大学物理 安培环路定理

合集下载

大学物理,稳恒磁场10-4安培环路定理概述.

大学物理,稳恒磁场10-4安培环路定理概述.

0I B
2πR
R
oR r
12
10.4 安培环路定理
第10章 稳恒磁场
例:求无限长载流圆柱面的磁场分布。
L1
r
IR
L2 r
0I B
2π R
oR r

解 0 r R, B d l 0 l r R, l B d l 0I
B0 B 0I
2π r 13

LB dl μ0 I

B d l
L

μ0 ( I1
I1
I1
I2)


μ(0 I1

I

2
I1
I2 I3
I1
L
I1
思考:

1) B 是否与回路 L 外的电流有关?


2)若 B d l 0 ,是否回路 L 上各处 B 0 ? L
是否回路 L 内无电流穿过?
2πR
当 2R d 时,
螺绕环内可视为均匀场。
令:n N
2R
B μ0nI
第10章 稳恒磁场
d
R
10
10.4 安培环路定理
第10章 稳恒磁场
例:无限长载流圆柱体的磁场。
I
解:1)对称性分析
2)选取回路

r R :
Bdl
l

μ0 I
RR
L
r
B
2 π rB 0I,
B μ0 I 2πr
电流共同产生的。
3)环路定理适用于闭合稳恒电流的磁场。而有限电 流(如一段不闭合的载流导线)不适用环路定理。
4)安培环路定理说明磁场性质 —— 磁场是非保守场,是涡旋场。

《大学物理》安培环路定理

《大学物理》安培环路定理

根据安培环路定理得
B 2r
0
r2 R2
I
B
0I 2R
B
0 2
I R2
r
r
O
R
(r<R) 载流圆柱体的磁场分布曲线
ll.7 安培环路定理
例4 载流螺绕环的磁场分布。 所谓螺绕环,就是将细导线N匝密绕在内径为R1,
外径为R2的圆环上(如图所示)。接通稳恒电流I, 求环内外的磁场分布。
解 在圆环轴线所在平面内,
b B dl d B dl 0
d
c B dl 0
ll.7 安培环路定理
b
LB dl a B dl B l
穿过矩形环路的电流强度: Ii I n l
安培环路定理:
B dl L
o Ii
B l 0I nl
B 0nI
ll.7 安培环路定理
例2 计算无限长载流圆柱体的磁场。设圆柱体 导线的半径为R,轴向电流I均匀地通过导线横截面。
取半径为r的圆周L为环路,
方向如图。
(1)当 r>R2 (2) 当 r<R1 (3)当R1<r<R2
B=0 B=0
R2 R1 r
环路 L 磁感应线
ll.7 安培环路定理
B dl B dl B2r 0 NI
L
L
B 0 NI 2r
0
B
0 NI
2r
0
r R1 R1 r R2
r R2
i 1
ll.7 安培环路定理
2.环路L不围绕电流I
B dl B' dl ' B cosdl B' cos 'dl '
0I 2r
rd

大学物理安培环路定理

大学物理安培环路定理

10-4 安培环路定理静电场的一个重要特征是电场强度E 沿任意闭合路径的积分等于零,即0d =⋅⎰l E l,那么,磁场中的磁感强度B 沿任意闭合路径的积分⎰⋅ld lB 等于多少呢?可以证明:在真空的稳恒磁场中,磁感强度B 沿任一闭合路径的积分(即B 的环流)的值,等于0μ乘以该闭合路径所包围的各电流的代数和,即∑⎰==⋅ni lI10 d il B μ (10-8)安培环路定理与静电场环路定理的比较 讨论:安培环路定理的证明如图(a)所示,有一通有电流I 的长直载流导线垂直于屏幕平面,且电流流向垂直屏幕平面向内. 在屏幕平面上取两个闭合路径1C 和2C ,其中闭合路径1C 内包围的电流为I ,而在闭合路径2C 内没有电流. 从图(b )可以看出,由于磁感强度B 的方向总是沿着环绕直导线的圆形回路的切线方向,所以对闭合路径1C 或2C 上任意一线元l d ,磁感强度B 与l d 的点积为ϕαd cos d d Br l B ==⋅l B式中r 为载流导线至线元l d 的距离. 由第10-2节二中例1的式(2),上式可写成ϕμϕμd π2d π2d 00Ir rI==⋅l B (1)对于图(a )的闭合回路1C ,ϕ将由0增至π2. 于是,磁感强度B 沿闭合路径1C 的环流为这就是真空中磁场的环路定理,也称安培环路定理。

