2020年重庆市普通高校“专升本”统一选拔考试大纲《高等数学》

合集下载

2020高等数学期末考试大纲

2020高等数学期末考试大纲

高等数学(理学、工学类专业Ⅱ)考试大纲Ⅰ考试性质《高等数学》是高等院校理工科的一门专业基础课。

是机制、物理、电子、自动化、交通运输、计算机、通讯工程、物管、物联、化学、应用化学、环境工程、无机材料、食品等许多理工科专业的重要课程。

通过教学使学生熟练掌握高等数学的基本理论和基本方法,培养学生具有一定的分析问题和解决问题的能力以及计算能力,运用微积分学知识解决实际问题的能力,为后续课程的学习打下好的基础。

因此,考试应有较高信度、效度、必要的区分度和适当的难度。

第六章微分方程1、考试内容:微分方程的基本概念,一阶微分方程;二阶微分方程。

2、考试要求:(1)掌握微分方程,微分方程的阶、解、特解,通解的概念。

(2)掌握一阶可分离变量的微分方程,齐次微分方程和线性微分方程的解法;(3)掌握可降阶的特殊二阶微分方程的解法;掌握二阶常系数齐次解法,了解非齐次线性微分方程的解法。

第七章向量与空间解析几何1、考试内容:空间直角坐标;向量及其运算;空间的平面和直线方程,基本二次曲面。

2、考试要求:(1)掌握空间直角坐标系,向量及其运算。

(2)掌握空间平面方程、直线方程,点到平面、点到直线的距离。

(3)平面、直线之间的夹角,相互关系。

(4)掌握几个常见的二次曲面。

第八章多元函数的微分学1、考试内容:多元函数基本概念;二元函数的极限和连续;偏导数、全微分;多元复合函数与隐函数的导数;多元函数的极值、最值问题。

1、考试要求:(1)掌握多元函数,二元函数的极限、连续、偏导数、全微分概念;(2)能熟练计算偏导数,复合函数求导和隐函数求导;(3)掌握多元函数极值的求法,二元函数求最值问题。

第九章微分法的应用及方向导数1、考试内容:空间曲线的切线与法平面;空间曲面的切平面与发线;方向导数与梯度。

2、考试要求:(1)掌握空间曲线的切线与法平面的求法;(2)掌握空间曲面的切平面与法线的求法;(3)方向导数与梯度的求法。

第十章多元函数的积分1、考试内容:二重、三重积分的概念及计算,二重积的应用。

高等数学重庆专升本教材

高等数学重庆专升本教材

高等数学重庆专升本教材高等数学,作为一门重要的学科,是大多数高校的理工科专业中的必修课程。

对于重庆地区的专升本考生而言,高等数学更是他们考试中的一大难点。

因此,为了帮助广大专升本考生更好地学习高等数学,本文将详细介绍高等数学重庆专升本教材。

1. 教材概述《高等数学》重庆专升本教材是根据重庆地区专升本考试大纲编写的教材。

该教材内容全面、权威,符合教学大纲要求,突出了应试特点。

教材包含了数学分析、线性代数、概率统计等重要内容,是考生备战专升本考试的必备教材。

2. 教材特点(1)内容全面:《高等数学》重庆专升本教材以全面覆盖考试大纲为目标,包含了专升本考试中的核心知识点。

无论是数学分析还是线性代数,教材都对每个知识点进行了详细的讲解,保证了考生能够系统地学习和掌握相关知识。

(2)权威性强:教材编写人员来自重庆地区的高校数学教研部门,具有丰富的教学经验和深厚的学科素养。

他们将自身的专业知识和教学经验融入到教材中,保证了教材的权威性和可靠性。

(3)突出应试特点:作为专升本考试的参考教材,该教材注重对考试要点和难点的突出,力求帮助考生更好地应对考试。

教材中设置了大量例题和习题,并提供了详细的解题思路和方法,有助于考生理解和掌握各类题型的解题技巧。

3. 使用建议(1)全面阅读:考生可以根据自己的学习进度和时间安排,将教材分为不同的模块进行阅读。

在阅读过程中,要注意理解教材中的概念和原理,尤其是掌握必备的定理和公式。

(2)扎实练习:高等数学是一门需要进行大量练习的学科。

考生在学习教材的同时,要配合大量的习题练习,以加深对知识点的理解和运用能力。

可以选择教材附带的习题集进行练习,也可以参考其他辅助习题。

(3)定期总结:定期进行知识总结是巩固学习效果的有效方法。

考生可以每周或每月进行一次复习,对已学过的知识进行总结和归纳,查漏补缺,巩固基础。

4. 注意事项(1)掌握基础知识:高等数学是一门渐进式的学科,后续内容往往建立在前面的基础之上。

2020年普通高等学校招生全国统一数学考试大纲

2020年普通高等学校招生全国统一数学考试大纲

2020年普通高等学校招生全国统一考试大纲湖北卷数学学科考试说明Ⅰ.考试性质根据教育部考试中心《2020普通高等学校招生全国统一考试大纲(课程标准实验版)》,结合我省高中基础教育的实际情况,制定了《2020年普通高等学校招生全国统一考试湖北卷考试说明》的数学科部分.Ⅰ、考试性质普通高等学校招生全国统一考试是合格的高中毕业和具有同等学力的考生参加的选拔性考试。

