52,m 2=32,∴当4m 2+4m -15≥0时,m ≤-52或m ≥32,②设A ,B 的坐标分别为x 1,y 1 ,x 2,y 2 ,其中x 1<x 2,由①可知x 1,x 2是方程x 2+2mx -x -2m +4=0的两根,∴x1+x 2=-2m +1,当m =-3时,如图所示,y A =0,当-3≤m ≤-52时,y 1≥0,y 2≥0,则d =x 1+x 2 =-2m +1 ,∵-2<0,∴当m =-52时,d 取得最小值为-2×-52 +1=5+1=6,当m ≥32时,d =-x 1+x 2 =--2m +1 =2m -1,∴当m =32时,d 取得最小值为2×32-1=2,综上所述,d 取得最小值为2.【点睛】本题考查了二次函数的性质,一元二次方程与二次函数的关系,熟练掌握二次函数的性质是解题的关键.3(2023·云南楚雄·统考一模)抛物线y =x 2-2x -3交x 轴于A ,B 两点(A 在B 的左边),C 是第一象限抛物线上一点,直线AC 交y 轴于点P .(1)直接写出A ,B 两点的坐标;(2)如图①,当OP =OA 时,在抛物线上存在点D (异于点B ),使B ,D 两点到AC 的距离相等,求出所有满足条件的点D 的横坐标;(3)如图②,直线BP 交抛物线于另一点E ,连接CE 交y 轴于点F ,点C 的横坐标为m ,求FP OP 的值(用含m 的式子表示).【答案】(1)A (-1,0),B (3,0)(2)0或3-41或3+41(3)13m 【分析】(1)令y =0,解方程可得结论;(2)分两种情形:①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线交抛物线于点D 2,D 3,D 2,D 3符合条件.构建方程组分别求解即可;(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3 ,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,推出x A ⋅x C =x B ⋅x E =-3-b 可得n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q 推出q =-mn -3,推出q =-(3+b )-1-b 3 -3=13b 2+2b ,推出OF =13b 2+b ,可得结论.【详解】(1)解:令y =0,得x 2-2x -3=0,解得:x =3或-1,∴A (-1,0),B (3,0);(2)∵OP =OA =1,∴P (0,1),∴直线AC 的解析式为y =x +1.①若点D 在AC 的下方时,过点B 作AC 的平行线与抛物线交点即为D 1.∵B (3,0),BD 1∥AC ,∴直线BD 1的解析式为y =x -3,由y =x -3y =x 2-2x -3,解得x =3y =0 或x =0y =-3 ,∴D 1(0,-3),∴D 1的横坐标为0.②若点D 在AC 的上方时,点D 1关于点P 的对称点G (0,5),过点G 作AC 的平行线l 交抛物线于点D 2,D 3,D 2,D 3符合条件.直线l 的解析式为y =x +5,由y =x +5y =x 2-2x -3 ,可得x 2-3x -8=0,解得:x =3-412或3+412,∴D 2,D 3的横坐标为3-412,3+412,综上所述,满足条件的点D 的横坐标为0,3-412,3+412.(3)设E 点的横坐标为n ,过点P 的直线的解析式为y =kx +b ,由y =kx +b y =x 2-2x -3,可得x 2-(2+k )x -3-b =0,设x 1,x 2是方程x 2-(2+k )x -3-b =0的两根,则x 1x 2=-3-b ,∴x A ⋅x C =x B ⋅x E =-3-b∵x A =-1,∴x C =3+b ,∴m =3+b ,∵x B =3,∴x E =-1-b 3,∴n =-1-b 3,设直线CE 的解析式为y =px +q ,同法可得mn =-3-q∴q =-mn -3,∴q =-(3+b )-1-b 3 -3=13b 2+2b ,∴OF =13b 2+2b ,∴FP OP=13b +1=13(m -3)+1=13m .【点睛】本题属于二次函数综合题,考查了二次函数的性质,一次函数的性质,一元二次方程的根与系数的关系等知识,解题的关键是学会构建一次函数,构建方程组确定交点坐标,学会利用参数解决问题,属于中考压轴题.题型03已知点关于直线对称点问题1(2023·辽宁阜新·统考中考真题)如图,在平面直角坐标系中,二次函数y =-x 2+bx -c 的图象与x 轴交于点A (-3,0)和点B (1,0),与y 轴交于点C .(1)求这个二次函数的表达式.(2)如图1,二次函数图象的对称轴与直线AC :y =x +3交于点D ,若点M 是直线AC 上方抛物线上的一个动点,求△MCD 面积的最大值.(3)如图2,点P 是直线AC 上的一个动点,过点P 的直线l 与BC 平行,则在直线l 上是否存在点Q ,使点B 与点P 关于直线CQ 对称?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)y =-x 2-2x +3;(2)S △MCD 最大=98;(3)Q 1-5,-5 或1+5,5 .【分析】(1)根据抛物线的交点式直接得出结果;(2)作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,先求出抛物线的对称轴,进而求得C ,D 坐标及CD 的长,从而得出过M 的直线y =x +m 与抛物线相切时,△MCD 的面积最大,根据x +m =-x 2-2x +3的△=0求得m 的值,进而求得M 的坐标,进一步求得CD 上的高MQ 的值,进一步得出结果;(3)分两种情形:当点P 在线段AC 上时,连接BP ,交CQ 于R ,设P (t ,t +3),根据CP =CB 求得t 的值,可推出四边形BCPQ 是平行四边形,进而求得Q 点坐标;当点P 在AC 的延长线上时,同样方法得出结果.【详解】(1)解:由题意得,y =-(x +3)(x -1)=-x 2-2x +3;(2)解:如图1,作MQ ⊥AC 于Q ,作ME ⊥AB 于F ,交AC 于E ,∵OA =OC =3,∠AOC =90°,∴∠CAO =∠ACO =45°,∴∠MEQ =∠AEF =90°-∠CAO =45°,抛物线的对称轴是直线:x =-3+12=-1,∴y =x +3=-1+3=2,∴D (1,2),∵C (0,3),∴CD =2,故只需△MCD 的边CD 上的高最大时,△MCD 的面积最大,设过点M 与AC 平行的直线的解析式为:y =x +m ,当直线y =x +m 与抛物线相切时,△MCD 的面积最大,由x +m =-x 2-2x +3得,x 2+3x +(m -3)=0,由△=0得,32-4(m -3)=0得,m -3=94,∴x 2+3x +94=0,∴x 1=x 2=-32,∴y =--32 2-2×-32 +3=154,y =x +3=-32+3=32,∴ME =154-32=94,∴MQ =ME ⋅sin ∠MEQ =ME ⋅sin45°=94×22=928,∴S △MCD 最大=12×2×928=98;(3)解:如图2,当点P 在线段AC 上时,连接BP ,交CQ 于R ,∵点B 和点Q 关于CQ 对称,∴CP =CB ,设P (t ,t +3),由CP 2=CB 2得,2t 2=10,∴t 1=-5,t 2=5(舍去),∴P -5,3-5 ,∵PQ ∥BC ,∴CR =BR =1,∴CR =QR ,∴四边形BCPQ 是平行四边形,∵1+(-5)-0=1-5,0+(3-5)-3=-5,∴Q 1-5,-5 ;如图3,当点P 在AC 的延长线上时,由上可知:P 5,3+5 ,同理可得:Q 1+5,5 ,综上所述:Q 1-5,-5 或1+5,5 .【点睛】本题考查了二次函数及其图象的性质,一元二次方程的解法,平行四边形的判定和性质,轴对称的性质等知识,解决问题的关键是分类讨论.2(2023·四川甘孜·统考中考真题)已知抛物线y =x 2+bx +c 与x 轴相交于A -1,0 ,B 两点,与y 轴相交于点C 0,-3 .(1)求b ,c 的值;(2)P 为第一象限抛物线上一点,△PBC 的面积与△ABC 的面积相等,求直线AP 的解析式;(3)在(2)的条件下,设E 是直线BC 上一点,点P 关于AE 的对称点为点P ,试探究,是否存在满足条件的点E ,使得点P 恰好落在直线BC 上,如果存在,求出点P 的坐标;如果不存在,请说明理由.【答案】(1)b =-2,c =-3.(2)y =x +1(3)存在,点P 的坐标为1+21,-2+21 或1-21,-2-21【分析】(1)由待定系数法即可求解;(2)S △PBC =S △ABC 得到AP ∥BC ,即可求解;(3)由题意的:∠AEP =∠AEP ,P E =PE ,即可求解.【详解】(1)由题意,得1-b +c =0,c =-3.∴b =-2,c =-3.(2)由(1)得抛物线的解析式为y =x 2-2x -3.令y =0,则x 2-2x -3=0,得x 1=-1,x 2=3.∴B 点的坐标为3,0 .∵S △PBC =S △ABC ,∴AP ∥BC .∵B 3,0,C 0,-3 ,∵AP∥BC,∴可设直线AP的解析式为y=x+m.∵A(-1,0)在直线AP上,∴0=-1+m.∴m=1.∴直线AP的解析式为y=x+1.(3)设P点坐标为m,n.∵点P在直线y=x+1和抛物线y=x2-2x-3上,∴n=m+1,n=m2-2m-3.∴m+1=m2-2m-3.解得m1=4,m2=-1(舍去).∴点P的坐标为4,5.由翻折,得∠AEP=∠AEP ,P E=PE.∵AP∥BC,∴∠PAE=∠AEP '.∴∠PAE=∠PEA.∴PE=PA=4+12=52.2+5-0设点E的坐标为t,t-3,则PE2=t-42.2+t-3-52=52∴t=6±21.当t=6+21时,点E的坐标为6+21,3+21.设P (s,s-3),由P E=AP,P E=PE=52得:s-6-212,2=522+s-3-3-21解得:s=1+21,则点P 的坐标为1+21,-2+21.当t=6-21时,同理可得,点P 的坐标为1-21,-2-21.综上所述,点P 的坐标为1+21,-2+21.或1-21,-2-21【点睛】本题是二次函数的综合题,主要考查了用待定系数法求一次函数、二次函数的解析式,二次函数的性质,此题题型较好,综合性比较强,用的数学思想是分类讨论和数形结合的思想.3(2023·江苏连云港·连云港市新海实验中学校考二模)如图,“爱心”图案是由抛物线y=-x2+m的一部分及其关于直线y=-x的对称图形组成,点E、F是“爱心”图案与其对称轴的两个交点,点A、B、C、D是该图案与坐标轴的交点,且点D的坐标为6,0.(1)求m 的值及AC 的长;(2)求EF 的长;(3)若点P 是该图案上的一动点,点P 、点Q 关于直线y =-x 对称,连接PQ ,求PQ 的最大值及此时Q 点的坐标.【答案】(1)m =6,AC =6+6(2)52(3)2542,Q -234,-12【分析】(1)用待定系数法求得m 与抛物线的解析式,再求出抛物线与坐标轴的交点坐标,进而求得A 的坐标,根据对称性质求得B ,C 的坐标,即可求得结果;(2)将抛物线的解析式与直线EF 的解析式联立方程组进行求解,得到E ,F 的坐标,即可求得结果;(3)设P (m ,-m 2+6),则Q (m 2-6,-m ),可得PQ =2×m -12 2-252 ,即求m -12 2-252的最值,根据二次函数的最值,即可得到m 的值,即可求得.【详解】(1)把D 6,0 代入y =-x 2+m 得0=-6+m解得m =6∴抛物线的解析式为:y =-x 2+6∴A 0,6根据对称性可得B -6,0 ,C 0,-6∴AC =AO +OC =6+6(2)联立y =-x y =-x 2+6解得x =3y =-3 或x =-2y =2 ∴E -2,2 ,F 3,-3∴EF =-2-3 2+2+3 2=52(3)设P (m ,-m 2+6),则Q (m 2-6,-m )∴PQ =m -m 2-6 2+-m 2+6--m 2整理得PQ =2×m -12 2-254 ∵m -12 2≥0∴当m -12 2=0时,即m =12时,m -12 2-254 有最大值为254∴PQ 的最大值为2542∴12 2-6=-234故Q -234,-12【点睛】本题考查二次函数综合应用,涉及待定系数法求函数解析式,两点间的距离公式,求抛物线与一次函数的交点坐标,二次函数的最值等知识,解题的关键是掌握关于直线y =-x 对称的点坐标的关系.题型04特殊角度存在性问题1(2023·山西忻州·统考模拟预测)如图,抛物线y =18x 2+34x -2与x 轴交于A ,B 两点,与y 轴交于点C .P 是直线AC 下方抛物线上一个动点,过点P 作直线l ∥BC ,交AC 于点D ,过点P 作PE ⊥x 轴,垂足为E ,PE 交AC 于点F .(1)直接写出A ,B ,C 三点的坐标,并求出直线AC 的函数表达式;(2)当线段PF 取最大值时,求△DPF 的面积;(3)试探究在拋物线的对称轴上是否存在点Q ,使得∠CAQ =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.【答案】(1)A -8,0 ,B 2,0 ,C 0,-2 .y =-14x -2(2)85(3)存在,-3,3 或-3,-253【分析】(1)对于直线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 即求出三个点的坐标,设直线AC 的表达式为y =kx +b ,利用待定系数法求解即可;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,表示出PF =-18m 2-m ,求出PF max =2,再表示出点D 到直线PF 的距离d =85,利用S △DPF =12⋅PF ⋅d 进行求解即可;(3)由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,用解直角三角形的方法求出QH =174,即可求出Q 点坐标,当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,即可求解.【详解】(1)解:对于抛物线y =18x 2+34x -2,当x =0时,y =-2,即点C 0,-2 ,令18x 2+34x -2=0,则x =2或-8,则点A ,B 的坐标分别为-8,0 ,2,0 ,即点A ,B ,C 三点的坐标分别为-8,0 ,2,0 ,0,-2 ,设直线AC 的表达式为y =kx +b ,则-8k +b =0b =-2 ,解得k =-14b =-2 ,∴直线AC 的函数表达式为y =-14x -2;(2)设点P 的横坐标为m ,则P m ,18m 2+34m -2 ,F m ,-14m -2 ,PF =-14m -2 -18m 2+34m -2 =-18m 2-m ,当m =--12×-18 =-4时,PF 最大,PF max =-18×(-4)2--4 =2,此时,P -4,-3 ,由B 2,0 ,C 0,-2 ,可得直线BC 的函数表达式为y =x -2,设直线l 的函数表达式为y =x +p ,将P -4,-3 代入可得p =1,∴直线l 的函数表达式为y =x +1,由y =-14x -2y =x +1 ,解得x =-125y =-75,∴D -125,-75 ,点D 到直线PF 的距离d =-125--4 =85,∴S △DPF =12⋅PF ⋅d =12×2×85=85.(3)存在,理由:由抛物线的表达式知,其对称轴为x =-3,当点Q 在x 轴上方时,如下图:设抛物线的对称轴交x 轴于点N ,交AC 于H ,故点Q 作QT ⊥AC 于点T ,则∠ACO =∠QHA ,则tan ∠ACO =tan ∠QHA =4,当x =3时,y =-14x -2=-54,则点H -3,-54 ,由点A ,H 的坐标得,AH =5174,在△AQH 中,∠CAQ =45°,tan ∠QHA =4,设TH =x ,则QT =4x ,则QH =17x ,则AH =AT +TH =5x =5174,则x =174,则QH =17x =174,则174-54=3,则点Q -3,3 ;当点Q Q 在x 轴上方时,直线AQ 的表达式为y =35x +8 ,当∠CAQ =45°时,AQ ⊥AQ ,则直线AQ 的表达式为y =-53x +8 ,当x =-3时,y =-5x +8 =-25,。