它是电流与磁场之间的基本规律之一。

在式(10-8)中,若电流流向与积分回路呈右螺旋关系,电流取正值;反之则取负值。

⎰⎰===⋅1000π2π2d π2d CIIIμμϕμl B (2)可见,真空中磁感强度B 沿闭合路径的环流等于闭合路径所包围的电流乘以0μ,而与闭合路径的形状无关.然而,对于图(a )中的闭合路径2C ,将得到不同的结果,当我们从闭合路径2C 上某一点出发,绕行一周后,角ϕ的净增量为零,即⎰=0d ϕ于是,由式(1)可得⎰=⋅20d c l B (3)比较式(2)和式(3)可以看出,它们是有差别的. 这是由于闭合路径1C 包围了电流,而闭合路径2C 却未包围电流. 于是我们可以得到普遍的安培环路定理:沿任意闭合路径的磁感强度B 的环流为⎰∑=⋅20d c I μl B式中∑I 是该闭合路径所包围电流的代数和 人物简介:安培简介安培(Andre Marie Ampere,1775-1855),法国物理学家,对数学和化学也有贡献,他在电磁理论的建立和发展方面建树颇丰。

大学物理10.4安培环路定理及其应用Xiao

大学物理10.4安培环路定理及其应用Xiao

实验设备与材料
01
02
磁场测量仪
用于测量磁场强度和方向。
导线
用于产生电流,形成磁场。
03
电源
为导线提供电流。
04
磁力计
用于测量磁力大小。
实验步骤与操作
步骤2
连接电源,使导线通电,产生 电流。
步骤4
使用磁力计测量导线受到的磁 力大小。
步骤1
将导线绕制成一定形状,如圆 形或矩形,并固定在实验台上。
步骤3
02
安培环路定理的数学表达式为: ∮B·dl = μ₀I,其中B表示磁场强度, dl表示微小线段,I表示穿过曲线的 电流,μ₀表示真空中的磁导率。
安培环路定理的推导过程
安培环路定理的推导基于电磁场的基 本理论,通过应用高斯定理和斯托克 斯定理,结合电流连续性和电荷守恒 定律,逐步推导出安培环路定理。
大学物理10.4安培环路定理及其 应用
目 录
• 安培环路定理的概述 • 安培环路定理的应用场景 • 安培环路定理在实践中的应用 • 安培环路定理的实验验证 • 安培环路定理的扩展与思考
01 安培环路定理的概述
安培环路定理的定义
01
安培环路定理是描述磁场与电流 之间关系的物理定理,它指出磁 场对电流的作用力与电流分布及 路径有关。
03
电磁场仿真
安培环路定理是电磁场仿真的基础之一,通过仿真软件实现安培环路定
理的算法,可以模拟电机的电磁场行为,预测电机的性能,并为实际电
机设计提供理论依据。
电磁场仿真软件的安培环路定理实现
有限元法(FEM)
有限元法是一种常用的电磁场仿真方法,通过将连续的电磁场离散化为有限个小的单元,并应用安培环路定理进行求 解。这种方法可以处理复杂的几何形状和边界条件,得到高精度的仿真结果。

大学物理-磁场 安培环路定律

大学物理-磁场 安培环路定律

Φ BS cos BS
s
一般情况 Φ s BdS
dS2
B
S 2
dS1
1
B1
dΦ1 B1 dS1 0
dΦ2 B2 dS2 0
B2
SB cosdS 0
磁场高斯定理
S B d S 0
物理意义:通过任意闭合曲面的磁通
量必等于零(故磁场是无源的).
B B1 B2 B3
Bdl
l
0(I2 I3)
推广:
➢ 安培环路定理
n
B dl 0 Ii
i 1
n
安培环路定理
B dl 0 Ii
i 1
在真空的恒定磁场中,磁感强度 B沿任
一闭合路径的积分的值,等于 0乘以该闭合
路径所穿过的各电流的代数和.
注意
电流 I 正负的规定: I 与 L 成右螺旋
而与环路外电流无关。
3. B为环路上一点的磁感应强度,它与环路内外电流
都有关。