高等学校根据考生成绩,按已确定的招生计划,德、智、体全面衡量,择优录取。

高考应具有较高的信度、效度,必要的区分度和适当的难度.Ⅱ、命题指导思想1.普通高等学校招生全国统一考试是为高校招生而进行的选拔性考试.命题遵循“有助于高校选拔人才,有助于中学实施素质教育,有助于推动高中数学新课程改革”的原则,确保安全、公平、公正、科学、规范.2.命题注重考查考生的数学基础知识、基本技能和数学思想方法,考查考生对数学本质的理解水平,体现课程目标(知识与技能,过程与方法,情感态度与价值观)的要求.3.命题遵循《普通高中数学课程标准(实验)》和《2020普通高等学校招生全国统一考试大纲(课程标准实验版)》,试题在源于教材的同时又具有一定的创新性、探究性和开放性,既考查考生的共同基础,又考查考生的学习潜能,以满足选拔不同层次考生的需求.Ⅲ、考核目标与要求一、知识要求对知识的要求由低到高分为了解、理解、掌握三个层次. 分别用A,B,C表示.(1)了解(A)要求对所列知识的含义有初步的、感性的认识,知道这一知识内容是什么,按照一定的程序和步骤照样模仿,并能解决相关的简单问题.(2)理解(B)要求对所列知识内容有较深刻的理性认识,知道知识的逻辑关系,能够对所列知识作正确的描述说明并用数学语言表达,能够利用所学的知识内容对有关问题进行比较、判别、讨论,并加以解决.(3)掌握(C)要求系统地掌握知识的内在联系,能够利用所学知识对具有一定综合性的问题进行分析、研究、讨论,并加以解决.二、能力要求能力是指空间想象能力、抽象概括能力、推理论证能力、运算求解能力、数据处理能力以及应用意识和创新意识.(1)空间想象能力能根据条件作出正确的图形,根据图形想象出直观形象;能正确地分析出图形中的基本元素及其相互关系;能对图形进行分解、组合;会运用图形与图表等手段形象地揭示问题的本质.(2)抽象概括能力能在对具体的实例抽象概括的过程中,发现研究对象的本质;从足够的信息材料中,概括出一些合理的结论.(3)推理论证能力会根据已知的事实和已获得的正确数学命题来论证某一数学命题的正确性.(4)运算求解能力会根据法则、公式进行正确的运算、变形和数据处理,能根据问题的条件寻找和设计合理、简捷的运算途径,能根据要求对数据进行估计和近似运算.(5)数据处理能力会收集、整理、分析数据,能从大量数据中抽取对研究问题有用的信息,并作出判断. 数据处理能力主要依据统计方法对数据进行整理、分析,并解决给定的实际问题.(6)应用意识能够运用所学的数学知识、思想和方法,将一些简单的实际问题转化为数学问题,并加以解决.(7)创新意识能够综合、灵活运用所学的数学知识和思想方法,创造性地解决问题.三、考查要求(1)对数学基础知识的考查,既全面又突出重点,注重学科的内在联系和知识的综合.(2)数学思想和方法是数学知识在更高层次上的抽象和概括. 对数学思想和方法的考查与数学知识的考查结合进行,考查时,从学科整体意义和思想含义上立意,注重通性通法,淡化特殊技巧.(3)对数学能力的考查,以抽象概括能力和推理论证能力为核心,全面考查各种能力.强调探究性、综合性、应用性. 突出数学试题的能力立意,坚持素质教育导向.(4)注重试题的基础性、综合性和层次性. 合理调控综合程度,坚持多角度、多层次的考查.Ⅳ.考试范围与要求层次根据普通高等学校对新生文化素质的要求,依据教育部2020年颁布的《普通高中数学课程标准(实验)》,结合我省高中基础教育的实际,确定文史类高考数学科的考试范围为必修课程数学1、数学2、数学3、数学4、数学5的内容、选修课程系列1(选修1-1、选修1-2)的内容,选修课程系列4中的《不等式选讲》的部分内容(详见下表);确定理工类高考数学科必做题的考试范围为必修课程数学1、数学2、数学3、数学4、数学5的内容、选修课程系列2(选修2-1、选修2-2、选修2-3)的内容,选修课程系列4中的《不等式选讲》的部分内容;选做题的考试范围为选修课程系列4中的《几何证明选讲》和《坐标系与参数方程》的部分内容.具体内容及层次要求详见下表.公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内. 公理2:过不在同一条直线上的三点,有且只有一个平面.公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线.公理4:平行于同一条直线的两条直线互相平行.定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补.Ⅴ、考试形式与试卷结构一、考试形式考试采用闭卷、笔试形式.考试时间为120分钟,全卷满分为150分.湖北省2020年普通高等学校招生全国统一考试仍不允许使用计算器.二、试题类型与试卷结构全卷分选择题、填空题、解答题三种题型.选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算或推证过程;解答题包括计算题、证明题,解答题要写出文字说明、演算步骤或推证过程.文、理科全卷题型、题量和赋分分别如下: 文科卷:1. 全卷22道试题均为必做题;2. 试卷结构为选择题10道,每道5分,共50分;填空题7道,每道5分,共35分;解答题5道,每道分值不低于10分同时不高于14分,共65分.理科卷:1. 全卷22道试题,分为必做题和选做题.其中,20道试题为必做题,在填空题中设置2道选做题(需要考生在这2道选做题中选择一道作答,若两道都选,按前一道作答结果计分),即考生共需作答21道试题;2. 试卷结构为选择题10道,每道5分,共50分;填空题6道,每道5分,考生需作答5道,共25分;解答题6道,每道分值不低于10分同时不高于14分,共75分;试题按难度(难度=实测平均分/满分)分为容易题、中等题和难题. 难度在0.70以上的题为容易题,难度在0.40~0.70之间(包括0.40和0.70)的题为中等题,难度在0.40以下的题为难题.控制三种难度的试题的合适分值比例,试卷总体难度适中.Ⅵ.题型示例为让考生对高考试题获得一定的认识,我们从近几年高考数学(湖北卷)和其他省市的高考试题中选择了部分试题编制成题型示例.题型示例中的试题与2020年高考试卷的结构、形式、测试内容、题目排序、题量、难度等均没有任何对应关系.理科题型示例一、必考内容题型示例(一)选择题:在每小题列出的四个选项中,选出符合题目要求的一项. 【试题1】(2020年湖北卷理科卷第2题)已知2{|log ,1}U y y x x ==>,1{|,2}P y y x x==>,则U P =ðA .1[,)2+∞B .1(0,)2C .(0,)+∞D .1(,0][,)2-∞+∞U【答案】A【说明】本题主要考查集合、对数函数和幂函数的基本概念和性质.本题属于容易题.【试题2】(2020年湖北卷理科第1题)设(1,2)=-a , (3,4)=-b , (3,2)=c , 则(2)+⋅=a b cA. (15,12)-B. 0C. 3-D. 11- 【答案】C【说明】本题考查向量的加法、实数与向量的积和平面向量的数量积等向量的有关概念.本题属于容易题.【试题3】(2020年安徽卷理科第7题)命题“所有能被2整除的整数都是偶数”的否定..是 A. 所有不能被2整除的整数都是偶数 B. 所有能被2整除的整数都不是偶数 C. 存在一个不能被2整除的整数是偶数 D. 存在一个能被2整除的整数不是偶数【答案】D【说明】本题考查正确地对含有一个量词的命题进行否定. 本题属于容易题.【试题4】(2020年湖北卷理科第8题)在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇. 现有4辆甲型货车和8辆乙型货车可供使用. 每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台. 若每辆车至多只运一次,则该厂所花的最少运输费用为 A .2000元 B .2200元 C .2400元 D .2800元 【答案】B【说明】本题考查简单的线性规划. 本题属于容易题.【试题5】(2020年湖北卷理科第7题)如图,用K 、1A 、2A 三类不同的元件连接成一个系统. 当K 正常工作且1A 、2A 至少有一个正常工作时,系统正常工作. 已知K 、1A 、2A 正常工作的概率依次为0.9、0.8、0.8,则A .0.960B .0.864C .0.720D .0.576 【答案】B【说明】本题主要考查相互独立事件和互斥事件的概率计算. 本题属于容易题.【试题6】(2020年湖北卷理科第5题)已知随机变量ξ服从正态分布2(2,)N σ,且(4)0.8P ξ<=,则(02)P ξ<<=A .0.6B .0.4C .0.3D .0.2 【答案】C【说明】本题主要考查正态曲线的性质及正态分布相关概率的计算. 本题属于容易题.【试题7】(2020年湖北卷理科第8题)现安排甲、乙、丙、丁、戊5名同学参加上海世博会志愿者服务活动,每人从事翻译、导游、礼仪、司机四项工作之一,每项工作至少有一人参加.甲、乙不会开车但能从事其他三项工作,丙、丁、戊都能胜任四项工作,则不同安排方案的种数是A. 54B. 90C. 126D. 152 【答案】C【说明】本题考查有限制条件下的排列组合问题. 本题属于中等题.【试题8】(2020年全国卷理科第11题)设函数π()sin()cos()(0,)2f x x x ωϕωϕωϕ=+++><的最小正周期为π,且()()f x f x -=,则A.()f x 在π(0,)2单调递减B.()f x 在π3π(,)44单调递减C.()f x 在π(0,)2单调递增D.()f x 在π3π(,)44单调递增【答案】A【说明】本题考查三角函数的性质,三角恒等变换以及图象.本题属于中等题.【试题9】(2020年江西卷理科第6题) 变量X 与Y 相对应的一组数据为(10,1),(11.3,2),(11.8,3),(12.5,4),(13,5),变量U 与V 相对应的一组数据为(10,5),(11. 3,4),(11.8,3),(12.5,2),(13,1),1r 表示变量Y 与X 之间的线性相关系数,2r 表示变量V 与U 之间的线性相关系数,则(可参考两个变量的相关系数的计算公式:()()nii xx y y r --=∑A. 2r <1r <0B. 0<2r <1rC.2r <0<1rD.2r =1r 【答案】C【说明】本题考查两个变量的线性相关. 本题属于中等题.【试题10】(2020年湖北卷理科第4题)将两个顶点在抛物线22(0)y px p =>上,另一个顶点是此抛物线焦点的正三角形个数记为n ,则A .0n =B .1n =C .2n =D .3n ≥ 【答案】C【说明】本题考查直线与抛物线的位置关系. 本题属于中等题.【试题11】(2020年山东卷理科第8题)已知双曲线221(0,0)22x y a b a b -=>>的两条渐近线均和圆C :22650x y x +-+=相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为A. 22154x y -=B. 22145x y -=C. 22136x y -=D. 22163x y -=【答案】A【说明】本题考查双曲线、圆的方程和圆的切线的性质. 本题属于中等题.【试题12】(2020年湖北卷理科第6题)若数列{}n a 满足212n na p a +=(p 为正常数,n ∈*N ),则称{}n a 为“等方比数列”. 甲:数列{}n a 是等方比数列;乙:数列{}n a 是等比数列.则A .甲是乙的充分条件但不是必要条件B .甲是乙的必要条件但不是充分条件C .甲是乙的充要条件D .甲既不是乙的充分条件也不是乙的必要条件 【答案】B 【说明】本题以新定义“等方比数列”为载体,考查充分条件与必要条件的判断. 本题属于中等题.【试题13】(2020年湖北卷理科第4题) 函数ln e 1x y x =--的图象是yA. B. C. D.