金属学名词解释三

合集下载

金属学原理重点名词解释

金属学原理重点名词解释

金属键:金属中的自有电子与金属正离子相互作用所构成的键合。

空间点阵:把原子(或原子集团)抽象成纯粹的几何点,而完全忽略它的物理性质,这种抽象的几何点在晶体所在空间作周期性规则排列的阵列称为空间点阵。

晶向族:晶体中原子排列结构相同的一族晶向。

晶面族:晶体中,有些晶面的原子排列情况相同,面间距完全相等,其性质完全相同,只是空间位向不同,这样一族晶面称为晶面族。

配位数:晶体结构中,与任一原子最近邻并且等距的原子数。

致密度:若把金属晶体中的原子视为直径相等的钢球,原子排列的紧密程度可以用钢球所占空间的体积百分数来表示,称为致密度。

即:致密度=单位晶包中原子所占体积/单位晶包体积同素异构转变:当外界条件(主要指温度和压力)改变时,元素的晶体结构可以发生转变,这种转变称为同素异构转变。

晶胚:当温度降到熔点以下时,在液态金属中存在结构起伏,即有瞬时存在的有序原子集团,这种近程有序的原子集团就是晶胚。

形核功:形成临界晶核要有的自由能增加。

动态过冷度:能保证凝固速度大于融化速度的过冷度称为动态过冷度。

光滑界面:光滑界面以上为液相,一下为固相,液固两相截然分开,固相的表面为基本完整的原子密排面,所以,从微观上看界面是光滑的,从宏观上看,它往往由不同位向的小平面所组成,故呈折线状。

这类界面也称小平面界面。

粗糙界面:液固两相之间的界面从微观上来看是高低不平的,存在几个原子层厚度的过渡层,在过渡层中约有半数的位置为固相原子所占据,由于过渡层很薄,所以,从宏观上来看,界面反而显得平直,不出现曲折小平面,这类界面又称非小平面界面。

伪共晶:在非平衡凝固条件下,某些亚共晶或过共晶成分的合金也能得到全部的共晶组织,这种由非共晶成分的合金所得到的共晶组织称为伪共晶。

离异共晶:在先共晶相数量多,而共晶体数量甚少的情况下,共晶体与先共晶相相同的那一相将依附于已有的粗大先共晶相长大,并把共晶体中的另一相推向最后凝固的边界处,从而使共晶组织特征消失。

金属学名词解释

金属学名词解释

金属学名词解释金属学是研究金属的组织结构、性质以及其在工程中应用的科学。

它涵盖了广泛的领域,包括金属的晶体学、力学性能、热处理和腐蚀等方面。

以下是对金属学中常用的名词进行解释:1. 晶体结构金属的晶体结构是指金属内部原子或离子的排列方式。

常见的晶体结构包括立方晶系(如体心立方、面心立方)和六方晶系等。

晶体结构对金属的力学性能和导电导热性能等有重要影响。

2. 点阵缺陷点阵缺陷是晶体中原子或离子的位置发生偏差或空缺的现象。

常见的点阵缺陷包括位错、间隙原子和替位原子等。

点阵缺陷会对金属的力学性能和电学性能产生重要影响。

3. 冷变形冷变形是指将金属材料在室温下进行机械加工,如拉伸、压缩和弯曲等,使其形状发生改变的过程。

冷变形可以提高金属的强度和硬度,但同时也可能降低其可塑性。

4. 热处理热处理是通过控制金属材料的加热和冷却过程,改变其晶体结构和性能的方法。

常见的热处理方法包括退火、淬火和时效等。

热处理可以使金属材料获得理想的力学性能和物理性能。

5. 铸造铸造是将熔化的金属注入到模具中,经过冷却凝固后得到所需形状的方法。

铸造是金属加工中最常用的方法之一,可用于制造各种复杂形状的零件。

6. 腐蚀腐蚀是金属与环境中的化学物质相互作用导致金属表面损坏的过程。

常见的腐蚀形式包括电化学腐蚀、化学腐蚀和氧化腐蚀等。

腐蚀会导致金属失去原有的力学性能和功能。

7. 金属疲劳金属疲劳是指金属在受交变载荷作用下,经过一定次数的应力循环后产生破坏的现象。

金属疲劳对于工程结构的寿命和可靠性有重要影响,需要进行疲劳寿命评估和控制。

8. 金属焊接金属焊接是将两个或多个金属零件通过加热到熔化状态并施加压力使其联接在一起的方法。

焊接广泛应用于制造业和建筑业等领域,为不同金属材料的连接提供了可靠的解决方案。

总结:金属学名词解释了金属学中一些重要的概念和术语,包括晶体结构、点阵缺陷、冷变形、热处理、铸造、腐蚀、金属疲劳和金属焊接等。

这些名词解释能够帮助我们更好地理解和应用金属材料,为金属工程和材料科学提供了重要的参考知识。

金属学名词解释

金属学名词解释

金属学名词解释金属学名词解释第一章:金属的晶体结构金属:具有正的电阻温度系数的物质,其电阻岁温度的升高而增加。

晶体:原子在三维空间作有规则的周期性排列的物质。

它具有一定的熔点并且各向异性。

晶体结构:晶体中原子在三维空间有规则的周期性的具体排列方式。

阵点:为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子(或原子群)忽略,而将其抽象为纯粹的几何点,称之为阵点空间点阵:由阵点有规则的周期性重复排列所形成的三维空间阵列。

晶格:将阵点用直线连接起来形成的空间格子。

晶胞:能够反映晶格特征的最小几何单元。

晶面:在晶体中,由一系列原子所组成的平面称之为~ 晶向:在晶体中,任意两个原子之间的连线所指的方向。

多晶体:凡是由两颗以上晶粒所组成的晶体能量起伏:对于一个原子来说,这一瞬间能量可能高些,另一瞬间反而可可能低些的现象刃型位错:1.有一额外半原子面,2 位错线是一个具有一定宽度的细长晶格畸变管道,既有正应变又有切应变,3位错线与晶体滑移方向相垂直,位错线运动方向垂直于位错线。

4,柏氏矢量与位错线垂直。

螺型位错:1没有额外半原子面,2位错线是一个具有一定宽度的细长晶格畸变管道,只有切应变,而无正应变,3位错线与晶体滑移方向相平行,位错线运动方向垂直于位错线。

4,柏氏矢量与位错线平行。

晶界:晶体结构相同但位向不同的晶粒之间的界面。

亚晶界:由直径为10-100μm的晶块组成,彼此间存在极小的位相差(通常<2°)这些晶块之间的内界面称为亚晶粒间接,简称~层错:在实际晶体中,晶面堆垛顺序发生局部差错而产生的一种晶体缺陷,是通常发生于面心立方金属的一种面缺陷。

相界:具有不同晶体结构的两相之间的分界面。

有共格,半共格,非共格三种。

第二章:纯金属的结晶结晶:金属由液态转变为固态的过程称谓凝固,由于凝固后的固态金属通常是晶体,所以又将这一转变过程称谓~过冷度:金属的理论结晶温度Tm与实际结晶温度Tn之差,金属不同,则过冷度大小不同,金属的纯度越高,则过冷度越大,当以上两因素确定后,过冷度的大小主要取决于冷却速度,冷却速度越大,则过冷度越大,实际结晶温度越低,反之,冷却速度越慢,则过冷度越小,实际结晶温度越接近于理论结晶温度。

金属学名词解释

金属学名词解释

名词解释:1,金属:技术是具有正的电阻温度系数的物质,其电阻随温度的升高而增加;而非金属的电阻的温度系数为负值。

2,金属键:贡献出价电的原子,则变为正离子,沉浸在电子云中,他们依靠运动于期间的公有化的自由电子的静电作用而结合起来,这肿结合方式叫作金属键,它没有饱和性和方向性。

