MOS场效应晶体管2000001
mosfet半导体场效应晶体管mos管

主题:mosfet半导体场效应晶体管mos管一、介绍mosfet半导体场效应晶体管的基本概念mosfet(Metal-Oxide-Semiconductor Field-Effect Transistor),即金属-氧化物-半导体场效应晶体管,是一种广泛应用于集成电路的半导体器件。
它由一段导电性较好的半导体材料形成的栅极和绝缘层构成,其结构与普通的晶体管有明显的不同,能够更好地控制电流。
二、mosfet半导体场效应晶体管的工作原理mosfet的工作原理主要包括局部场效应和接近场效应两种。
在局部场效应下,由于外加电压改变了栅极电场,从而控制了导通道的电荷密度;而在接近场效应下,则是通过改变栅极与半导体之间的电荷耦合来控制导通道。
这些原理使得mosfet在电子器件中大放异彩,成为了当今电子工业中不可或缺的一部分。
三、mosfet半导体场效应晶体管的特点和优势1. 高输入电阻:由于mosfet的栅极与通道之间的绝缘层,其输入电阻远高于普通晶体管,可降低输入功率。
2. 低输入电流:mosfet的控制方式与普通晶体管不同,可以通过改变栅极电场来控制电流,因此输入电流较低。
3. 低噪声:由于mosfet的工作原理,其本身产生的噪声很小,能够更好地保持信号的清晰度。
4. 大功率放大:mosfet在电子器件中功率放大的性能较好,能够适用于不同功率的应用场景。
四、mosfet半导体场效应晶体管的应用范围1. 集成电路:mosfet因为其体积小、功耗低、性能高等特点,被广泛应用于各类集成电路中,如微处理器、存储器等。
2. 功率放大器:mosfet在功率放大器中的应用也非常广泛,其高功率放大、低噪声等特点使得其成为了功率放大器的首选器件。
3. 波形整形电路:由于mosfet对信号的响应速度很快,能够在一定程度上实现波形的整形和放大,因此也被应用在波形整形电路中。
4. 逻辑电路:mosfet的工作原理使得其在逻辑电路中有较好的应用效果,能够实现快速开关和逻辑运算等功能。
MOS场效应晶体管

• 从衬底引出的电极
– 衬底极(Bulk or Substrate)
• 区域划分:
– 有源区 ——源区、漏区和栅区 – 场区 ——有源区以外的区域
沟道长度
L w
二、MOSFET工作原理 (NMOS为例)
1、未施加电压
图1 P 型半导体
2、表面电荷减少(施加正电压)
3、形成耗尽层(继续增大正电压)
耗尽层(高阻区)
4
§3.2 MOSFET的阈值电压
• 半导体的表面状态 • 阈值电压的表达式 • 影响阈值电压的因素
一、半导体的表面状态
VG = ?
二、阈值电压的表达式
• 阈 电压 VT 的定义: – Si/SiO2界面半导体一侧刚达到强反型 时的栅源电压。 • 推 导阈 电压的基本假定 – 长沟、宽沟器件(忽略边缘效应) – 衬底均匀掺杂 – SiO2层中电荷QOX分布在Si/SiO2界面的 SiO2一侧 – 强反型近似成立
G S
四、MOSFET 的输出特性和转移特性
1. 输出 特性
NMOS
增强型 p n+ 电子 >0 D→ S S→ D >0
D B G S
PMOS
增强型 N p+ 空穴 <0 S→ D S→ D <0
D B G S
耗尽型
耗尽型
饱和区 线性区
击穿区
<0
D B G
>0
D B S
IDS ~ V DS( VGS为参量 ) NMOS( 增 强型)
§3.1 MOS晶体管的基本工作原理
• MOS晶体管的结构 • MOS晶体管的工作原理 • MOS晶体管的分类和符号
一、MOSFET的结构
场效应晶体管的主要参数