【答案】D【说明】本题考查绝对值的概念、对数运算、函数的图象与性质,同时考查分类讨论和数形结合的思想. 本题属于中等题.【试题14】(2020年湖北卷理科第10题)0810. 如图所示,“嫦娥一号”探月卫星沿地月转移轨道飞向月球,在月球附近一点P 变轨进入以月球球心F 为一个焦点的椭圆轨道Ⅰ绕月飞行,之后卫星在P 点第二次变轨进入仍以F 为一个焦点的椭圆轨道Ⅱ绕月飞行,最终卫星在P 点第三次变轨进入以F 为圆心的圆形轨道Ⅲ绕月飞行.若用12c 和22c 分别表示椭圆轨道Ⅰ和Ⅱ的焦距,用12a 和22a 分别表示椭圆轨道Ⅰ和Ⅱ的长轴的长,给出下列式子:①1122a c a c +=+;②1122a c a c -=-;③1212c a a c >;④1212c c a a <.其中正确的式子序号是A. ①③B. ②③C. ①④D. ②④ 【答案】B【说明】本题考查椭圆的定义、几何图形及简单的几何性质. 本题属于中等题.【试题15】(2020年湖北卷理科第9题)设球的半径为时间t 的函数()R t . 若球的体积以均匀速度c 增长,则球的表面积的增长速度与球半径A .成正比,比例系数为cB .成正比,比例系数为2cC .成反比,比例系数为cD .成反比,比例系数为2c 【答案】D【说明】本题考查导数概念、求导公式、球的体积和表面积公式. 本题属于难题.【试题16】(2020年全国卷理科第12题)函数11y x =-的图像与函数2sin π(24)y x x =-≤≤的图像所有交点的横坐标之和等于A .2B .4C .6个D .8个 【答案】D【说明】本题考查函数的图象与性质. 本题属于难题(二)填空题:把答案填在题中横线上. 【试题17】(2020年湖北卷理科第12题)复数i ,,z a b a b =+∈R ,且0b ≠,若24z bz -是实数,则有序实数对(,)a b 可以是.(写出一个有序实数对即可)【答案】(2,1)(或满足2a b =的任一个非零实数对(,)a b ) 【说明】本题考查复数的概念和运算. 本题属于容易题.【试题18】(2020年天津卷理科第11题)甲、乙两人在10天中每天加工零件的个数用茎叶图表示如下图,中间一列的数字表示零件个数的十位数,两边的数字表示零件个数的个位数,则这10天甲、乙两人日加工零件的平均数分别为和.【答案】24,23【解析】本题主要考查茎叶图的应用. 本题属于容易题.【试题19】(2020年湖北卷理科第11题)18()3x x -的展开式中含15x 的项的系数为.(结果用数值表示) 【答案】17【说明】本题考查二项式定理. 本题属于容易题. 【试题20】(2020年浙江卷理科第12题)某程序框图如图所示,则该程序运行后输出的k 的值是. 【答案】5【说明】本题考查算法的基本逻辑结构中的顺序结构、条件结构、循环结构. 本题属于中等题.【试题21】(2020年湖北卷理科第13题)已知函数22()2,()962f x x x a f bx x x =++=-+,其中x ∈R ,,a b 为常数,则方程()0f ax b +=的解集为.【答案】∅【说明】本题考查函数的概念、待定系数法以及二次方程的解集等内容.本题属于中等题.【试题22】(2020年陕西卷理科第13题)从如图所示的长方形区域内任取一个点M (x ,y ),则点M 取自阴影部分的概率为.【答案】13【说明】本题与定积分结合,考查几何概型. 本题属于容易题.【试题23】(2020年湖北卷理科第14题)已知函数π()()cos sin 4f x f x x '=+,则π()4f 的值为.【答案】1【说明】本题主要考查函数导数的概念、求法和特殊的三角函数的值和导数. 本题属于中等题.【试题24】(2020年天津卷文科第10题) 一个几何体的三视图如图所示(单位:m ),则该几何体的体积为3m .【答案】π6+【说明】本题考查简单组合体的三视图及其体积. 本题属于中等题.y23y x = 3 O 1 x【试题25】(2020年湖北卷理科第15题)设0,0a b >>,称2aba b+为,a b 的调和平均数.如图,C 为线段AB 上的点,且,AC a =CB b =,O 为AB 中点,以AB 为直径作半圆.过点C 作AB 的垂线交半圆于D ,连结OD , AD , BD .过点C 作OD 的垂线,垂足为E .则图中线段OD 的长度是,a b 的算术平均数,线段的长度是,a b 的几何平均数,线段的长度是,a b 的调和平均数. 【答案】CD ;DE 【说明】本题主要考查算术平均、几何平均的概念与即时定义的理解运用. 本题属于中等题.【试题26】(2020年湖北卷理科第15题) 观察下列等式:211122ni i n n ==+∑, 2321111326ni i n n n ==++∑, 34321111424ni i n n n ==++∑, 45431111152330ni in n n n ==++-∑, 5654211151621212ni i n n n n ==++-∑, 67653111111722642ni in n n n n ==++-+∑, ………………………………………………112112101nkk k k k k k k k i ia n a n a n a n a n a +--+--==++++++∑L ,可以推测,当*2()k k ≥∈N 时,111k a k +=+,12k a =,1k a -=,2k a -=. 【答案】12k;0 【说明】本题考查学生的创新思维,通过观察、综合进而合情推理得到答案. 本题属于难题.A E DB O(三)解答题 【试题27】(2020年全国卷理科第17题)等比数列{}n a 的各项均为正数,且12231a a +=,23269.a a a =(Ⅰ)求数列{}n a 的通项公式.(Ⅱ)设31323log log log ,n n b a a a =+++L 求数列1{}nb 的前n 项和. 【答案】(Ⅰ)设数列{}n a 的公比为q ,由23269a a a =得22349a a =,所以219q =. 由条件可知0q >,故13q =. 由12231a a +=得11231a a q +=,所以113a =. 故数列{}n a 的通项式为13n n a =. (Ⅱ)31323(1)log log log (12)2n n n n b a a a n +=+++=-+++=-L L . 故12112()(1)1n b n n n n =-=--++, 121111111122[(1)()()]22311n n b b b n n n +++=--+-++-=-++L L . 所以数列1{}n b 的前n 项和为21nn -+. 【说明】本题考查等比数列、等差数列的通项公式与前n 项和公式. 本题属于容易题.【试题28】(2020年湖北卷理科第19题)已知数列{}n a 的前n 项和为n S ,且满足:1(0)a a a =≠,*1(,,1)n n a rS n r r +=∈∈≠-N R . (Ⅰ)求数列{}n a 的通项公式;(Ⅱ)若存在*k ∈N ,使得1k S +,k S ,2k S +成等差数列,试判断:对于任意的*m ∈N ,且2m ≥,1m a +,m a ,2m a +是否成等差数列,并证明你的结论.【答案】(Ⅰ)由已知1n n a rS +=,可得21n n a rS ++=,两式相减可得2111()n n n n n a a r S S ra ++++-=-=,即21(1)n n a r a ++=+. 又21a ra ra ==,所以 当0r =时,数列{}n a 即为:a ,0,…,0,…;当1,0r ≠-时,由已知0a ≠,所以*0()n a n ≠∈N ,于是由21(1)n n a r a ++=+可得 *211()n n a r n a ++=+∈N ,由定义知2a ,3a ,…,n a ,…成等比数列,所以当2n ≥时,2(1)n n a r r a -=+.综上,可得数列{}n a 的通项公式为2,1,(1), 2.n n a n a r r a n -=⎧=⎨+≥⎩ (Ⅱ)对于任意的*m ∈N ,且2m ≥,1m a +,m a ,2m a +成等差数列. 证明如下:当0r =时,由(Ⅰ)知,,1,0, 2.n a n a n =⎧=⎨≥⎩,n S a =,即数列{}n S 是等差数列,且对于任意的*m ∈N ,且2m ≥,1m a +,m a ,2m a +成等差数列;当1,0r ≠-时,∵212k k k k S S a a +++=++,11k k k S S a ++=+.若存在*k ∈N ,使得1k S +,k S ,2k S +成等差数列,则122k k k S S S +++=, ∴12222k k k k S a a S ++++=,即212k k a a ++=-.由(Ⅰ)知,2a ,3a ,…,n a ,…的公比12r +=-,于是 对于任意的*m ∈N ,且2m ≥,12m m a a +=-,从而24m m a a +=, ∴122m m m a a a +++=,即1m a +,m a ,2m a +成等差数列.【说明】本题考查等差数列、等比数列的基础知识. 本题属于难题.【试题29】(2020年湖北卷理科第16题)设△ABC 的内角A 、B 、C 所对的边分别为a 、b 、c . 已知1a =,2b =,1cos 4C =. (Ⅰ)求△ABC 的周长; (Ⅱ)求cos()A C -的值. 【答案】(Ⅰ)∵22212cos 14444c a b ab C =+-=+-⨯=, ∴2c =.∴△ABC 的周长为1225a b c ++=++=.(Ⅱ)∵1cos 4C =,∴sin C ==.∴sin 4sin 2a C A c ===. ∵a c <,∴A C <,故A 为锐角,∴7cos 8A ==.∴7111cos()cos cos sin sin 8416A C A C A C -=+=⨯+=.【说明】本题考查三角函数的基本知识,包括余弦定理、正弦定理、和角差角公式的综合应用.本题属于容易题.【试题30】(2020年湖北卷理科第16题)已知函数()f t =()cos (sin )sin (cos )g x x f x x f x =⋅+⋅,(,]12x 17π∈π.(Ⅰ)将函数()g x 化简成sin()A x B ωϕ++(0,0,[0,2π))A ωϕ>>∈的形式; (Ⅱ)求函数()g x 的值域.【答案】(Ⅰ)解法1:()cos sin g x x x =cos sin x x =1sin 1cos cos sin cos sin x x x x x x --=⋅+⋅ ∵(,]12x 17π∈π,∴cos cos x x =-,sin sin x x =-.∴1sin 1cos ()cos sin cos sin x x g x x x x x --=⋅+⋅--πsin cos 2)24x x x =+-=+-.(Ⅱ)解法1:由17ππ12x <≤,得5ππ5π443x <+≤, sin t 在5π3π(,]42上为减函数,在3π5π(,]23上为增函数,又5π5πsin sin 34<,所以当17π(π,]12x ∈时,恒有3ππ5πsin sin()sin244x ≤+<成立,即π1sin()42x -≤+<-,∴π2)234x ≤+-<-,故(g x )的值域为[2,3)-.解法2:∵π())24g x x =+-,17(12x ∈π, π],∴())4g x x π'=+,x [π,5π4) 5π4 (5π4,1712π]'()f x -+()f x极小值所以得到当5π4x =时,min ()2g x =;又1711sin(ππ)sin(ππ)12442+<+=-,1ππ)23,4+-=-因此函数(g x )的值域为[2,3)-. 