3,晶体:原子在三维空间作有规则的周期性排列的物质成为晶体,金属一般均为晶体。

4,熔点:是晶体向非晶体状态的液体转变的临界温度。

5,晶体结构:晶体结构是指晶体中的原子在三维空间有规律的周期性的具体排列方式。

6,阵点:为了清楚的表明原子在空间排列的规律性,常常将构成晶体的原子(或原子群)忽略,而将其抽象为纯粹的几何点,称之为阵点。

7,晶格:为了方便起见,常人为的将阵点用直线连接起来形成空间格子,称之为晶格。

8,晶胞:为了简便起见,可以从晶格中选取一个能够完全反映晶格特征的最小的几何单元,来分析晶体中原子排列的规律性,这个最小的几何单元称之为晶胞。

9,配位数:指晶体结构中与任一个原子最临近、等距离的原子数目。

10,致密度:若把原子看成刚性圆球,那么原子之间必然有空隙勋在,原子排列的紧密程度可用原子所占体积与晶胞体积之比表示,称之为致密度或密集系数,用K=nV1/V表示。

11,晶面晶向:在晶体中,由一系列原子组成的平面称为晶面,任意两个原子之间练线所指的方向称为晶向。

12,晶向族:原子排列相同但空间位不相同的所有晶向称为晶向族。

13,晶向指数:为了便于研究和表述不同晶面的原子片列情况极其在空间的位向,需要有一种传统的表示方法,这就是晶面指数和晶向指数。

14,晶粒:一般固态金属均是由很多结晶颗粒所组成,这些结晶颗粒称之为晶粒。

15,多晶型转变(同素异构转变):当外部条件(如温度压强)改变时,金属内部由一种晶体结构向另一种晶体结构转变称为同素异构转变。

16,能量起伏:对一个原子来说,这一瞬间的能量可能高一些,另一瞬间可能低一些,这种现象叫作能量起伏。

金属学名词解释完整版

金属学名词解释完整版

一、概论1. 组织:用肉眼或借助于各种不同放大倍数的显微镜所观察到的材料内部的情景,包括晶粒的大小、形状、种类以及各种晶粒之间的相对数量和相对分布。

2. 结构:原子集合体中各原子的具体组合状态。

二、金属和合金的固态结构1. 固溶体:溶质组元溶于溶剂点阵中而组成的单一的均匀固体。

一次(端际):以纯金属组元作溶剂,结构上保持溶剂组元纯态时的点阵类型。

二次(中间):以化合物为溶剂的固溶体,结构类型与主、副组元都不同。

代位:主组元一部分原子被其它组元原子取代,保留主组元结构类型。

一定范围内(有限互溶)或是所有成分范围(无限互溶)。

异类原子按任意比例统计分布在各类结构中各相应晶面,并处于主组元相似的正常位置。

有序:异类原子不是统计式分布,而是按一定顺序分布。

超结构(长程有序):某些在高温具有短程有序的固溶体,当其成分接近一定原子比,在低于一定临界温度时可转化为长程有序固溶体。

间隙:异类原子分布在主组元原子间空隙中。

金属间化合物类型:各组元原子按一定比例和一定顺序共同组成一个新的不同于其任一组元的典型结构。

中间相(金属间化合物):在合金中形成的与其纯组元结构类型不同的相。

2. 开放型金属:dO点附近较平缓、势阱小、原子间作用力弱、结合能小、原子易压缩、刚度小、热膨胀大。

(与封闭型金属对应)3. 空间点阵:由构成晶体的结构基元抽象出来的等同点在三维空间中的周期排列。

4. 排列周期:点阵直线上相邻两点间的距离。

5. 单胞(基胞):在空间点阵中选取的一个能反映其特点的最小构筑单元。

一般以最近邻八阵点为顶点能够构成一个体积最小、对称性最高的平行六面体。

6. 晶面:点阵空间中由阵点组成的平面为点阵平面,非严格意义上又称晶面。

晶向:点阵空间中两阵点连线(及延长线)为点阵直线,非严格意义上称晶向。

晶带:晶体中一系列晶面可相交于一条直线或几条相平行的直线,合称…晶界:同成分、同结构晶粒间由于相对取向不同而出现的接触界面。

倾转晶界:在所选平面内以任一直线为轴,使晶粒两部分相对转动任意角度。

金属学名词解释

金属学名词解释

元:组成合金的最基本的独立的物质,简称元相:合金中结构相同、成分和性能均一并以界面相互分开的组成部分。

(包括固溶体和金属化合物)组织:由于形成条件不同,形成具有不同形状、大小数量及分布的相相互结合而成的综合体。

固溶体:组元以不同比例混合后形成的固相晶体结构与组成合金的某一组元相同,这种相称固溶体组元:组成合金最基本的独立的物质。

固溶体:合金组元通过相互溶解形成的一种成分及性能均匀的,且结构与其中一种组元相同的固相。

置换固溶体:溶质原子位于溶剂晶格的某些结点位置所形成的固溶体。

间隙固溶体:溶质原子分布于溶剂晶格间隙而形成的固溶体。

表象点:位于相图中,并能表示合金成分、温度的点称表象点。

吉布斯相律:相律是表示平衡条件下,系统的自由度数、组元数和相数之间的关系,是系统平衡条件的数学表达式。

相律可用下式表示: f = c -p +2 当系统的压力为常数时,则为: f = c-p + 1式中,c 系统的组元数,p 平衡条件下系统中相数, f 为自由度数。

自由度:是指在保持合金系中相的数目不变的条件下,合金系中可以独立改变的影响合金状态因素的数目匀晶转变:从液相结晶出单相的固溶体,这种结晶过程称匀晶转变异分结晶:固溶体结晶过程中,结晶出的固相与母相成分不同,这种结晶也称为选择结晶。

同分结晶:纯金属结晶时,所结晶出的晶体与母相化学成分完全一样。

枝晶偏析:生成固体的成分不均匀-偏析,快速冷却时在一个晶粒内部先后结晶的成分有差别,所以称为晶内偏析,金属的晶体往往以树枝晶方式生长,偏析的分布表现为不同层次的枝晶成分有差别,因此又称枝晶偏析区域偏析:固溶体不平衡结晶时造成的大范围内化学成分不均匀的现象叫做宏观偏析或区域偏析。

伪共晶:这种非共晶成分合金所得到的共晶组织称伪共晶。

成分过冷:在正温度梯度下,纯金属的生长方式为平面长大;负温度梯度时,树枝状生长。

而固溶体结晶时,即使温度梯度是正值,也经常出现树枝状生长和胞状生长的情况,这是由于凝固过程中,成分是在不断的变化,溶质元素重新分配,在液固界面处形成溶质浓度梯度,液体和固体的成分均不能达到平衡状态,即产生了所谓成分过冷的现象。

金属学与热处理重要名词解释

金属学与热处理重要名词解释

金属学与热处理重要名词解释绪论1.材料:人类用来制造各种有用物品的材料。

2、工程材料:是指具有一定性能,在特定条件下能够承担某种功能、被用来制取零件和元件的材料。

3、金属材料:是指具有正的电阻温度系数及金属特性的一类物质。

包含金属和合金。

4、金属:是指由单一元素构成的、具有正的电阻温度系数及金属特性的一类物质。

5.合金:指由两种或两种以上金属或金属与非金属组成的具有正电阻温度系数和金属特性的材料。

6、无机非金属材料:又称硅酸盐材料、陶瓷材料,所谓无机非金属材料是指用天然硅酸盐(粘土、长石、石英等)或人工合成化合物(氮化物、氧化物、碳化物、硅化物、硼化物、氟化物)为原料,经粉碎、配置、成形和高温烧结而成的硅酸盐材料。

