中考解直角三角形试题汇编

合集下载

初三数学14 解直角三角形-2024年中考数学真题分项汇编(全国通用)(原卷版)

初三数学14 解直角三角形-2024年中考数学真题分项汇编(全国通用)(原卷版)

专题14 解直角三角形一.选择题1.(2022·广西贵港)如图,某数学兴趣小组测量一棵树CD 的高度,在点A 处测得树顶C 的仰角为45︒,在点B 处测得树顶C 的仰角为60︒,且A ,B ,D 三点在同一直线上,若16m AB =,则这棵树CD 的高度是( )A .8(3B .8(3C .6(3D .6(3+2.(2022·广西贵港)如图,在44⨯网格正方形中,每个小正方形的边长为1,顶点为格点,若ABC 的顶点均是格点,则cos BAC ∠的值是( )A B C D .453.(2022·福建)如图,现有一把直尺和一块三角尺,其中90ABC ∠=︒,60CAB ∠=︒,AB =8,点A 对应直尺的刻度为12.将该三角尺沿着直尺边缘平移,使得△ABC 移动到A B C ''' ,点A '对应直尺的刻度为0,则四边形ACC A ''的面积是( )A .96B .C .192D .4.(2022·广西)如图,某博物馆大厅电梯的截面图中,AB的长为12米,AB与AC的夹角为α,则高BC 是()A.12sinα米B.12cosα米C.12sinα米D.12cosα米5.(2022·贵州毕节)如图,某地修建一座高5mBC=的天桥,已知天桥斜面AB的坡度为AB的长度为( )A.10m B.C.5m D.6.(2022·黑龙江牡丹江)小明去爬山,在山脚看山顶角度为30°,小明在坡比为5∶12的山坡上走1300米,此时小明看山顶的角度为60°,求山高( )A.(600-米B.250)米C.(350+米D.7.(2022·湖北十堰)如图,坡角为α的斜坡上有一棵垂直于水平地面的大树AB,当太阳光线与水平线成45°角沿斜坡照下,在斜坡上的树影BC长为m,则大树AB的高为()A .()cos sin m αα-B .()sin cos m αα-C .()cos tan m αα-D .sin cos m m αα-8.(2022·湖北荆州)如图,在平面直角坐标系中,点A ,B 分别在x 轴负半轴和y 轴正半轴上,点C 在OB 上,:1:2OC BC =,连接AC ,过点O 作OP AB ∥交AC 的延长线于P .若()1,1P ,则tan OAP ∠的值是( )A B C .13D .39.(2022·广西玉林)如图,从热气球A 看一栋楼底部C 的俯角是( )A .BAD ∠B .ACB ∠C .BAC ∠D .DAC∠10.(2022·辽宁)如图,在矩形ABCD 中,6,8AB BC ==,分别以点A 和C 为圆心,以大于12AC 的长为半径作弧,两弧相交于点M 和N ,作直线MN 分别交,AD BC 于点E ,F ,则AE 的长为( )A .74B .94C .154D .25411.(2022·福建)如图所示的衣架可以近似看成一个等腰三角形ABC ,其中AB =AC ,27ABC ∠=︒,BC =44cm ,则高AD 约为( )(参考数据:sin 270.45︒≈,cos 270.89︒≈,tan 270.51︒≈)A .9.90cmB .11.22cmC .19.58cmD .22.44cm12.(2022·湖北武汉)由4个形状相同,大小相等的菱形组成如图所示的网格,菱形的顶点称为格点,点A ,B ,C 都在格点上,∠O =60°,则tan ∠ABC =( )A .13B .12C D 二.填空题13.(2022·黑龙江绥化)定义一种运算;sin()sin cos cos sin αβαβαβ+=+,sin()sin cos cos sin αβαβαβ-=-.例如:当45α=︒,30β=︒时,()sin 4530︒+︒=12=sin15︒的值为_______.14.(2022·湖南)我国魏晋时期的数学家赵爽在为天文学著作《周髀算经》作注解时,用4个全等的直角三角形和中间的小正方形拼成一个大正方形,这个图被称为“弦图”,它体现了中国古代数学的成就.如图,已知大正方形ABCD 的面积是100,小正方形EFGH 的面积是4,那么tan ADF ∠=__.15.(2022·辽宁)如图,1A 为射线ON 上一点,1B 为射线OM 上一点,1111160,3,1B AO OA B A ∠=︒==.以11B A 为边在其右侧作菱形1111D C B A ,且1111160,B A D C D ∠=︒与射线OM 交于点2B ,得112C B B ;延长21B D 交射线ON 于点2A ,以22B A 为边在其右侧作菱形2222A B C D ,且2222260,B A D C D ∠=︒与射线OM 交于点3B ,得223C B B ;延长32B D 交射线ON 于点3A ,以33B A 为边在其右侧作菱形3333A B C D ,且3333360,B A D C D ∠=︒与射线OM 交于点4B ,得334C B B △;…,按此规律进行下去,则202220222023C B B △的面积___________.16.