【说明】本题主要考查三角函数的恒等变换、周期性、单调性和最值等基本知识和运算能力. 本题属于中等题.【试题31】(2020年湖北卷理科第18题) 如图,在三棱锥V ABC -中,VC ⊥底面ABC ,AC BC ⊥,D 是AB 的中点,且AC BC a ==,π(0).2VDC θθ∠=<<(Ⅰ)求证:平面VAB ⊥平面VCD ;(Ⅱ)当角θ变化时,求直线BC 与平面VAB 所成的角的取值范围. 【答案】 解法1:(Ⅰ)∵AC BC a ==,∴ACB ∆是等腰三角形,又D 是AB 的中点,∴.CD AB ⊥又VC ⊥底面ABC ,∴.VC AB ⊥于是AB ⊥平面VCD , 又AB ⊂平面VAB ,∴平面VAB ⊥平面.VCD(Ⅱ)过点C 在平面VCD 内作CH VD ⊥于H ,则由(Ⅰ)知CH ⊥平面.VAB 连接BH ,于是CBH ∠就是直线BC 与平面VAB 所成的角.在CHD ∆Rt中,sin CH θ=; 设CBH ϕ∠=,在BHC ∆Rt 中,sin CH a ϕ=,∴sin .2θϕ=∵π0θ<<, ∴0sin 1θ<<,0sin 2ϕ<<又π02ϕ≤≤,∴π0.4ϕ<<即直线BC 与平面VAB 所成角的取值范围为π(0,)4.解法2:(Ⅰ)以CA 、CB 、CV 所在的直线分别为x 轴、y直角坐标系,则(0,0,0)C ,(,0,0)A a ,(0,,0)B a ,(,,0)22a aD ,tan )2V a θ,于是(,,tan )222a a VD θ=u u u r ,(,,0)22a aCD =u u u r ,(,,0)AB a a =-u u u r .从而2211(,,0)(,,0)002222a a AB CD a a a a ⋅=-⋅=-++=u u u r u u u r ,即.AB CD ⊥同理2211(,,0)(,,tan )002222a a AB VD a a a a θ⋅=-⋅=-++=u u u r u u u r ,即.AB VD ⊥又CD VD D =I ,∴AB ⊥平面VCD . 又AB ⊂平面VAB , ∴平面VAB ⊥平面.VCD(Ⅱ)设直线BC 与平面VAB 所成的角为ϕ,平面VAB 的一个法向量为(,,)x y z =n ,则由0,0,AB VD ⋅=⋅=u u u r u u u rn n 得0,tan 0.22ax ay a a x y θ-+=⎧⎪⎨+-=⎪⎩ 可取)θ=n ,又(0,,0)BC a =-u u u r , 于是sin ||||||BC BC ϕθ⋅===u u u r u u u r n n ,∵π02θ<<,∴0sin 1θ<<,0sin 2ϕ<<又π02ϕ≤≤,∴π0.4ϕ<<即直线BC 与平面VAB 所成角的取值范围为π(0,)4.【说明】本题考查线面关系、直线与平面所成角的有关知识. 考查应用向量知识解决数学问题的能力.本题属于容易题.【试题32】(2020年湖北卷理科第17题)为了在夏季降温和冬季供暖时减少能源损耗,房屋的屋顶和外墙需要建造隔热层.某幢建筑物要建造可使用20年的隔热层,每厘米厚的隔热层建造成本为6万元.该建筑物每年的能源消耗费用C (单位:万元)与隔热层厚度x (单位:cm )满足关系:() (010)35kC x x x =≤≤+,若不建隔热层,每年能源消耗费用为8万元.设()f x 为隔热层建造费用与20年的能源消耗费用之和.(Ⅰ)求k 的值及()f x 的表达式;(Ⅱ)隔热层修建多厚时,总费用()f x 达到最小,并求最小值.【解题思路与方法】首先在()C x 的表达式中,令0x =,求出常数k ,得到每年的能源消耗费用函数()C x .然后分别写出隔热层建造费用与20年的能源消耗费用的表达式,得到()f x .再利用导数或均值不等式求出()f x 的最小值点与最小值.解:(Ⅰ)设隔热层厚度为x cm ,由题设,每年能源消耗费用为()35kC x x =+,再由(0)8C =,得40k =,因此40()35C x x =+.而建造费用为1()6C x x =.最后得隔热层建造费用与20年的能源消耗费用之和为140800()20()()206+6 (010)3535f x C x C x x x x x x =+=⨯+=≤≤++.(Ⅱ)由平均值不等式有:800800()62(35)1010703535f x x x x x =+=++-≥=++,当且仅当8002(35)35x x =++即5x =时,等式成立,此时函数()f x 取得最小值,最小值为800(5)6570155f =+⨯=+.当隔热层修建5cm 厚时,总费用达到最小值70万元.【说明】本题主要考查函数、导数及最值等基础知识.本题属于容易题.【试题33】(2020年湖北卷理科第20题)水库的蓄水量随时间而变化,现用t 表示时间,以月为单位,年初为起点. 根据历年数据,某水库的蓄水量(单位:亿立方米)关于t 的近似函数关系式为124(1440)e 50,010,()4(10)(341)50,1012.t t t t V t t t t ⎧⎪-+-+<≤=⎨⎪--+<≤⎩(Ⅰ)该水库的蓄水量小于50的时期称为枯水期.以1i t i -<<表示第i 月份(1,2,,12)i =L ,问一年内哪几个月份是枯水期?(Ⅱ)求一年内该水库的最大蓄水量(取e 2.7=计算). 【答案】(Ⅰ)①当010t <≤时,124()(1440)e 5050t V t t t =-+-+<,化简得214400t t -+>,解得4t <,或10t >,又010t <≤,故04t <<. ②当1012t <≤时,()4(10)(341)5050V t t t =--+<, 化简得(10)(341)0t t --<,解得41103t <<,又1012t <≤,故1012t <≤. 综上得04t <<,或1012t <≤,故知枯水期为1月,2月,3月,4月,11月,12月共6个月. (Ⅱ)由(Ⅰ)知,()V t 的最大值只能在(4,10)内达到.由11244131()e (4)e (2)(8)424t t V t t t t t '=-++=-+-,令()0V t '=,解得8t =(2t =-舍去). 当t 变化时,()V t '与()V t 的变化情况如下表:由上表,()V t 在8t =时取得最大值2(8)8e 50108.32V =+=(亿立方米). 故知一年内该水库的最大蓄水量是108.32亿立方米.【说明】本题主要考查函数的单调性、极值、最值等基本知识,考查运用导数知识分析和解决实际问题的能力.本题属于难题.【试题34】(2020年安徽卷理科第20题) 工作人员需进入核电站完成某项具有高辐射危险的任务,每次只派一个人进去,且每个人只派一次,工作时间不超过10分钟,如果前一个人10分钟内不能完成任务则撤出,再派下一个人. 现在一共只有甲、乙、丙三个人可派,他们各自能完成任务的概率分别为p 1,p 2,p 3.假设p 1,p 2,p 3,互不相等,且假定各人能否完成任务的事件相互独立.(Ⅰ)如果按甲最先、乙次之、丙最后的顺序派人,求任务能被完成的概率. 若改变三个人被派出的先后顺序,任务能被完成的概率是否发生变化?(Ⅱ)若按某指定顺序派人,这三个人各自能完成任务的概率依次为q 1,q 2,q 3,其中q 1,q 2,q 3是p 1,p 2,p 3的一个排列,求所需派出人员数目X 的分布列和均值(数字期望)EX ; (Ⅲ)假定l >p 1>p 2>p 3,试分析以怎样的先后顺序派出人员,可使所需派出的人员数目的均值(数字期望)达到最小. 【答案】(Ⅰ)无论以怎样的顺序派出人员,任务不能被完成的概率都是123(1)(1)(1)p p p ---,所以任务能被完成的概率与三个人被派出的先后顺序无关,并等于 1231231223311231(1)(1)(1)p p p p p p p p p p p p p p p ---⋅-=++---+.(Ⅱ)当依次派出的三个人各自完成任务的概率分别为123,,q q q 时,随机变量X 的分布列为X 1 2 3P1q 12(1)q q - 12(1)(1)q q --所需派出的人员数目的均值(数学期望)EX 是 1121212122(1)3(1)(1)32EX q q q q q q q q q =+-+--=--+.(Ⅲ)(方法一):由(Ⅱ)的结论知,当以甲最先、乙次之、丙最后的顺序派人时,121232EX p p p p =--+.根据常理,优先派出完成任务概率大的人,可减少所需派出的人员数目的均值. 下面证明:对于123,,p p p 的任意排列123,,q q q ,都有 121212123232q q q q p p p p --+≥--+ (※)事实上,12121212(32)(32)q q q q p p p p ∆=--+---+ 112212122()()p q p q p p q q =-+--+11221121222()()()()p q p q p q p q p q =-+-----211122(2)()(1)()p p q q p q =--+--[]11212(1)()()0q p p q q ≥-+-+≥即(※)成立.(方法二):①可将(Ⅱ)中所求的EX 改写为121213()q q q q q -++-,若交换前两人的派出顺序,则变为121223()q q q q q -++-.由此可见,当21q q >时,交换前两人的派出顺序可减小均值.②也可将(Ⅱ)中所求的EX 改写为11232(1)q q q ---若交换后两人的派出顺序,则变为11332(1)q q q ---.由此可见,若保持第一个派出的人选不变,当32q q >时,交换后两人的派出顺序也可减小均值.综合①②可知,当123123(,,)(,,)q q q p p p =时,EX 达到最小,即完成任务概率大的人优先派出,可减小所需派出人员数目的均值,这一结论是合乎常理的.【说明】本题考查相互独立事件的概率计算,离散型随机变量及其分布列、均值等基本知识.本题属于难题.【试题36】(2020年湖北卷理科第20题)设A 、B 分别为椭圆22221(,0)x y a b a b+=>的左、右顶点,椭圆长半轴...的长等于焦距,且4x =为它的右准线.(Ⅰ)求椭圆的方程;(Ⅱ)设P 为右准线上不同于点(4,0)的任意一点,若直线AP 、BP 分别与椭圆相交于异于A 、B 的点M 、N ,证明点B 在以MN 为直径的圆内. 【答案】(Ⅰ)解:依题意得22,4,a c a c=⎧⎪⎨=⎪⎩解得2,1.a c =⎧⎨=⎩从而b =故椭圆方程为221.43x y += (Ⅱ)由(Ⅰ)得(2,0),(2,0)A B -. 设00(,).M x y∵M 点在椭圆上,∴()220034.4y x =- ① 又M 点异于顶点A 、B ,∴02 2.x -<< 由P 、A 、M 三点共线可得0064,2y P x ⎛⎫⎪+⎝⎭. 从而00006(2,),2,.2y BM x y BP x ⎛⎫=-= ⎪+⎝⎭u u u u r u u u r∴()222000000622443.22y BM BP x x y x x ⋅=-+=-+++u u u u r u u u r ②将①式代入②式化简得BM BP ⋅=u u u u r u u u r 05(2).2x -∵020x ->,∴0BM BP ⋅>u u u u r u u u r.于是MBP ∠为锐角,从而MBN ∠为钝角,故点B 在以MN 为直径的圆内.【说明】本题考查直线、圆和椭圆等平面解析几何的基础知识,考查综合运用数学知识进行推理运算的能力和解决问题的能力.本题属于中等题.【试题37】(2020年湖北卷理科第19题)在平面直角坐标系xOy 中,过定点(0,)C p 作直线与抛物线22(0)x py p =>相交于A 、B 两点. (Ⅰ)若点N 是点C 关于坐标原点O 的对称点,求ANB ∆面积的最小值;(Ⅱ)是否存在垂直于y 轴的直线l ,使得l 被以AC。