7.高分子材料:指以高分子化合物为主要成分的材料,也称聚合物。

8、复合材料:是指由两种或两种以上不同性质的材料,通过不同的工艺方法人工合成的、各组分间有明显界面、且性能优于各组成材料的多相材料。

9.结构材料:以强度、刚度、塑性、韧性、硬度、疲劳强度、耐磨性等机械性能为性能指标,用于制造承载和传递动力的零部件的材料。

10、功能材料:是以声、光、电、磁、热等物理性能为指标,用来制造具有特殊性能的元件材料。

第一章金属的性质1、金属的使用性能:是指金属材料制成零件或构件后为保证正常工作及一定使用寿命应具备的性能,包括金属的力学性能、物理和化学性能。

2、金属的工艺性能:是指金属在加工成零件或构件的过程中金属应具备的适应加工的性能,包括冶炼性能、铸造性能、压力加工性能、切削加工性能、焊接性能及热处理工艺性能。

3.金属力学性能:指金属在外载荷作用下的性能,包括强度、硬度、塑性、韧性和疲劳强度。

4、弹性变形:外力去除后立即可以恢复的变形。

其实质是在外力作用下晶格发生的歪扭与伸长。

5、塑性变形:外力去除后不能恢复的变形6.弹性极限:金属材料在弹性变形范围内能承受的最大应力。

7、弹性模量与刚度:金属在弹性范围内,应力与应变的比值ζ/ε称为弹性模量e,也称为杨氏模量。

金属学考试名词解释

金属学考试名词解释
释义
1.晶胞:晶格中能够完全反映晶格特征的最小几何单元。
2.非均匀形核:是指依附液体中现有固体杂质或容器表面形成晶核的过程。
3.结晶:是指原子由不规则的排列状态(液态)过渡到规则的排列状态(固态)的过程。
4.相:合金中结构相同、成分和性能Байду номын сангаас一并以界面相互分开的组成部分叫相。
5.固溶强化:在固溶体中,随溶质原子含量的增加,固溶体的强度,硬度升高,塑性韧性下降的现象称为固溶强化。
6.金属间化合物:合金组元间互相作用形成的具有一定的金属性质的新相叫金属间化合物
7.弥散强化:合金中以固溶体为主再有适量的金属化合物弥散分布,会提高合金的强度、硬度及耐磨性,这种强化方式为弥散强化。
8.选择结晶:固溶体结晶时所结晶出的固相成分与液相的成分不同,这种结晶出的晶体与母相化学成分不同的结晶称为异分结晶,或称选择结晶。
9.伪共晶:在不平衡结晶条件下,成分在共晶点附近的亚共晶或过共晶合金也可能得到全部共晶组织,这种共晶组织称为伪共晶。
10.离异共晶:在先共晶相数量较多而恭敬想阻止较少的情况下,又是共晶组织中与先共晶相相同的那一相,会议扶余县共晶相上生长,剩下的另一相则单独存在于晶界处,从而使共晶组织的特征消失,这种两相分离的共晶称为离异共晶。
11.细晶强化:原理:晶粒越细小,位错塞集群中位错个数(n)越小,应力集中越小,所以材料的强度越高。规律:晶界越多,晶粒越细,方法:结晶过程中可以通过增加过冷度,变质处理,振动及搅拌的方法增加形核率细化晶粒。
12.共晶转变:在一定温度下,由一定成分的液相同时结晶出成分一定的两个固相的转变过程。

金属学原理名词解释

金属学原理名词解释

名词解释1.间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成具有简单晶体结构的间隙型化合物2.间隙化合物:当非金属原子半径与金属原子半径的比值大于0.59时,形成复杂晶体结构的间隙型化合物3.固溶体:在固态下合金中组元相互溶解而形成的均匀固相4.配位数:晶体结构中,与任一原子最近邻并且等距的原子数5.致密度:致密度=单位晶胞中原子所占有的体积/单位晶胞体积6.金属键:金属中的自由电子与金属正离子相互作用所构成的键合7.空间点阵:抽象的几何点在三维空间规则排列的队列8.多晶型性:当外界条件(主要指温度和压力)改变时,元素的晶体结构可以发生转变,把金属的这种性质称为多晶型性9.形核功:形成临界晶核必须获得的能量10.晶胚:在温度降到熔点以下时,在液态金属中存在结构起伏,瞬时存在的有序原子集团11.临界晶核:半径为r*的晶核12.动态过冷度:能保证凝固速度大于熔化速度的过冷度13.粗糙界面:从微观上高低不平,有几个原子厚的过渡层,过渡层中约50%的位置占有原子的界面称为粗糙界面14.光滑界面:液固界面处截然分开,固相表面为基本完整的原子密排面,所以从微观上看是光滑的界面称为光滑界面15.伪共晶:不平衡的结晶条件下,成分在共晶点附近的合金全部转变成共晶组织,这种非共晶成分的共晶组织称为伪共晶16.不平衡共晶:由于固相线偏离平衡位置,不但冷到固相线上凝固不能结束,甚至冷到共晶温度以下还有少量液相残留,最后这些液相转变为共晶体,形成所谓的不平衡共晶组织17.离异共晶:有共晶反应的合金中,如果成分离共晶点较远,由于初晶相数量较多,共晶相数量很少,共晶中与初晶相同的那一相会依附初晶长大,另外一个相单独分布于晶界处,使得共晶组织的特征消失,这种两相分离的共晶称为离异共晶18.上坡扩散:原子由低浓度向高浓度出扩散的现象19.均匀化退火:将钢加热到略低于固相线温度,长时间保温(10-15h),然后随炉冷却,以使钢的化学成分和组织均匀化20.反应扩散:通过扩散而形成新相的现象21.柯肯达尔效应:扩散偶中由于扩散系数不同而引起对接面移动的现象22.自扩散:不伴随浓度变化,与浓度梯度无关的只发生在纯金属和均匀固溶体中的扩散23.互扩散:伴随有浓度变化,与异类原子浓度差有关的发生在异类原子之间的相互扩散24.成分过冷:由于液相成分改变而形成的过冷25.平衡分配系数:在一定温度下,固—液两平衡相中溶质浓度的比值ko称为溶质的平衡分配系数,ko=Cs/C L26.区域熔炼:利用正常凝固的原理将棒料从一端顺序地进行局部熔化,使溶质杂质富集到右端,反复进行这样的操作以达到使金属棒一端提纯的技术27.有效分配系数:ke=结晶过程中固体在相界处的浓度/此时余下液体的平均浓度28.直线法则:在一定温度下,当某三元系合金处于两相平衡时,合金的成分点与平衡相的成分点必定在同一直线上,且合金的成分点位于两平衡相的成分点之间,该规律称为直线法则29.重心法则:如果合金在某一温度处于三相平衡,合金成分点位于由三个平衡相成分点组成共轭三角形的重心位置,这就是重心法则30.连接线:三元系截面图中液相线上液相成分点和其对应的固相线上固相成分点的连线31.单变量线:三元系空间模型中随着温度的变化三个平衡相的成分点形成三条空间曲线,称为单变量线32.滑移系:一个滑移面和此面上的一个滑移方向的组合33.临界分切应力:能引起滑移或孪生所需要的最小分切应力34.复滑移:由于晶体的转动,使另一个滑移系参加滑移,从而形成双滑移﹑多组滑移系参加滑移的过程35.交滑移:两个或两个以上的滑移面沿同一滑移方向进行交替滑移的过程36.双交滑移:如果交滑移后的位错再转回与原滑移面平行的滑移面上继续运动,则称为双交滑移37.孪生:晶体的一部分沿一定晶面(孪晶面)和晶向发生切变38.加工硬化:随着变形程度的增加,强度和硬度升高,塑性和韧性下降的现象39.变形织构:多晶材料因塑性变形后的晶粒取向偏离非随机分布状态所形成的组织40.位错点阵阻力:位错移动受到的阻力41.回复:冷变形金属在加热温度较低时,金属中的一些点缺陷和位错的迁移,使晶格畸变逐渐减小,内应力逐渐降低的过程42.再结晶:冷变形金属的加热温度高于回复阶段以后,当温度继续升高时,由于原子活动能力增大,金属的显微组织发生明显的变化,由破碎拉长或压扁的晶粒变为均匀细小的等轴晶粒的过程43.动态回复:热加工过程中,由于变形温度高于再结晶温度,因而在变形的同时伴随着回复的过程44.动态再结晶:热加工过程中,由于变形温度高于再结晶温度,因而在变形的同时伴随着再结晶的过程45.二次再结晶:再结晶完成后晶粒长大随温度的升高或时间的增长而不连续不均匀地长大,称为二次再结晶46.多边化:指由于冷变形后,同号刃型位错在滑移面上塞积而引起点阵轻微弯曲,在退火过程中,通过刃型位错的攀移与滑移,使同号刃型位错沿着垂直于滑移面的方向排列成小角度亚晶界的过程47.储存能:冷塑变时,外力所作的功尚有一小部分储存在形变金属内部,这部分能量称为储存能48.退火孪晶:某些面心立方金属和合金﹑如铜及铜合金,镍及镍合金和奥氏体不锈钢等,冷变形后再结晶退火,其晶粒中会产生的一种孪晶49.流线:在热加工过程中铸态金属的偏析,夹杂物,第二相等逐渐沿变形方向延伸,这种组织称为流线50.全位错:柏氏矢量等于(或整数倍)点阵矢量的位错51.不全位错:柏氏矢量小于点阵矢量的位错52.单位位错:柏氏矢量为一个点阵矢量的位错53.固定位错:将面心立方完整晶体沿{1 1 1}原子层间剖开,抽去半原子平面或插入半原子平面就形成了层错,这样形成的层错就是固定层错54.面角位错:形成于两个{1 1 1}面之间的面角上,由三个不全位错和两片层错所构成的位错组态55.扩展位错:两个不全位错和中间的层错带所组成的位错组态56.柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成柯氏气团57.铃木气团:当溶质原子偏聚在层错附近,使其浓度大于基体中浓度时,即形成铃木气团58.应变时效:在塑性变形时或变形后,在室温或适当加热时,导致间隙固溶原子在位错线上的偏聚使合金的强度和硬度升高并往往导致不连续屈服重新出现的现象59.位错密度:单位体积中所包含位错线的总长度60.层错:由于某种原因,原子排列不按正常次序生长,这样使原子层产生了错排。