B
dl
0
并不一定说明环路上各点的 B 都为 0。
若 B dl 0 环路内并不一定无电流。
4.环路定理只适用于闭合电流或无限电流,
应用 安培环路定理的应用举例
例1
求载流螺绕环内的磁场
解 (1)对称性分析:环内B 线为同心
B dl B 2r 0 I
B 0 I 1 2r r
I
r LR
r L
分布曲线
B
0 I 2R B r
B 1 r
o
R
r
例4 无限大均匀带电(线密度为i)平面的磁场
解 如图,作安培环路
abcda,应用安培环路 定理
b
l B d l 2a B dl

大学物理 5.4 磁场的安培环路定理

大学物理  5.4  磁场的安培环路定理
r



l
B
例2 载流长直螺线管磁场分布
如图,均匀密绕无限长直
螺线管通有电流为I,单位
长度匝数为n)
I
解:对称性分析—— 管内垂轴

b
Ba
平面上任意一点与 B轴平行
cd b c d a
(3)磁场是有旋场 —— 电流是磁场涡旋的轴心
B dl —— 不代表磁场力的功,仅是磁场与电流的关系
L
(4)安培环路定理只适用于闭合的载流导线,对于任 意设想的一段载流导线不成立
2. 安培环路定理的应用
在静电场中,当带电体具有一定对称性时 可以利用高斯定理很方便的计算其电场分布。 在恒定磁场中,如果电流分布具有某种对称性, 也可以利用安培环路定理计算电流磁场的分布。
由 于 这 时 I 内 =0 , 所 以 有 B=0 (在螺线环外)
l2



l1


可见,螺线环的磁场集中在
环内,环外无磁场。
对载流长直密绕螺线管,若线圈中通有电流强度为I的电
流,沿管长方向单位长度上的匝数为n,则由安培环路定理容
易求得:管内: B onI
说明
(1)积分回路绕行方向与电流方向呈右螺旋
关系
满足右螺旋关系时 Ii 0 反之 Ii 0
I
1
I
I
3
2l
I I
l
l B dl o ( I1 I2 ) l B dl o ( 2I I) oI
(2)公式中的 B 是环路上的磁感应强度,使
空间所有电流共同激发的。
L
B
LB
dr

大学物理安培环路定理

大学物理安培环路定理

I2
I3
l
B B1 B2 B3
Bdl
l
0(I2 I3)
推广:
➢ 安培环路定理
n
B dl 0 Ii
i 1
第七章 恒定磁场
4
安培环路定理
n
B dl 0 Ii
i 1
在真空的恒定磁场中,磁感强度
B
沿任
一闭合路径的积分的值,等于 0乘以该闭合
路径所穿过的各电流的代数和.
注意
电流 I 正负的规定: I 与 L 成右螺旋
7.6 安培环路定理
一 安培环路定理
B 0I
2π R
l
B
dl
0

I dl R
B dl
l
0I
I
B
dl
oR
l
设闭合回路 l 为圆形回路, l 与
I 成右螺旋
第七章 恒定磁场
1
若回路绕向为逆时针
B
d
l
0
I
l


0 d 0I
对任意形状的回路
B dl
0I
rd
0I
d
2πr

O•
R•'
O
d
第七章 恒定磁场
15
解:用“中和法”.电流可认为是由半径
为的 R 无限长圆柱电流 I1和一个同电流 密度的反方向的半径为 R'的无限长圆柱 电流 I2组成.
J
I1
(R2
R'2 )
I1 JR2 (设向里) I2 JR'2
它们在空腔内p点产生的磁感 应强度分别为:
y P
B1 0 Jr1 / 2

大学物理——11.4安培环路定理

大学物理——11.4安培环路定理

R1 ≈ R2 = R
r≈R
dHale Waihona Puke N B = µ0 I = µ 0 nI 2π R
注意:密绕细螺线管内部为匀强磁场。 注意:密绕细螺线管内部为匀强磁场。 匀强磁场
R
思考:钜形横截面的圆环形均匀密绕螺绕环? 思考:钜形横截面的圆环形均匀密绕螺绕环?
矩形截面
无限长载流直螺线管内的磁场. 例11.8 无限长载流直螺线管内的磁场
+++ + + + ++++++ N O M
2) 选回路 L
L
P
B = µ 0 nI
如图所示, 例11.9 如图所示,一无限大导体薄平板垂直于纸 面放置,其上有方向指向读者的电流, 面放置,其上有方向指向读者的电流,面电流密度 即通过与电流方向垂直的单位长度的电流) (即通过与电流方向垂直的单位长度的电流)到处均 求其磁场分布. 匀,大小为 I ,求其磁场分布.
解:
ab = cd = l
a b c d