九年级数学二次函数y=ax2k(a≠0)的图像与性质(基础篇)(专项练习)Word版含解析

九年级数学二次函数y=ax2k(a≠0)的图像与性质(基础篇)(专项练习)Word版含解析

专题2.8 二次函数y=ax2+k(a≠0)的图像与性质(基础篇)(专项练习)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.8 二次函y=ax2+k(a≠0)的图像与性质(基础篇) (专项练习) 一、单选题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值1.抛物线y =x 2﹣3的顶点坐标、对称轴是( ) A .(0,3),x =3B .(0,﹣3),x =0C .(3,0),x =3D .(3,0),x =02.下列各点中,在抛物线24y x =-上的是( ) A .()1,3B .()1,3--C .()1,5-D .()1,5--3.抛物线y =-3x 2+4的开口方向和顶点坐标分别是( ). A .向下,(0,-4) B .向下,(0,4) C .向上,(0,4)D .向上,(0,-4)4.关于二次函数224y x =+,下列说法错误..的是( ) A .它的图象开口方向向上 B .它的图象顶点坐标为(0,4) C .它的图象对称轴是y 轴D .当0x =时,y 有最大值45.若在同一直角坐标系中,作23y x =,22y x =-,221y x =-+的图像,则它们( ) A .都关于y 轴对称 B .开口方向相同C .都经过原点D .互相可以通过平移得到知识点二、二次函数()20y ax k a =+≠图象的增减性6.在平面直角坐标系xOy 中,抛物线y =﹣x 2+2x .点D (n ,y 1),E (3,y 2)在抛物线上,若y 1<y 2,则n 的取值范围是( ) A .n >3或n <﹣1B .n >3C .n <1D .n >3或n <17.已知函数y=x 2﹣2,当函数值y 随x 的增大而减小时,x 的取值范围是( ) A .x <2B .x >0C .x >﹣2D .x <08.下列函数中,当x >0时,y 随x 的增大而增大的是( ) A .y x 1=-+ B .2y x 1=-C .1y x=D .2y x 1=-+9.点11(0.5,)P y -,22(2.5,)Py ,33(5,)P y -均在二次函数22y x x =-+的图象上,则1y ,2y ,3y 的大小关系是( )A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>10.已知点()()()25,,521A m B m C m n --++,,,在同一个函数的图象上,这个函数可能是( ) A .2y x =+B .25y x =--C .25y x =+D .2y x=-知识点三、二次函数()20y ax k a =+≠的图象11.2y ax k =+的图象可能是( )A .B .C .D .12.已知函数21(1)2(1)x x y x x⎧+≥-⎪=⎨<-⎪⎩则下列图像正确的是( )A .B .C.D.13.在平面直角坐标系中,二次函数y=x2+2的大致图象可能是()A.B.C.D.14.二次函数y=-x2-1的图象大致是()A.B.C.D.15.二次函数22=--的图象大致是()y xA.B.C.D.知识点四、二次函数()20y ax k a =+≠的性质综合16.下列关于抛物线y =2x 2﹣3的说法,正确的是( ) A .抛物线的开口向下B .抛物线的对称轴是直线x =1C .抛物线与x 轴有两个交点D .抛物线y =2x 2﹣3向左平移两个单位长度可得抛物线y =2(x ﹣2)2﹣317.二次函数22y x =-的图象是一条抛物线,下列关于该抛物线的说法正确的是( ) A .抛物线开口向下B .当0x =时,函数的最大值是2-C .抛物线的对称轴是直线2x =D .抛物线与x 轴有两个交点18.关于二次函数y =﹣2x 2+1,以下说法正确的是( ) A .开口方向向上B .顶点坐标是(﹣2,1)C .当x <0时,y 随x 的增大而增大D .当x =0时,y 有最大值﹣1219.二次函数221y x =-的图象是一条抛物线,下列说法中正确的是( ) A .抛物线开口向下B .抛物线经过点1,1C .抛物线的对称轴是直线1x =D .抛物线与x 轴有两个交点20.关于二次函数221y x =-+,则下列说法正确的是( ) A .开口方向向上 B .当x <0时,y 随x 的增大而增大 C .顶点坐标是(-2,1)D .当x =0时,y 有最小值1知识点五、二次函数()20y ax k a =+≠图形与其他函数图象的判定21.直线y=ax+c 与抛物线y=ax 2+c 的图象画在同一个直角坐标系中,可能是下面的( )A .B .C .D .22.函数ay x=与20()y ax a a =--≠在同一直角坐标系中的大致图象可能是( )A .B .C .D .23.用min{a ,b }表示a ,b 两数中的最小数,若函数{}22min 1,1y x x =+-,则y 的图象为( )A .B .C .D .24.二次函数y =x 2+1的图象大致是( )A .B .C .D .25.二次函数y =x 2+1的图象大致是( )A .B .C .D .26.在同一直角坐标系中2y ax b =+与()y ax b a 0,b 0=+≠≠图象大致为( )A .B .C .D .27.点()()1122,,,x y x y 均在抛物线21y x =-上,下列说法正确的是( )A .若12y y =,则12x x =B .若12x x =-,则12y y =-C .若120x x <<,则12y y >D .若120x x <<,则12y y >二、填空题知识点一、二次函数()20y ax k a =+≠的开口方向、对称轴、顶点坐标、最值28.抛物线223y x =--的开口方向_______,对称轴是_____,顶点坐标是_______. 29.通过_______法画出221y x =+和221y x =-的图像:通过图像可知:221y x =+的开口方向________,对称轴_______,顶点坐标___________.221y x =-的开口方向________,对称轴_______,顶点坐标___________.30.写出顶点坐标为(0,-3),开口方向与抛物线2y x =-的方向相反,形状相同的抛物线解析式_________________________.31.抛物线2y ax k =+的图象相当于把抛物线2y ax =的图象______(k >0)或______(k <0)平移______个单位.32.一抛物线的形状,开口方向与23312y x x =-+相同,顶点在(-2,3),则此抛物线的解析式为_______.知识点二、二次函数()20y ax k a =+≠图象的增减性33.已知点P (﹣2,y 1)和点Q (﹣1,y 2)都在二次函数2y x c =-+的图象上,那么1y 与2y 的大小关系是_____.34.已知二次函数y =-x 2+4,当-2≤x≤3时,函数的最小值是-5,最大值是_________. 35.当m=______时抛物线22(1)9m m y m x +=++开口向下,对称轴是________,在对称轴左侧部分是________的(填“上升”或“下降”).36.已知二次函数y =2x 2+bx ,当x >1时,y 随x 增大而增大,则b 的取值范围为______. 37.设点(﹣1,y 1),(2,y2),(3,y3)是抛物线y=﹣x 2+a 上的三点,则y 1、y2、y3的从小到大排列为__________. 三、解答题38.在同一直角坐标系中画出二次函数2113=+y x 与二次函数2113=--y x 的图形.(1)从抛物线的开口方向、形状、对称轴、顶点等方面说出两个函数图象的相同点与不同点;(2)说出两个函数图象的性质的相同点与不同点. 39.如图,已知抛物线24y x =-+.(1)该抛物线顶点坐标为________;(2)在坐标系中画出此抛物线y 的大致图像(不要求列表);(3)该抛物线24y x =-+可由抛物线2y x =-向________平移________个单位得到;(4)当0y >时,求x 的取值范围. 40.已知二次函数2y x 4x =-+.()1求函数图象的对称轴和顶点坐标;()2求这个函数图象与x 轴的交点坐标.参考答案:1.B【分析】按照二次函数y =ax 2+k 顶点坐标(0,k ),对称轴y 轴即可求解. 【详解】解:∵y =x 2﹣3,∵抛物线的顶点坐标为(0,﹣3),对称轴为y 轴; 故选:B .【点睛】本题考查了二次函数的图像和性质,以及顶点坐标和对称轴,掌握二次函数的图像和性质是解题的关键. 2.B【分析】分别把x=±1代入抛物线解析式,计算对应的函数值,然后进行判断. 【详解】解:∵当x=-1时,y=x 2-4=-3; 当x=1时,y=x 2-4=-3;∵点(-1,-3)在抛物线上,点(1,3)、(1,-5)、(-1,-5)都不在抛物线上. 故选:B .【点睛】本题考查了二次函数图象上点的坐标特征:二次函数图象上点的坐标满足二次函数的解析式. 3.B【分析】根据二次函数的性质分析,即可得到答案. 【详解】抛物线y =-3x 2+4 ∵30-<∵抛物线y =-3x 2+4开口向下当0x =时,y =-3x 2+4取最大值,即y =4 ∵顶点坐标为()0,4 故选:B .【点睛】本题考查了二次函数的知识;解题的关键是熟练掌握二次函数的性质,从而完成求解. 4.D【分析】由抛物线的解析式可求得其开口方向、对称轴、函数的最值即可判断. 【详解】∵224y x =+,∵抛物线开口向上,对称轴为直线x =0,顶点为(0,4),当x =0时,有最小值4, 故A 、B 、C 正确,D 错误; 故选:D .【点睛】本题主要考查二次函数的性质,掌握二次函数的顶点式是解题的关键,即在y =a (x−h )2+k 中,对称轴为x =h ,顶点坐标为(h ,k ). 5.A【分析】根据二次函数的图像和性质逐项分析即可.【详解】A.因为23y x =,22y x =-,221y x =-+这三个二次函数的图像对称轴为0x =,所以都关于y 轴对称,故选项A 正确,符合题意;B.抛物线23y x =,22y x =-的图象开口向上,抛物线221y x =-+的图象开口向下,故选项B 错误,不符合题意;C.抛物线22y x =-,221y x =-+的图象不经过原点,故选项C 错误,不符合题意;D.因为抛物线23y x =,22y x =-,221y x =-+的二次项系数不相等,故不能通过平移其它二次函数的图象,故D 选项错误,不符合题意; 故选A .【点睛】本题考查了二次函数的图像和性质,熟记二次函数的图像和性质是解题的关键. 6.A【分析】由抛物线的对称轴找到E 点的对称点,抛物线开口向下,y 1<y 2时结合图象求解; 【详解】解:∵抛物线y =﹣x 2+2x 的对称轴为x =1, E (3,y 2)关于对称轴对称的点(﹣1,y 2), ∵抛物线开口向下,∵y 1<y 2时,n >3或n <﹣1, 故选A .【点睛】本题考查二次函数图象的性质;找到E 点关于对称轴的对称点是解题的关键. 7.D【详解】解:∵y =x 2-2,∵抛物线开口向上,对称轴为y 轴,∵当x <0时,y 随x 的增大而减小,故选D .【点睛】本题主要考查二次函数的性质,掌握y =ax 2+c 的图象的开口方向、对称轴及增减性是解题的关键.8.B【分析】根据二次函数、一次函数、反比例函数的增减性,结合自变量的取值范围,逐一判断【详解】解:A 、y x 1=-+,一次函数,k <0,故y 随着x 增大而减小,错误;B 、2y x 1=-(x >0),故当图像在对称轴右侧,y 随着x 的增大而增大,正确;C 、1y x=,k =1>0,分别在一、三象限里,每个象限内y 随x 的增大而减小,错误; D 、2y x 1=-+(x >0),故当图像在对称轴右侧,y 随着x 的增大而减小,错误. 故选:B .【点睛】本题考查一次函数,二次函数及反比例函数的增减性,掌握函数图像性质利用数形结合思想是解答本题的关键.9.D【分析】求出二次函数的对称轴,再根据二次函数的对称性和增减性判断即可.【详解】解:∵()22211y x x x =-+=--+,∵抛物线对称轴为直线1x =,∵10a =-<,∵1x <时,y 随x 的增大而增大,∵()222.5,P y 的对称点为()20.5,y -,且50.51-<-<,∵123y y y =>.故选:D .【点睛】本题考查的是二次函数图像上点的坐标特征、二次函数的性质等知识点的理解和掌握,熟练运用二次函数的性质进行推理是解决本题的关键.10.B【分析】由点A (-5,m ),B (5,m )的坐标特点,于是排除选项A 、B ;再根据A (-5,m ),C (-2,m +n 2+1)的特点和二次函数的性质,可知抛物线的开口向下,即a <0,可得结果.【详解】解:∵A (-5,m ),B (5,m ),∵点A 与点B 关于y 轴对称;由于y =x +2不关于y 轴对称,2y x=-的图象关于原点对称,因此选项A 、D 错误; ∵n 2>0,∵m +n 2+1>m ;由A (-5,m ),C (-2,m +n 2+1)可知,在对称轴的左侧,y 随x 的增大而增大, 对于二次函数只有a <0时,满足条件,∵B 选项正确,故选:B .【点睛】本题考查了反比例函数、一次函数、二次函数的图象和性质,可以采用排除法,直接法得出答案.11.D【分析】根据二次函数的对称轴进行判断即可.【详解】二次函数2y ax k =+的对称轴为0x =观察四个选项可知,只有选项D 的图象符合故选:D .【点睛】本题考查了二次函数的图象与性质(对称性),掌握二次函数的图象与性质是解题关键.12.C【分析】根据所给解析式判断出正确函数图象,注意自变量的取值范围.【详解】A 选项错误,两个函数图象都不符合自变量的取值范围;B 选项错误,反比例函数的图象不符合自变量的取值范围;C 选项正确;D 选项错误,当=1x -时,图象不应该是一条直线.故选:C .【点睛】本题考查二次函数和反比例函数的图象,解题的关键是掌握二次函数和反比例函数的图象.13.C【分析】根据函数解析式,二次项系数交点判别式小于0,所以排除A 、B 、D ,故选C .【详解】解:A选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,A=48b ac错误;B选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,B错误;=48b acC选项,由函数解析式,2=48-=-<0,所以函数图像与x轴无交点,C正确;b acD选项,由函数解析式,2-=-<0,所以函数图像与x轴无交点,D错误.=48b ac【点睛】本题考考察的是二次函数图像的基本性质,根据解析式,判断开口方向及交点个数,判断图像的形状.14.C【分析】根据二次函数的图像与性质即可求解.【详解】二次函数y=-x2-1的图象开口向下,且顶点坐标为(0,-1),故选项C符合题意.【点睛】此题主要考查二次函数的图像判断,解题的关键是熟知二次函数的图像与性质.15.D【分析】根据二次函数的图象的性质,开口方向,顶点坐标,对称轴即可判断.【详解】由题意可知:a=-1,所以开口向下,顶点坐标为(0,-2),故答案选D.【点睛】本题主要考查了二次函数的解析式来判断该函数的图象,解本题的要点在于熟知二次函数图象的基本性质.16.C【分析】根据二次函数的性质及二次函数图象“左加右减,上加下减”的平移规律逐一判断即可得答案.【详解】∵2>0,∵抛物线y=2x2﹣3的开口向上,故A选项错误,∵y=2x2﹣3是二次函数的顶点式,∵对称轴是y轴,故B选项错误,∵-3<0,抛物线开口向上,∵抛物线与x轴有两个交点,故C选项正确,抛物线y=2x2﹣3向左平移两个单位长度可得抛物线y=2(x+2)2﹣3,故D选项错误,故选:C.【点睛】此题考查二次函数的性质及二次函数图象的平移,熟练掌握二次函数的性质及“左加右减,上加下减”的平移规律是解题关键.17.D【分析】根据二次函数22y x =-的图象和性质,逐一判断选项,即可.【详解】∵a=1>0,∵抛物线开口向上,故A 错误,∵当0x =时,函数的最小值是2-,∵B 错误,∵抛物线的对称轴是y 轴,∵C 错误,∵∆=224041(2)80b ac -=-⨯⨯-=>,∵抛物线与x 轴有两个交点,∵D 正确,故选D.【点睛】本题主要考查二次函数的图象和性质,掌握二次函数的系数的几何意义,是解题的关键.18.C【分析】根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的说法是否正确,从而可以解答本题.【详解】解:∵二次函数y =﹣2x 2+1,∵该函数图象开口向下,故选项A 错误;顶点坐标为(0,1),故选项B 错误;当x <0时,y 随x 的增大而增大,故选项C 正确;当x =0时,y 有最大值1,故选项D 错误;故选:C .【点睛】本题考查二次函数的性质、二次函数的最值,解答本题的关键是明确题意,利用二次函数的性质解答.19.D【分析】根据二次函数的性质对A 、C 进行判断;根据二次函数图象上点的坐标特征对B 进行判断;利用方程2x 2-1=0解的情况对D 进行判断.【详解】A. a =2,则抛物线y =2x 2−1的开口向上,所以A 选项错误;B. 当x =1时,y =2×1−1=1,则抛物线不经过点(1,-1),所以B 选项错误;C. 抛物线的对称轴为直线x =0,所以C 选项错误;D. 当y =0时,2x 2−1=0,此方程有两个不相等的实数解,所以D 选项正确.故选D.【点睛】本题考查了抛物线与x 轴的交点,二次函数的性质,二次函数图象上点的坐标特征,结合图像是解题的关键.20.B【分析】根据二次函数的图像与性质逐项进行判断即可.【详解】因为20a =-<,所以二次函数图像开口向下,故A 选项错误;因为抛物线开口向下,对称轴为y 轴,所以当x <0时,y 随x 的增大而增大,故B 选项正确;二次函数221y x =-+的顶点为(0,1),故C 选项错误;因为二次函数开口向下,对称轴为y 轴,所以当x =0时,y 有最大值1,故D 选项错误. 故选B.【点睛】本题考查二次函数的图像与性质,熟练掌握图像与性质是解题的关键.21.A【详解】两图象与y 轴的交点相同,故排除了B 、D,若a>0,选A,C 中两个函数中的a 符号相反.22.B【分析】分a>0与a<0两种情况分类讨论即可确定正确的选项.【详解】解:当a>o 时,函数a y x=的图象位于一、三象限,20()y ax a a =--≠的开口向下,交y 轴的负半轴,选项B 符合;当a<o 时,函数a y x=的图象位于二、四象限,20()y ax a a =--≠的开口向上,交y 轴的正半轴,没有符合的选项.故答案为:B.【点睛】本题考查的知识点是反比例函数的图象与二次函数的图象,理解掌握函数图象的性质是解此题的关键.23.C【分析】根据题意,把问题转化为二次函数问题.【详解】根据题意,min{x 2+1,1-x 2}表示x 2+1与1-x 2中的最小数,不论x 取何值,都有x 2+1≥1-x 2,所以y=1-x 2;可知,当x=0时,y=1;当y=0时,x=±1;则函数图象与x 轴的交点坐标为(1,0),(-1,0);与y 轴的交点坐标为(0,1). 故选C .【点睛】本题考查了二次函数的性质,熟练掌握二次函数图像的性质是解决此题的关键.24.C【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是C.故选C.25.B【分析】利用二次函数的开口方向和顶点坐标,结合图象找出答案即可.【详解】解:二次函数y =x 2+1中,a =1>0,图象开口向上,顶点坐标为(0,1),符合条件的图象是B .故选B .【点睛】此题考查二次函数的图象,掌握二次函数的性质,图象的开口方向和顶点坐标是解决问题的关键.26.A【分析】本题由一次函数y ax b =+图象得到字母系数的正负,再与二次函数2y ax b =+的图象相比较看是否一致.【详解】解:A 、由抛物线可知,a 0<,b 0<,由直线可知,a 0<,b 0<,故本选项正确; B 、由抛物线可知,a 0<,b 0>,由直线可知,a 0>,b 0>,故本选项错误; C 、由抛物线可知,a 0>,b 0<,由直线可知,a 0>,b 0>,故本选项错误; D 、由抛物线可知,a 0>,b 0>,由直线可知,a 0<,b 0>,故本选项错误. 故选A .【点睛】本题考查了一次函数和二次函数的图象.解答该题时,一定要熟记一次函数、二次函数的图象的性质.27.D【详解】解:由图象,根据二次函数的性质,有A .若12y y =,则12x x =±,原说法错误;B .若12x x =-,则12y y =,原说法错误;C .若120x x <<,则12y y <,原说法错误;D .若120x x <<,则12y y >,原说法正确.故选D .【点睛】本题考查二次函数的图象和性质.28. 下 y 轴 (0,-3)【解析】略29. 描点 向上 y 轴 ()0,1 向上 y 轴 ()0,1-【分析】根据画二次函数的图像采用描点法,然后根据二次函数性质得出开口方向,对称轴,顶点坐标即可.【详解】解:通过描点法画出221y x =+和221y x =-的图像,通过图像可知:221y x =+的开口方向向上,对称轴为y 轴,顶点坐标为(0,1),221y x =-的开口方向向上,对称轴y 轴,顶点坐标(0,1)-,故答案为:描点;向上;y 轴;()0,1;向上;y 轴;()0,1-.【点睛】本题考查了画函数图像的方法,二次函数的基本性质,根据题意画出相应的图像是解本题的关键.30.23y x =-【分析】根据开口方向与抛物线2y x =-的方向相反,形状相同可得1a =,再利用顶点坐标即可写出解析式.【详解】∵抛物线与2y x =-的方向相反,形状相同,且顶点坐标(0,-3)∵设抛物线解析式为:2y x k =+,代入顶点坐标(0,-3)得:3k =-∵解析式为23y x =-故答案为23y x =-.【点睛】本题考查求抛物线解析式,熟记抛物线顶点式是解题的关键.31. 向上 向下 |k |【解析】略32.23(2)32y x =++ 【分析】根据二次函数的图象与性质即可得. 【详解】抛物线的顶点为(2,3)-∴可设此抛物线的解析式为2(2)3y a x =++ 又此抛物线的形状,开口方向与23312y x x =-+相同 32a ∴= 则此抛物线的解析式为23(2)32y x =++ 故答案为:23(2)32y x =++. 【点睛】本题考查了二次函数的图象与性质,熟记二次函数的图象与性质是解题关键. 33.12y y <.【分析】先判断抛物线的开口方向和对称轴,再根据二次函数的性质解答即可.【详解】∵二次函数2y x c =-+的开口向下,对称轴为y 轴,∵当0x <时,y 随x 的增大而增大,∵21-<-,∵12y y <,故答案为:12y y <.【点睛】本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性,熟练掌握抛物线的性质是解题的关键.34.4.【分析】根据所给二次函数的解析式结合“自变量的取值范围”进行分析解答即可.【详解】∵在24y x =-+中:23x -≤≤,∵其图象开口向下,顶点坐标为(0,4),∵其最大值为4.故答案为:4.【点睛】熟记“二次函数2(0)y ax k a =+≠的图象的顶点坐标为(0)k ,”是解答本题的关键.35. 1- y 轴 上升【分析】根据二次函数的指数是2列出方程求出m 的值,再根据抛物线开口方向向下可得10+<m ,然后求解即可.【详解】解:由题意得,222m m +=且10+<m , 解得113m ,213m 且1m <-,∵1m =-对称轴是y 轴, ∵113130m∵在对称轴左侧部分是上升;故答案是:1-y 轴,上升.【点睛】本题考查了二次函数的性质,二次函数的定义,熟记性质和概念是解题的关键.36.b ≥﹣4【分析】先表示出二次函数的对称轴,再根据二次函数的增减性列出不等式求解即可.【详解】解:二次函数y =2x 2+bx 对称轴为直线x =﹣22⨯b =﹣4b , ∵a =2>0,x >1时,y 随x 增大而增大,∵﹣4b ≤1, 解得b ≥﹣4.故答案为:b ≥﹣4.【点睛】本题主要考查了二次函数图像的性质与二次函数的对称轴,解题的关键在于能够熟练掌握二次函数的增减性.37.y1>y2>y3【分析】由题意可得对称轴为y 轴,则(-1,y 1)关于y 轴的对称点为(1,y 1),根据二次函数的增减性可得函数值的大小关系.【详解】∵抛物线y=-x 2+a ,∵对称轴为y 轴,∵(-1,y 1)关于对称轴y 轴对称点为(1,y 1),∵a=-1<0,∵当x >0时,y 随x 的增大而减小,∵1<2<3,∵y 1>y 2>y 3,故答案为y 1>y 2>y 3.【点睛】本题考查了二次函数图象上的点的坐标特征,二次函数的增减性,利用增减性比较函数值的大小是本题的关键.38.(1)见解析;(2)见解析.【分析】(1)根据二次函数的图象解答即可;(2)从开口大小和增减性两个方面作答即可.【详解】(1)解:如图:,2113=+y x 与2113=--y x 图象的相同点是:形状都是抛物线,对称轴都是y 轴, 2113=+y x 与2113=--y x 图象的不同点是:2113=+y x 开口向上,顶点坐标是(0,1),2113=--y x 开口向下,顶点坐标是(0,﹣1); (2)解:两个函数图象的性质的相同点:开口程度相同,即开口大小一样;不同点:2113=+y x ,当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大;2113=--y x ,当x <0时,y 随x 的增大而增大,当x >0时,y 随x 的增大而减小. 【点睛】本题考查了二次函数的图象与性质,属于基础题型,熟练掌握抛物线的图象与性质是解答的关键.39.解:(1)(0,4);(2)见解析;(3)上,4;(4)22x -<<..【分析】(1)求出对称轴得到抛物线的顶点坐标;(2)先确定抛物线与y 轴的交点为(0,4),与x 轴交点为(-2,0)和(2,0),然后利用描点法画函数图像;(3)根据二次函数的平移规律“上加下减,左加右减”即可求解;(4)结合函数图像,写出函数图像上x 轴上方所对应的自变量的范围即可.【详解】(1)抛物线的对称轴为:x =-2b a=0 令x =0,y =4则顶点坐标为(0,4);(2)由(1)得,抛物线与y 轴的交点为(0,4),令y =0,x =±2,则抛物线与x 轴交点为(-2,0)和(2,0),画图得:(3)由上加下减的原则可得,y =-x 2向上平移4个单位可得出y =-x 2+4;(4)根据图像得,当y >0时,x 的取值范围为:-2<x <2.【点睛】本题考查抛物线与坐标轴的交点、二次函数的性质和抛物线的平移等知识,解题的关键是熟练掌握二次函数的性质.40.(1)对称轴为直线x=2,顶点坐标为(2,4)(2)图象与x轴的交点坐标是(0,0)和(4,0).【详解】试题分析:(1)可根据配方法的解题步骤,将一般式转化为顶点式,根据顶点式可确定对称轴及顶点坐标;(2)令y=0,解一元二次方程可求抛物线与x轴两交点的坐标.试题解析:(1)y=-(x2-4x)=-(x-2)2+4,对称轴为直线x=2,顶点坐标为(2,4)(2)当y=0时,-x2+4x=0,解得x=0或4,∵图象与x轴的交点坐标是(0,0)和(4,0).考点:1.二次函数的三种形式;2.二次函数的性质;3.抛物线与x轴的交点.。