金属学名词解释

金属学名词解释

金属学名词解释第一章:金属的晶体结构金属:具有正的电阻温度系数的物质,其电阻岁温度的升高而增加。

晶体:原子在三维空间作有规则的周期性排列的物质。

它具有一定的熔点并且各向异性。

晶体结构:晶体中原子在三维空间有规则的周期性的具体排列方式。

阵点:为了清楚地表明原子在空间排列的规律性,常常将构成晶体的原子(或原子群)忽略,而将其抽象为纯粹的几何点,称之为阵点空间点阵:由阵点有规则的周期性重复排列所形成的三维空间阵列。

晶格:将阵点用直线连接起来形成的空间格子。

晶胞:能够反映晶格特征的最小几何单元。

晶面:在晶体中,由一系列原子所组成的平面称之为~晶向:在晶体中,任意两个原子之间的连线所指的方向。

多晶体:凡是由两颗以上晶粒所组成的晶体能量起伏:对于一个原子来说,这一瞬间能量可能高些,另一瞬间反而可可能低些的现象刃型位错:1.有一额外半原子面,2 位错线是一个具有一定宽度的细长晶格畸变管道,既有正应变又有切应变,3位错线与晶体滑移方向相垂直,位错线运动方向垂直于位错线。

4,柏氏矢量与位错线垂直。

螺型位错:1没有额外半原子面,2位错线是一个具有一定宽度的细长晶格畸变管道,只有切应变,而无正应变,3位错线与晶体滑移方向相平行,位错线运动方向垂直于位错线。

4,柏氏矢量与位错线平行。

晶界:晶体结构相同但位向不同的晶粒之间的界面。

亚晶界:由直径为10-100μm的晶块组成,彼此间存在极小的位相差(通常<2°)这些晶块之间的内界面称为亚晶粒间接,简称~层错:在实际晶体中,晶面堆垛顺序发生局部差错而产生的一种晶体缺陷,是通常发生于面心立方金属的一种面缺陷。

相界:具有不同晶体结构的两相之间的分界面。

有共格,半共格,非共格三种。

第二章:纯金属的结晶结晶:金属由液态转变为固态的过程称谓凝固,由于凝固后的固态金属通常是晶体,所以又将这一转变过程称谓~过冷度:金属的理论结晶温度Tm与实际结晶温度Tn之差,金属不同,则过冷度大小不同,金属的纯度越高,则过冷度越大,当以上两因素确定后,过冷度的大小主要取决于冷却速度,冷却速度越大,则过冷度越大,实际结晶温度越低,反之,冷却速度越慢,则过冷度越小,实际结晶温度越接近于理论结晶温度。

金属学名词解释第一章

金属学名词解释第一章
6相界:具有不同晶体结构的两相之间的分界面称为相界。分为三类;共格(界面能最低),半共格,非共格晶界。
7晶界特性包括具有晶界能,内吸附反内吸附,高强度和硬度等。
降低晶界能量方法:晶粒长大和晶界平直化都可减少晶界总面积从而降低能量。
8内吸附:由于晶界能的存在,当金属中存在有能降低晶界能的异类原子时,这些原子将向晶界偏聚,这种现象叫内吸附。
6晶格:为了方便起见,常人为地用直线连接起来形成空间格子称为晶格。
7空间点阵:由几何点在三维空间作周期性的规则排列所形成的三维阵列称为空间点阵,
8阵点:构成空间点阵的每一个点称为阵点。他是一个抽象的空间点,其既可代表晶体中原子或分子的中心,也可代表彼此相等的原子群或分子群的中心。
9晶胞:构成晶格的最基本单元称为晶胞
9多晶体型转变或同素异构转变:当外部条件改变时,金属内部由一种晶体结构向另一种晶体结构的转变。
1伪等向性:在一般情况下,整个晶体不显示各向异性。
2晶体缺陷:指金属材料中,晶体原子偏离规则排列的不完整性区域。
3能量起伏:对一个原子来说,这一瞬间能量高些,另一瞬间可能低些。这种现象叫能量起伏。
4空位:晶体结构中原来应该有原子的某些结点上因某种原因出现了原子空缺而形成。
9反内吸附:凡能提高晶界能的原子,将会在晶粒内部偏聚氏矢量等于点阵矢量的位错称为全位错或单位位错。
4不全位错:柏氏矢量小于点阵矢量的位错称为不全位错。
(位错的柏氏矢量越小,则其具有的能量越低,位错就越稳定)
5位错反应:位错分解和合成的总称。(其驱动力为体系自由能的降低)
位2错作为线性缺陷,所引起的熵增远比空位小,不可能抵消应变能的增加,位错的存在肯定使体系的自由能增加,故位错为不平衡缺陷。

金属学名词解释

金属学名词解释
慢冷却以消除化学成分不均匀现象的热处理工艺
60.正火:将钢加热到Ac3以上适当温度,保温以后在空气中冷却得到珠光体类组织的热处理工艺
35.加工硬化:金属发生塑性变形,随变形度的增大,金属的强度和硬度显著提高,塑性和韧性明显下降
36.纤维组织:金属发生塑性变形后,其尺寸的改变是内部晶粒变形的总和,晶粒沿形变方向被拉长或压扁,当变形量很大时,所形成类似纤维状形貌的组织
37.形变结构:当变形量很大时,多晶体中原为任意取向的各个晶粒会逐渐调整其取向而彼此趋向于一致
1.晶体:原子在三维空间做有规则的周期性重复排列的物质
2.非晶体:原子呈不规则排列的固态物质
3.空间点阵:描述晶体中原子规律排列的空间格架
4.晶格:一个能反映原子排列规律的空间格架
5.晶胞:构成晶格的最基本单位
6.晶界:晶粒和晶粒之间的界面
7.单晶体:只有一个晶粒之间的界面
8.多晶体:由许多取向不同,形状和大小甚至成分不同的单晶体通过晶界结合在一起的聚合体
55.包晶转变:由一定成分的固相与一定成分的液相作用,形成另一个一定成分的固相的转变过程 L+B=a
56.共析转变:一定程度的固相,在一定温度下分解为另外两个一定成分固相的转变过程 r=a+B
57.包析转变:两个一定成分的固相在恒温下转变为一个新的一定成分固相的过程 r+B=a
58.退火:将钢加热至Ac1临界点以上或以下的温度,保温以后随炉缓慢冷却以获得近于平衡状态组织的热处理工艺
19.脱溶反应:固溶体合金在结晶郭晨中,随着温度下降,由于溶质组元在固溶体中的溶解度随温度降低而减小,因此将从初生固溶体相中析出此生相
20.组织组成物:组织中,由一定的相构成的,具有一定形成机制、一定形态特征的组成部分