L
v v b v v c v v d v v av v B ⋅ dl = ∫ B ⋅ dl + ∫ B ⋅ dl + ∫ B ⋅ dl + ∫ B ⋅ dl = µ0lI

2 Bl = µ0lI
1 B = µ0I 2
以上结果说明: 以上结果说明:在无限大均匀平面电流两侧的磁场 结果说明 是匀强磁场,且大小相等、方向相反. 是匀强磁场,且大小相等、方向相反.其磁感应线在 无限远处闭合,与电流亦构成右螺旋关系. 无限远处闭合,与电流亦构成右螺旋关系.
L 包围的电流指穿过以 L 为边界的任意曲面的电流。 包围的电流指穿过以 为边界的任意曲面的电流 的电流。 S3 S2 S1 L

大学物理10.4 安培环路定理及其应用Xiao.ppt

大学物理10.4 安培环路定理及其应用Xiao.ppt

例筒.形有导两体个,半在径它分们别之为间充R1以和相R对2 的磁“导无率限为长r”同的轴磁圆介
质,圆筒外为真空。当两圆筒通有相反方向的电流 I
时,试 求(1)磁介质中任意点 P
的磁感应强度的大小;(2)圆柱体
外面一点 Q 的磁感应强度.
解 对称性分析


R1 r R2
H dl I
(3)安培环路定理说明磁场性质—磁场是有旋场 (非保
守场)。

比较:静电场
LE dl 0
(无旋场,保守场)

(4) 安培环路定理提供了一种计算 B 的方法。

1)B 是否与回路 L
外电流有关?

是, 但回路外电流对环流 LB d l 的贡献为零。
2)若 B d l 0 ,是否回路 L 上各处 B 0?
定则时,电流 I 取正;反 之取负。
(2) 空间中任意一点的B 都是由环路内外所有电流激
发的,而 B dl 仅与穿过环路的电流有关。 L 环流由环路内电流决定

B dl 0 Ii L内
由环路内外电流产生 环路所包围的电流
南京理工大学应用物理系
10.4 安培环路定理及其应用
说明: (1)管内磁场是均匀的。
作安培环路MNOPM
M
N
P ++
B1
+B+2+
+
L
++
+
O ++
+
B



B dl L

MN B1 dl
B dl
NO

大学物理课件复习资料安培环路定理

大学物理课件复习资料安培环路定理

判断下列图中结果
I1 I2 L 图1
I3
I I L 图2
I
r r 1) ∫ B⋅ dl = µo (I1 − I2 ) ) L r r 2) ∫ B⋅ dl = µo (− 2I + I ) = −µo I ) L r r 3) B⋅ dl = µo ( − 2I ) = −2µo I ) ∫
L
L 图3
l
I2 I3
r
r dl
如果环路内还有其它无限长直线电流 根据叠加原理, 根据叠加原理,可知
r r ∫ B ⋅ dl =μ0 ( I1 + I 2 − I3 )
l
3.回路不环绕电流 3.回路不环绕电流
r r ∫ B4 ⋅ dl
l
=

l
µ0 I 4 cos θ 4 dl4 2π r4
I1
r
I4
=

l
µ0 I 4 r4 dϕ 4 2π r4
3)环路定理适用于闭合稳恒电流的磁场。而有限电 )环路定理适用于闭合稳恒电流的磁场。 适用于闭合稳恒电流的磁场 如一段不闭合的载流导线)不适用环路定理。 流(如一段不闭合的载流导线)不适用环路定理。 4)安培环路定理说明磁场性质 —— ) 磁场是非保守场,是涡旋场。 磁场是非保守场,是涡旋场。 5)闭合回路包围电流的判断: )闭合回路包围电流的判断: 以闭合回路为边界任意做一曲面, 以闭合回路为边界任意做一曲面,电流穿过 曲面就算包围。 曲面就算包围。
L
r
v B
v dB
I
.
dI
v B
v B 的方向与 I 成右螺旋 µ 0 Ir B= 2 0 < r < R, 2π R µ0I r > R, B= 2π r