重庆专升本高数考试范围

重庆专升本高数考试范围

重庆专升本高数考试范围重庆专升本高数考试范围包括以下内容:
1.函数与极限
(1) 函数的定义与性质
(2) 极限的概念与性质
(3) 连续与间断的概念与性质
(4) 函数的极限与连续性
2.导数与微分
(1) 导数的概念与性质
(2) 微分的概念与性质
(3) 高阶导数与高阶微分
(4) 函数的增减和极值
(5) 函数的凹凸性与拐点
3.定积分与不定积分
(1) 定积分的概念与性质
(2) 定积分的计算
(3) 不定积分的概念与性质
(4) 不定积分的计算
4.微分方程
(1) 一阶微分方程
(2) 高阶微分方程
(3) 变量可分离的微分方程
(4) 同余和恰当微分方程
5.级数与幂级数
(1) 数项级数的概念与性质
(2) 收敛级数与发散级数的判别法
(3) 幂级数的概念与性质
(4) 幂级数的收敛半径和收敛区间
以上是重庆专升本高数考试的主要范围,具体的考点和题型可能根据学校和考试要求有所不同,建议结合教材和往年真题进行复习。

专升本高等数学考试大纲

专升本高等数学考试大纲

重庆市普通高校“专升本”统一选拔考试大纲《高等数学》(2019年版)(考试科目代码20)Ⅰ、考试大纲适用对象及考试性质本大纲适用于重庆市普通高校“专升本”的理工类和经济类考生。

“专升本"考试结果将作为重庆市普通高校高职高专学生申请“专升本"的成绩依据.本科院校根据考生考试成绩,按照已确定的招生计划择优录取。

因此,该考试应具有较高的 信度、效度,必要的区分度和适当的难度.Ⅱ、考试内容及要求一、一元函数微分学1.理解函数概念,知道函数的表示法;会求函数的定义域及函数值。

2.掌握函数的奇偶性、单调性、周期性、有界性。

3.理解复合函数与反函数的定义,会求单调函数的反函数。

4.掌握基本初等函数的性质与图像,了解初等函数的概念.5.理解极限概念及性质,掌握极限的运算法则。

6.理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。

7.了解夹逼准则与单调有界准则,掌握两个重要极限:0sin lim 1x x x→=,()10lim 11x x x →+=。

8.理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。

9.理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。

10.理解导数的定义及几何意义,会根据定义求函数的导数。

11.理解函数的可导与连续的关系。

12.熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。

13.了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法.14.理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不变性;会求函数的微分。

15.理解罗尔(Rolle )定理、拉格朗日中值(Lagrange)定理,了解柯西(Cau ch y)中值定理和泰勒(Tayl or )中值定理。

2020年重庆专升本高数真题-答案

2020年重庆专升本高数真题-答案

重庆市2020年普通高校专升本选拔考试《高等数学》参考答案一、单项选择题(本大题共8小题,每小题4分,满分32分) 1.当0→x 时,与x 等价的无穷小量是( B )。

A.xB.sin sin ()xC.sin x xD.1cos −x2.幂级数1∞=∑n n x n的收敛域是( C )。

A.(-1,1)B. ](1,1−C.)1,1−⎡⎣D. []11−, 3.设平面π的方程为B y +C z +D=0,其中B,C,D≠0,则平面π一定( A )。

A.平行于x 轴 B.平行于y 轴 C.平行于z 轴 D.垂直于x 轴 4.设函数0()sin(4)xx t dt ϕ=⎰ ,则()x ϕ 的导数为( C )。

A.cos 4x ()B.4cos 4x ()C.sin 4x ()D.4sin(4)x5.微分方程dx dyy x=− 满足初始条件(2=1y )的特解是( D )。

A.2xy = B.22x y C −= C. 223x y −= D. 225x y +=6.设函数2min{,}f x x x =() ,则()f x 在区间(),−∞+∞ 上( C )。

A.没有不可导点 B.只有一个不可导点 C.共有两个不可导点 D.共有三个不可导点7.在四阶行列式D 中,已知第一列的元素分别为2,0,2,0,它们的代数余子式分别是2.1.3.4,则行列式D=( D )。

A.-10B.-2C.2D.10 8.设A,B 为两个随机事件,且A 与B 相互独立,则( B )。

A.()()()P A B P A P B ⋃=+ B.()()()P AB P A P B = C.()()()P AB P A P B = D.()0P AB =二、填空题(本大题共4小题,每小题4分,满分16分) 9.极限arctan lim x xx→∞= 0 。

10.()d f x dx dx⎡⎤=⎣⎦⎰ f (x ) 。

2018重庆专升本考试大纲——数学

2018重庆专升本考试大纲——数学

重庆市普通高校“专升本”统一选拔考试大纲《高等数学》(2018年版)(考试科目代码 20)Ⅰ、考试大纲适用对象及考试性质本大纲适用于重庆市普通高校“专升本”的理工类和经济类考生。

“专升本”考试结果将作为重庆市普通高校高职高专学生申请“专升本”的成绩依据。

本科院校根据考生考试成绩,按照已确定的招生计划择优录取。

因此,该考试应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ、考试内容及要求一、一元函数微分学1.理解函数概念,知道函数的表示法;会求函数的定义域及函数值。