金属材料学名词解释总

金属材料学名词解释总

金属材料学名词解释总金属材料学名词解释总1)合金元素: 特别添加到钢中为了保证获得所要求的组织结构从而得到一定的物理、化学或机械性能的化学元素。

(常用M来表示) 2)微合金元素: 有些合金元素如V,Nb,Ti, Zr和B等,当其含量只在0.1%左右(如B 0.001%,V 0.2 %)时,会显著地影响钢的组织与性能,将这种化学元素称为微合金元素。

3)奥氏体形成元素: 在γ-Fe中有较大的溶解度,且能稳定γ相;如Mn, Ni, Co, C, N, Cu;4)铁素体形成元素: 在α-Fe中有较大的溶解度,且能稳定α相。

如:V,Nb, Ti 等。

5)原位析出: 元素向渗碳体富集,当其浓度超过在合金渗碳体中的溶解度时, 合金渗碳体就在原位转变成特殊碳化物如Cr钢中的Cr:ε-FexC→Fe3C→(Fe, Cr)3C→(Cr, Fe)7C3→(Cr, Fe)23C6 6)离位析出: 在回火过程中直接从α相中析出特殊碳化物,同时伴随着渗碳体的溶解,可使HRC和强度提高(二次硬化效应)。

如 V,Nb, Ti等都属于此类型。

7)液析碳化物:由于碳和合金元素偏析,在局部微小区域内从液态结晶时析出的碳化物。

8)网状碳化物:过共析钢在热轧(锻)加工后缓慢冷却过程中由二次碳化物以网状析出于奥氏体晶界所造成的。

9)合金渗碳体:渗碳体内经常固溶有其他元素,在碳钢中,一部分铁为锰所置换;在合金钢中为铬、钨、钼等元素所置换,形成合金渗碳体。

10)二次硬化:淬火钢在较高温度下回火,硬度不降低反而升高的现象称为二次硬化11)变质处理:就是向金属液体中加入一些细小的形核剂(又称为孕育剂或变质剂),使它在金属液中形成大量分散的人工制造的非自发晶核,从而获得细小的铸造晶粒。

12)回火稳定性:淬火钢对回火过程中发生的各种软化倾向(如马氏体的分解,碳化物的析出与铁素体的再结晶)的抵抗能力。

13)固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到过饱和固溶体的热处理工艺。

金属学名词解释完整版

金属学名词解释完整版

一、概论1.组织:用肉眼或借助于各种不同放大倍数的显微镜所观察到的材料内部的情景,包括晶粒的大小、形状、种类以及各种晶粒之间的相对数量和相对分布。

2.结构:原子集合体中各原子的具体组合状态。

二、金属和合金的固态结构1.固溶体:溶质组元溶于溶剂点阵中而组成的单一的均匀固体。

一次(端际):以纯金属组元作溶剂,结构上保持溶剂组元纯态时的点阵类型。

二次(中间):以化合物为溶剂的固溶体,结构类型与主、副组元都不同。

代位:主组元一部分原子被其它组元原子取代,保留主组元结构类型。

一定范围内(有限互溶)或是所有成分范围(无限互溶)。

异类原子按任意比例统计分布在各类结构中各相应晶面,并处于主组元相似的正常位置。

有序:异类原子不是统计式分布,而是按一定顺序分布。

超结构(长程有序):某些在高温具有短程有序的固溶体,当其成分接近一定原子比,在低于一定临界温度时可转化为长程有序固溶体。

间隙:异类原子分布在主组元原子间空隙中。

金属间化合物类型:各组元原子按一定比例和一定顺序共同组成一个新的不同于其任一组元的典型结构。

中间相(金属间化合物):在合金中形成的与其纯组元结构类型不同的相。

2.开放型金属:d0点附近较平缓、势阱小、原子间作用力弱、结合能小、原子易压缩、刚度小、热膨胀大。

(与封闭型金属对应)3.空间点阵:由构成晶体的结构基元抽象出来的等同点在三维空间中的周期排列。

4.排列周期:点阵直线上相邻两点间的距离。

5.单胞(基胞):在空间点阵中选取的一个能反映其特点的最小构筑单元。

一般以最近邻八阵点为顶点能够构成一个体积最小、对称性最高的平行六面体。

6.晶面:点阵空间中由阵点组成的平面为点阵平面,非严格意义上又称晶面。

晶向:点阵空间中两阵点连线(及延长线)为点阵直线,非严格意义上称晶向。

晶带:晶体中一系列晶面可相交于一条直线或几条相平行的直线,合称...晶界:同成分、同结构晶粒间由于相对取向不同而出现的接触界面。

倾转晶界:在所选平面内以任一直线为轴,使晶粒两部分相对转动任意角度。

金属工艺学名词解释

金属工艺学名词解释

《金属工艺学》名词解释第二篇铸造1、铸造:将液态金属浇注到铸型中,待其冷却凝固,以获得一定形状、尺寸和性能的毛坯或零件的成形方法,称为铸造。

2、充型:液态合金填充铸型的过程,简称充型。

3、液态合金的充型能力:液态合金充满铸型型腔,获得形状准确、轮廓清晰铸件的能力,称为液态合金的充型能力。

4、合金的流动性:液态合金本身的流动能力。

5、逐层凝固:纯金属或共晶成分合金在凝固过程中因不存在液、固并存的凝固区,故断面上外层的固体和内层的液体由一条界线清楚地分开。

随着温度的下降,固体层不断加厚、液体层不断减少,直达铸件中心,这种凝固方式称为逐层凝固。

6、糊状凝固:如果合金的结晶温度范围很宽,且铸件的温度分布较为平坦,则在凝固的某段时间内,铸件表面并不存在固体层,而液、固并存的凝固区贯穿整个断面。

由于这种凝固方式与水泥类似,即先呈糊状而后固化,故称糊状凝固。

7、中间凝固:大多数合金的凝固介于逐层凝固和糊状凝固之间,称为中间凝固方式。

8、收缩:合金从浇注、凝固直至冷却到室温,其体积或尺寸缩减的现象,称为收缩。

9、缩孔:集中在铸件上部或最后凝固部位容积较大的孔洞。

10、缩松:分散在铸件某区域内的细小缩孔,称为缩松。

11、顺序凝固:在铸件上可能出现缩孔的厚大部位通过安放冒口等工艺措施,使铸件远离冒口的部位先凝固;然后是靠近冒口部位凝固;最后才是冒口本身的凝固。

第三篇金属塑性加工1、金属塑性加工:利用金属的塑性,使其改变形状、尺寸和改善性能,获得型材、棒材、板材、线材或锻压件的加工方法。

2、锻造:在加压设备及工(模)具的作用下,使坯料、铸锭产生局部或全部的塑性变形,以获得一定几何尺寸、形状和质量的锻件的加工方法。

3、冲压:使板料经分离或成形而得到制品的工艺统称。

4、挤压:坯料在封闭模腔内受三向不均匀压应力作用下,从模具的孔口或缝隙挤出,使之横截面积减小,称为所需制品的加工方法。

5、轧制:金属材料(或非金属材料)在旋转轧辊的压力作用下,产生连续塑性变形,获得所要求的截面形状并改变其性能的方法。

金属学部分名词解释

金属学部分名词解释

金属学部分名词解释第一章金属与合金的晶体结构金属学、材料科学基础;晶体、非晶体;结合能、结合键、键能;离子键、共价键、金属键、分子键、氢键;金属材料、陶瓷材料、高分子材料、复合材料;晶体结构、晶格、晶胞、晶系、布拉菲点阵;晶格常数、晶胞原子数、配位数、致密度;晶面、晶向、晶面指数、晶向指数、晶面族、晶向族;各向异性、各向同性;原子堆积、同素异构转变;陶瓷、离子晶体、共价晶体。