(word完整版)《二次函数的图像和性质》教学设计与反思

(word完整版)《二次函数的图像和性质》教学设计与反思

《二次函数的图像和性质》教学设计与反思㈠抛物线及相关概念用描点发法画二次函数y=x2的图象.解:(1)列表:自变量x可以是任何实数,x的互为相反数的两个值对应的函数值相等,以0为中心,取几个自变量的整数值,并求出y值x…-3-2-10123…y…9410149…(2)用表里x、y对应值作为点的横纵坐标,在坐标平面中描点(3)连线:用平滑的曲线顺次连结各点,得到函数y=x2的图象,如图所示。

提问:观察这个函数的图象,它有什么特点?像投篮球或掷铅球时球在空中所经过的路线,只是开口向上,这样的曲线叫做抛物线.实际上,二次函数的图像都是抛物线,它们的开口向上或向下。

二次函数cbxaxy++=2的图像叫做抛物线cbxaxy++=2。

顶点:抛物线与它的对称轴的交点,是抛物线的最高点或最低点.㈡探索2axy=性质教师让学生观察,思考、讨论、交流,图像特点归结为:它是轴对称图形,有一条对称轴y轴,且对称轴和图象有一点交点.学生初步感知二次函数的图像是一条抛物线学生画图,并观察、比较。

教师指导感觉困难的学生,引导学生思考选几个点比较合适以及如何选点。

让学生发表不同的意见,达成共识.将发现的结论进行小组交流,得出结论:四个函数的图象都是抛物线,都关于y轴对称,顶点坐标都是(0,0).教师提出问题,学生思想、画图、观察、归纳总结出二次函数y=x2的图像,感受知识的发生发展过程,便于对新知识的理解和认识。

通过让学生自己动手画图,加深对二次函数图像的认识和理解,同时培养学生规范作图的习惯。

增强学生观察分析、归纳概括能力和表达能力,经历由感性认识到理性认识的思维过程.思维能力能类比一元一次方程的概念和解法、理解一元二次方程的有关概念及解二次方程的关键——降次,能用配方法推导出求根公式,掌握解一元二次方程的三种方法,能把实际问题转化成数学模型。

动手操作能力能够通过观察、分析、操作、交流、研讨等探讨出周长相等时哪种图形面积最大。

二次函数易错题(Word版 含答案)

二次函数易错题(Word版 含答案)