安培环路定理

安培环路定理

r
l
(4)
dl

l
B dl B 2 π r
I
i
i
I
(5)
B 2 π r 0 I
0 I B 2πr
太原理工大学大学物理
例1 求无限长载流圆柱面的磁场 解:(1)对称性分析
将圆柱面分为无限多窄条,每 个窄条可看作电流dI的无限长直 导线 p点的磁场的大小与r有关, 方向与r垂直。 (2)选合适的环路:在垂直于 轴线的平面内,选择半径r的圆形 L1 环路L,环路正方向如图。 太原理工大学大学物理
2π R
B
o R
r
B—r曲线如图。 太原理工大学大学物理
3.载流长直密绕螺线管内的磁场 已知:螺线管载流I,单位长度匝数n 求:管内B大小 a b 解: (1)分析磁场 d ‘ b ‘ ++++++++++++ L c 长直螺线管内 B ∥轴线, d 螺线管外 B 0 。 (2)过场点作一矩形回路L,且L与I成右手螺旋关系。 (3)计算
同理:当
rR

I
r
L
R
I I 2 2 Ii 2 π r 2 r πR R i
0 r 2 B2πr 2 I R
0 Ir 2 π R2 B 0 I 2 π r
0 Ir B 2π R 2
故均匀载流长圆柱体的磁场
(r R) (r R)
0 I
0 NI B 2πr
(r R1 , r R2 ) 0 故载流密绕螺绕环磁场 B 0 NI ( R1 r R2 ) 2πr 讨论:
1)若R2- R1=d<<r,环内各点 B近似相等,则n=N/2πr

安培环路定理(大学物理)

安培环路定理(大学物理)
B
lI
2π r
哈尔滨工程大学 姜海丽
安培环路定理
第1章 稳恒磁场
练习题 1、如图,流出纸面的电流为2I,流进纸面的电流为I, 则下述各式中哪一个是正确的? (B) H d l I (A) H d l 2 I 答案:D L L
稳恒磁场安培环路定理16安培环路定理设闭合回路为圆形回路载流长直导线的磁感强度为哈尔滨工程大学稳恒磁场安培环路定理若回路绕向化为逆时针时则对任意形状的回路稳恒磁场安培环路定理稳恒磁场安培环路定理多电流情况以上结果对任意形状的闭合电流伸向无限远的电流均成立
安培环路定理
第1章 稳恒磁场
1.6 安培环路定理 载流长直导线的磁感强度为
c a I c I⊙

I1 L
I1 I2
0 ( I 2 2I1 ) 4、如图所示,磁感强度沿闭合曲线L的环流________.
哈尔滨工程大学 姜海丽
安培环路定理
第1章 稳恒磁场
5、半径为R的圆柱体上载有电流I,电流在其横截面上均 匀分布,一回路L通过圆柱内部将圆柱体横截面分为两部 dl 分,其面积大小分别为S1、S2如图所示,则 H _______.
安培环路定理
哈尔滨工程大学 姜海丽

安培环路定理
第1章 稳恒磁场
安培环路定理

n B dl 0 Ii i 1
即在真空的稳恒磁场中,磁感应强度 B 沿任 一闭合路径的积分的值,等于 0 乘以该闭合路径 所包围的各电流的代数和.
注意 电流 I 正负的规定 :I 与 L 成右螺旋时, I 为正;反之为负.
PM
B MN 0 n MN I
B 0 nI

大学物理 安培环路定理

大学物理 安培环路定理

2
例:如下图所示,边长为l的正三角形线圈中通有电流I, 则此线圈在A点(如图)产生的磁感强度为: ( B )
0 I A、 4 3 l
0 I B、2 3 l
D、0
A I
0 I C、 2 l
2.圆弧形电流在圆心产生的磁场 已知: R、I,圆心角为θ,求在圆心O点的磁感 应强度.
解:任取电流元 Idl
19