点缺陷、线缺陷、面缺陷;空位、间隙原子、肖脱基缺陷、弗兰克尔缺陷;刃形位错、螺形位错、混合位错、位错线、柏氏矢量、位错密度;滑移、攀移、交滑移、交割、塞积;位错的应力场、应变能、线张力、作用在位错上的力;位错源、位错的增殖;单位位错、不全位错、堆垛层错、肖克莱位错、弗兰克尔位错;扩展位错、固定位错、可动位错、位错反应;晶界、相界、界面能、大角度晶界、小角度晶界、孪晶界。

相、固溶体、置换固溶体、间隙固溶体、有序固溶体、电负性、电子浓度;中间相、正常价化合物、电子化合物、间隙相、间隙化合物、第二章纯金属的结晶结晶与凝固、非晶态金属;近程有序、远程有序、结构起伏、能量起伏;过冷现象、过冷度、理论结晶温度、实际结晶温度;均匀形核、非均匀形核;晶胚、晶核、临界晶核、临界形核功;形核率、生长速率;光滑界面、粗糙界面;温度梯度、正温度梯度、负温度梯度;平面状长大、树枝状长大;活性质点、变质处理、晶粒度;结晶区、柱状晶区、(粗)等轴晶区。

第三章二元合金相图与合金凝固合金、组元、二元合金;相律、杠杆定律、相图;热分析法、平衡相;匀晶转变、共晶转变、包晶转变、共析转变、有序-无序转变、熔晶转变、偏晶转变、合晶转变;平衡凝固、不平衡凝固、正常凝固;枝晶偏析、比重偏析、晶界偏析、胞状偏析;共晶体、稳定化合物、不稳定化合物;共晶合金、亚共晶合金、过共晶合金、伪共晶、不平衡共晶、离异共晶;第四章铁碳相图铁素体、奥氏体、莱氏体、珠光体、渗碳体;工业纯铁、亚共析钢、共析钢、过共析钢、亚共晶白口铁、共晶白口铁、过共晶白口铁,Fe—Fe3C相图,Fe-C相图第五章三元合金相图浓度三角形、相区相邻规则、直线法则、重心法则、共轭线、共轭曲面、共轭三角形、蝴蝶形变化规律、单变量线、液相面、固相面、溶解度曲面、四相平衡转变温度、投影图、垂直截面图和等温截面图。

金属学及热处理 名词解释

金属学及热处理 名词解释

1滑移系---一个滑移面和此方向的一个滑移方向结合起来,称为一个滑移系。

2反应扩散---指通过扩散使固溶体的溶质组元浓度超过固溶体极限而形成新相的过程3淬硬性---指钢在淬火时的硬化能力,用淬火后马氏体所能达到的最高硬度表示,它主要取决于马氏体中的含碳量。

4钢的化学热处理---化学热处理是将工件置于特定介质中加热和保温,使介质中的活性原子渗入工件表层,改变表层的化学成分和组织,从而达到改进表层性能的一种热处理工艺5 C曲线---将奥氏体化后的共析钢快冷至临界点以下的某一温度等温停留,并测定奥氏体转变量与时间的关系,即可得到过冷奥氏体等温转变动力学曲线。

将各个温度下转变开始和终了时间标注在温度——时间坐标中,并连成曲线,即得到共析钢的过冷奥氏体等温转变曲线,这种曲线形状类似字母“C”,故称为C曲线,亦称TTT图。

6再结晶—将冷变形后的金属加热到一定温度之后,在原变形组织中重新产生了无畸变的新晶粒,而性能也发生了明显的变化并恢复到变形前的状况,这个过程称为再结晶7超塑性--材料在一定条件进行热变形,可获得延伸率达500%---2000%的均匀塑性变形,且不发生缩颈现象,材料的这种特性称为超塑性8加工硬化--随着塑性变形量增加,金属的流变强度也增加,这种现象称为形变强化或加工硬化。

9韧性断裂10马氏体--钢中加热至奥氏体后快速淬火,所形成的高硬度的针片状组织。

11固溶体--由两种或两种以上组元在固态下相互溶解,而形成得具有溶剂晶格结构的单一的、均匀的物质。

12偏析----是指化学成分的不均匀性。

13相变—通过14固溶强化--通过合金化(加入合金元素)组成固溶体,使金属材料得到强化15原子配位数—晶体中任一原子周围最邻近且等距离的原子数16超点阵17非均匀形核—由于外界因素,如杂质颗粒或铸型内壁等,促进结晶晶核的形成。

18结构起伏—由于液相中原子运动强烈,在其平衡位置停留时间甚短,这种局部有序排列的原子团此消彼长的现象19堆垛层错--实际晶体结构中,密排面的正常堆垛顺序可能遭到破坏和错排,称为。