场效应晶体管的主要参数嘿,朋友们!今天咱们来聊聊场效应晶体管那些重要的参数,这可有意思啦!咱先来说说夹断电压。
这夹断电压就好像是一个门槛,低于它,场效应晶体管这扇门就关得紧紧的,电流想过去那可没门儿!你想想,要是这门槛设得不合适,那整个电路不就乱套啦?再讲讲开启电压。
它就像是一把钥匙,达到这个电压,晶体管这扇神奇的大门才会为电流敞开。
要是开启电压不准确,那不就像钥匙对不上锁孔,怎么都打不开宝藏的大门嘛!漏极饱和电流也不能忽略。
这就好比是一条河的流量,流量大了小了都会影响下游的情况。
电流太大,可能会让电路承受不住;太小呢,又达不到咱们想要的效果,多让人头疼啊!还有直流输入电阻,它就像是电路中的一道关卡,电阻大了,电流通过就困难重重;电阻小了,又好像关卡没了作用,随便啥电流都能畅通无阻,那可不行!栅源极间的电容也很关键哟!这电容就像一个小水库,存多了存少了都会影响水流的速度和稳定性。
电容太大,信号传递就变得慢吞吞;太小呢,又不能很好地储存能量,是不是很麻烦?场效应晶体管的跨导也得重视起来。
跨导就像是电流的向导,它决定了输入电压对输出电流的控制能力。
跨导强,控制起来就得心应手;跨导弱,就像向导迷了路,电流也跟着不知所措。
最后说说最大耗散功率。
这就像是人的体力上限,超过了这个上限,晶体管可就累垮啦,甚至会“罢工”!所以得清楚它的最大耗散功率,可别把它累坏咯!总之,场效应晶体管的这些参数就像一场精彩戏剧里的各个角色,每个都有着至关重要的作用。
只有把它们都了解清楚,才能让场效应晶体管在电路的舞台上大放异彩,为我们的电子世界带来奇妙的变化!。
白底9第9章MOS场效应晶体管

9-2-4 短、窄沟道效应对阈值电压的影响2
窄沟道效应 现象:图1-1-9, W方向,电场的边缘效应使W增加 分析:耗尽层体积增加--使栅压控制的耗尽层电荷增加--使阈值电压增加 公式:1-2-30 其它 场区注入使Vt增加 漏感应势垒降低效应使Vt下降 综合公式:1-2-31
9-3 电流方程
MOS晶体管的瞬态特性
2000-9-20
*
9-1,MOS晶体管工作原理
01
02
03
04
05
2000-9-20
*
9-1-1 MOS晶体管的基本结构 MOS晶体管--- MOSFET,金属-氧化物-半导体场效应晶体管 基本结构:源区,漏区,沟道区,图1-1-2,图1-1-1, 主要结构参数: 沟道长度(1-1-2,栅极图形沟道长度poly,实际沟道长度S-D) 沟道宽度W (1-1-3, W= W1 +W2 +W3) 栅氧化层厚度tox 源漏区结深 Xj (见图1-1-1 )
2000-9-20
*
9-2-2 体效应对阈值电压的影响
Vbs不是0时,产生体效应。
1
例:对 nmos管 Vbs <0,源和漏PN结反偏-- QBm 增加--阈值电压增加
计算:公式1-2-11和1-2-13(下页)
理论结果: Vbs增加,则阈值电压增加 衬底浓度增加,则阈值电压增加
实验结果:图1-2-1
1,材料: 金属类型фMS ,氧化层中的电荷QOX 半导体沟道区掺杂浓度NA 半导体材料参数 ni ; εi 2,氧化层厚度:越厚则阈值电压越大 衬底参杂高,则阈值电压越大 3,温度:温度上升,阈值电压下降 4,和器件的横向尺寸无关 调整考虑: 降低。以便降低芯片耗电。 控制器件类型 平衡对偶器管子(CMOS)
MOS场效应晶体管

在平带条件下对应的总电容称为MOS 结构的平带电容CFB
CFB
tOX
OX0
1 2
OSX
LD
右图表示了P型半 导体MOS结构的理 想C-U曲线
MOS电容-电压曲线
4.1.2 实际MOS 结构及基本特性
几种影响理想MOS结构的特性 1.功函数差的影响
左图为几种主要硅栅极材料 的功函数差随浓度的变化
BU GSEOX (matxO)X 实际MOS场效应晶体管栅-源之间的击穿电压,将比 上式的计算值更低。
4.4.4 输出特性曲线与直流参数
Ⅰ区:非饱和区。 Ⅱ区:饱和区。 Ⅲ区:雪崩区。 Ⅳ区:截止区。
MOS场效应晶体管的完整输出特性曲线
不同USB值下的MOSFET输出特性曲线 a) USB=0V b) USB=1V c) USB=2V d) USB=4V
IDS U G SU TUDS 1 2UD2S
3. 饱和区的伏安特性
IDsat 12UGSUT 2
饱和时沟道电荷和电场分布
线性工作区对应上图的直线段1 非饱和区对应与曲线上的段2 饱和区则对应于曲线上的段3
4.4.2 亚阀区的伏安特性
当栅极电压UGS稍低于阀值电压UT,甚至UGS=0时,在栅 氧化层正电荷作用下,栅下P型半导体的表面很可能处于 弱反型状态,沟道中仍有很小的漏电流通过。
通常将栅源电压低于阀值电压,器件的工作状态处于亚阀 值区,流过沟道的电流成为亚阀值电流。
弱反型时亚阀值电流由下式给出
IDSqW qETS Dn
L1nP0eqTUS
1eqUTDS
Wn
L
qT2q2q0NAU S S
1
2
ni2 NA
q US
MOS场效应晶体管课件