L
B d l 0 I
7
如果闭合回路不包围载流导线
B dl B dl B dl
L L1 L2
Br d Br d
L1 L2
I
A

0 I 0 I
d d 2π
L1 L2

B

L
B d l B d l B d l 2 rB
L L
2 rB 0 I
0 I B (r R) 2 r
2)圆柱体内任一点Q
I B d l 2 rB 0 2 r 2 L R 0 Ir B (r R) 2 2 R
1
0 Idl r 毕奥—萨伐尔定律 dB 3 4π r 0 Idl r 磁感强度叠加原理: B dB r3 L 4π 载流直导线
PdB
a O
B=
2
0 I
4π a
cos 1 cos 2
若L a
1
r x
x
dx
0 I B= 2 a
c d a b 解: B d l B d l B d l B d l B d l L a b c d b b B d l =B dl Bab
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
为可积的。 B dl
l
3)选择积分路径的取向,根据取向确定穿过回路内
电流的正负。
14
二、安培环路定理的应用
当场源分布具有高度对称性时,利用安培环 路定理计算磁感应强度。 1. 无限长载流圆柱体 已知:I、R 电流沿轴向,在截面上均匀分布
I
R
分析对称性
电流分布 轴对称 磁场分布
15
l
0 I
R
l
设闭合回路 l为 圆形回路,l与I成 右手螺旋。
5
闭合回路形状任意时:
0 I B 2r B dl L B d l cos
L
I
L
r
0I rd L 2 r 0I
P
B r
I L
磁场的环流与环路中所包 围的电流有关 。
d r
B 的方向判断如下:
对称性分析结论:
磁场沿回路切线,各点大小相等
r
dB
dB
P
dI o dI
作积分环路并计算环流
如图
rR
0
I
B dl Bdl B 2 r

利用安培环路定理求 B
R
B dl
0 I
B
r
2 rB 0 I 0 I B 2 r
r
dl
B
L
B1
1
dl1
7
L
• 推广到一般情况 I1 ~ I k —— 在环路 L 中
In
I2 I1
I k 1 ~ I n —— 在环路 L 外
则磁场环流为:
Ii
P
Ik
L
I k 1
B dl
L
L
Bi d l
L
环路上各点 的磁场为所 有电流的贡 献
17
作积分环路并计算环流
如图
rR
I
I
B dl Bdl 2 rB

利用安培环路定理求 B
R
B dl I 0
I 2 0 r 2 R 0 Ir B 2 2 R
r
B
0
18
结 论
无限长载流圆柱导线
已知:I、R
0 Ir (r R ) 2 2 R B 0 I (r R ) 2 r B 0 I 2 R
(1) r R2 , B 0
R2
I
R1
I
0 I (2) R1 r R2 , B 2 r
(3) r R1 , B 0
r
21
电场、磁场中典型结论的比较
电荷均匀分布 长直线 长 直 圆 柱 面
长 直 圆 柱 体 内 外
电流均匀分布
E 2 0 r
E0
0 I B 2r
I B 0 2r
0 B 0 I 2r rR rR
B
r B R B r r
“无限长”均匀载流圆 柱体(半径R)
0 Ir 2R 2 B 0 I 2r
0 nI B 0 0 NI B 2r 0 内 外
rR rR
R
“无限长”直螺线管 环形螺线管
内( r为 到 环 心 的 距 离 ) 外

dl
6
• 若环路方向反向,情况如何? L 0 I I LB dl L 2 r rd 0 I r ' d • 若环路中不包围电流,情况如何? 0 I 0 I B1 B2 I 2 r1 2 r2 对一对线元来说 B1 d l B 2 d l B1d l cos 1 B 2 d l cos 2 0 Ir1d 0 Ir2 d B2 0 2 r1 2 r2 I r2 2 环路不包围电流,则磁场 dl2 d 环流为零 。 r 1
方向
a
b
B
d c
计算环流
B dl
b
a
B dl B0 dl B 0 dl B 0 dl
b c d
c
d
a
B ab
利用安培环路定理求 B
B dl
nabI
a
I
B b d c
B0