金属学原理名词解释

金属学原理名词解释

名词解释1.间隙相:当非金属原子半径与金属原子半径的比值小于0.59时,形成具有简单晶体结构的间隙型化合物2.间隙化合物:当非金属原子半径与金属原子半径的比值大于0.59时,形成复杂晶体结构的间隙型化合物3.固溶体:在固态下合金中组元相互溶解而形成的均匀固相4.配位数:晶体结构中,与任一原子最近邻并且等距的原子数5.致密度:致密度=单位晶胞中原子所占有的体积/单位晶胞体积6.金属键:金属中的自由电子与金属正离子相互作用所构成的键合7.空间点阵:抽象的几何点在三维空间规则排列的队列8.多晶型性:当外界条件(主要指温度和压力)改变时,元素的晶体结构可以发生转变,把金属的这种性质称为多晶型性9.形核功:形成临界晶核必须获得的能量10.晶胚:在温度降到熔点以下时,在液态金属中存在结构起伏,瞬时存在的有序原子集团11.临界晶核:半径为r*的晶核12.动态过冷度:能保证凝固速度大于熔化速度的过冷度13.粗糙界面:从微观上高低不平,有几个原子厚的过渡层,过渡层中约50%的位置占有原子的界面称为粗糙界面14.光滑界面:液固界面处截然分开,固相表面为基本完整的原子密排面,所以从微观上看是光滑的界面称为光滑界面15.伪共晶:不平衡的结晶条件下,成分在共晶点附近的合金全部转变成共晶组织,这种非共晶成分的共晶组织称为伪共晶16.不平衡共晶:由于固相线偏离平衡位置,不但冷到固相线上凝固不能结束,甚至冷到共晶温度以下还有少量液相残留,最后这些液相转变为共晶体,形成所谓的不平衡共晶组织17.离异共晶:有共晶反应的合金中,如果成分离共晶点较远,由于初晶相数量较多,共晶相数量很少,共晶中与初晶相同的那一相会依附初晶长大,另外一个相单独分布于晶界处,使得共晶组织的特征消失,这种两相分离的共晶称为离异共晶18.上坡扩散:原子由低浓度向高浓度出扩散的现象19.均匀化退火:将钢加热到略低于固相线温度,长时间保温(10-15h),然后随炉冷却,以使钢的化学成分和组织均匀化20.反应扩散:通过扩散而形成新相的现象21.柯肯达尔效应:扩散偶中由于扩散系数不同而引起对接面移动的现象22.自扩散:不伴随浓度变化,与浓度梯度无关的只发生在纯金属和均匀固溶体中的扩散23.互扩散:伴随有浓度变化,与异类原子浓度差有关的发生在异类原子之间的相互扩散24.成分过冷:由于液相成分改变而形成的过冷25.平衡分配系数:在一定温度下,固—液两平衡相中溶质浓度的比值ko称为溶质的平衡分配系数,ko=Cs/C L26.区域熔炼:利用正常凝固的原理将棒料从一端顺序地进行局部熔化,使溶质杂质富集到右端,反复进行这样的操作以达到使金属棒一端提纯的技术27.有效分配系数:ke=结晶过程中固体在相界处的浓度/此时余下液体的平均浓度28.直线法则:在一定温度下,当某三元系合金处于两相平衡时,合金的成分点与平衡相的成分点必定在同一直线上,且合金的成分点位于两平衡相的成分点之间,该规律称为直线法则29.重心法则:如果合金在某一温度处于三相平衡,合金成分点位于由三个平衡相成分点组成共轭三角形的重心位置,这就是重心法则30.连接线:三元系截面图中液相线上液相成分点和其对应的固相线上固相成分点的连线31.单变量线:三元系空间模型中随着温度的变化三个平衡相的成分点形成三条空间曲线,称为单变量线32.滑移系:一个滑移面和此面上的一个滑移方向的组合33.临界分切应力:能引起滑移或孪生所需要的最小分切应力34.复滑移:由于晶体的转动,使另一个滑移系参加滑移,从而形成双滑移﹑多组滑移系参加滑移的过程35.交滑移:两个或两个以上的滑移面沿同一滑移方向进行交替滑移的过程36.双交滑移:如果交滑移后的位错再转回与原滑移面平行的滑移面上继续运动,则称为双交滑移37.孪生:晶体的一部分沿一定晶面(孪晶面)和晶向发生切变38.加工硬化:随着变形程度的增加,强度和硬度升高,塑性和韧性下降的现象39.变形织构:多晶材料因塑性变形后的晶粒取向偏离非随机分布状态所形成的组织40.位错点阵阻力:位错移动受到的阻力41.回复:冷变形金属在加热温度较低时,金属中的一些点缺陷和位错的迁移,使晶格畸变逐渐减小,内应力逐渐降低的过程42.再结晶:冷变形金属的加热温度高于回复阶段以后,当温度继续升高时,由于原子活动能力增大,金属的显微组织发生明显的变化,由破碎拉长或压扁的晶粒变为均匀细小的等轴晶粒的过程43.动态回复:热加工过程中,由于变形温度高于再结晶温度,因而在变形的同时伴随着回复的过程44.动态再结晶:热加工过程中,由于变形温度高于再结晶温度,因而在变形的同时伴随着再结晶的过程45.二次再结晶:再结晶完成后晶粒长大随温度的升高或时间的增长而不连续不均匀地长大,称为二次再结晶46.多边化:指由于冷变形后,同号刃型位错在滑移面上塞积而引起点阵轻微弯曲,在退火过程中,通过刃型位错的攀移与滑移,使同号刃型位错沿着垂直于滑移面的方向排列成小角度亚晶界的过程47.储存能:冷塑变时,外力所作的功尚有一小部分储存在形变金属内部,这部分能量称为储存能48.退火孪晶:某些面心立方金属和合金﹑如铜及铜合金,镍及镍合金和奥氏体不锈钢等,冷变形后再结晶退火,其晶粒中会产生的一种孪晶49.流线:在热加工过程中铸态金属的偏析,夹杂物,第二相等逐渐沿变形方向延伸,这种组织称为流线50.全位错:柏氏矢量等于(或整数倍)点阵矢量的位错51.不全位错:柏氏矢量小于点阵矢量的位错52.单位位错:柏氏矢量为一个点阵矢量的位错53.固定位错:将面心立方完整晶体沿{1 1 1}原子层间剖开,抽去半原子平面或插入半原子平面就形成了层错,这样形成的层错就是固定层错54.面角位错:形成于两个{1 1 1}面之间的面角上,由三个不全位错和两片层错所构成的位错组态55.扩展位错:两个不全位错和中间的层错带所组成的位错组态56.柯氏气团:金属内部存在的大量位错线,在刃型位错线附近经常会吸附大量的异类溶质原子(大小不同吸附的位置有差别),形成柯氏气团57.铃木气团:当溶质原子偏聚在层错附近,使其浓度大于基体中浓度时,即形成铃木气团58.应变时效:在塑性变形时或变形后,在室温或适当加热时,导致间隙固溶原子在位错线上的偏聚使合金的强度和硬度升高并往往导致不连续屈服重新出现的现象59.位错密度:单位体积中所包含位错线的总长度60.层错:由于某种原因,原子排列不按正常次序生长,这样使原子层产生了错排。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
异分结晶(选择结晶):固溶体合金结晶时所结晶出的固相成分与液相成分不同,这种结晶出的晶体和母相化学成分不同的结晶称为异分结晶,或称选择结晶.
同分结晶:纯金属结晶时所结晶出的晶体与母相的化学成分完全一样,称之为同分结晶。
平衡分配系数k。:在一定温度下,固液两平衡相中的溶质浓度之比值。(k。=c固/c液)(反映了溶质组元重新分配的强弱程度)
无限固溶体:溶质能以任意比例溶入溶剂,固溶体的溶解度可达100%,这种固溶体就称为无限固溶体。
无序固溶体:溶质原子统计地或随机地分布于溶剂晶格中,他或占据着与溶剂原子等同的一些位置,或占据着溶剂原子间的间隙,看不出有什么次序性或规律性。这种固溶体叫做无序固溶体。
有序固溶体:当溶质原子按适当比例并按一定顺序和一定方向,围绕着溶剂原子分布时,这种固溶体叫有序固溶体。
共晶转变:合金系中某一定化学成分的合金在一定温度下,同时由液相中结晶出两种不同成分和不同晶体结构的固相的过程称为共晶转变。
脱溶过程:由固溶体中析出另一个固相的过程。也即过饱和固溶体的分解过程,称之为二次结晶。二次结晶析出的相称之为二次相(不易长大且较小)。
组织组成物:由于形成条件不同,合金中各相构成的晶粒将以不同的数量、形状、大小和分布等相组合,并在显微镜下可区分的部分,称为组织组成物。
有序化:当有序固溶体加热至某一临界温度时,将转变为无序固溶体,而在缓慢冷却至这一温度时,又可转变为有序固溶体。这一转变过程称为有序化。发生有序化的临界温度称为固溶体的有序化温度。
固溶强化:在固溶体中,随着溶质浓度的增加,固溶体的强度,硬度提高,而塑性,韧性有所下降,这种现象称为固溶强化。