二次函数易错题(Word版含答案)一、初三数学二次函数易错题压轴题(难)1.图①,二次函数y=ax2+bx+c(a≠0)的图象经过点A(﹣1,0),并且与直线y=1 2 x﹣2相交于坐标轴上的B、C两点,动点P在直线BC下方的二次函数的图象上.(1)求此二次函数的表达式;(2)如图①,连接PC,PB,设△PCB的面积为S,求S的最大值;(3)如图②,抛物线上是否存在点Q,使得∠ABQ=2∠ABC?若存在,则求出直线BQ的解析式及Q点坐标;若不存在,请说明理由.【答案】(1)y=12x2﹣32x﹣2;(2)﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)Q的坐标为(53,﹣289)或(﹣113,929).【解析】【分析】(1)根据题意先求出点B、C的坐标,进而利用待定系数法即可求解;(2)由题意过点P作PH//y轴交BC于点H,并设点P(x,12x2﹣32x﹣2),进而根据S=S△PHB+S△PHC=12PH•(x B﹣x C),进行计算即可求解;(3)根据题意分点Q在BC下方、点Q在BC上方两种情况,利用解直角三角形的方法,求出点H的坐标,进而分析求解.【详解】解:(1)对于直线y=12x﹣2,令x=0,则y=﹣2,令y=0,即12x﹣2=0,解得:x=4,故点B、C的坐标分别为(4,0)、(0,﹣2),抛物线过点A、B两点,则y=a(x+1)(x﹣4),将点C的坐标代入上式并解得:a=12,故抛物线的表达式为y=12x2﹣32x﹣2①;(2)如图2,过点P作PH//y轴交BC于点H,设点P(x,12x2﹣32x﹣2),则点H(x,12x﹣2),S=S△PHB+S△PHC=12PH•(x B﹣x C)=12×4×(12x﹣2﹣12x2+32x+2)=﹣x2+4x,∵﹣1<0,故S有最大值,当x=2时,S的最大值为4;(3)①当点Q在BC下方时,如图2,延长BQ交y轴于点H,过点Q作QC⊥BC交x轴于点R,过点Q作QK⊥x轴于点K,∵∠ABQ=2∠ABC,则BC是∠ABH的角平分线,则△RQB为等腰三角形,则点C是RQ的中点,在△BOC中,tan∠OBC=OCOB=12=tan∠ROC=RCBC,则设RC=x=QB,则BC=2x,则RB22(2)x x5=BQ,在△QRB中,S△RQB=12×QR•BC=12BR•QK,即122x•2x=125,解得:KQ5∴sin∠RBQ=KQBQ55x=45,则tanRBH=43,在Rt △OBH 中,OH =OB•tan ∠RBH =4×43=163,则点H (0,﹣163), 由点B 、H 的坐标得,直线BH 的表达式为y =43(x ﹣4)②, 联立①②并解得:x =4(舍去)或53, 当x =53时,y =﹣289,故点Q (53,﹣289); ②当点Q 在BC 上方时,同理可得:点Q 的坐标为(﹣113,929); 综上,点Q 的坐标为(53,﹣289)或(﹣113,929). 【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质、等腰三角形的性质、解直角三角形、面积的计算等,注意分类讨论思维的应用,避免遗漏.2.在平面直角坐标系中,O 为坐标原点,抛物线L :y =ax 2﹣4ax (a >0)与x 轴正半轴交于点A .抛物线L 的顶点为M ,对称轴与x 轴交于点D . (1)求抛物线L 的对称轴.(2)抛物线L :y =ax 2﹣4ax 关于x 轴对称的抛物线记为L ',抛物线L '的顶点为M ',若以O 、M 、A 、M '为顶点的四边形是正方形,求L '的表达式.(3)在(2)的条件下,点P 在抛物线L 上,且位于第四象限,点Q 在抛物线L '上,是否存在点P 、点Q 使得以O 、D 、P 、Q 为顶点的四边形是平行四边形,若存在,求出点P 坐标,若不存在,请说明理由.【答案】(1)2x =;(2)2122y x x =-+ ;(3)存在,P 点的坐标为(33,3或(33,3-或(13,3或(13,3+-或31,2⎛⎫- ⎪⎝⎭【解析】 【分析】(1)根据抛物线的对称轴公式计算即可.(2)利用正方形的性质求出点M,M′的坐标即可解决问题.(3)分OD是平行四边形的边或对角线两种情形求解即可.【详解】解:(1)∵抛物线L:y=ax2﹣4ax(a>0),∴抛物线的对称轴x=﹣42aa=2.(2)如图1中,对于抛物线y=ax2﹣4ax,令y=0,得到ax2﹣4ax=0,解得x=0或4,∴A(4,0),∵四边形OMAM′是正方形,∴OD=DA=DM=DM′=2,∴M((2,﹣2),M′(2,2)把M(2,﹣2)代入y=ax2﹣4ax,可得﹣2=4a﹣8a,∴a=12,∴抛物线L′的解析式为y=﹣12(x﹣2)2+2=﹣12x2+2x.(3)如图3中,由题意OD=2.当OD 为平行四边形的边时,PQ =OD =2,设P (m ,12m 2﹣2m ),则Q [m ﹣2,﹣12(m ﹣2)2+2(m ﹣2)]或[m +2,﹣12(m +2)2+2(m +2)], ∵PQ ∥OD , ∴12m 2﹣2m =﹣12(m ﹣2)2+2(m ﹣2)或12m 2﹣2m =﹣12(m +2)2+2(m +2), 解得m =33,∴P 33或(333或(133和33, 当OD 是平行四边形的对角线时,点P 的横坐标为1,此时P (1,﹣32), 综上所述,满足条件的点P 的坐标为33或(333或(133)和33)或(1,﹣32). 【点睛】本题属于二次函数综合题,考查了二次函数的性质,正方形的性质,平行四边形的判定和性质等知识,解题的关键是理解题意,学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题学会利用参数构建方程解决问题,学会用分类讨论的思想思考问题,属于中考压轴题3.对于函数y =ax 2+(b+1)x+b ﹣2(a ≠0),若存在实数x0,使得a 20x +(b+1)x 0+b ﹣2=x0成立,则称x 0为函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点. (1)当a =2,b =﹣2时,求y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)若对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,求实数a 的取值范围;(3)在(2)的条件下,若y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,且直线y =﹣x+2121a 是线段AB 的垂直平分线,求实数b 的取值范围.【答案】(1)不动点是﹣1或2;(2)a 的取值范围是0<a <2;(3)b 的取值范围是﹣b <0. 【解析】 【分析】(1)将a =2,b =﹣2代入函数y =ax 2+(b+1)x+b ﹣2(a ≠0),得y =2x 2﹣x ﹣4,然后令x =2x 2﹣x ﹣4,求出x 的值,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点;(2)对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点,可以得到x =ax 2+(b+1)x+b ﹣2(a ≠0)时,对于任何实数b 都有△>0,然后再设t =△,即可求得a 的取值范围;(3)根据y =ax 2+(b+1)x+b ﹣2(a ≠0)的图象上A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点,可知点A 和点B 均在直线y =x 上,然后设出点A 和点B 的坐标,从而可以得到线段AB 的中点坐标,再根据直线y =﹣x+2121a 是线段AB 的垂直平分线,从而可以求得b 的取值范围. 【详解】解:(1)当a =2,b =﹣2时, 函数y =2x 2﹣x ﹣4, 令x =2x 2﹣x ﹣4, 化简,得x 2﹣x ﹣2=0 解得,x 1=2,x 2=﹣1,即y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点是﹣1或2; (2)令x =ax 2+(b+1)x+b ﹣2, 整理,得 ax 2+bx+b ﹣2=0,∵对于任何实数b ,函数y =ax 2+(b+1)x+b ﹣2(a ≠0)恒有两相异的不动点, ∴△=b 2﹣4a (b ﹣2)>0,设t =b 2﹣4a (b ﹣2)=b 2﹣4ab+8a ,对于任何实数b ,t >0, 故(﹣4a )2﹣4×1×8a <0, 解得,0<a <2,即a 的取值范围是0<a <2; (3)由题意可得, 点A 和点B 在直线y =x 上, 设点A (x 1,x 1),点B (x 2,x 2),∵A ,B 两点的横坐标是函数y =ax 2+(b+1)x+b ﹣2(a ≠0)的不动点, ∴x 1,x 2是方程ax 2+bx+b ﹣2=0的两个根, ∴x 1+x 2=﹣b a,∵线段AB 中点坐标为(122x x +,122x x+), ∴该中点的坐标为(2b a -,2b a-), ∵直线y =﹣x+2121a +是线段AB 的垂直平分线,∴点(2b a -,2ba -)在直线y =﹣x+2121a +上, ∴2ba -=21221b a a ++∴﹣b =222122a a a ≤+=2,(当a =22时取等号) ∴0<﹣b ≤24, ∴﹣2≤b <0, 即b 的取值范围是﹣24≤b <0. 【点睛】本题是一道二次函数综合题、主要考查新定义、二次函数的性质、二次函数图象上点的坐标特征、一次函数的性质,解答本题的关键是明确题意,利用二次函数的性质解答.4.如图1,抛物线21:C y x b =+交y 轴于()0,1A .(1)直接写出抛物线1C 的解析式______________.(2)如图1,x 轴上两动点,M N 满足:m n X X n -==.若,B C (B 在C 左侧)为线段MN 上的两个动点,且满足:B 点和C 点关于直线:1l x =对称.过B 作BB x '⊥轴交1C于B ',过C 作CC x '⊥轴交1C 于C ',连接B C ''.求B C ''的最大值(用含n 的代数式表示).(3)如图2,将抛物线1C 向下平移78个单位长度得到抛物线2C .2C 对称轴左侧的抛物线上有一点M ,其横坐标为m .以OM 为直径作K ,记⊙K 的最高点为Q .若Q 在直线2y x =-上,求m 的值.【答案】(1)21y x =+;(2)1|n -;(3)14m =-或12m =- 【解析】 【分析】(1)将()0,1A 带入抛物线1C 解析式,求得b 的值,即可得到抛物线1C 的解析式; (2)设(),0B q ,则()2,0C q -,求()2B C ''并进行化简,由1n q -≤<且12,qn <-得21n q -<,则当()2maxB C''⎡⎤⎢⎥⎣⎦时,取min 2q q n ==-,带入()2B C '',即可求得()maxB C '';(3)依题意将抛物线1C 向下平移78个单位长度得到抛物线2C ,求得2C 解析式,根据解析式特点设21,8M m m ⎛⎫+ ⎪⎝⎭,得到222218OM m m ⎛⎫=++ ⎪⎝⎭,由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭,设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭,化简得到22211084k m k m ⎛⎫++-= ⎪⎝⎭,由Q 点在2y x =-上,得2Q k x m =-=-,继而得到231048m m -+=,解得14m =-或12m =-. 【详解】解:(1)将()0,1A 带入抛物线21:C y x b =+,得b=1, 则21:1C y x =+,(2)设(),0B q ,则()2,0C q -, ∴()22222(2)(2)B C q q q q ''⎡⎤=--+--⎣⎦2204020q q =-+()2201q =-,∵1n q -≤<且12,q n <-21n q -<∴,∴()2maxB C''⎡⎤⎢⎥⎣⎦时,min 2q q n ==-,即()22220(21)20(1)B C n n ''=--=-,∴()max1|B C n ''=-,(3)根据题意,将抛物线1C 向下平移78个单位长度得到抛物线2C , ∴221:8C y x =+, ∴21,8M m m ⎛⎫+⎪⎝⎭, ∴222218OM m m ⎛⎫=++ ⎪⎝⎭,∴由圆的特性易求得,⊙K 的最高点点Q 坐标为:2111,2228m OM m ⎛⎫⎛⎫++ ⎪⎪⎝⎭⎝⎭, 设Q y k =,则2111228k OM m ⎛⎫=++ ⎪⎝⎭, ∴222111428OM k m ⎡⎤⎛⎫=-+ ⎪⎢⎥⎝⎭⎣⎦, 化简上式得:22211084k m k m ⎛⎫++-= ⎪⎝⎭, ∵Q 点在2y x =-上,则2Q k x m =-=-, ∴k m =-为上述方程的一个解, ∴分析可知1()04k m k m ⎛⎫+-= ⎪⎝⎭, 21148m m m -=+∴,∴231048m m -+=, 解得:114m =-,212m =-(经检验114m =-,212m =-是方程231048m m -+=的解), 故14m =-或12m =-.【点睛】本题主要考查二次函数的图像及性质、图像平移的性质、及二次函数与一元二次方程的综合应用、最值求法等知识.解题关键是熟练掌握二次函数的性质,充分利用数形结合的思想.5.定义:对于已知的两个函数,任取自变量x 的一个值,当0x ≥时,它们对应的函数值相等;当0x <时,它们对应的函数值互为相反数,我们称这样的两个函数互为相关函数.例如:正比例函数y x =,它的相关函数为(0)(0)x x y x x ≥⎧=⎨-<⎩. (1)已知点()5,10A -在一次函数5y ax =-的相关函数的图像上,求a 的值; (2)已知二次函数2142y x x =-+-. ①当点3,2B m ⎛⎫ ⎪⎝⎭在这个函数的相关函数的图像上时,求m 的值; ②当33x -≤≤时,求函数2142y x x =-+-的相关函数的最大值和最小值. (3)在平面直角坐标系中,点M 、N 的坐标分别为1,12⎛⎫-⎪⎝⎭、9,12⎛⎫⎪⎝⎭,连结MN .直接写出线段MN 与二次函数24y x x n =-++的相关函数的图像有两个公共点时n 的取值范围.【答案】(1)1;(2)①22- ;②max 432y =,min 12y =-;(3)31n -<≤-,514n <≤【解析】 【分析】(1)先求出5y ax =-的相关函数,然后代入求解,即可得到答案;(2)先求出二次函数的相关函数,①分为m <0和m ≥0两种情况将点B 的坐标代入对应的关系式求解即可; ②当-3≤x <0时,y=x 2-4x+12,然后可 此时的最大值和最小值,当0≤x≤3时,函数y=-x 2+4x-12,求得此时的最大值和最小值,从而可得到当-3≤x≤3时的最大值和最小值; (3)首先确定出二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值,然后结合函数图象可确定出n 的取值范围. 【详解】解:(1)根据题意,一次函数5y ax =-的相关函数为5,(0)5,(0)ax x y ax x -≥⎧=⎨-+<⎩, ∴把点()5,10A -代入5y ax =-+,则(5)510a -⨯-+=,∴1a =;(2)根据题意,二次函数2142y x x =-+-的相关函数为2214,(0)214,(0)2x x x y x x x ⎧-+-≥⎪⎪=⎨⎪-+<⎪⎩, ①当m <0时,将B (m ,32)代入y=x 2-4x+12得m 2-4m+1322=, 解得:m=2当m≥0时,将B (m ,32)代入y=-x 2+4x-12得:-m 2+4m-12=32, 解得:或m=2.综上所述:m=2-或m=2+或m=2-②当-3≤x <0时,y=x 2-4x+12,抛物线的对称轴为x=2,此时y 随x 的增大而减小, ∴当3x =-时,有最大值,即2143(3)4(3)22y =--⨯-+=, ∴此时y 的最大值为432. 当0≤x≤3时,函数y=-x 2+4x 12-,抛物线的对称轴为x=2, 当x=0有最小值,最小值为12-, 当x=2时,有最大值,最大值y=72. 综上所述,当-3≤x≤3时,函数y=-x 2+4x 12-的相关函数的最大值为432,最小值为12-; (3)如图1所示:线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有1个公共点.∴当x=2时,y=1,即-4+8+n=1,解得n=-3.如图2所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=x2-4x-n与y轴交点纵坐标为1,∴-n=1,解得:n=-1.∴当-3<n≤-1时,线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.如图3所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有3个公共点.∵抛物线y=-x2+4x+n经过点(0,1),∴n=1.如图4所示:线段MN与二次函数y=-x2+4x+n的相关函数的图象恰有2个公共点.∵抛物线y=x 2-4x-n 经过点M (12-,1), ∴14+2-n=1,解得:n=54. ∴1<n≤54时,线段MN 与二次函数y=-x 2+4x+n 的相关函数的图象恰有2个公共点. 综上所述,n 的取值范围是-3<n≤-1或1<n≤54. 【点睛】本题主要考查的是二次函数的综合应用,解答本题主要应用了二次函数的图象和性质、函数图象上点的坐标与函数解析式的关系,求得二次函数y=-x 2+4x+n 的相关函数与线段MN 恰好有1个交点、2个交点、3个交点时n 的值是解题的关键.6.如图,抛物线2(0)y ax bx c a =++≠与坐标轴的交点为()30A -,,()10B ,,()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式.(2)若E 为第二象限内一点,且四边形ACBE 为平行四边形,求直线CE 的解析式. (3)P 为抛物线上一动点,当PAB ∆的面积是ABD ∆的面积的3倍时,求点P 的坐标.【答案】(1)223y x x =+-;(2)33y x =--;(3)点P 的坐标为()5,12-或()3,12.【解析】【分析】(1)本题考查二次函数解析式的求法,可利用待定系数法,将点带入求解;(2)本题考查二次函数平行四边形存在性问题,可根据题干信息结合平行四边形性质确定动点位置,进一步利用待定系数法求解一次函数解析式;(3)本题考查二次函数与三角形面积问题,可先根据题干面积关系假设动点坐标,继而带入二次函数,列方程求解.【详解】(1)∵抛物线2y ax bx c=++与坐标轴的交点为()30A-,,()10B,,()0,3C-,∴9303a b ca b cc-+=⎧⎪++=⎨⎪=-⎩,解得123abc=⎧⎪=⎨⎪=-⎩∴抛物线的解析式为223y x x=+-.(2)如图,过点E作EH x⊥轴于点H,则由平行四边形的对称性可知1AH OB==,3EH OC==.∵3OA=,∴2OH=,∴点E的坐标为()2,3-.∵点C的坐标为()0,3-,∴设直线CE的解析式为()30y kx k=-<将点()2,3E-代入,得233k--=,解得3k=-,∴直线CE的解析式为33y x=--.(3)∵2223(1)4y x x x=+-=+-,∴抛物线的顶点为()1,4D--.∵PAB∆的面积是ABD∆的面积的3倍,∴设点P为(),12t.将点(),12P t代入抛物线的解析式223y x x=+-中,得22312t t+-=,解得3t=或5t=-,故点P的坐标为()5,12-或()3,12.【点睛】本题考查二次函数与几何的综合,利用待定系数法求解解析式时还可以假设交点式,几何图形存在性问题求解往往需要利用其性质,假设动点坐标,列方程求解.7.如图,抛物线2y x bx c=-++的图象与x轴交于A、B两点(点A在点B的左边),与y 轴交于点C ,点D 为抛物线的顶点.点A 坐标的为3,0,点C 的坐标为()0,3.(Ⅰ)求抛物线的解析式;(Ⅱ)点M 为线段AB 上一点(点M 不与点A 、B 重合),过点M 作i 轴的垂线,与直线AC 交于点E ,与抛物线交于点P ,过点P 作//PQ AB 交抛物线于点Q ,过点Q 作QN x ⊥轴于点N .若点P 在点Q 左边,当矩形PMNQ 的周长最大时,求AEM △的面积;(Ⅲ)在(Ⅱ)的条件下,当矩形PMNQ 的周长最大时,连接DQ ,过抛物线上一点F 作y 轴的平行线,与直线AC 交于点G (点G 在点F 的上方).若=22FG DQ ,求点F 的坐标.【答案】(Ⅰ)223y x x =--+;(Ⅱ)12;(Ⅲ)()4,5F --或()1,0 【解析】【分析】(Ⅰ)将点A ,点C 坐标代入解析式可求解;(Ⅱ)设M (x ,0),P (x ,-x 2-2x+3),利用对称性可求点Q (-2-x ,-x 2-2x+3),可求MP=-x 2-2x+3,PQ=-2-x-x=-2-2x ,则可用x 表示矩形PMNQ 的周长,由二次函数的性质可求当矩形PMNQ 的周长最大时,点P 的坐标,即可求点E ,点M 的坐标,由三角形面积公式可求解;(Ⅲ)先求出点D 坐标,即可求2FG=4,设F (m ,-m 2-2m+3),则G (m ,m+3),用含有m 的式子表示FG 的长度即可求解.【详解】 解:(Ⅰ)依题意()()2330{3b c c --+⨯-+== 解得2{3b c =-= 所以223y x x =--+(Ⅱ)2223(1)4y x x x抛物线的对称轴是直线1x =-(,0)M x ,()2,23P x x x --+,其中31x -<<-∵P 、Q 关于直线1x =-对称设Q 的横坐标为a则()11a x --=--∴2a x =--∴()22,23Q x x x ----+∴223MP x x =--+,222PQ x x x =---=--∴周长()222222232822(2)10d x x x x x x =----+=--+=-++当2x =-时,d 取最大值,此时,(2,0)M -∴2(3)1AM =---=设直线AC 的解析式为y kx b =+ 则303k b b -+=⎧⎨=⎩,解得13k b =⎧⎨=⎩∴设直线AC 的解析式为3yx 将2x =-代入3yx ,得1y = ∴(2,1)E -,∴1EM = ∴11111222AEM S AM ME ∆=⋅=⨯⨯= (Ⅲ)由(Ⅱ)知,当矩形PMNQ 的周长最大时,2x =-此时点()0,3Q ,与点C 重合,∴3OQ =∵2223(1)4y x x x∴()1,4D -过D 作DK y ⊥轴于K ,则1DK =,4OK =∴431OK OK OQ =-=-=∴DKQ 是等腰直角三角形,2DQ =∴224FG DQ ==设()2,23F m m m --+,则(,3)G m m + ()223233FG m m m m m =+---+=+∴234m m +=,解得14m =-,21m =当4m =-时,2235m m --+=-当1m =时,2230m m --+=.∴()4,5F --或()1,0【点睛】本题是二次函数综合题,考查了二次函数的性质,矩形的性质,等腰直角三角形的性质等,利用参数表示线段的长度是本题的关键.8.如图,已知抛物线2y x bx c =-++与x 轴交于A ,B 两点,过点A 的直线l 与抛物线交于点C ,其中点A 的坐标是()1,0,点C 的坐标是()2,3-,抛物线的顶点为点D .(1)求抛物线和直线AC 的解析式.(2)若点P 是抛物线上位于直线AC 上方的一个动点,求APC ∆的面积的最大值及此时点P 的坐标.(3)若抛物线的对称轴与直线AC 相交于点E ,点M 为直线AC 上的任意一点,过点M 作//MN DE 交抛物线于点N ,以D ,E ,M ,N 为顶点的四边形能否为平行四边形?若能,求出点M 的坐标;若不能,请说明理由.【答案】(1)y=-x 2-2x+3,y=-x+1;(2)最大值为278,此时点P(12-,154);(3)能,(0,1),)或【解析】【分析】(1)直接利用待定系数法进行求解,即可得到答案;(2)设点P(m ,-m 2-2m+3),则Q(m ,-m+1),求出PQ 的长度,结合三角形的面积公式和二次函数的性质,即可得到答案;(3)根据题意,设点M(t ,-t+1),则点N(t ,-t 2-2t+3),可分为两种情况进行分析:①当点M 在线段AC 上时,点N 在点M 上方;②当点M 在线段AC (或CA )延长线上时,点N 在点M 下方;分别求出点M 的坐标即可.【详解】解:(1)∵抛物线y=-x 2+bx+c 过点A(1,0),C(-2,3),∴10423b c b c -++=⎧⎨--+=⎩,,解得:23b c =-⎧⎨=⎩,. ∴抛物线的解析式为y=-x 2-2x+3.设直线AC 的解析式为y=kx+n .将点A ,C 坐标代入,得023k n k n +=⎧⎨-+=⎩,,解得11k n =-⎧⎨=⎩,. ∴直线AC 的解析式为y=-x+1.(2)过点P 作PQ ∥y 轴交AC 于点Q .设点P(m ,-m 2-2m+3),则Q(m ,-m+1).∴PQ=(-m 2-2m+3)-(-m+1)=-m 2-m+2.∴S △APC =S △PCQ +S △APQ =12PQ·(x A -x C )=12(-m 2-m+2)×3=23127()228m -++. ∴当m=12-时,S △APC 最大,最大值为278,此时点P(12-,154). (3)能.∵y=-x 2-2x+3,点D 为顶点,∴点D(-1,4),令x=-1时,y=-(-1)+1=2,∴点E(-1,2).∵MN ∥DE ,∴当MN=DE=2时,以D ,E ,M ,N 为顶点的四边形是平行四边形.∵点M 在直线AC 上,点N 在抛物线上,∴设点M(t,-t+1),则点N(t,-t2-2t+3).①当点M在线段AC上时,点N在点M上方,则MN=(-t2-2t+3)-(-t+1)=-t2-t+2.∴-t2-t+2=2,解得:t=0或t=-1(舍去).∴此时点M的坐标为(0,1).②当点M在线段AC(或CA)延长线上时,点N在点M下方,则MN=(-t+1)-(-t2-2t+3)=t2+t-2.∴t2+t-2=2,解得:t=1172-+或t=1172--.∴此时点M的坐标为(117-+,317-)或(117--,317+).综上所述,满足条件的点M的坐标为:(0,1),(117-+,317-)或(1172--,3172+).【点睛】本题考查了待定系数法求一次函数解析式、待定系数法求二次函数解析式、二次函数图象上点的坐标特征、一次函数图象上点的坐标特征、二次函数的性质、三角形的面积以及周长,解题的关键是:(1)根据点的坐标,利用待定系数法求出抛物线及直线AC的函数关系式;(2)利用三角形的面积公式和二次函数的性质解题;(3)利用二次函数图象的对称性结合两点之间线段最短找出点M的位置.9.在平面直角坐标系中,二次函数y=ax2+bx+2的图象与x轴交于A(﹣3,0),B(1,0)两点,与y轴交于点C.(1)求这个二次函数的关系解析式;(2)求直线AC的函数解析式;(3)点P是直线AC上方的抛物线上一动点,是否存在点P,使△ACP的面积最大?若存在,求出点P的坐标;若不存在,说明理由;【答案】(1)y=﹣2 3 x2﹣43x+2;(2)223y x=+;(3)存在,(35,22-)【解析】【分析】(1)直接用待定系数法即可解答;(2)先确定C点坐标,设直线AC的函数解析式y=kx+b,最后用待定系数法求解即可;(3)连接PO,作PM⊥x轴于M,PN⊥y轴于N,然后求出△ACP面积的表达式,最后利用二次函数的性质求最值即可.【详解】解:(1)∵抛物线y=ax2+bx+2过点A(﹣3,0),B(1,0),∴093202a ba b=-+⎧⎨=++⎩解得2343ab⎧=-⎪⎪⎨⎪=-⎪⎩,∴二次函数的关系解析式为y=﹣23x2﹣43x+2;(2)∵当x=0时,y=2,∴C(0,2)设直线AC的解析式为y kx b=+,把A、C两点代入得0=32k bb-+⎧⎨=⎩解得232kb⎧=⎪⎨⎪=⎩∴直线AC的函数解析式为223y x=+;(3)存在.如图: 连接PO,作PM⊥x轴于M,PN⊥y轴于N设点P坐标为(m,n),则n=224233m m--+),PN=-m,AO=3当x=0时,y=22400233-⨯-⨯+=2,∴点C 的坐标为(0,2),OC=2 ∵PAC PAO PCO ACO S S S S =+-212411322()3223322m m m ⎛⎫=⨯⋅--++⨯⋅--⨯⨯ ⎪⎝⎭ =23m m --∵a=-1<0∴函数S △PAC =-m 2-3m 有最大值∴b 当m=()33212-=--⨯- ∴当m=32-时,S △PAC 有最大值n=222423435223332322m m ⎛⎫--+=-⨯-⨯+= ⎪⎝⎭ ∴当△ACP 的面积最大时,P 的坐标为(35,22-). 【点睛】 本题是二次函数压轴题,综合考查了二次函数的图象与性质、待定系数法、二次函数极值等知识点,根据题意表示出△PAC 的面积是解答本题的关键.10.如图,已知二次函数22(0)y ax ax c a 的图象与x 轴负半轴交于点A (-1,0),与y 轴正半轴交与点B ,顶点为P ,且OB=3OA ,一次函数y=kx+b 的图象经过A 、B .(1) 求一次函数解析式;(2)求顶点P 的坐标;(3)平移直线AB 使其过点P ,如果点M在平移后的直线上,且3tan 2OAM ∠=,求点M 坐标;(4)设抛物线的对称轴交x 轴与点E ,联结AP 交y 轴与点D ,若点Q 、N 分别为两线段PE 、PD 上的动点,联结QD 、QN ,请直接写出QD+QN 的最小值.【答案】(1) 一次函数的解析式为:y=3x+3(2)顶点P 的坐标为(1,4)(3) M 点的坐标为:15,2(,39⎛⎫- ⎪⎝⎭或 23-)(4)最小值为5【解析】【分析】 (1)根据抛物线的解析式即可得出B (0,3),根据OB=3OA ,可求出OA 的长,也就得出了A 点的坐标,然后将A 、B 的坐标代入直线AB 的解析式中,即可得出所求;(2)将(1)得出的A 点坐标代入抛物线的解析式中,可求出a 的值,也就确定了抛物线的解析式进而可求出P 点的坐标;(3)易求出平移后的直线的解析式,可根据此解析式设出M 点坐标(设横坐标,根据直线的解析式表示出纵坐标).然后过M 作x 轴的垂线设垂足为E ,在构建的直角三角形AME 中,可用M 点的坐标表示出ME 和AE 的长,然后根据∠OAM 的正切值求出M 的坐标.(本题要分M 在x 轴上方和x 轴下方两种情况求解.方法一样.)(4)作点D 关于直线x=1的对称点D′,过点D′作D′N ⊥PD 于点N ,根据垂线段最短求出QD+QN 的最小值.【详解】(1)∵A (-1,0),∴OA=1∵OB=3OA ,∴B (0,3)∴图象过A 、B 两点的一次函数的解析式为:y=3x+3(2)∵二次函数22(0)y ax ax c a =-+<的图象与x 轴负半轴交与点A (-1,0),与y 轴正半轴交与点B (0,3),∴c=3,a=-1∴二次函数的解析式为:223y x x =-++∴抛物线223y x x =-++的顶点P (1,4)(3)设平移后的直线的解析式为:3y x b =+∵直线3y x b =+过P (1,4)∴b=1∴平移后的直线为31y x =+∵M 在直线31y x =+,且3tan 2OAM ∠=设M (x,3x+1)① 当点M 在x 轴上方时,有31312x x +=+,∴13x = ∴11,23M ⎛⎫ ⎪⎝⎭②当点M 在x 轴下方时,有31312x x +-=+,∴59x =- ∴25(,9M - 23-)(4)作点D关于直线x=1的对称点D’,过点D’作D’N⊥PD于点N当-x2+2x+3=0时,解得,x=-1或x=3,∴A(-1,0),P点坐标为(1,4),则可得PD解析式为:y=2x+2,令x=0,可得y=2,∴D(0,2),∵D与D′关于直线x=1对称,∴D′(2,2).根据ND′⊥PD,设ND′解析式为y=kx+b,则k=-12,即y=-12x+b,将D′(2,2)代入,得2=-12×2+b,解得b=3,可得函数解析式为y=-12x+3,将两函数解析式组成方程组得:13222y xy x⎧=-+⎪⎨⎪=+⎩,解得25145xy⎧=⎪⎪⎨⎪=⎪⎩,故N(214 ,) 55,由两点间的距离公式:d=2221445 2255⎛⎫⎛⎫-+-=⎪ ⎪⎝⎭⎝⎭,∴所求最小值为45【点睛】本题主要考查了一次函数解析式的确定、二次函数解析式的确定、函数图象的平移等知识点.同时考查了应用轴对称和垂线段最短解决线段和的最小值问题.。