2.掌握函数的奇偶性、单调性、周期性、有界性。

3.理解复合函数与反函数的定义,会求单调函数的反函数。

4.掌握基本初等函数的性质与图像,了解初等函数的概念。

5.理解极限概念及性质,掌握极限的运算法则。

6.理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的比较。

7.了解夹逼准则与单调有界准则,掌握两个重要极限:1sin lim 0=→x x x ,e x x x =+→1)1(lim 。

8.理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判别函数间断点的类型。

9.理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证一些简单命题。

10.理解导数的定义及几何意义,会根据定义求函数的导数。

11.理解函数的可导与连续的关系。

12.熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。

13.了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法。

14.理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不变性;会求函数的微分。

15.理解罗尔(Rolle)定理、拉格朗日中值(Lagrange)定理,了解柯西(Cauchy)中值定理和泰勒(Taylor)中值定理。

会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明一些简单不等式。

重庆专升本考试内容

重庆专升本考试内容

重庆专升本考试内容
重庆专升本考试内容包括笔试和面试两个部分。

笔试主要考查考生的基础知识
和能力,包括语文、数学、外语、政治、专业课等内容。

面试主要考察考生的综合素质、专业知识和应变能力。

首先是笔试部分。

语文考试主要考查考生的语言表达能力、阅读理解能力和写
作能力。

数学考试主要考查考生的数学基本概念和运算能力。

外语考试主要考查考生的英语水平,包括听力、阅读、写作和口语。

政治考试主要考查考生对政治理论和国家政策的了解。

专业课考试主要考查考生对所报考专业知识的掌握程度。

其次是面试部分。

面试主要考察考生的综合素质和专业能力。

面试题目可能涉
及考生的个人经历、专业知识、职业规划、社会热点等方面。

考生需要对所学专业有深入的了解,能够清晰表达自己的观点和看法。

面试考官会根据考生的表现综合评定考生的综合素质和专业能力。

考生在备考重庆专升本考试时,首先要对考试大纲和考试要求进行全面了解,
明确考试重点和难点。

其次要做好时间规划,合理安排复习时间,掌握复习方法和技巧。

考试前要进行模拟考试,检验自己的考试水平和能力。

考试当天要保持良好的心态和状态,自信面对考试,认真答题,做到不慌不乱。

总的来说,重庆专升本考试内容涵盖了语文、数学、外语、政治和专业课等方
面的考查内容,考试形式包括笔试和面试两个部分。

考生在备考考试时要全面准备,掌握考试要点和考试技巧,做到心中有数,信心十足,才能在考试中取得好成绩。

祝愿所有考生考试顺利,取得满意的成绩。

2020年数学二考试大纲

2020年数学二考试大纲

2020年数学二考试大纲考试科目:高等数学、线性代数考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约78% 线性代数约22%四、试卷题型结构 单项选择题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分一、函数、极限、连续考试内容函数的概念及表示法 分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限与右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较界准则和夹逼准则两个重要极限:lim1x函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1 .理解函数的概念,掌握函数的表示法,并会建立应用问题的函数关系.2 .了解函数的有界性、单调性、周期性和奇偶性.3 .理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4 .掌握基本初等函数的性质及其图形,了解初等函数的概念.5 .理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6 .掌握极限的性质及四则运算法则.7 .掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法. 8 .理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限. 9 .理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10 .了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、 最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、 极限的四则运算极限存在的两个准则:单调有导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L'Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数的最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间a,b内,设函数f(x)具有二阶导数.当f(x)0时,f(x)的图形是凹的;当f(x)0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆和曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数平均值.四、多元函数微积分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上二元连续函数的性质多元函数的偏导数和全微分多元复合函数、隐函数的求导法二阶偏导数多元函数的极值和条件极值、最大值和最小值二重积分的概念、基本性质和计算考试要求1.了解多元函数的概念,了解二元函数的几何意义.2.了解二元函数的极限与连续的概念,了解有界闭区域上二元连续函数的性质.3.了解多元函数偏导数与全微分的概念,会求多元复合函数一阶、二阶偏导数,会求全微分,了解隐函数存在定理,会求多元隐函数的偏导数.4.了解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.5.了解二重积分的概念与基本性质,掌握二重积分的计算方法(直角坐标、极坐标).五、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法,会解齐次微分方程.3.会用降阶法解下列形式的微分方程:y(n)f(x),yf(x,y)和yf(y,y).4.理解二阶线性微分方程解的性质及解的结构定理.5.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.6.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.7.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的哥方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵、反对称矩阵和正交矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的哥与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件.理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.了解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合和线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量的内积线性无关向量组的的正交规范化方法考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.了解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.了解向量组等价的概念,了解矩阵的秩与其行(列)向量组的秩的关系.5.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解非齐次线性方程组的通解考试要求1.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系及通解的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组的解的结构及通解的概念.5.会用初等行变换求解线性方程组.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,会将矩阵化为相似对角矩阵.3.理解实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.了解二次型的概念,会用矩阵形式表示二次型,了解合同变换与合同矩阵的概念.2.了解二次型的秩的概念,了解二次型的标准形、规范形等概念,了解惯性定理,会用正交变换和配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.。

重庆市普通高校专升本统一选拔考试大纲

重庆市普通高校专升本统一选拔考试大纲

重庆市普通高校“专升本”统一选拔考试大纲《大学语文》(2020年版)(考试科目代码 10)Ⅰ.考试大纲适用对象及考试性质本大纲适用于重庆市普通高校“专升本”的文科考生。

“专升本”考试结果将作为重庆市普通高校高职高专学生申请“专升本”的成绩依据。

本科院校根据考生考试成绩,按照已确定的招生计划择优录取。

因此,该考试应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ.考试内容与要求一、考核目标与要求大学语文要求考查考生识记、理解、分析综合、鉴赏评价和表达应用五种能力,这五种能力表现为五个层级。

A.识记:指识别和记忆,是最基本的能力层级。

B.理解:指领会并能做简单的解释,是在识记基础上高一级的能力层级。

C.分析综合:指分解剖析和归纳整理,是在识记和理解的基础上进一步提高了的能力层级。

D.鉴赏评价:指对阅读材料的鉴别、赏析和评说,是以识记、理解和分析综合为基础,在阅读方面发展的能力层级。

E.表达应用:指对语文知识和能力的运用,是以识记、理解和分析综合为基础,在表达方面发展了的能力层级。

对A、B、C、D、E五个能力层级均有难易不同的考查。

二、考核内容(一)基础知识1.语言知识理解 B(1)理解常见文言实词在文中的含义(2)理解常见文言虚词在文中的含义和用法(3)理解常见的文言句式和特殊语法现象(判断句、被动句、倒序句、使动用法、意动用法、名词作状语、词类活用)(4)理解现代文中的词语含义(5)理解应用文中常用的模式化词语(6)理解应用文中的书面辅助语言(图形、表格、符号、公式)(7)理解常见的修辞手法(比喻、比拟、借代、对偶、排比、夸张、对比、反复、反问、设问)2.文学知识识记 A(1)识记作家的国别、朝代/时代、流派、字号与誉称(2)识记作家的代表作品(3)识记名篇名句理解 B(1)理解文学作品的文体类别(含古文、古诗词、现代文学、外国文学的文体类别)与基本特征(2)理解作家的文学主张、文学成就和文学史地位(3)理解文学作品的文学史地位、影响(4)理解中外文学经典的风格或主要特色3.应用文知识识记 A(1)识记应用文的特点、对主旨的要求、选材原则(2)识记应用文结构特点、语言特点、语言运用要求、表达方式(3)识记党政机关公文和常用法规文书、规章文书、事务文书、专用文书的文种(4)识记公文版头部分、主体部分、版记部分的格式要素(5)识记《党政机关公文处理工作条例》和《党政机关公文格式》的发布机关、发布年份、施行日期理解 B(1)理解应用文常用的标题形式(2)理解应用文常用的开头方式(3)理解党政机关公文和常用事务文书的适用范围(4)理解法定公文的特点及按行文方向的分类(5)理解公文格式各要素的内涵与编排要求(6)理解《条例》中向上级机关行文与向下级机关行文应遵循的规则(二)基本能力1.阅读能力(1)古诗文阅读:阅读古代诗歌、散文理解 B①理解古诗文中成语、典故及其在文中的含义②理解并正确翻译文言句、段分析综合 C①分析古诗文内容要点、中心意思及表达的情感②分析古文中的论证方法鉴赏评价 D①鉴赏古诗文的语言、写作特色②结合时代背景评价古诗文的思想内容(2)现代文阅读:阅读现当代文学作品、论述类文章理解 B①理解论述类文章中重要概念的含义②理解作品中重要句、段的含意分析综合 C①分析作品的内容要点、中心意思及表达的情感②分析论述类文章的论证方法③分析文章的层次结构,把握文章的思路鉴赏评价 D①鉴赏作品的语言特色、艺术手法②鉴赏作品的艺术形象③评价文章的思想内涵(3)应用文阅读:阅读公文、常见的事务文书理解 B①理解应用文的主旨②理解应用文的材料类型和表达方式分析综合 C①分析应用文的结构要素②分析应用文表达主旨的方式③立足文种特点,分析评价应用文的写作特色2.写作能力能写文学类、应用类和论述类文章。

[整理]重庆普通专升本《高等数学》考试大纲

[整理]重庆普通专升本《高等数学》考试大纲

2014年重庆市普通高校“专升本”统一选拔考试大纲《高等数学》一、考试大纲适用对象及考试性质本大纲适用于重庆市普通高校申请“专升本”的理工类、经济类各专业高职高专学生,目的在于考核和检测学生掌握《高等数学》教学大纲基本要求与应用能力的情况。

按本大纲进行的考试系选拔性考试,其结果将作为重庆市普通高校高职高专学生申请“专升本”的成绩依据。

二、考试形式(一)试卷题型及分值分布1.试卷题型单选题、填空题、计算题、应用题、证明题。

2.分值分布试卷总分为120 分。

单选题与填空题约40 分。

计算题与应用题约73 分。

证明题约7 分。

各部分内容约占比例如下:微积分(包括向量代数与空间解析几何、微分方程、无穷级数)约70%线性代数约20%概率论初步约10%(二)考试方式及考试时间1.考试方式为闭卷笔试。