必须指出,上述讨论未考虑到反型层中的电子是哪 里来的。若该MOS电容是一个孤立的电容,这些电子只 能依靠共价键的分解来提供,它是一个慢过程,ms级。
2023/12/22
15
MOS电容—测量
若测量电容的方法是逐点测量法—一种慢进 程,那么将测量到这种凹谷曲线。
① ⑤
②
③
④
图 5.2
区,栅极与源极扩散区都存
在着某些交迭,故客观上存
在着Cgs和Cgd。当然,引出 线之间还有杂散电容,可
以计入Cgs和Cgd。
图 5.3
2023/12/22
18
MOS电容的计算
Cg、Cd的值还与所加的电压有关:
1)若Vgs<VT,沟道未建立,MOS管漏源沟道不通。 MOS电容 C = Cox,但C 对Cd无贡献。
2023/12/22
16
MOS电容凹谷特性测量
若测量电容采用高频方法,譬如,扫频方法, 电压变化很快。共价键就来不及瓦解,反型层就 无法及时形成,于是,电容曲线就回到Cox值。 然而,在大部分场合,MOS电容与n+区接在一 起,有大量的电子来源,反型层可以很快形成, 故不论测量频率多高,电压变化多快,电容曲线 都呈凹谷形。
2023/12/22
6
MOSFET特性曲线
在非饱和区 Ids Vds C a1Vgs b1 线性工作区
在饱和区 Ids a2 Vgs VT 2
(Ids 与 Vds无关) . MOSFET是平方律器件!
Ids
饱和区
线性区
击穿区
0
2023/2 MOSFET电容的组成
的二倍。它不仅抵消了空穴,成为本征半导体,而
且在形成的反型层中,电子浓度已达到原先的空穴 浓度这样的反型层就是强反型层。显然,耗尽层厚 度不再增加,CSi也不再减小。这样,
第4章MOS场效应晶体管

③工作在饱和区时,将栅压与沟道电流关系曲线外推 到零时所对应的栅电压;
4.2.2 阈值电压的相关因素 阈值电压——表面出现强反型时所加的栅源电压。 强反型——表面积累的少子浓度等于甚至超过衬底 多子浓度的状态。
电荷分布 Charge Distribution
N沟强反型时能带图
surface potential
耗尽型器件
当衬底杂质浓度低, 而SiO2层中的表面态电荷密度又较大,在零 栅压时,表面就会形成反型导电沟道,器件处于导通状态;
要使沟道消失,必须施加一定的反向栅压,称为阈值电压(夹断电压); 二者的差别:在于耗尽型管的二氧化硅绝缘层中掺有大量的碱金属正 离子(如Na+或K+),会感应出大量的电子。
(4)饱和区特性——曲线AB段
继续增加UDS比UDsat大得多时, (UDS UDsat )将降落在漏端附近 的夹断区上,夹断区将随UDS的增大而展宽,夹断点将随UDS 的增大而逐渐向源端移动,导电沟道的有效厚度基本不再改 变,栅下面表面被分成反型导电沟道区和夹断区两部分。
沟道中的载流子不断地由源端向漏端漂移,当到达夹断点 时,立即被夹断区的强电场扫入漏区,形成漏极电流。
单极型器件(靠多数载流子导电);
特点
OUTLINE
输入电阻高:可达1010(有资料介绍可达1014) 以上、抗辐射能力强 ;
制作工艺简单、易集成、热稳定性好、功耗小、
体积小、成本低。
4.1 MOS场效应晶体管结构、工作原理和输出特性
MOS管结构
ห้องสมุดไป่ตู้
源极(Source) 栅极Al (Gate) 漏极(Drain)
电路中的电学符号——教材有误
类 N沟 P沟
mos场效应晶体管