(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

(完整word)九年级数学二次函数知识点总结及经典例题,推荐文档

二次函数知识点总结一、二次函数概念:21二次函数的概念:一般地,形如y ax bx c( a,b ,c是常数,a 0 )的函数,叫做二次函数。

里需要强调:和一元二次方程类似,二次项系数 a 0,而b,c可以为零•二次函数的定义域是全体实数.92. 二次函数y ax bx c的结构特征:⑴等号左边是函数,右边是关于自变量x的二次式,x的最高次数是2.⑵a ,b, c是常数,a是二次项系数,b是一次项系数,c是常数项.二、二次函数的基本形式21.二次函数基本形式:y ax的性质:a的绝对值越大,抛物线的开口越小。

22. y ax c的性质:上加下减。

23. y a x h的性质:左加右减。

24. y ax hk 的性质: a 的符号开口方向 顶点坐标 对称轴 性质a 0向上h , kX=hx h 时,y 随x 的增大而增大;x h 时,y 随 x 的增大而减小;x h 时,y 有最小值k •a 0向下 h , k X=hx h 时,y 随x 的增大而减小;x h 时,y 随 x 的增大而增大;x h 时,y 有最大值k •三、二次函数图象的平移1.平移步骤:2⑴将抛物线解析式转化成顶点式 y a x h k ,确定其顶点坐标 h , k ;⑵ 保持抛物线y ax 2的形状不变,将其顶点平移到 h ,k 处,具体平移方法如下:当x 2a 时,y 随x 的增大而减小; y=ax 2 A y=ax 2+k向右(h>0)【或左(*0)] 平移|k|个单位y=a(x h)2向右(h>0)【或左(h<0)] 平移|k|个单位2.平移规律在原有函数的基础上 概括成八个字“左加右减,h 值正右移,负左移;上加下减” •k 值正上移,负下移”六、 四、二次函数从解析式上看,b a x2a二次函数1. 4ac b 24a,其中 ax 2 bx c 的性质当a 0时,抛物线开口向上,对称轴为2axax 2 bx c 的比较bx c 是两种不同的表达形式, 后者通过配方可以得到前者,4ac b 2 4a盘,顶点坐标为b 4ac b 22a ' 4a向上(k>0)【或向下(k<0)】平移|k|个单位向上(k>0)【或下(k<0)】 平移|k 个单位向右(h>0)【或左(h<0)] 平移|k|个单位2当x佥时,y随x的增大而增大;x2a 时,y有最小值4ac b 2 4a2•当a 0时,抛物线开口向下, 对称轴为 x —,顶点坐标为2a b 4ac b 2 、[/ b ”亠方,F .当x 茲时,y 随 x 的增大而增大;当x 2a 时,b 4ac b 2y 随x 的增大而减小;当x 亦时,y 有最大值 f 七、 1. 二次函数解析式的表示方法一般式:y ax 2bx c ( a , b , c 为常数,a 0);2顶点式:y a (x h ) k ( a , h , k 为常数,a 0); 两根式(交点式):y a (x x i )(x X 2) ( a 0,为,x ?是抛物线与x 轴两交点的横坐标) 2. 3. 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只 有抛物线与x 轴有交点,即b 2 4ac 0时,抛物线的解析式才可以用交点式表示. 二次函数解析式的这三种形式可以互化.八、 1. ⑴ ⑵ 二次函数的图象与各项系数之间的关系二次项系数a当a 0时,抛物线开口向上, 当a 0时,抛物线开口向下, a 的值越大,开口越小,反之 a 的值越小,开口越大; a 的值越小,开口越小,反之 a 的值越大,开口越大.2. 一次项系数b在二次项系数a 确定的前提下, 3. 常数项c⑴当c ⑵当c ⑶当c总结起来, 0时, 0时, 0时, b 决定了抛物线的对称轴.(同左异右 b 为0对称轴为y 轴)抛物线与y 轴的交点在x 轴上方,即抛物线与 抛物线与抛物线与y 轴的交点在x 轴下方,即抛物线与 c决定了抛物线与y 轴交点的位置.y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为正; y轴交点的纵坐标为0 ; y 轴交点的纵坐标为负.九、二次函数与一元二次方程:i.二次函数与一元二次方程的关系(二次函数与 一二次方程ax 2 bx c 0是二次函数y x 轴的交点个数: 兀 图象与 ax 2 x 轴交点情况): bx c 当函数值y 0时的特殊情况.2b 4ac 0时,图象与x 轴交于两点Ax 1 ,0 ,B x 2 ,0 (x 1X 2),其中的X i , x 是一元二次方2ax bx 0的两根.• 1' 2' 0时, 0时, 当a 当a x 轴只有一个交点;x 轴没有交点. 0时,图象落在 0时,图象落在 图象与 图象与 x 轴的上方,无论 x 轴的下方,无论 x 为任何实数, x 为任何实数, 都有都有2.抛物线y 2axbx c 的图象与y 轴一定相交,交点坐标为 (0 , c);二次函数对应练习试题、选择题1.二次函数y2x 4x 7的顶点坐标是A.(2, —11)B. (-2, 7)C. (2, 11)D. (2, - 3)2.把抛物线y2x2向上平移1个单位, 得到的抛物线是(2A. y 2(x 1)B. y 2(x 2 21) C. y 2x 1 D. 2x2 12k3.函数y kx k和y (k 0)在同一直角坐标系中图象可能是图中的0)的图象如图所示,则下列结论:①a,b同号;②当x 1和x 3时,函数值相等;③4a b 0④当y 确的个数是()A.1个B.2 个C. 35.已知二次函数y ax2 bx c(a由图象可知关于兀二次方程axA. — 1 .6.已知二次函数A.第一象限C.第三象限7.方程2x x2A.0个8.已知抛物线过点A. y x2C. y x22时,x的值只能取0.其中正个个D. 4B.-2.3C.-0.3D.-3.32ax bx c的图象如图所示, 则点(ac,bc)在(B.第二象限D.第四象限-的正根的个数为xB.1A(2,0),B(-1,0), x 2 或y x2C.2与y轴交于点B.x 2 D.C,且0C=2.则这条抛物线的解析式为y x2 x 22 、2y x x 2 或y x x 2二、填空题9•二次函数y x2 bx 3的对称轴是x 2,则b ______________ 。

(word完整版)二次函数图像与性质完整归纳,推荐文档

(word完整版)二次函数图像与性质完整归纳,推荐文档

二次函数的图像与性质 一、二次函数的基本形式1. 二次函数基本形式:2y ax =的性质:2. 2y ax c =+的性质: 上加下减。

3. ()2y a x h =-的性质:左加右减。

4. ()2y a x h k =-+的性质:二、二次函数图象的平移1. 平移步骤:方法一:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,; ⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位2. 平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”. 概括成八个字“左加右减,上加下减”. 方法二:⑴c bx ax y ++=2沿y 轴平移:向上(下)平移m 个单位,c bx ax y ++=2变成m c bx ax y +++=2(或m c bx ax y -++=2)⑵c bx ax y ++=2沿轴平移:向左(右)平移m 个单位,c bx ax y ++=2变成c m x b m x a y ++++=)()(2(或c m x b m x a y +-+-=)()(2)三、二次函数()2y a x h k =-+与2y ax bx c =++的比较从解析式上看,()2y a x h k =-+与2y ax bx c =++是两种不同的表达形式,后者通过配方可以得到前者,即22424b ac b y a x a a -⎛⎫=++ ⎪⎝⎭,其中2424b ac b h k a a -=-=,. 四、二次函数2y ax bx c =++图象的画法五点绘图法:利用配方法将二次函数2y ax bx c =++化为顶点式2()y a x h k =-+,确定其开口方向、对称轴及顶点坐标,然后在对称轴两侧,左右对称地描点画图.一般我们选取的五点为:顶点、与y 轴的交点()0c ,、以及()0c ,关于对称轴对称的点()2h c ,、与x 轴的交点()10x ,,()20x ,(若与x 轴没有交点,则取两组关于对称轴对称的点). 画草图时应抓住以下几点:开口方向,对称轴,顶点,与x 轴的交点,与y 轴的交点.五、二次函数2y ax bx c =++的性质1. 当0a >时,抛物线开口向上,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而减小;当2b x a >-时,y 随x 的增大而增大;当2bx a=-时,y 有最小值244ac b a-.2. 当0a <时,抛物线开口向下,对称轴为2bx a =-,顶点坐标为2424b ac b a a ⎛⎫-- ⎪⎝⎭,.当2b x a <-时,y 随x 的增大而增大;当2b x a >-时,y 随x 的增大而减小;当2bx a=-时,y 有最大值244ac b a-.六、二次函数解析式的表示方法1. 一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠);2. 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);3. 两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标). 注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化.七、二次函数的图象与各项系数之间的关系1. 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 的值越大,开口越小,反之a 的值越小,开口越大; ⑵ 当0a <时,抛物线开口向下,a 的值越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小. 2. 一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02ba-<,即抛物线的对称轴在y 轴左侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02ba-=,即抛物线的对称轴就是y 轴; 当0b <时,02ba-<,即抛物线对称轴在y 轴的左侧. 总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置.ab 的符号的判定:对称轴abx 2-=在y 轴左边则0>ab ,在y 轴的右侧则0<ab ,概括的说就是“左同右异” 总结:3. 常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0; ⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负. 总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的.二次函数解析式的确定:根据已知条件确定二次函数解析式,通常利用待定系数法.用待定系数法求二次函数的解析式必须根据题目的特点,选择适当的形式,才能使解题简便.一般来说,有如下几种情况:1. 已知抛物线上三点的坐标,一般选用一般式;2. 已知抛物线顶点或对称轴或最大(小)值,一般选用顶点式;3. 已知抛物线与x 轴的两个交点的横坐标,一般选用两根式;4. 已知抛物线上纵坐标相同的两点,常选用顶点式.八、二次函数图象的对称二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 1. 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---;2. 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++;3. 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 4. 关于顶点对称(即:抛物线绕顶点旋转180°)2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k =-+关于顶点对称后,得到的解析式是()2y a x h k =--+.5. 关于点()m n ,对称 ()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.二次函数图像参考:十一、2-32y=-2x 2y=3(x+4)22y=3x2y=-2(x-3)2【例题精讲】一、一元二次函数的图象的画法【例1】求作函数64212++=x x y 的图象 【解】 )128(21642122++=++=x x x x y2-4)(214]-4)[(21 2222+=+=x x【例2】求作函数342+--=x x y 的图象。