2.考试时间为120分钟。

三、考试内容及要求(一)考试内容1.一元函数微分学(1)函数,函数的奇偶性、单调性、周期性、有界性,复合函数与反函数,初等函数;(2)数列极限与函数极限,两个重要极限;(3)无穷小、无穷大及两者关系,无穷小的比较;(4)函数的连续性、间断点,间断点的分类;(5)闭区间上连续函数的性质;(6)函数的导数,基本求导公式与求导法则,导数的几何意义,高阶导数,微分;(7)中值定理、洛必达法则;(8)极值,函数的单调性、凹凸性及拐点、函数作图;2.一元函数积分学(1)不定积分的概念与性质,不定积分与微分之间的关系;(2)不定积分的换元法与分部积分法;(3)定积分的概念与性质;(4)积分上限函数的定义及积分上限函数的导数;(5)定积分的换元法和分部积分法;(6)平面图形的面积及旋转体的体积;(7)反常积分的概念与计算。

3.向量代数与空间解析几何(1)向量的运算,向量平行垂直的条件;(2)平面方程;(3)空间直线方程;(4)平面、直线间的平行垂直关系。

4.多元函数微积分学(1)二元函数的概念及其定义域的求法;(2)偏导数的定义及计算;(3)二元函数的极值,条件极值;(4)全微分的定义及计算;(5)二重积分的概念;(6)二重积分的计算。

重庆市普通高校专升本统一选拔考试大纲

重庆市普通高校专升本统一选拔考试大纲

重庆市普通高校“专升本”统一选拔考试大纲《计算机基础》(2019年版)(考试科目代码30)Ⅰ、考试大纲适用对象及考试性质本大纲适用于重庆市普通高校“专升本”的考生。

“专升本”考试结果将作为重庆市普通高校高职高专学生申请“专升本”的成绩依据。

本科院校根据考生考试成绩,按照已确定的招生计划择优录取。

因此,该考试应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ、考核目标与要求《计算机基础》考试,依据普通本科院校所要求的计算机基础及应用的一般水平而划定,同时结合在渝普通高职高专院校《计算机基础》课程教育教学实际,目的在于检验考生所具备的计算机知识与能力是否能够满足本科阶段学习的需要。

Ⅲ、考试内容考试内容分成七个部分,具体内容如下。

一、计算机基础知识1.计算思维的概念2.计算机系统组成3.计算机的信息表示和编码4.操作系统基本知识和使用二、办公自动化1.字处理软件的基本概念和应用2.电子表格软件的基本概念和应用3.演示文稿软件的基本概念和应用三、网络与信息安全1.计算机网络的基本概念和应用2.简单网络规划组建和故障分析3.网页制作和网站创建的基本概念和方法4.信息安全的概念与防护措施5.信息安全相关的法律法规四、数据库技术1.数据库的基本概念2.数据库管理系统的简单应用五、多媒体技术1.多媒体的基本概念2.多媒体关键技术3.多媒体硬件组成4.多媒体应用软件六、程序设计1.程序的基本结构2.数值数据计算的常用算法3.非数值数据处理的常用算法4.程序流程的理解与分析5.模块化应用程序设计任务的分解与综合6.人机友好交互界面的设计7.提高应用程序质量的常用措施七、计算机新技术与新应用1.电子商务技术2.物联网技术3.大数据和云计算4.移动网络和应用5.人工智能技术6.虚拟现实技术Ⅳ、考试形式与内容说明一、考试形式考试方式:闭卷,笔试。

试卷满分为120分。

考试时间为120 分钟。

二、题型题型可以有单项选择题、判断题、填空题、简答题、设计题、应用题、案例分析题等。

2020年专升本考试大纲

2020年专升本考试大纲

2020年专升本考试大纲(高数一二三)(总13页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--山东省2020年普通高等教育专科升本科招生考试公共基础课考试要求山东省教育招生考试院二○二○年一月高等数学Ⅰ考试要求Ⅰ. 考试内容与要求本科目考试要求考生掌握必要的基本概念、基本理论、较熟练的运算能力。

主要考查学生识记、理解和应用能力,为进一步学习奠定基础。

具体内容与要求如下:一、函数、极限与连续(一)函数1.理解函数的概念,会求函数的定义域、表达式及函数值,会建立应用问题的函数关系。

2.理解和掌握函数的有界性、单调性、周期性和奇偶性。

3.了解分段函数和反函数的概念。

4.掌握函数的四则运算与复合运算。

5.理解和掌握基本初等函数的性质及其图形,了解初等函数的概念。

(二)极限1.理解极限的概念,能根据极限概念描述函数的变化趋势。

理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系,x 趋于无穷大(∞→-∞→+∞→x x x ,,)时函数的极限。

2.了解极限的唯一性、有界性和保号性,掌握极限的四则运算法则。

理解极限存在的两个收敛准则(夹逼准则与单调有界准则),熟练掌握利用两个重要极限e xx x x x x =+=∞→→)11(lim ,1sin lim 0求函数的极限。

3.理解无穷小量、无穷大量的概念,掌握无穷小量的性质、无穷小量与无穷大量的关系。

会比较无穷小量的阶(高阶、低阶、同阶和等价)。

会用等价无穷小量求极限。

(三)连续1.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。

2.掌握连续函数的性质。

3.掌握闭区间上连续函数的性质(有界性定理、最大值和最小值定理、介值定理),并会应用这些性质。

4.理解初等函数在其定义区间上连续,并会利用连续性求极限。

二、一元函数微分学(一)导数与微分1.理解导数和微分的概念,了解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,理解函数的可导性与连续性之间的关系。

重庆专升本数学考试大纲

重庆专升本数学考试大纲

重庆专升本数学考试大纲
重庆专升本数学考试大纲通常包括以下几个主要考点:
1. 初等代数
- 数与式的运算
- 平方与平方根
- 公式与方程
- 不等式
- 函数与图像
2. 解析几何
- 平面直角坐标系
- 直线和圆的方程
- 平移、旋转、对称等基本几何变换
- 直线与圆的位置关系
- 平面曲线的方程
3. 数列与数学归纳法
- 等差数列和等比数列
- 数列的通项公式与前n项和公式
- 递推数列与递归数列
- 数学归纳法的应用
4. 概率与统计
- 随机事件与概率
- 条件概率与乘法公式
- 排列组合与基本计数原理
- 随机变量与概率分布
- 统计与抽样调查
5. 导数与微分学
- 函数的极限与连续性
- 导数的定义与计算
- 微分中值定理与导数应用
- 高阶导数
- 辅导函数与隐函数
6. 积分与微积分
- 不定积分与定积分
- 积分的基本公式和法则
- 定积分的物理与几何应用
- 平面区域的面积
- 微分方程与积分方程
以上仅为一般性的考试大纲,具体的内容可能会有所调整和变动。

考生参加考试前应以官方发布的最新考试大纲为准,进行备考。

重庆市普通高校“专升本”统一选拔考试大纲计算机

重庆市普通高校“专升本”统一选拔考试大纲计算机

重庆市普通高校“专升本”统一选拔考试大纲《计算机基础》(2020 年版)(考试科目代码30)Ⅰ.考试大纲适用对象及考试性质本大纲适用于重庆市普通高校“专升本”的考生。

“专升本”考试结果将作为重庆市普通高校高职高专学生申请“专升本”的成绩依据。

本科院校根据考生考试成绩,按照已确定的招生计划择优录取。

因此,该考试应具有较高的信度、效度,必要的区分度和适当的难度。

Ⅱ.考核目标与要求《计算机基础》考试,依据普通本科院校所要求的计算机基础及应用的一般水平而划定,同时结合在渝普通高职高专院校《计算机基础》课程教育教学实际,目的在于检验考生所具备的计算机知识与能力是否能够满足本科阶段学习的需要。

Ⅲ.考试内容一、计算机基础知识1.计算思维的概念2.计算机系统组成3.计算机的信息表示和编码4.操作系统基本知识和使用二、办公自动化1.字处理软件的基本概念和应用2.电子表格软件的基本概念和应用3.演示文稿软件的基本概念和应用三、网络与信息安全1.计算机网络的基本概念和应用2.简单网络规划组建和故障分析3.网页制作和网站创建的基本概念和方法4.信息安全的概念与防护措施5.信息安全相关的法律法规四、数据库技术1.数据库的基本概念2.数据库管理系统的简单应用五、多媒体技术1.多媒体的基本概念2.多媒体关键技术3.多媒体硬件组成4.多媒体应用软件六、程序设计1.程序的基本结构2.数值数据计算的常用算法3.非数值数据处理的常用算法4.程序流程的理解与分析5.模块化应用程序设计任务的分解与综合6.人机友好交互界面的设计7.提高应用程序质量的常用措施七、计算机新技术与新应用1.电子商务技术2.物联网技术3.大数据和云计算4.移动网络和应用5.人工智能技术6.虚拟现实技术Ⅳ.考试形式与内容说明一、考试形式考试方式:闭卷,笔试。