间隙相:非金属元素与金属元素原子半径的比值小于0.59(Rx/Rm<0.59)形成简单结构的化合物,称为间隙相。
均匀化退火:为了减少金属铸锭、铸件或锻坯化学成分的偏析和组织的不均匀性,将其加热到高温,长时间保持,然后进行缓慢冷却,以达到化学成分和组织均匀化为目的的退火工艺。
(或者指是将钢加热到略低于固相线温度(Ac3或Accm以上150-300℃),长时间保温(10-15h),然后随炉冷却,以使钢的化学成分和组织均匀化。。均匀化退火能耗高,易使晶粒粗大。为细化晶粒,均匀化退火后应进行完全退火或正火。这种工艺主要用于质量要求高的合金钢铸锭、铸件或锻坯。)
成分过冷 :在合金凝固过程中由于溶质再分配引起的过冷。(成分过冷必须具备两个条件:第一是固~液界面前沿溶质的富集而引起成分再分配;第二是固~液界面前方液相的实际温度分布,或温度分布梯度必须达到一定的值。 22在固溶体合金凝固时,在正的温度梯度下,由于固液界面前沿液相中的成分有所差别,导致固液界面前沿的熔体的温度低于实际液相线温度,从而产生的过冷称为成分过冷。这种过冷完全是由于界面前沿液相中的成分差别所引起的。温度梯度增大,成分过冷减小。 温度梯度增大,成分过冷减小。 )
胞状界面:这种凹凸不平的界面称为胞状界面。
胞状组织具有胞状界面的晶粒组织称为胞状组织或胞状晶。(是一种亚结构。。经常在抛光腐蚀后出现)
共晶相图:凡二组元在液态时完全互溶,在固态时形成两种不同的固相,并发生共晶转变的合金系,其相图称为共晶相图。
二元共晶相图:两组元在液态时相互无限互溶,在固态时相互有限互溶,发生共晶转变,形成共晶组织的的二元系相图。
区域提纯 :将金属棒从一端向另一端顺序的进行局部熔化,凝固的过程也随之进行。由于固溶体是有选择的结晶,先结晶的晶体将溶质(杂质)排入熔化部分的液体中。如此当熔化区域走过一遍以后,圆棒的杂质就会富集与另一端,重复几次即可达到目的,这种方法就是区域提纯;
从提纯的效果来看,熔化区域越短则提纯的效果越好;这是由于熔区较长时会将已经推迟到另一端的溶质重新熔化跑到低的一端。通常熔区长度不大于试样长度的1/10;。。。。
缺位固溶体:这种以缺位方式形成的固溶体称为缺位固溶体。
相图:是表示在平衡条件下合金系中合金的状态和温度,成分间关系的图解,又称为平衡图。
表象点:在成分和温度坐标平面上任意一点称为表象点。
相率:是表示在平衡条件下,系统的自由度数,组元数和相数之间的关系,是系统的平衡条件的数学表达式。(f=c-p+1)
自由度数:平衡系统的独立可变因素。
连接线:两个成分点之间的连线称为连接线。
匀晶相图:两组元不但在液态无限互溶,而且在固态也无限互溶的二元合金系所形成的相图,称为匀晶相图。
匀晶转变:在这类合晶中,结晶时都是从液相结晶出单相固溶体,这种结晶过程称为匀晶相图。
平衡结晶:是指合晶在极缓慢冷却条件下进行结晶的过程。
晶内偏析因合金而异,虽然不可避免但可以控制使其变轻。在变形铝合金中,3A21合金铸锭晶内偏析严重。
11111晶内偏析[枝晶偏析]:固溶合金按树枝方式结晶时,由于先结晶的枝干与后结晶的枝干及枝干间的化学成分不同所引起的枝晶内和枝晶间化学成分差异。
枝晶偏析程度取决于合金凝固速度、偏析元素扩散能力和溶质的平衡分配系数。孕育处理和扩散退火可改善枝晶偏析。
合金:是指两种或两种以上的金属,或金属与非金属,经熔炼或烧结,或用其他方法组合而成的具有金属特性的物质。
组织状态:合金各组成相的形态大小,数量和分布状况。
组元(元):组成合金最基本的独立的物质叫做组元。
二元合金:由两个组元组成的合金称为二元合金。
合金系:由给定的组元可以以不同的比例配制成一系列成分不同的合金,这一系列合金就构成一个合金系统简称合金系。
间隙化合物:非金属元素与金属元素原子半径的比值大于0.59(Rx/Rm>0.59)形成具有复杂结构的化合物,称为间隙化合物。
(间隙相与间隙固溶体之间的本质区别:间隙相是化合物,具有与其组元完全不同的晶体结构。间隙固溶体仍保持着溶剂组元的晶体类型。。)
(间隙相具有极高的熔点和硬度,具有明显的金属特性,他们是硬质合金的重要相组成。)
伪共晶:在不平衡的结晶条件下,成分在共晶点附近的合金全部转变成共晶组织,这种非共晶成分的共晶组织称为伪共晶。
离异共晶:有共晶反应的合金中,如果成分离共晶点较远,由于初晶相数量较多,共晶相数量很少,共晶中与初晶相同的那一相会依附初晶长大,另外一个相单独分布于晶界处,使得共晶组织的特征消失,这种两相分离的共晶称为离异共晶。
热裂:在高温下形成的裂纹。其形状特征是:缝隙宽、形状曲折、缝内呈氧化色。形成热裂的影响因素:合金性质,铸型阻力。
冷裂:在较低温度下形成的裂纹。其形状特征是:裂纹细小、呈连续直线状,有时缝内呈轻微氧化色。10.铸铁:
铸铁:主要由铁、碳和硅组成的合金的总称。(含碳量较高的铁,质脆,不能锻压,用来炼钢或铸造器物 )在这些合金中,含碳量超过在共晶温度时能保留在奥氏体固溶体中的量。 ( 含碳量在2%以上的铁碳合金。工业用铸铁一般含碳量为2%~4%。碳在铸铁中多以石墨形态存在,有时也以渗碳体形态存在。除碳外,铸铁中还含有1%~3%的硅,以及锰、磷、硫等元素。)
(对合金而言,其凝固过程同时伴随着溶质再分配,液体的成分始终处于变化当中,液体中的溶质成分的重新分配改变了相应的固液平衡温度,这种关系有合金的平衡相图所规定。利用“成分过冷”判断合金微观的生长过程。 在固相无扩散,液相有限扩散条件下的定向凝固过程中,保持平界面凝固的成分过冷判据为:GL≥-mL(1-k)C0/kDL.其中GL为凝固界面前沿温度梯度,R为凝固速率,mL为液相线斜率,k为溶质平衡分配系数,C0为溶质浓度,DL为溶质扩散系数。)
不平衡结晶:这种偏离平衡结晶条件的结晶,称为不平衡结晶。
固相平均成分线:在不平衡结晶条件下,若把每个温度下的固相平均成分点连接起来,就得到固相平均成分线。
(他与固相线意义不同。。固相线的位置与冷却速度无关,位置固定。。固相平均成分线与冷却速度有关,冷却速度越大则偏离固相线的程度越大。极慢时与固相线重合)
晶内偏析(枝晶偏析):对于在一个晶粒内部或一个枝晶的枝干和枝晶间的不同部位间化学成分不均匀,称为晶内偏析。
1111晶内偏析的形成机理: 在连续或半连续铸造时,由于存在过冷,熔体进行不平衡结晶。当合金结晶范围较宽,溶质原子在熔体中的扩散速度小于晶体生长速度时,
先结晶晶体(即一次晶轴)含高熔点的成分多,后结晶晶体含地熔点的成分较多,结晶后形成从晶粒或枝晶边缘到晶内化学成分的不均匀。
一次固溶体:以纯金属为基的固溶体称为一次固溶体或叫端际固溶体。
二次固溶体:以化合物为基的固溶体称为二次固溶体。
电负性:是指元素的原子获得或吸引电子的相对倾向。
电子浓度:是指合金晶体结构中的价电子总数与电子总数之比。e/a。
有序固溶体(超结构或超点阵):具有短程有序的固溶体,当低于某一温度时,可能使溶质和溶剂原子在整个晶体中都按一定的顺序排列起来,既由短程有序变为长程有序。这样的固溶体叫有序固溶体。
置换固溶体:是指溶质原子位于溶剂晶格的某些结点位置所形成的固溶体,犹如这些结点上的溶剂原子被溶质原子所置换一样,因此称之为置换固溶体。
间隙固溶体:溶质原子不是占据溶剂晶格的正常节点位置,而是填入溶剂原子间的一些间隙中。
有限固溶体:在一定条件下,溶质组元在固溶体中的浓度有一定的限度,超过这个限度就不在溶解。这个限度称为溶解度。这种固溶体就称为有限固溶体。
熔晶相图:某些合金冷却到一定温度时,会从一个已经结晶完毕的固相转变为一个液相和另一个固相,这种转变叫熔晶转变。
合金相图:合金转变是由两个一定成分的液相相互作用,形成一个固相的恒温转变。
共析转变:一定成分的固相,在一定的温度下分解为另外两个一定成分固相的转变过程。
相接触法则:是指在二元相图中,相邻相区的相数相差一个(点接触情况除外)。
相:是指合金中结构相同,成分和性能均一并以界面相互分开的组成部分。
单相合金:由一种固相组成的合金称为单相合金。
多相合金:由几种不同固相组成的合金称为多相合金。
相关文档
最新文档