九年级数学二次函数y=a(x-h)2k(a≠0)的图像与性质(知识讲解)Word版含解析

九年级数学二次函数y=a(x-h)2k(a≠0)的图像与性质(知识讲解)Word版含解析

专题2.10 二次函数y=a(x-h)2+k(a≠0)的图像与性质(知识讲解)-2021-2022学年九年级数学下册基础知识专项讲练(北师大版)专题2.10 二次函数y=a(x -h)2+k(a≠0)的图像与性质(知识讲解)【学习目标】1.会用描点法画出二次函数2()y a x h k =-+(a 、h 、k 常数,a≠0)的图像.掌握抛物线2()y a x h k =-+与2y ax =图像之间的关系;2.熟练掌握函数2()y a x h k =-+的有关性质,并能用函数2()y a x h k =-+的性质解决一些实际问题;3.经历探索2()y a x h k =-+的图像及性质的过程,体验2()y a x h k =-+与2y ax =、2y ax k =+、2()y a x h =-之间的转化过程,深刻理解数学建模思想及数形结合的思想方法.【要点梳理】要点一、函数2()(0)y a x h a =-≠与函数2()(0)y a x h k a =-+≠的图像与性质 1.函数2()(0)y a x h a =-≠的图像与性质2.函数2()(0)y a x h k a =-+≠的图像与性质特别说明:二次函数2()(0)y a x h k a =-+≠的图像常与直线、三角形、面积问题结合在一起,借助它的图像与性质.运用数形结合、函数、方程思想解决问题.2.性质:要点二、二次函数的平移1.平移步骤:(1)将抛物线解析式转化成顶点式2()y a x h k =-+,确定其顶点坐标(,)h k ;(2)保持抛物线2y ax =的形状不变,将其顶点平移到(,)h k 处,具体平移方法如下:2.平移规律:在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.特别说明:(1)2y ax bx c =++沿y 轴平移:向上(下)平移m 个单位,2y ax bx c =++变成2y ax bx c m =+++(或2y ax bx c m =++-)(2)2y ax bx c =++沿x 轴平移:向左(右)平移m 个单位,2y ax bx c =++变成2()()y a x m b x m c =++++(或2()()y a x m b x m c =-+-+)【典型例题】类型一、二次函数2()(0)y a x h k a =-+≠的性质1.已知二次函数经过点(0,3),且当1x =时,函数y 有最大值4.(1)求二次函数的解析式;(2)直接写出一个与该函数图象开口方向相反,形状相同,且经过点(0,3)的二次函数解析式.举一反三:【变式1】2.已知函数()()27322m y m x m -=-++-是二次函数.(1)求m 的值;(2)求这个二次函数的解析式,并指出开口方向、对称轴和顶点坐标.【变式2】3.已知二次函数y =-x 2+4x .(1)用配方法把该二次函数化为y =a (x -h )2+k 的形式,并指出函数图象的对称轴和顶点坐标;(2)求这个函数图象与x 轴的交点的坐标.【变式3】4.已知抛物线2()y a x h =-,当2x =时,有最大值,且抛物线过点(1,3)-.(1)求抛物线的解析式;(2)当y 随x 的增大而增大时,求x 的取值范围;(3)求抛物线与y 轴的交点坐标.类型二、求二次函数2()(0)y a x h k a =-+≠开口方向、顶点坐标及对称轴5.已知二次函数20.50.5y x x =--,求顶点坐标,小明的计算结果与其他同学的不同,小明的计算过程:20.50.5y x x =--221x x =--……①;22111x x ……①;()212x =--……①;∴顶点坐标是1,2……①; (1)请你帮他检查一个,在标出的①①①①几个步骤中开始出现错误的是________________步.(2)请写出此题正确的求顶点的计算过程.举一反三:【变式1】6.确定下列函数图像的开口方向、对称轴及顶点坐标.(1)()221y x =+;(2)()245y x =--.类型三、二次函数2()(0)y a x h k a =-+≠的平移7.把二次函数y=2x 2的图象向左平移1个单位长度,再向下平移2个单位长度,平移后抛物线的解析式为____________.【变式1】8.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x ______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到.【变式2】9.将二次函数y=2x 2﹣1的图象沿y 轴向上平移2个单位,所得图象对应的函数表达式为________.类型四、求二次函数2()(0)y a x h k a =-+≠的解析式10.一条抛物线经过点A(-2,0)且抛物线的顶点是(1,-3),求满足此条件的函数解析式.11.将抛物线y=﹣2(x+1)2+1绕其顶点旋转180°后得到抛物线的解析式为______; 将抛物线y=﹣2(x+1)2+1绕原点旋转180°后得到抛物线的解析式为______.举一反三:【变式1】12.已知二次函数的顶点为(2,2)-且过点(1,3)-,求该函数解析式.【变式2】13.求符合下列条件的抛物线2(1)y a x =-的函数关系式,(1)通过点(3,8);(2)与212y x =的开口大小相同,方向相反. 【变式3】 14.已知,如图,直线l 经过A (4,0)和B (0,4)两点,抛物线y=a (x ﹣h )2的顶点为P (1,0),直线l 与抛物线的交点为M .(1)求直线l 的函数解析式;(2)若S △AMP =3,求抛物线的解析式.类型五、二次函数2()(0)y a x h k a =-+≠的实际应用15.A 、B 两地果园分别有橘子40吨和60吨,C 、D 两地分别需要橘子30吨和70吨;已知从A 、B 到C 、D 的运价如表:(1)若从A 果园运到C 地的橘子为x 吨,则从A 果园运到D 地的橘子为____吨,从A 果园将橘子运往D 地的运输费用为____元;(2)设总运费为y 元,请你求出y 关于x 的函数关系式;(3)求总运输费用的最大值和最小值;(4)若这批橘子在C 地和D 地进行再加工,经测算,全部橘子加工完毕后总成本为w 元,且w =-(x -25)2+4360,则当x =___ 时,w 有最 __ 值(填“大”或“小”).这个值是 ___ . 举一反三:【变式1】16.某商店以30元/千克的单价新进一批商品,经调查发现,在一段时间内,销售量y (千克)与销售单价x (元/千克)之间为一次函数关系,如图所示.(1)求y与x的函数解析式;(2)要使销售利润达到最大,销售单价应定为每千克多少元?参考答案:1.(1)2(1)4y x =--+;(2)2(1)2y x =-+【分析】(1)设顶点式为y =a (x−1)2+4,然后把(0,3)代入求出a 即可;(2)利用二次函数的性质,抛物线解析式为可设为y =(x−1)2+h ,然后把(0,3)代入求出h 可得到满足条件的一个抛物线解析式.【详解】(1)设抛物线解析式为y =a (x−1)2+4,把(0,3)代入得a (0−1)2+4=3,解得a =−1,所以抛物线解析式为y =−(x−1)2+4;(2)设抛物线解析式为y =(x−1)2+h ,把(0,3)代入得1+h =3,解得h =2,所以满足条件的一个抛物线解析式为y =(x−1)2+2.【点睛】本题考查了待定系数法求二次函数的解析式:在利用待定系数法求二次函数关系式时,要根据题目给定的条件,选择恰当的方法设出关系式,从而代入数值求解.当已知抛物线的顶点或对称轴时,常设其解析式为顶点式来求解.也考查了二次函数的性质和二次函数图象上的坐标特征.2.(1)-3;(2)()2625y x =-+-,开口方向向下,对称轴是直线2x =-,顶点坐标是(-2,-5)【分析】(1)根据二次函数的概念,二次项次数为2,可以求出m 的值,再结合二次项系数不等于0,即可最终确定m 的值;(2)将m 代入解析式中,即可得到二次函数的顶点式,根据a 的正负,对称轴为直线x=-h 以及顶点坐标为(-h ,k ),即可解决本题.【详解】解:(1)① 272m -=①3m =±①30m -≠①m≠3①3m =-(2)将m=-3代入解析式中,得二次函数的解析式为()2625y x =-+-①a=-6<0①开口方向向下①对称轴是直线2x =-,顶点坐标是(-2,-5).【点睛】本题主要考查了二次函数的概念以及二次函数的顶点式,熟练其概念以及顶点式的性质是解决本题的关键.3.(1)对称轴为直线x =2,顶点坐标为(2,4);(2)(0,0),(4,0)【详解】试题分析:(1)先将二次函数的表达式化为顶点式,然后写出对称轴与顶点坐标即可.(2)令0y = ,然后解一元二次方程即可.试题解析:(1) y =-(x -2)2+4,其对称轴为直线x =2,顶点坐标为(2,4).(2)令y =0,则-x 2+4x =0,①x 1=0,x 2=4,①这个函数图象与x 轴的交点的坐标为(0,0),(4,0).4.(1)23(2)y x =--;(2)x 的取值范围为2x <;(3)抛物线23(2)y x =--与y 轴的交点坐标为(0,12)-.【分析】(1)根据题意可设抛物线的解析式为2(2)y a x =-,把点(1,3)-代入即可求解;(2)根据函数的对称轴即可求解;(3)令x=0,即可求解.【详解】(1)①抛物线2()y a x h =-,当2x =时,有最大值,①抛物线的解析式为2(2)y a x =-.①抛物线过点(1,3)-,①23(12)a -=-,①3a =-.①此抛物线的解析式23(2)y x =--.(2)①抛物线的对称轴为直线2x =,且抛物线开口向下,①当2x <时,y 随x 的增大而增大.①x 的取值范围为2x <.(3)当0x =时,23(02)12y =-⨯-=-,①抛物线23(2)y x =--与y 轴的交点坐标为(0,12)-.【点睛】此题主要考查二次函数的图像与性质,解题的关键是熟知对称轴的应用.5.(1)①;(2)见详解【分析】(1)根据配方法把二次函数的一般式化为顶点式的步骤,即可得到答案;(2)利用配方法先提出二次项系数,再加上一次项系数的一半的平方来凑完全平方式,把一般式转化为顶点式,即可得到答案.【详解】解:(1)y =0.5x 2−x−0.5=0.5(x 2−2x )−0.5 ①=0.5(x 2−2x +1−1)−0.5 ①=0.5(x−1)2−1①①顶点坐标是(1,−1)①;故答案为:①;(2)y =0.5x 2−x−0.5=0.5(x 2−2x )−0.5=0.5(x 2−2x +1−1)−0.5=0.5(x−1)2−1①顶点坐标是(1,−1).【点睛】此题考查二次函数的顶点式,二次函数解析式的三种形式有:顶点式;两根式以及一般式,掌握配方法,是解题的关键.6.(1)抛物线开口向上,对称轴为直线=1x -,顶点坐标为()1,0-;(2)抛物线开口向下,对称轴为直线5x =,顶点坐标为()5,0.【分析】(1)已知抛物线解析式为顶点式,可根据顶点式求抛物线的开口方向,对称轴及顶点坐标;(2)已知抛物线解析式为顶点式,可根据顶点式求抛物线的开口方向,对称轴及顶点坐标.【详解】解:(1)由()221y x =+可知,二次项系数为20>,①抛物线开口向上,对称轴为直线=1x -,顶点坐标为()1,0-;(2)由()245y x =--可知,二次项系数为4<0-,①抛物线开口向下,对称轴为直线5x =,顶点坐标为()5,0.【点睛】本题考查了二次函数解析式的顶点式与其性质的联系,根据二次项系数的符号确定开口方向,根据顶点式确定顶点坐标及对称轴.7.224y x x =+或22(1)2y x =+-(答出这两种形式中任意一种均得分)【分析】直接根据“上加下减,左加右减”的原则进行解答.【详解】由“左加右减”的原则可知,将二次函数y=2x 2的图象向左平移1个单位长度所得抛物线的解析式为:y=2(x+1)2,即y=2(x+1)2;由“上加下减”的原则可知,将抛物线y=2(x+1)2向下平移2个单位长度所得抛物线的解析式为:y=2(x+1)2﹣2,即y=2(x+1)2﹣2.故答案为y=2(x+1)2﹣2.考点:二次函数图象与几何变换.8. 向上 (2,0) 直线x = 2 ≥2 2 小 0 右 2.【分析】根据二次函数()2y a x h =-和2y ax =之间的关系与性质求解即可.【详解】解:抛物线y =3(x -2)2的开口方向是向上,顶点坐标为(2,0),对称轴是直线x = 2.当x ≥2时,y 随x 的增大而增大;当x =2时,y 有最小值是0,它可以由抛物线y =3x 2向右平移2个单位得到.故答案为:向上;(2,0);直线x =2;≥2;2;小;0;右;2.【点睛】本题考查二次函数()2y a x h =-和2y ax =的图象与性质,掌握这两种形式的函数图象以及它们之间的关系是解题关键.9.y=2x 2+1【分析】利用二次函数与几何变换规律“上加下减”,进而求出图象对应的函数表达式.【详解】解:由二次函数2y 2x 1=-的图象沿y 轴向上平移2个单位,因此所得图象对应的函数表达式为:22y 2x 122x 1=-+=+.【点睛】本题考查二次函数的平移,掌握平移规律是本题的解题关键.10.()211 3.3y x =-- 【分析】设抛物线为:()2,y a x h k =-+ 根据抛物线的顶点坐标求解,h k ,再把()2,0A -代入解析式可得答案.【详解】解:设抛物线为:()2,y a x h k =-+抛物线的顶点是(1,-3),1,3,h k ∴==-∴ 抛物线为:()213,y a x =-- 把()2,0A -代入抛物线得:()22130,a ---=93a ∴=,1,3a ∴= ∴ 抛物线为:()211 3.3y x =-- 【点睛】本题考查的是利用待定系数法求解抛物线的解析式,根据题意设出合适的抛物线的解析式是解题的关键.11. y=2(x+1)2+1 y=2(x ﹣1)2﹣1【详解】(1)①将抛物线绕其顶点旋转180°后新的抛物线的顶点和对称轴都和原抛物线相同,只有开口方向变了,①将抛物线y=﹣2(x+1)2+1绕其顶点旋转180°后得到抛物线的解析式为:22(1)1y x =++; (2)①抛物线绕原点旋转180°后,新抛物线的顶点的坐标和原抛物线的顶点坐标关于原点对称,新抛物线对称轴和原抛物线的对称轴关于y 轴对称,开口方向和原来开口方向相反,①将抛物线y=﹣2(x+1)2+1绕原点旋转180°后得到的新抛物线的解析式为:2y 2(x 1)1=--. 【点睛】(1)抛物线2()y a x h k =-+关于其顶点对称的抛物线的解析式为2()y a x h k =--+; (2)抛物线2()y a x h k =-+关于原点对称的抛物线的解析式:2()y a x h k =-+-. 12.2=46y x x ++【分析】由题意设抛物线的顶点式:()222y a x =++,再把(1,3)-代入抛物线的解析式,解方程即可得到答案.【详解】解:由顶点(-2,2),可设抛物线为:()222y a x =++,将点(-1,3)代入上式可得: ()21223,a -++=1,a ∴=综上所述:22(2)246y x x x =++=++.【点睛】本题考查的是利用待定系数法求解二次函数的解析式,掌握根据题意设出合适的二次函数的表达式是解题的关键.13.(1)()221y x =-;(2) ()2112y x =-- 【分析】(1)将点(3,8)代入函数解析式求出a 的值得出函数解析式;(2)根据题意得出12a =-,从而得出函数解析式. 【详解】(1)将(3,8)代入函数解析式可得:()2318a -=,解得:a =2,①二次函数的解析式为:()221y x =-;(2)①函数与212y x =的开口大小相同,方向相反, ①12a =-, ①二次函数的解析式为:()2112y x =--. 14.(1)y=﹣x+4;(2)y=2(x ﹣1)2.【分析】(1)根据交点坐标先求直线l 的函数解析式(2)抛物线的顶点坐标已知,设交点M 的坐标,再根据S △AMP =3求出M 的坐标,最后求出解析式.【详解】(1)设一次函数解析式为y=kx+b ,把A (4,0),B (0,4)分别代入解析式得404k b b +=⎧⎨=⎩解得14k b =-⎧⎨=⎩解析式为y=﹣x+4.(2)设M 点的坐标为(m ,n ),①S △AMP =3, ①12(4﹣1)n=3, 解得,n=2,把M (m ,2)代入为2=﹣m+4得,m=2,M (2,2),①抛物线y=a(x﹣h)2的顶点为P(1,0),可得y=a(x﹣1)2,把M(2,2)代入y=a(x﹣1)2得,2=a(2﹣1)2,解得a=2,函数解析式为y=2(x﹣1)2.【点睛】此题重点考察学生对函数解析式的理解,熟练解析式的求法是解题的关键. 15.(1)(40-x),12(40-x);(2)y=2x+1050;(3)最大值为1110元,最小值为1050元;(4)25,大,4360【分析】(1)因为从A果园运到C地的橘子是x吨,剩下的都运往D地,所以运往D地的是(40-x)吨.运输费用=吨数×每吨的运费.(2)总运费=从A运往C、D的费用+从B运往C、D的费用.(3)总运费与x是一次函数关系,由于0≤x≤30,可计算出总运费的最大值和最小值.(4)利用二次函数的性质,求出函数的最值.【详解】解:(1)因为从A果园运到C地的橘子是x吨,那么从A果园运到D地的橘子为(40-x)吨,从A运到D地的运费是12元每吨,所以A果园将橘子运往D地的运输费用为12(40-x)吨.故答案为:(40-x),12(40-x);(2)从A果园运到C地x吨,运费为每吨15元;从A果园运到D地的橘子为(40-x)吨,运费为每吨12元;从B果园运到C地(30-x)吨,运费为每吨10元;从B果园运到D地(30+x)吨,运费为每吨9元;所以总运费为:y=15x+12(40-x)+10(30-x)+9(30+x)=2x+1050;(3)因为总运费y =2x+1050,,①20①函数值随x 的增大而增大,由于0≤x ≤30,①当x =30时,有最大值2×30+1050=1110元,当x =0时,有最小值2×0+1050=1050元;(4)w =-(x -25)2+4360,①二次项系数-1<0,①抛物线开口向下,当x =25时,w 有最大值.最大值时4360.故答案为:25,大,4360.【点睛】本题考查了列代数式及函数的性质.利用一次函数的性质求出总运费的最大值和最小值,利用二次函数的性质求出总成本的最值.16.(1)100=-+y x ;(2)65元【分析】(1)设y 与x 的函数解析式为y kx b =+,把()60,40,()70,30代入,得60407030k b k b +=⎧⎨+=⎩解得1100k b =-⎧⎨=⎩即可; (2)设销售利润为W 元,先求出每件销售利润30x -,再乘以销售量y ,根据题意, (30)(100)W x x =--+2(65)1225x =--+,由10a =-<,65x =时,W 有最大值,最大值为1225.【详解】解:(1)设y 与x 的函数解析式为y kx b =+,把()60,40,()70,30代入,得60407030k b k b +=⎧⎨+=⎩, 解得1100k b =-⎧⎨=⎩, ①y 与x 的函数解析式为100=-+y x ;(2)设销售利润为W元,根据题意,得,=--+,(30)(100)W x x21303000x x=-+-,2=--+,x(65)1225a=-<,①10x=时,W有最大值,最大值为1225.①当65①要使销售利润达到最大,销售单价应定为每千克65元.【点睛】本题考查一次函数的解析式,列二次函数,利用配方法转化为顶点式,掌握一次函数的解析式的求法,列二次函数方法,会利用配方法将二次函数转化为顶点式,根据开口向下有最大值是解题关键.。

(完整word版)二次函数知识点总结及相关典型题目(良心出品必属精品)

(完整word版)二次函数知识点总结及相关典型题目(良心出品必属精品)

二次函数知识点总结及相关典型题目第一部分 二次函数基础知识 ✧ 相关概念及定义二次函数的概念:一般地,形如2y ax bx c =++(a b c ,,是常数,0a ≠)的函数,叫做二次函数。