试卷满分为120 分。

考试时间为120 分钟。

二、题型题型可以有单项选择题、判断题、填空题、简答题、应用题、设计题、案例分析题等。

重庆专升本资料数学英语计算机

重庆专升本资料数学英语计算机

重庆专升本资料:数学、英语、计算机一、数学1. 线性代数•矩阵的基本概念及运算•线性方程组的求解与应用•矩阵的逆与转置•向量空间与子空间的性质•特征值与特征向量•线性变换与矩阵的相似性2. 高等数学•极限与连续•导数与微分•不定积分与定积分•一元函数与多元函数的基本性质•常微分方程的基本理论•多元函数的偏导数与全微分二、英语1. 英语词汇•基本词汇量的扩充和记忆技巧•固定搭配和常用短语•同义词和反义词的辨析•词义辨析、近义词和反义词练习2. 英语语法•时态和语态的使用•句型结构和语法规则•名词、代词、冠词的用法•动词时态和语态•直接引语和间接引语的转述•虚拟语气的使用3. 英语阅读与翻译•理解文章的主题和中心思想•对短文、长文和新闻材料的阅读和理解•文章的逻辑关系和段落组织•英语文章的翻译技巧和方法三、计算机1. 计算机基础知识•计算机硬件和软件的基本组成•计算机的运算原理与结构•计算机的常见数据表示和存储方式•计算机的操作系统和网络基础2. 程序设计•程序设计语言的基本概念和分类•算法和流程图的设计与实现•常见编程语言的语法和特点•常用开发工具和调试技巧3. 数据结构与算法•常见数据结构的定义和特点•数据结构的存储结构和操作方法•常用算法的设计和优化•算法的时间复杂度和空间复杂度的分析以上是重庆专升本资料中涵盖的数学、英语和计算机相关内容的简要概述。

这些知识点是专升本考试中必备的基础知识,对于考生来说是非常重要的。

通过系统的学习和复习这些知识点,考生可以提高专升本的考试成绩,为进一步提升自己的学历和就业竞争力打下坚实的基础。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆市普通高校“专升本”统一选拔考试大纲
《高等数学》(2020 年版)
(考试科目代码 20)
Ⅰ.考试大纲适用对象及考试性质
本大纲适用于重庆市普通高校“专升本”的理工类和经济类考生。

“专升本”考试结果将作为重庆市普通高校高职高专学生申请“专升本”的成绩依据。

本科院校根据考生考试成绩,按照已确定的招生计划择优录取。

因此,该考试应具有较高的
信度、效度,必要的区分度和适当的难度。

Ⅱ.考试内容与要求
一、一元函数微分学
1.理解函数概念,知道函数的表示法;会求函数的定义域及函数值。

2.掌握函数的奇偶性、单调性、周期性、有界性。

3.理解复合函数与反函数的定义,会求单调函数的反函数。

4.掌握基本初等函数的性质与图像,了解初等函数的概念。

5.理解极限概念及性质,掌握极限的运算法则。

6.理解无穷小量与无穷大量的概念及两者的关系,掌握无穷小量的性质和无穷小量的
比较。

sin x 1 7.了解夹逼准则与单调有界准则,掌握两个重要极限: lim 1 , lim (1 x ) x e 。

x x 0 x 0
8.理解函数连续与间断的定义,理解函数间断点的分类,会利用连续性求极限,会判
别函数间断点的类型。

9.理解闭区间上连续函数的有界性定理、最值定理、介值定理,并会用上述定理推证
一些简单命题。

10.理解导数的定义及几何意义,会根据定义求函数的导数。

11.理解函数的可导与连续的关系。

12.熟练掌握基本初等函数的导数公式、导数的四则运算法则、复合函数求导法则、隐
函数求导法、对数求导法及参数方程求导法,了解反函数的求导法则。

13.了解高阶导数的概念,熟练掌握初等函数的一阶和高阶导数的求法。

14.理解微分的定义、可微与可导的关系,了解微分的四则运算法则及一阶微分形式的不 变性;会求函数的微分。

第1页共4页
15.理解罗尔(Rolle)定理、拉格朗日中值(Lagrange)定理,了解柯西(Cauchy)中值定理和泰勒(Taylor)中值定理。

会用罗尔定理证明方程根的存在性,会用拉格朗日中值定理证明一些简单不等式。

16.熟练掌握用洛必达(L’Hospital)法则求未定式的极限。

17.理解函数极值的概念、极值存在的必要条件及充分条件。

18.会求函数的单调区间和极值,会求函数的最大值与最小值,会解决一些简单的应用问题,会证明一些简单的不等式。

19.了解函数的凹凸性及曲线拐点的定义,会求函数的凹凸区间及曲线的拐点。

20.会求曲线的渐近线,会描绘一些简单函数的图形。

二、一元函数积分学
1.理解原函数和不定积分的概念及性质。

2.熟练掌握不定积分的基本公式。

3.熟练掌握不定积分的换元积分法和分部积分法。

4.理解变上限积分函数的定义,掌握求变上限积分函数导数的方法。

5.理解定积分的概念和几何意义,掌握定积分的基本性质。

6.熟练掌握牛顿-莱布尼兹(Newton-Leibniz)公式,掌握定积分的换元法和分部积分法。

7.掌握定积分的微元法,会求平面图形的面积及平面图形绕坐标轴旋转的旋转体的体积。

8.理解无穷区间上有界函数的广义积分与有限区间上无界函数的瑕积分的概念,掌握其计算方法。

三、向量代数与空间解析几何
1.理解空间直角坐标系及向量的概念,掌握向量的坐标表示法,会求向量的模、方向余弦。

2.掌握向量的线性运算、向量的数量积、向量积的计算方法,理解其几何意义。

3.熟练掌握二向量平行、垂直的条件。

4.会求平面的点法式方程、一般式方程、截距式方程。

会判定两个平面位置关系。

5.了解直线的一般式方程,会求直线的对称式(点向式)方程、参数式方程。

会判定两条直线的位置关系。

6.会判定直线与平面的位置关系。

四、多元函数微积分学
1.理解二元函数的概念,会求一些简单二元函数的定义域。

2.了解二元函数的极限、连续的定义及其基本性质。

3.熟练掌握显函数的一阶、高阶偏导数的求法。

4.会求二元函数的极值,会用拉格朗日乘数法求条件极值。

5.熟练掌握二元函数全微分的求法。

6.熟练掌握二重积分的计算方法。

第2页共4页
五、微分方程
1.理解微分方程的定义及阶、解、通解、特解等概念。

2.熟练掌握可分离变量的微分方程、齐次微分方程及一阶线性微分方程的解法。

3.理解二阶常系数齐次线性微分方程解的性质及通解的结构。

4.熟练掌握二阶常系数齐次线性微分方程的解法。

六、无穷级数
1.理解无穷级数收敛、发散的概念。

2.理解级数收敛的必要条件和级数的主要性质。

1 3.知道几何级数 aq n 1 , p -级数 的敛散性。

p n 1 n 1 n
4.熟练掌握正项级数的比值判别法,比较判别法。

5.理解幂级数的收敛半径、收敛区间及收敛域的定义。

6.熟练掌握求幂级数的收敛半径、收敛区间及收敛域的方法。

七、线性代数
1.理解行列式的概念,掌握行列式的性质。

2.掌握行列式的计算。

3.会用克莱姆(Cramer )法则。

4.熟练掌握矩阵的线性运算及运算法则、矩阵的乘法及运算法则。

5.理解方阵可逆的概念和判定法则,掌握求可逆矩阵的逆矩阵的方法。

6.理解矩阵的秩的概念,掌握求矩阵秩的方法。

7.会解简单的矩阵方程。

8.熟练掌握矩阵的初等变换。

9.掌握齐次线性方程组有非零解的判定条件及解的结构,掌握非齐次线性方程组解的
判定和结构。

10.熟练掌握线性方程组的解法。

八、概率论初步
1.理解随机事件的概念,掌握事件之间的关系和运算。

2.了解概率的统计定义,掌握概率的基本性质和概率的加法公式。

3.掌握古典概率的计算公式,会求一些事件发生的概率。

4.理解事件独立性的概念,能用事件的独立性计算概率。

5.理解随机变量的概念,会求一些简单随机变量的分布。

6.理解随机变量的数学期望及方差的概念,掌握数学期望和方差的基本性质,会求一
些简单随机变量的数学期望和方差。

*注:本大纲对理论、概念等从高到低的要求是:理解,知道,了解;对方法、计算等
从高到低的要求是:熟练掌握,掌握,会。

第3页共4页
Ⅲ.考试形式与试卷结构
一、试卷题型及分值分布
1.试卷题型
单选题、填空题、计算题、应用题、证明题。

2.分值分布
试卷总分为120分。

单选题与填空题约40分。

计算题与应用题约72分。

证明题约8分。

二、考试方式及考试时间
1.考试方式为闭卷笔试。

2.考试时间为 120 分钟。

【参考书目】
1.同济大学数学系高等数学(第六版)高等教育出版社2007 2.彭玉芳等线性代数(第二版)高等教育出版社2003
3.同济大学数学系概率论与数理统计同济大学出版社2015
第4页共4页。

相关文档
最新文档