mos场效应晶体管
Mos场效应晶体管是一种由晶体管和一组极性电极组成的可控制的电晶体元件,它的构造有着三个基本构元:主要是活塞片,源极和漏极。
Mos场效应晶体管是半导体电子器件中的重要一部分,它由两个栅极桥式构成,由垂直排列的源极,漏极,活塞片和双栅极构成,通过改变活塞片的位移来改变电路参数,以实现对电路的控制,是工业等领域应用十分广泛的半导体元件。
它具有较低的截止电压,低风险,高稳定性,低功耗,高可靠性等优点,适用于低功耗、放大、抑制、调节等电路应用。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Cox tox tox
通常, ox=3.98.85410-4 F/cm2;A 是面积,单位 是cm2;tox是厚度,单位是cm。
2019/1/29
8
MOS电容—SiO2和耗尽层介质电容
2)当Vgs>0时,栅极上的正电荷排斥了Si中的空穴, 在栅极下面的Si表面上,形成了一个耗尽区。
tox
Vds
VgeVds = '. 栅极-沟道间 0 L
2
ox W
tox tox
氧化层介电常数,
1 (Vgs VT Vds )Vds L 2 1 2 Vgs VT Vds Vds L 2
' = 4.5, 0 = 0.88541851.10-11 C.V-1.m-1
2019/1/29
6
MOSFET特性曲线
在非饱和区 I ds Vds C a1Vgs b1 线性工作区
在饱和区
Ids 线性区
I ds a2 Vgs VT
2
(Ids 与 Vds无关) . MOSFET是平方律器件!
饱和区 击穿区
0
2019/1/29
Vds
7
5.1.2 MOSFET电容的组成
µ n = 650 cm2/(V.s) 电子迁移率(nMOS) µ p = 240 cm2/(V.s) 空穴迁移率(pMOS)
2019/1/29
4
MOSFET的伏安特性—方程推导
非饱和情况下,通过MOS管漏源间的电流Ids为:
I ds Q CVge L
2
oxWL
耗尽区中没有可以自由活动的载流子,只有空穴被赶走 后剩下的固定的负电荷。这些束缚电荷是分布在厚度 为Xp 的整个耗尽区内,而栅极上的正电荷则集中在栅 极表面。这说明了 MOS电容器可以看成两个电容器的 串联。 以SiO2为介质的电容器——Cox 以耗尽层为介质的电容器——CSi 1 总电容C为:
2019/1/29
1
MOSFET的三个基本几何参数
poly-Si G D W S
Lmin、 Wmin和 tox 由工艺确定 Lmin: MOS工艺的特征尺寸(feature size) 决定MOSFET的速度和功耗等众多特性 L和W由设计者选定
diffusion L
tox
p+/n +
通常选取L= Lmin,由此,设计者只需选取W
W影响MOSFET的速度,决定电路驱动能力和功耗 2019/1/29
2
p+/n +
栅长: L 栅宽: W 氧化层厚度: tox
n(p)
MOSFET的伏安特性:电容结构
当栅极不加电压或加负电压时,栅极下面的区域保持P 型导电类型,漏和源之间等效于一对背靠背的二极管, 当漏源电极之间加上电压时,除了PN结的漏电流之外, 不会有更多电流形成。 当栅极上的正电压不断升高时,P型区内的空穴被不断 地排斥到衬底方向。当栅极上的电压超过阈值电压 VT, 在栅极下的P型区域内就形成电子分布,建立起反型层, 即N型层,把同为N型的源、漏扩散区连成一体,形成 从漏极到源极的导电沟道。这时,栅极电压所感应的 电荷Q为, Q=CVge
1 1 C C C Si ox
2019/1/29
比原来的Cox要小些。
9
MOS电容—束缚电荷层厚度
耗尽层电容的计算方法同PN结的耗尽层电容的计算方 法相同: 1 1 2 利用泊松公式 qNA Si Si 式中NA是P型衬底中的 掺杂浓度,将上式积分 1 qN A 2 ' qN A dxdx Xp 得耗尽区上的电位差 :
式中Vge是栅极有效控制电压。
2019/1/29
3
电荷在沟道中的渡越时间
非饱和时,在漏源电压Vds作用下,这些电荷Q将 在时间内通过沟道,因此有
MOS的伏安特性
L L2 Eds Vds L
为载流子速度,Eds= Vds/L为漏到源方向电场强度, Vds为漏到源电压。 为载流子迁移率:
Vge是栅级对衬底的有效控制电压 其值为栅级到衬底表面的电压减VT
ox W
1 with Vge Vgs VT Vds 2
2019/1/29
5
MOS的伏安特性—漏极饱和电流
当Vgs-VT=Vds时,满足:
dIds 0 dVds
2 tox L
Ids达到最大值Idsmax, 1 ox W 2 I V V 其值为 dsmax gs T Vgs-VT=Vds, 意 味 着 近 漏 端 的 栅 极 有 效 控 制 电 压 Vge=Vgs-VT-Vds=Vgs-Vds-VT = Vgd-VT =0 感应电荷为 0 ,沟道夹断,电流不会再增大,因而, 这个 Idsmax 就是饱和电流。
5.1 MOS场效应管
5.1.1 MOS管伏安特性的推导
两个PN结: 图 5.1 1)N型漏极与P型衬底; 2)N型源极与P型衬底。 同双极型晶体管中的PN 结 一样, 在结周围由于载流 子的扩散、漂移达到动态平 衡,而产生了耗尽层。 一个电容器结构: 栅极与栅极下面的区域形成一个电容器,是 MOS 管的核 心。
Si
Si
从而得出束缚电荷层厚度
Xp
2 Si q NA
10
2019/1/29
MOS电容 —耗尽层电容
这时,在耗尽层中束缚电荷的总量为,
2 Si Q qNA X pWL qN AWL WL 2 Si qNA q NA
它是耗尽层两侧电位差的函数,因此,耗尽层 电容为,