高中数学必修4测试题及答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学必修4测试题
一.选择题: 1.
3π的正弦值等于()(A )23(B )21(C )23-(D )2
1
-
2.215°是()
(A )第一象限角(B )第二象限角 (C )第三象限角(D )第四象限角
3.角α的终边过点P (4,-3),则αcos 的值为( ) (A )4
(B )-3
(C )
54(D )5
3
- 4.若sin α<0,则角α的终边在( ) (A )第一、二象限(B )第二、三象限 (C )第二、四象限(D )第三、四象限 5.函数y=cos2x 的最小正周期是() (A )π(B )
2π(C )4
π
(D )π2 6.给出下面四个命题:① =+;②=+B ;③=;
④00=⋅。其中正确的个数为() (A )1个(B )2个(C )3个(D )4个 7.向量)2,1(-=a ,)1,2(=b ,则() (A )a ∥(B )⊥ (C )与的夹角为60°
(D )与的夹角为30°
8. ( ) (A )cos160︒(B )cos160-︒ (C )cos160±︒(D )cos160±︒
9.函数)cos[2()]y x x ππ=
-+是()
(A )周期为
4π的奇函数(B )周期为4π
的偶函数 (C )周期为2π的奇函数(D )周期为2
π
的偶函数
10.函数)sin(ϕω+=x A y 在一个周期内的图象如下,此函数的解析式为() (A ))3
22sin(2π+=x y (B ))32sin(2π
+=x y
(C ))32sin(2π-=x y (D ))3
2sin(2π
-=x y 二.填空题
11.已知点A (2,-4),B (-6,2),则AB 的中点M 的坐标为; 12.若)3,2(=a 与),4(y b -=共线,则y =;
13.若21tan =
α,则α
αααcos 3sin 2cos sin -+= ; 1421==b a ,a 与b 的夹角为3
π
b a b a -+=。
15.函数x x y sin 2sin 2
-=的值域是∈y ; 三.解答题 16.(1)已知4
cos
5
,且为第三象限角,求sin 的值 (2)已知3tan =α,计算α
αα
αsin 3cos 5cos 2sin 4+-的值.
17.已知向量a , b 的夹角为60, 且||2a =, ||1b =,
(1) 求a b ; (2) 求||a b +.
18.已知(1,2)a =,)2,3(-=b ,当k 为何值时,
(1) ka b +与3a b -垂直?
(2) ka b +与3a b -平行?平行时它们是同向还是反向?
19.设)1,3(=,)2,1(-=,⊥,∥,试求满足
=+的的坐标(O 为坐标原点)。
20.某港口的水深y (米)是时间t (024t ≤≤,单位:小时)的函数,下面是每天时间与水深的关系表:
经过长期观测,()y f t =可近似的看成是函数sin y A t b ω=+ (1)根据以上数据,求出()y f t =的解析式
(2)若船舶航行时,水深至少要11.5米才是安全的,那么船舶在一天中的哪几段时间可以安全的进出该港?
21. 已知(3sin ,cos )a x m x =+,(cos ,cos )b x m x =-+, 且()f x a b =
(1) 求函数()f x 的解析式; (2) 当,63x ππ⎡⎤
∈-
⎢⎥⎣⎦
时, ()f x 的最小值是-4 , 求此时函数()f x 的最大值, 并求出相应的x 的值.
1-10:ACCDABBBCA
11.(-2,-1)12. -6 13.-3 14.
2115.[-1,3]
16.解:(1)∵22
cos sin 1αα+=,α为第三象限角
∴3sin 5
α===- (2)显然cos 0α≠
∴4sin 2cos 4sin 2cos 4tan 24325cos 5cos 3sin 5cos 3sin 53tan 5337
cos αα
αααααααααα---⨯-====++++⨯
17.解: (1) 1
||||cos602112
a b a b ==⨯⨯=
(2) 22
||()a b a b +=+
22
242113
a a
b b =-+=-⨯+=
所以||3a b +=
18.(1,2)(3,2)(3,22)ka b k k k +=+-=-+
3(1,2)3(3,2)(10,4)a b -=--=-
(1)()ka b +⊥(3)a b -,
得()ka b +(3)10(3)4(22)2380,19a b k k k k -=--+=-== (2)()//ka b +(3)a b -,得14(3)10(22),3
k k k --=+=-
此时1041
(,)(10,4)333
ka b +=-
=--,所以方向相反。 19.解:设),(y x OC =,由题意得:⎩⎨
⎧=--=-⋅⇒⎪⎩⎪⎨⎧==⋅)1,3()2,1(),(0
)2.1(),(0λλy x y x OA
BC )7,14(7142312=⇒⎩⎨⎧==⇒⎪⎩
⎪
⎨⎧=-=+=⇒y x y x y
x λ
λ)6,11(=-=OA OC OD
20. 解:(1)由表中数据可以看到:水深最大值为13,最小值为7,137
102
h +=
=,137
32
A -=
=