这里需要强调:和一元二次方程类似,二次项系数0a ≠,而b c ,可以为零.二次函数的定义域是全体实数.二次函数2y ax bx c =++的结构特征:⑴ 等号左边是函数,右边是关于自变量x 的二次式,x 的最高次数是2.⑵ a b c ,,是常数,a 是二次项系数,b 是一次项系数,c 是常数项.✧ 二次函数各种形式之间的变换二次函数c bx ax y ++=2用配方法可化成:()k h x a y +-=2的形式,其中ab ac k a b h 4422-=-=,.二次函数由特殊到一般,可分为以下几种形式:①2ax y =;②k ax y +=2;③()2h x a y -=;④()k h x a y +-=2;⑤c bx ax y ++=2.✧ 二次函数解析式的表示方法一般式:2y ax bx c =++(a ,b ,c 为常数,0a ≠); 顶点式:2()y a x h k =-+(a ,h ,k 为常数,0a ≠);两根式:12()()y a x x x x =--(0a ≠,1x ,2x 是抛物线与x 轴两交点的横坐标).注意:任何二次函数的解析式都可以化成一般式或顶点式,但并非所有的二次函数都可以写成交点式,只有抛物线与x 轴有交点,即240b ac -≥时,抛物线的解析式才可以用交点式表示.二次函数解析式的这三种形式可以互化. 二次函数2ax y =的性质✧二次函数2=+的性质y ax c✧二次函数()2=-的性质:y a x h Array✧二次函数()2y a x h k=-+的性质✧ 抛物线2y ax bx c =++的三要素:开口方向、对称轴、顶点.a 的符号决定抛物线的开口方向:当0>a 时,开口向上;当0<a 时,开口向下;a 相等,抛物线的开口大小、形状相同.对称轴:平行于y 轴(或重合)的直线记作2bx a=-.特别地,y 轴记作直线0=x .顶点坐标坐标:),(ab ac a b 4422--顶点决定抛物线的位置.几个不同的二次函数,如果二次项系数a 相同,那么抛物线的开口方向、开口大小完全相同,只是顶点的位置不同.✧ 抛物线c bx ax y ++=2中,c b a ,,与函数图像的关系 二次项系数a二次函数2y ax bx c =++中,a 作为二次项系数,显然0a ≠.⑴ 当0a >时,抛物线开口向上,a 越大,开口越小,反之a 的值越小,开口越大;⑵ 当0a <时,抛物线开口向下,a 越小,开口越小,反之a 的值越大,开口越大.总结起来,a 决定了抛物线开口的大小和方向,a 的正负决定开口方向,a 的大小决定开口的大小.一次项系数b在二次项系数a 确定的前提下,b 决定了抛物线的对称轴. ⑴ 在0a >的前提下,当0b >时,02b a-<,即抛物线的对称轴在y 轴左侧;当0b =时,02b a-=,即抛物线的对称轴就是y 轴;当0b <时,02b a ->,即抛物线对称轴在y 轴的右侧.⑵ 在0a <的前提下,结论刚好与上述相反,即 当0b >时,02ba->,即抛物线的对称轴在y 轴右侧; 当0b =时,02b a-=,即抛物线的对称轴就是y 轴;当0b <时,02b a-<,即抛物线对称轴在y 轴的左侧.总结起来,在a 确定的前提下,b 决定了抛物线对称轴的位置. 总结:常数项c⑴ 当0c >时,抛物线与y 轴的交点在x 轴上方,即抛物线与y 轴交点的纵坐标为正; ⑵ 当0c =时,抛物线与y 轴的交点为坐标原点,即抛物线与y 轴交点的纵坐标为0;⑶ 当0c <时,抛物线与y 轴的交点在x 轴下方,即抛物线与y 轴交点的纵坐标为负.总结起来,c 决定了抛物线与y 轴交点的位置. 总之,只要a b c ,,都确定,那么这条抛物线就是唯一确定的. ✧ 求抛物线的顶点、对称轴的方法公式法:a b ac a b x a c bx ax y 442222-+⎪⎭⎫ ⎝⎛+=++=,∴顶点是),(a b ac a b 4422--,对称轴是直线ab x 2-=.配方法:运用配方的方法,将抛物线的解析式化为()k h x a y +-=2的形式,得到顶点为(h ,k ),对称轴是直线h x =.运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与抛物线的交点是顶点.用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.✧ 用待定系数法求二次函数的解析式一般式:c bx ax y ++=2.已知图像上三点或三对x 、y 的值,通常选择一般式.顶点式:()k h x a y +-=2.已知图像的顶点或对称轴,通常选择顶点式.交点式:已知图像与x 轴的交点坐标1x 、2x ,通常选用交点式:()()21x x x x a y --=.✧ 直线与抛物线的交点y 轴与抛物线c bx ax y ++=2得交点为(0, c ).与y 轴平行的直线h x =与抛物线c bx ax y ++=2有且只有一个交点(h ,c bh ah ++2).抛物线与x 轴的交点:二次函数c bx ax y ++=2的图像与x 轴的两个交点的横坐标1x 、2x ,是对应一元二次方程02=++c bx ax 的两个实数根.抛物线与x 轴的交点情况可以由对应的一元二次方程的根的判别式判定:①有两个交点⇔0>∆⇔抛物线与x 轴相交;②有一个交点(顶点在x 轴上)⇔0=∆⇔抛物线与x 轴相切; ③没有交点⇔0<∆⇔抛物线与x 轴相离. 平行于x 轴的直线与抛物线的交点可能有0个交点、1个交点、2个交点.当有2个交点时,两交点的纵坐标相等,设纵坐标为k ,则横坐标是k c bx ax =++2的两个实数根.一次函数()0≠+=k n kx y 的图像l 与二次函数()02≠++=a c bx ax y 的图像G 的交点,由方程组 2y kx ny ax bx c =+⎧⎨=++⎩的解的数目来确定:①方程组有两组不同的解时⇔l 与G 有两个交点; ②方程组只有一组解时⇔l 与G 只有一个交点;③方程组无解时⇔l 与G 没有交点.抛物线与x 轴两交点之间的距离:若抛物线c bx ax y ++=2与x轴两交点为()()0021,,,x B x A ,由于1x 、2x 是方程02=++c bx ax 的两个根,故acx x a b x x =⋅-=+2121,()()a a acb ac a b x x x x x x x x AB ∆=-=-⎪⎭⎫⎝⎛-=--=-=-=444222122122121✧ 二次函数图象的对称:二次函数图象的对称一般有五种情况,可以用一般式或顶点式表达 关于x 轴对称2y ax bx c =++关于x 轴对称后,得到的解析式是2y ax bx c =---;()2y a x h k =-+关于x 轴对称后,得到的解析式是()2y a x h k =---; 关于y 轴对称2y ax bx c =++关于y 轴对称后,得到的解析式是2y ax bx c =-+;()2y a x h k =-+关于y 轴对称后,得到的解析式是()2y a x h k =++; 关于原点对称2y ax bx c =++关于原点对称后,得到的解析式是2y ax bx c =-+-; ()2y a x h k =-+关于原点对称后,得到的解析式是()2y a x h k =-+-; 关于顶点对称2y ax bx c =++关于顶点对称后,得到的解析式是222b y ax bx c a=--+-;()2y a x h k=-+关于顶点对称后,得到的解析式是()2y a x h k =--+.关于点()m n ,对称()2y a x h k =-+关于点()m n ,对称后,得到的解析式是()222y a x h m n k =-+-+-总结:根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式. ✧ 二次函数图象的平移 平移步骤:⑴ 将抛物线解析式转化成顶点式()2y a x h k =-+,确定其顶点坐标()h k ,;⑵ 保持抛物线2y ax =的形状不变,将其顶点平移到()h k ,处,具体平移方法如下:【或左(h <0)】向右(h >0)【或左(h 平移|k|个单位平移规律在原有函数的基础上“h 值正右移,负左移;k 值正上移,负下移”.概括成八个字“左加右减,上加下减”.✧ 根据条件确定二次函数表达式的几种基本思路。

(完整word版)初中二次函数知识点详解最新助记口诀模板(良心出品必属精品)

(完整word版)初中二次函数知识点详解最新助记口诀模板(良心出品必属精品)

黄冈中学“没有学不好滴数学”系列之十二二次函数知识点详解(最新原创助记口诀)内含 <全文看完后再决定下不下载>十二个知识点最新原创助记口诀用心背后就知好二次函数疑难问题一扫光简洁实用直指中考高分知识点一、平面直角坐标系1,平面直角坐标系在平面内画两条互相垂直且有公共原点的数轴,就组成了平面直角坐标系。

其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;两轴的交点O(即公共的原点)叫做直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。

为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。

注意:x轴和y轴上的点,不属于任何象限。

2、点的坐标的概念点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。

平面内点的坐标是有序实数对,当ba≠时,(a,b)和(b,a)是两个不同点的坐标。

知识点二、不同位置的点的坐标的特征1、各象限内点的坐标的特征点P(x,y)在第一象限0x⇔y>,0>点P(x,y)在第二象限0⇔yx<,0>点P(x,y)在第三象限0x⇔y,0<<点P(x,y)在第四象限0x⇔y,0<>2、坐标轴上的点的特征点P(x,y)在x轴上0⇔y,x为任意实数=点P(x,y)在y轴上0⇔x,y为任意实数=点P(x,y)既在x轴上,又在y轴上⇔x,y同时为零,即点P坐标为(0,0)3、两条坐标轴夹角平分线上点的坐标的特征点P(x,y)在第一、三象限夹角平分线上⇔x与y相等点P(x,y)在第二、四象限夹角平分线上⇔x与y互为相反数4、和坐标轴平行的直线上点的坐标的特征位于平行于x轴的直线上的各点的纵坐标相同。

位于平行于y轴的直线上的各点的横坐标相同。

5、关于x轴、y轴或远点对称的点的坐标的特征点P与点p’关于x轴对称⇔横坐标相等,纵坐标互为相反数点P与点p’关于y轴对称⇔纵坐标相等,横坐标互为相反数点P与点p’关于原点对称⇔横、纵坐标均互为相反数6、点到坐标轴及原点的距离点P(x,y)到坐标轴及原点的距离:(1)点P(x,y)到x轴的距离等于y(2)点P(x,y)到y轴的距离等于x(3)点P(x,y)到原点的距离等于22yx+知识点三、函数及其相关概念1、变量与常量在某一变化过程中,可以取不同数值的量叫做变量,数值保持不变的量叫做常量。

(完整word版)二次函数图像性质知识点总结以及习题集锦(良心出品必属精品)

(完整word版)二次函数图像性质知识点总结以及习题集锦(良心出品必属精品)

二次函数图像及性质知识总结二次函数y=ax2及其图象.一、填空题1.形如____________的函数叫做二次函数,其中______是目变量,a ,b ,c 是______且______≠0.2.函数y =x 2的图象叫做______,对称轴是______,顶点是______. 3.抛物线y =ax 2的顶点是______,对称轴是______.当a >0时,抛物线的开口向______;当a <0时,抛物线的开口向______.4.当a >0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.5.当a <0时,在抛物线y =ax 2的对称轴的左侧,y 随x 的增大而______,而在对称轴的右侧,y 随x 的增大而______;函数y 当x =______时的值最______.6.写出下列二次函数的a ,b ,c . (1)23x x y -=a =______,b =______,c =______. (2)y =x 2a =______,b =______,c =______. (3)105212-+=x x ya =______,b =______,c=______.(4)2316x y --=a =______,b =______,c =______.7.抛物线y =ax 2,|a |越大则抛物线的开口就______,|a |越小则抛物线的开口就______.8.二次函数y =ax 2的图象大致如下,请将图中抛物线字母的序号填入括号内.(1)y =2x 2如图( ); (2)221x y =如图( );(3)y =-x 2如图( ); (4)231x y -=如图( );(5)291x y =如图( );(6)291x y -=如图( ).9.已知函数,232x y -=不画图象,回答下列各题.(1)开口方向______; (2)对称轴______; (3)顶点坐标______;(4)当x ≥0时,y 随x 的增大而______; (5)当x______时,y =0;(6)当x______时,函数y 的最______值是______.10.画出y =-2x 2的图象,并回答出抛物线的顶点坐标、对称轴、增减性和最值.11.在下列函数中①y =-2x 2;②y =-2x +1;③y =x ;④y =x 2,回答:(1)______的图象是直线,______的图象是抛物线. (2)函数______y 随着x 的增大而增大.函数______y 随着x 的增大而减小. (3)函数______的图象关于y 轴对称. 函数______的图象关于原点对称. (4)函数______有最大值为______. 函数______有最小值为______.12.已知函数y =ax 2+bx +c(a ,b ,c 是常数).(1)若它是二次函数,则系数应满足条件______. (2)若它是一次函数,则系数应满足条件______. (3)若它是正比例函数,则系数应满足条件______.13.已知函数y =(m 2-3m)122--m m x 的图象是抛物线,则函数的解析式为______,抛物线的顶点坐标为______,对称轴方程为______,开口______. 14.已知函数y =m 222+-m m x +(m -2)x .(1)若它是二次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限.(2)若它是一次函数,则m =______,函数的解析式是______,其图象是一条______,位于第______象限. 15.已知函数y =m mmx +2,则当m =______时它的图象是抛物线;当m =______时,抛物线的开口向上;当m =______时抛物线的开口向下.二、选择题16.下列函数中属于一次函数的是( ),属于反比例函数的是( ),属于二次函数的是( ) A .y =x(x +1) B .xy =1C .y =2x 2-2(x +1)2D .132+=x y17.在二次函数①y =3x 2;②2234;32x y x y ==③中,图象在同一水平线上的开口大小顺序用题号表示应该为( ) A .①>②>③ B .①>③>② C .②>③>①D .②>①>③18.对于抛物线y =ax 2,下列说法中正确的是( )A .a 越大,抛物线开口越大B .a 越小,抛物线开口越大C .|a |越大,抛物线开口越大D .|a |越小,抛物线开口越大19.下列说法中错误的是( )A .在函数y =-x 2中,当x =0时y 有最大值0B .在函数y =2x 2中,当x >0时y 随x 的增大而增大C .抛物线y =2x 2,y =-x 2,221x y -=中,抛物线y =2x 2的开口最小,抛物线y =-x 2的开口最大D .不论a 是正数还是负数,抛物线y =ax 2的顶点都是坐标原点三、解答题20.函数y =(m -3)232--m mx 为二次函数.(1)若其图象开口向上,求函数关系式;(2)若当x >0时,y 随x 的增大而减小,求函数的关系式,并画出函数的图象.21.抛物线y =ax 2与直线y =2x -3交于点A(1,b).(1)求a,b的值;(2)求抛物线y=ax2与直线y=-2的两个交点B,C的坐标(B点在C 点右侧);(3)求△OBC的面积.22.已知抛物线y=ax2经过点A(2,1).(1)求这个函数的解析式;(2)写出抛物线上点A关于y轴的对称点B的坐标;(3)求△OAB的面积;(4)抛物线上是否存在点C,使△ABC的面积等于△OAB面积的一半,若存在,求出C点的坐标;若不存在,请说明理由.1.y =ax 2+bx +c(a ≠0),x ,常数,a .2.抛物线,y 轴,(0,0).3.(0,0),y 轴,上,下. 4.减小,增大,x =0,小. 5.增大,减小,x =0,大. 6.(1).0,3,1- (2),0,0, (3),10,5,21- (4).6,0,31--7.越小,越大.8.(1)D ,(2)C ,(3)A ,(4)B ,(5)F ,(6)E .9.(1)向下,(2)y 轴.(3)(0,0).(4)减小.(5)=0(6)=0,大,0.10.略.11.(1)②、③;①、④.(2)③;②.(3)①、④;③.(4)①,0;④,0. 12.(1)a ≠0,(2)a =0且b ≠0,(3)a =c =0且b ≠0. 13.y =4x 2;(0,0);x =0;向上. 14.(1)2;y =2x 2;抛物线;一、二,(2)0;y =-2x ;直线;二、四. 15.-2或1;1;-2.16.C 、B 、A . 17.C . 18.D . 19.C . 20.(1)m =4,y =x 2;(2)m =-1,y =-4x 2. 21.(1)a =-1,b =-1;(2));2,2().2,2(---C B(3)S △OBC =22.22.(1)241x y =; (2)B(-2,1);(3)S △OAB =2;(4)设C 点的坐标为),41,(2m m 则.221|141|4212⨯=-⨯⨯m 则得6±=m 或.2±=m∴C 点的坐标为).21,2(),21,2(),23,6(),23,6(--二次函数y =a(x -h)2+k 及其图象 一、填空题1.已知a ≠0,(1)抛物线y =ax 2的顶点坐标为______,对称轴为______. (2)抛物线y =ax 2+c 的顶点坐标为______,对称轴为______. (3)抛物线y =a(x -m)2的顶点坐标为______,对称轴为______. 2.若函数122)21(++-=m m x m y 是二次函数,则m =______.3.抛物线y =2x 2的顶点,坐标为______,对称轴是______.当x______时,y 随x 增大而减小;当x______时,y 随x 增大而增大;当x =______时,y 有最______值是______.4.抛物线y =-2x 2的开口方向是______,它的形状与y =2x 2的形状______,它的顶点坐标是______,对称轴是______.5.抛物线y =2x 2+3的顶点坐标为______,对称轴为______.当x______时,y 随x 的增大而减小;当x =______时,y 有最______值是______,它可以由抛物线y =2x 2向______平移______个单位得到.6.抛物线y =3(x -2)2的开口方向是______,顶点坐标为______,对称轴是______.当x______时,y 随x 的增大而增大;当x =______时,y 有最______值是______,它可以由抛物线y =3x 2向______平移______个单位得到. 二、选择题7.要得到抛物线2)4(31-=x y ,可将抛物线231x y =( )A .向上平移4个单位B .向下平移4个单位C .向右平移4个单位D .向左平移4个单位8.下列各组抛物线中能够互相平移而彼此得到对方的是( ) A .y =2x 2与y =3x 2 B .2212+=x y 与2122+=x yC .y =2x 2与y =x 2+2D .y =x 2与y =x 2-29.顶点为(-5,0),且开口方向、形状与函数231x y -=的图象相同的抛物线是( )A .2)5(31-=x yB .5312--=x yC .2)5(31+-=x yD .2)5(31+=x y三、解答题10.在同一坐标系中画出函数=+=221,321y x y 3212-x 和2321x y =的图象,并说明y 1,y 2的图象与函数221x y =的图象的关系.11.在同一坐标系中,画出函数y 1=2x 2,y 2=2(x -2)2与y 3=2(x +2)2的图象,并说明y 2,y 3的图象与y 1=2x 2的图象的关系.填空题12.二次函数y =a(x -h)2+k(a ≠0)的顶点坐标是______,对称轴是______,当x =______时,y 有最值______;当a >0时,若x______时,y 随x 增大而减小. 13.填表.14.抛物线1)3(212-+-=x y 有最______点,其坐标是______.当x =______时,y 的最______值是______;当x______时,y 随x 增大而增大. 15.将抛物线231x y =向右平移3个单位,再向上平移2个单位,所得的抛物线的解析式为______.选择题16.一抛物线和抛物线y=-2x2的形状、开口方向完全相同,顶点坐标是(-1,3),则该抛物线的解析式为( )A.y=-2(x-1)2+3 B.y=-2(x+1)2+3C.y=-(2x+1)2+3 D.y=-(2x-1)2+317.要得到y=-2(x+2)2-3的图象,需将抛物线y=-2x2作如下平移( )A.向右平移2个单位,再向上平移3个单位B.向右平移2个单位,再向下平移3个单位C.向左平移2个单位,再向上平移3个单位D.向左平移2个单位,再向下平移3个单位解答题18.将下列函数配成y=a(x-h)2+k的形式,并求顶点坐标、对称轴及最值.(1)y=x2+6x+10 (2)y=-2x2-5x+7(3)y=3x2+2x (4)y=-3x2+6x-2(5)y =100-5x 2(6)y =(x -2)(2x +1)19.把二次函数y =a(x -h)2+k 的图象先向左平移2个单位,再向上平移4个单位,得到二次函数1)1(212-+=x y 的图象.(1)试确定a ,h ,k 的值;(2)指出二次函数y =a(x -h)2+k 的开口方向、对称轴和顶点坐标.1.(1)(0,0),y 轴; (2)(0,c),y 轴; (3)(m ,0),直线x=m . 2.m =-13.(0,0),y 轴,x ≤0,x >0,0,小,0. 4.向下,相同,(0,0),y 轴.5.(0,3),y 轴,x ≤0,0,小,3,上,3.6.向上,(2,0),直线x =2,x ≥2,2,小,0,右,2. 7.C . 8.D . 9.C .10.图略,y 1,y 2的图象是221x y =的图象分别向上和向下平移3个单位.11.图略,y 2,y 3的图象是把y 1的图象分别向右和向左平移2个单位. 12.(h ,k),直线x =h ;h ,k ,x ≤h . 13.14.高.(-3,-1),-3,大,-1,≤-3. 15..52312)3(3122+-=+-=x x x y 16.B . 17.D .18.(1)y =(x +3)2+1,顶点(-3,1),直线x =-3,最小值为1.(2),881)45(22++-=x y 顶点),881,45(-直线,45-=x 最大值为⋅881(3),31)31(32-+=x y 顶点),31,31(--直线,31-=x 最小值为⋅-31(4)y =-3(x -1)2+1,顶点(1,1),直线x =1,最大值为1. (5)y =-5x 2+100,顶点(0,100),直线x =0,最大值为100. (6),825)43(22--=x y 顶点),825,43(-直线,43=x 最小值为⋅-82519.(1);5,1,21-===k h a(2)开口向上,直线x =1,顶点坐标(1,-5).二次函数y =ax 2+bx +c 及其图象 一、填空题1.把二次函数y =ax 2+bx +c(a ≠0)配方成y =a(x -h)2+k 形式为______,顶点坐标是______,对称轴是直线______.当x =______时,y 最值=______;当a <0时,x______时,y 随x 增大而减小;x______时,y 随x 增大而增大.2.抛物线y =2x 2-3x -5的顶点坐标为______.当x =______时,y 有最______值是______,与x 轴的交点是______,与y 轴的交点是______,当x______时,y 随x 增大而减小,当x______时,y 随x 增大而增大.3.抛物线y =3-2x -x 2的顶点坐标是______,它与x 轴的交点坐标是______,与y 轴的交点坐标是______.4.把二次函数y =x 2-4x +5配方成y =a(x -h)2+k 的形式,得______,这个函数的图象有最______点,这个点的坐标为______.5.已知二次函数y =x 2+4x -3,当x =______时,函数y 有最值______,当x______时,函数y 随x 的增大而增大,当x =______时,y =0. 6.抛物线y =ax 2+bx +c 与y =3-2x 2的形状完全相同,只是位置不同,则a =______.7.抛物线y =2x 2先向______平移______个单位就得到抛物线y =2(x -3)2,再向______平移______个单位就得到抛物线y =2(x -3)2+4. 二、选择题8.下列函数中①y =3x +1;②y =4x 2-3x ;;422x xy +=③④y =5-2x 2,是二次函数的有( ) A .②B .②③④C .②③D .②④9.抛物线y =-3x 2-4的开口方向和顶点坐标分别是( )A .向下,(0,4)B .向下,(0,-4)C .向上,(0,4)D .向上,(0,-4)10.抛物线x x y --=221的顶点坐标是( )A .)21,1(- B .)21,1(-C .)1,21(-D .(1,0)11.二次函数y =ax 2+x +1的图象必过点( )A .(0,a)B .(-1,-a)C .(-1,a)D .(0,-a)三、解答题12.已知二次函数y =2x 2+4x -6.(1)将其化成y =a(x -h)2+k 的形式; (2)写出开口方向,对称轴方程,顶点坐标; (3)求图象与两坐标轴的交点坐标; (4)画出函数图象;(5)说明其图象与抛物线y =x 2的关系; (6)当x 取何值时,y 随x 增大而减小; (7)当x 取何值时,y >0,y =0,y <0; (8)当x 取何值时,函数y 有最值?其最值是多少? (9)当y 取何值时,-4<x <0;(10)求函数图象与两坐标轴交点所围成的三角形面积.填空题13.已知抛物线y =ax 2+bx +c(a ≠0).(1)若抛物线的顶点是原点,则____________;(2)若抛物线经过原点,则____________;(3)若抛物线的顶点在y轴上,则____________;(4)若抛物线的顶点在x轴上,则____________.14.抛物线y=ax2+bx必过______点.15.若二次函数y=mx2-3x+2m-m2的图象经过原点,则m=______,这个函数的解析式是______.16.若抛物线y=x2-4x+c的顶点在x轴上,则c的值是______.17.若二次函数y=ax2+4x+a的最大值是3,则a=______.18.函数y=x2-4x+3的图象的顶点及它和x轴的两个交点为顶点所构成的三角形面积为______平方单位.19.抛物线y=ax2+bx(a>0,b>0)的图象经过第______象限.选择题20.函数y=x2+mx-2(m<0)的图象是( )21.抛物线y=ax2+bx+c(a≠0)的图象如下图所示,那么( )A.a<0,b>0,c>0B.a<0,b<0,c>0C.a<0,b>0,c<0D.a<0,b<0,c<022.已知二次函数y=ax2+bx+c的图象如右图所示,则( )A.a>0,c>0,b2-4ac<0B.a>0,c<0,b2-4ac>0C.a<0,c>0,b2-4ac<0D.a<0,c<0,b2-4ac>023.已知二次函数y=ax2+bx+c的图象如下图所示,则( )A.b>0,c>0,=0B.b<0,c>0,=0C.b<0,c<0,=0D.b>0,c>0,>024.二次函数y=mx2+2mx-(3-m)的图象如下图所示,那么m的取值范围是( )A .m >0B .m >3C .m <0D .0<m <325.在同一坐标系内,函数y =kx 2和y =kx -2(k ≠0)的图象大致如图( )26.函数x aby b ax y =+=221,(ab <0)的图象在下列四个示意图中,可能正确的是( )解答题27.已知抛物线y =x 2-3kx +2k +4.(1)k 为何值时,抛物线关于y 轴对称;(2)k 为何值时,抛物线经过原点.28.画出23212++-=x x y 的图象,并求:(1)顶点坐标与对称轴方程;(2)x取何值时,y随x增大而减小?x取何值时,y随x增大而增大?(3)当x为何值时,函数有最大值或最小值,其值是多少?(4)x取何值时,y>0,y<0,y=0?(5)当y取何值时,-2≤x≤2?29.已知函数y1=ax2+bx+c(a≠0)和y2=mx+n的图象交于(-2,-5)点和(1,4)点,并且y1=ax2+bx+c的图象与y轴交于点(0,3).(1)求函数y1和y2的解析式,并画出函数示意图;(2)x为何值时,①y1>y2;②y1=y2;③y1<y2.30.如图是二次函数y=ax2+bx+c的图象的一部分;图象过点A(-3,0),对称轴为x=-1,给出四个结论:①b2>4ac;②2a+b=0;③a-b+c =0;④5a<b.其中正确的是________________.(填序号)1.).44,2(,44)2(222a b ac ab a b ac a b x a y ---++= ⋅-<-≥--=-=ab x a b x a b ac a b x a b x 2,2,44,2,22 2.,43),849,43(-小,⋅>≤---43,43),5,0(),0,1()0,25(,849x x 、 3.(-1,4),(-3,0)、(1,0),(0,3).4.y =(x -2)2+1,低,(2,1).5.-2,-7,x ≥-2,.72±-=x6.±2. 7.右,3,上,4.8.D . 9.B. 10.B . 11.C .12.(1)y =2(x +1)2-8;(2)开口向上,直线x =-1,顶点(-1,-8);(3)与x 轴交点(-3,0)(1,0),与y 轴交点(0,-6);(4)图略;(5)将抛物线y =x 2向左平移1个单位,向下平移8个单位;得到y =2x 2+4x -6的图象;(6)x ≤-1;(7)当x <-3或x >1时,y >0;当x =-3或x =1时,y =0;当-3<x <1时,y <0;(8)x =-1时,y 最小值=-8;(9)-8≤y <10;(10)S △=12.13.(1)b =c =0;(2)c =0;(3)b =0;(4)b 2-4ac =0.14.原. 15.2,y =2x 2-3x . 16.4.17.-1. 18.1. 19.一、二、三.20.C. 21.B . 22.D . 23.B . 24.C . 25.B . 26.C .27.(1)k =0;(2)k =-2.28.,2)1(212+--=x y ①顶点(1,2),直线x =1;②x ≥1,x <1; ③x =1,y 最大=2;④-1<x <3时,y >0;x <-1或x >3时y <0;x =-1或x =3时,y =0;.225≤≤-y ⑤ 29.(1)y 1=-x 2+2x +3,y 2=3x +1.(2)①当-2<x <1时,y 1>y 2.②当x =-2或x =1时,y 1=y 2.③当x <-2或x >1时y 1<y 2.30.①,④.二次函数的图像和性质 习题精选1.二次函数2y ax =的图像开口向____,对称轴是____,顶点坐标是____,图像有最___点,x ___时,y 随x 的增大而增大,x ___时,y 随x 的增大而减小。