E 2 0 r r E 2 0 R 2 E 2 0 r
0 I B 2r 0 Ir B 2R 2 0 I B 2r
2. 长直载流螺线管 已知:I、n
分析对称性
管内磁力线平行于管轴
管外磁场为零
右 手 螺 旋
作积分回路如图
单 位 长 度 导 线 匝 数
4
9-4 安培环路定理 静电场: E d l 0 静电场是保守场 磁 场: B dl ?
一、磁场的安培环路定理 以无限长载流直导线为例
I
o
B
dl
B 2π R 0 I l B dl 2π Rdl B dl 0 I
上次课内容回顾
B-S定律 直导线电流的磁场 圆环电流轴线上的磁场 螺线管中轴线附近的磁场
1
9-3 一、磁感线
磁通量
磁场的高斯定理
仿照电场线引入磁感应线(磁力线)来形象地描 绘磁场的分布。
磁感应线:一些有向曲线,线上任一点的切向代表 该点的磁感应强度 B 的方向,而通过垂直于磁感强 度方向的单位面积上的磁感线数等于该点 B 的大小。 磁力线的特点:1、无头无尾的闭合曲线;
0 R
I
B
B
r
19
讨 论 长直载流圆柱面 已知:I、R
B dl Bdl 2 rB
0 ( r R ) 0 I (r R )
I
R
(r R) 0 B 0 I (r R) 2 r
0 I 2 R
O
B
R
r
20
练 习
同轴的两筒状导线通有等值反向的电流 I , 求 B 的分布。
L 的线积分等于路径 L 包围的电流强度的代数和的
μ0
倍。
注意
电流 I 正负的规定: I 与 L 成右手螺 旋时,I 为正;反之为负。
9
B d l μ I 0 i内
L
I>0
I L
I
I L2 I I2 I1 L1 L3
L
I<0

L1
B dl μ 0 ( 2 I 2 I 1 ) B dl 2 μ 0 I
B
0 IR 2
2( R 2 x 2 )3 / 2
圆弧形电流圆心处(半径R, 弧形电流所张圆心角)
直螺线管轴线上(单位长度匝 数n,点与起、终端管壁连线 与轴夹角1、2)
0 I B 4 R
1 B 0 nI (cos 2 cos 1 ) 2
“无限长”直线电流 “无限长”均匀载流圆 柱面(半径R)
B dS B cos dS
3
三、磁场的高斯定理
dS 2
B
2 S
dS1
1
B2
B1
dΦ 1B 1 dS1 0 dΦ2 B2 dS2 0
B cos dS 0
S
磁场高斯定理
S B d S 0
物理意义:通过任意闭合曲面的磁通 量必等于零(磁场是无源的,是涡旋场)。
11
B dl
由环 环路 路上 内的 外磁 电感 流应 产强 生度 由 环 路 内 电 流 决 定
0 I i 0 ( I 2 I 3 )
环 路 所 包 围 的 电 流
I4
l
I1
I2
I3
12
静电场
比较
?


0 i
E dl
0
B dl I
i
电场有保守性,它是 保守场,或有势场
0 nI (内) B 0 (外)
ห้องสมุดไป่ตู้
磁感强度基本公式小结
一段直线电流(所在点离直线 电流(或延长线)r,和起、终 点连线与电流夹角 1 , 2 圆形电流轴线上(半径R, 点到圆心距离x)
0 I (cos1 cos 2 ) B 4r 上 0 (点 在 直 线 电 流 延 长 线 )

L2
B dl μ 0 ( I I ) 0
L3
10
B dl
L
0 (I1 I 2 ) ( 0 I1 I 2)
讨论:
I1
I1
L
I2 I 3
B 是否与回路 L (1)
I1
外电流有关?
(2)若 B d l 0 ,是否回路 L 上各处 L B 0 ?是否回路 L 内无电流穿过?
磁场没有保守性,它是 非保守场,或无势场
E ds
s
1
0
q
i
B ds 0
磁力线闭合、 无自由磁荷 磁场是无源场
13
电力线起于正电荷、 止于负电荷。 静电场是有源场
安培环路定理的意义 磁场是有旋场 —— 电流是磁场涡旋的轴心 当磁场分布具有某种对称性时,可以用安培环路 定理求磁感强度。 用安培定律求解磁感应强度的步骤: 1)根据电流分布确定磁场分布的对称性。 2)选取合适的闭合路径,此路径经过场点,并使积分
2、 任何两条磁力线不相交;
3、 磁力线与电流套链。
2
二、磁通量——穿过磁场中任一曲面的磁感线的条数
d m B dS
S
S
B


n
B
m BS
相关文档
最新文档