word完整版二次函数图像以及性质完整归纳,文档

word完整版二次函数图像以及性质完整归纳,文档

适用标准文档二次函数的图像与性质一、二次函数的基本形式1.二次函数基本形式: y ax 2的性质:a 的符号张口方向极点坐标 对称轴性质0,0 x 0时,y 随x 的增大而增大;x0时,y 随向上y 轴x0时,y 有最小值0.x 的增大而减小;a0,0 x 0时,y 随x 的增大而减小;x 0时,y 随向下 y 轴x0时,y 有最大值0.x 的增大而增大;的绝对值越大,抛物线的张口越小。

yax 2c 的性质:上加下减。

a 的符号 张口方向 极点坐标 对称轴 性质a0,c x 0时,y 随x 的增大而增大;x0时,y 随向上y 轴x0时,y 有最小值c .x 的增大而减小;a 00,c x 0时,y 随x 的增大而减小;x 0时,y 随向下y 轴x0时,y 有最大值c .x 的增大而增大;3.yax 2h 的性质:左加右减。

a 的符号 张口方向 极点坐标 对称轴 性质a 0 向上 h ,0 X=h x h 时,y 随x 的增大而增大; xh 时,y随x 的增大而减小; x h 时,y 有最小值0.a 0 向下 h ,0 X=h x h 时,y 随x 的增大而减小; xh 时,y随x 的增大而增大; x h 时,y 有最大值0.4.yax 2hk 的性质:a 的符号 张口方向 极点坐标 对称轴性质a0h,k xh时,y随x的增大而增大;xh时,y向上X=hx h时,y有最小值k.随x的增大而减小;a0h,k xh时,y随x的增大而减小;xh时,y向下X=hx h时,y有最大值k.随x的增大而增大;文案大全适用标准文档二、二次函数图象的平移1.平移步骤:方法一:⑴将抛物线分析式转变为极点式yaxh 2h ,k ;k ,确立其极点坐标 ⑵保持抛物线yax 2的形状不变,将其极点平移到h ,k 处,详细平移方法以下:向上(k>0)【或向下(k<0)】平移|k|个单位y=ax2y=ax 2+k向右(h>0)【或左(h<0)】向右(h>0)【或左(h<0)】 向右(h>0) 【或左(h<0) 】平移|k|个单位平移|k|个单位平移|k|个单位向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2向上(k>0)【或下(k<0)】平移|k|个单位y=a(x-h)2+k平移规律在原有函数的基础上 “h 值正右移,负左移; k 值正上移,负下移 ”.归纳成八个字“左加右减,上加下减” .方法二:⑴y ax 2 bx c 沿y 轴平移:向上(下)平移 m 个单位,y ax 2 bx c 变为yax 2 bx c m (或y ax 2 bx cm )⑵y ax 2 bx c 沿轴平移:向左(右)平移m 个单位,yax 2 bx c 变为ya(x m)2 b(x m) c (或y a(x m)2 b(x m) c )三、二次函数yax h 2k 与y2bx c 的比较ax从分析式上看, y a x 2k 与y ax 2 bxc 是两种不一样的表达形式,后者经过配hb 24ac b 2b,k4ac b 2方能够获得前者,即y a x,此中h .2a4a2a4a四、二次函数yax 2 bx c 图象的画法五点绘图法:利用配方法将二次函数 y ax 2 bx c 化为极点式y a(x h)2k ,确立其张口方向、对称轴及极点坐标,而后在对称轴双侧,左右对称地描点绘图.一般我们选用的五点为:极点、与 y 轴的交点0,c 、以及 0,c 对于对称轴对称的点 2h ,c 、与x 轴的交点x 1,0 ,x 2,0(若与x 轴没有交点,则取两组对于对称轴对称的点).画草图时应抓住以下几点:张口方向,对称轴,极点,与 x 轴的交点,与y 轴的交点.文案大全五、二次函数yax2bxc的性质1.当a0时,抛物线张口向上,对称轴为x b,极点坐标为b,4ac b2.2a2a4a当x b时,y随x的增大而减小;当x b时,y随x的增大而增大;当x b 2a2a2a 2时,y有最小值4acb.4a2.当a0时,抛物线张口向下,对称轴为x b,极点坐标为b,4ac b2.当2a2a4ax b时,y随x的增大而增大;当xb时,y随x的增大而减小;当x b时,y 2a2a2a 2有最大值4ac b.4a六、二次函数分析式的表示方法1.一般式:y ax2bxc(a,b,c为常数,a0);2.极点式:y a(x h)2k(a,h,k为常数,a0);3.两根式:y a(x x1)(x x2)(a0,x1,x2是抛物线与x轴两交点的横坐标).注意:任何二次函数的分析式都能够化成一般式或极点式,但并不是全部的二次函数都能够写成交点式,只有抛物线与x轴有交点,即b24ac0时,抛物线的分析式才能够用交点式表示.二次函数分析式的这三种形式能够互化.七、二次函数的图象与各项系数之间的关系二次项系数a二次函数2yaxbxc中,a作为二次项系数,明显a0.⑴当a0时,抛物线张口向上,a的值越大,张口越小,反之a的值越小,张口越大;⑵当a0时,抛物线张口向下,a的值越小,张口越小,反之a的值越大,张口越大.总结起来,a决定了抛物线张口的大小和方向,a的正负决定张口方向,a的大小决定张口的大小.一次项系数b在二次项系数a确立的前提下,b决定了抛物线的对称轴.⑴在a0的前提下,当b0时,b0,即抛物线的对称轴在y轴左边;2a当b0时,b0,即抛物线的对称轴就是y轴;2a当b0时,b0,即抛物线对称轴在y轴的右边.2a文案大全⑵在a0的前提下,结论恰好与上述相反,即当b0时,b0,即抛物线的对称轴在y轴右边;2a当b0时,b0,即抛物线的对称轴就是y轴;2a当b0时,b0,即抛物线对称轴在y轴的左边.2a总结起来,在a确立的前提下,b决定了抛物线对称轴的地点.ab的符号的判断:对称轴xb0,在y轴左边则ab0,在y轴的右边则ab2a归纳的说就是“左同右异”总结:常数项c⑴当c0时,抛物线与y轴的交点在x轴上方,即抛物线与y轴交点的纵坐标为正;⑵当c0时,抛物线与y轴的交点为坐标原点,即抛物线与y轴交点的纵坐标为0;⑶当c0时,抛物线与y轴的交点在x轴下方,即抛物线与y轴交点的纵坐标为负.总结起来,c决定了抛物线与y轴交点的地点.总之,只需a,b,c都确立,那么这条抛物线就是独一确立的.二次函数分析式确实定:依据已知条件确立二次函数分析式,往常利用待定系数法.用待定系数法求二次函数的分析式一定依据题目的特色,选择适合的形式,才能使解题简易.一般来说,有以下几种状况:已知抛物线上三点的坐标,一般采用一般式;已知抛物线极点或对称轴或最大(小)值,一般采用极点式;已知抛物线与x轴的两个交点的横坐标,一般采用两根式;已知抛物线上纵坐标同样的两点,常采用极点式.八、二次函数图象的对称二次函数图象的对称一般有五种状况,能够用一般式或极点式表达对于x轴对称y ax2bx c对于x轴对称后,获得的分析式是y ax2bx c;y a x h 2yax h2 k对于x轴对称后,获得的分析式是k;对于y轴对称y ax2bx c对于y轴对称后,获得的分析式是y ax2bx c;y a x h 2y ax h2 k对于y轴对称后,获得的分析式是k;文案大全适用标准文档对于原点对称y ax2bx c对于原点对称后,获得的分析式是y ax2bx c;y ax h 2y a x h2k;k对于原点对称后,获得的分析式是4.对于极点对称(即:抛物线绕极点旋转180°)y ax2bx c对于极点对称后,获得的分析式是y ax2bx c b2;2ay ax h 2y a x h2k.k对于极点对称后,获得的分析式是5.对于点m,n对称y ax h 2y a x h22nk k对于点m,n对称后,获得的分析式是2m依据对称的性质,明显不论作何种对称变换,抛物线的形状必定不会发生变化,所以a永久不变.求抛物线的对称抛物线的表达式时,能够依照题意或方便运算的原则,选择适合的形式,习惯上是先确立原抛物线(或表达式已知的抛物线)的极点坐标及张口方向,再确定其对称抛物线的极点坐标及张口方向,而后再写出其对称抛物线的表达式.二次函数图像参照:y=2x 2y=3(x+4)2y=3x2y=3(x-2)2y=x2y=2x2y=2(x-4)2x2十y=2y=2(x-4)2-3一、y=2x2+2y=2x2y=2x2-4x2y=-2y=-x2y=-2(x+3)2y=-2x2y=-2(x-3)2y=-2x2文案大全适用标准文档【例题精讲】一、一元二次函数的图象的画法【例1】求作函数y1x24x6的图象1x221(x2【解】y4x68x12)22 1[(x24)2-4]1(x24)2-222以x4为中间值,取x的一些值,列表以下:x-7-6-5-4-3-2-1y 53-2352222【例2】求作函数y x24x3的图象。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数图像与动点图形问题猿题库
单选题
1. 如图,中,,,。

点是斜边上一点。

过点作,垂足为
,交边(或边)于点。

设,的面积为,则与之间的函数图象大致是()。

2. 如图,和是全等的等腰直角三角形,,,与在直线
上,开始时点与点重合,让沿直线向右平移,直到点与点重合为止。

设与的重叠部分(即图中影阴部分)的面积为,的长度为,则与之间的函数图象大致是()。

A.
B.
C.
D.
3. 如图,平行四边形的边长为,面积为,四个全等的小平行四边形对称中心分别在平行四边形
的顶点上,它们的各边与平行四边形的各边分别平行,且与平行四边形相似。

若小平行四边形的一边长为,且,阴影部分的面积的和为,则与之间的函数关系的大致图象是()。

1
A.
B.
C.
D.
4. 如图所示,已知正的边长为,,,分别是,,上的点,且,设
的面积为,的长为,则关于的函数图象大致是()。

5. 点从点出发,按逆时针方向沿周长为的图形运动一周,,两点间的距离与点走过的路程的函数
关系如图,那么点所走的图形是()。

A.
B.
C.
D.
6. 如图,正方形的边长为,动点、同时从点出发,以的速度分别沿和
则与()之间函数关系可以用图象表示为()。

A.
B.
C.
D.
7. 如图,在矩形中,,点在边上,,,连接,点在线段
上,匀速由运动到点。

过点作交于点,连接。

设,的面积为,则能表示与函数关系的图象大致是()。

A.
B.
C.
D.
8. 如图,中,,且,设直线截此三角形所得阴影部分的面积为,则
与之间的函数关系的图象为下列选项中的()。

A.
B.
C.
D.
9. 如图,已知矩形的长为,宽为,是边上的一个动点,交于点。


,,则点从点运动到点时,能表示关于的函数关系的大致图象是()。

A.
B.
C.
D.
10. 如图,点在半径为的上,过线段上的一点作直线,与过点的切线交于点,
且,设,则的面积关于的函数图象大致是()。

11. 如图,的圆心在定角()的角平分线上运动,且与的两边相切,图中阴影部
分的面积关于的半径()变化的函数图象大致是()。

A.
B.
C.
D.
12. 如图,已知等边三角形的边长为,、、分别是边、、的点,且
,设的面积为,的长为,则与的函数图象大致是()。

相关文档
最新文档