(2022·山东青岛)如图,已知,,16,,ABC AB AC BC AD BC ABC ==⊥∠△的平分线交AD 于点E ,且4DE =.将C ∠沿GM 折叠使点C 与点E 恰好重合.下列结论正确的有:__________(填写序号)①8BD = ②点E 到AC 的距离为3 ③103=EM ④EM AC ∥17.(2022·广西桂林)如图,某雕塑MN 位于河段OA 上,游客P 在步道上由点O 出发沿OB 方向行走.已知∠AOB =30°,MN =2OM =40m ,当观景视角∠MPN 最大时,游客P 行走的距离OP 是_____米.18.(2022·贵州黔东南)如图,校园内有一株枯死的大树AB ,距树12米处有一栋教学楼CD ,为了安全,学校决定砍伐该树,站在楼顶D 处,测得点B 的仰角为45°,点A 的俯角为30°,小青计算后得到如下结论:①18.8AB ≈米;②8.4CD ≈米;③若直接从点A 处砍伐,树干倒向教学楼CD 方向会对教学楼有影响;④若第一次在距点A 的8米处的树干上砍伐,不会对教学楼CD 造成危害.其中正确的是_______.(填写序号,1.7≈ 1.4≈)三.解答题19.(2022·辽宁锦州)某数学小组要测量学校路灯P M N --的顶部到地面的距离,他们借助皮尺、测角仅进行测量,测量结果如下:测量项目测量数据从A 处测得路灯顶部P 的仰角α58α=︒从D 处测得路灯顶部P 的仰角β31β=︒测角仪到地面的距离1.6m AB DC ==两次测量时测角仪之间的水平距离2mBC =计算路灯顶部到地面的距离PE 约为多少米(结果精确到0.1米.参考数据;cos310.86,tan 310.60,cos580.53,tan58 1.60︒≈︒≈︒≈︒≈)20.(2022·山东临沂)如图是一座独塔双索结构的斜拉索大桥,主塔采用倒“Y”字形设计,某学习小组利用课余时间测量主塔顶端到桥面的距离.勘测记录如下表:活动内容测量主塔顶端到桥面的距离成员组长:××× 组员:××××××××××××测量工具测角仪,皮尺等测量示意图说明:左图为斜拉索桥的侧面示意图,点A 、C ,D ,B在同一条直线上,EF AB ⊥,点A ,C 分别与点B ,D关于直线EF 对称A ∠的大小28°AC 的长度84m 测量数据CD 的长度12m 请利用表中提供的信息,求主塔顶端E 到AB 的距离(参考数据:sin 280.47︒≈,cos 280.88︒≈,tan 280.53︒≈).21.(2022·山东聊城)我市某辖区内的兴国寺有一座宋代仿木楼阁式空心砖塔,塔旁有一棵唐代古槐,称为“宋塔唐槐”(如图①).数学兴趣小组利用无人机测量古槐的高度,如图②所示,当无人机从位于塔基B 点与古槐底D 点之间的地面H 点,竖直起飞到正上方45米E 点处时,测得塔AB 的顶端A 和古槐CD 的顶端C 的俯角分别为26.6°和76°(点B ,H ,D 三点在同一直线上).已知塔高为39米,塔基B 与树底D 的水平距离为20米,求古槐的高度(结果精确到1米).(参考数据:sin 26.60.45︒≈,cos26.60.89︒≈,tan 26.60.50︒≈,sin 760.97︒≈,cos 760.24︒≈,tan 76 4.01︒≈)22.(2022·内蒙古通辽)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长度(结果保留小数点1.7≈).23.(2022·湖南)计算:0112cos 45( 3.14)1(2π-︒+-+-.24.(2022·湖南)阅读下列材料:在ABC 中,A ∠、B 、C ∠所对的边分别为a 、b 、c ,求证:sin sin a b A B=.证明:如图1,过点C 作CD AB ⊥于点D ,则:在Rt BCD ∆中, CD =a sin B在Rt ACD ∆中,sin CD b A =sin sin a B b A ∴=∴sin sin a b A B=根据上面的材料解决下列问题:(1)如图2,在ABC ∆中,A ∠、B ∠、C ∠所对的边分别为a 、b 、c ,求证:sin sin b c B C=;(2)为了办好湖南省首届旅游发展大会,张家界市积极优化旅游环境.如图3,规划中的一片三角形区域需美化,已知67A ∠=︒,53B ∠=︒,80AC =米,求这片区域的面积.(结果保留根号.参考数据:sin530.8︒≈,sin670.9)︒≈25.(2022·黑龙江大庆)如图,为了修建跨江大桥,需要利用数学方法测量江的宽度AB .飞机上的测量人员在C 处测得A ,B 两点的俯角分别为45︒和30︒.若飞机离地面的高度CD 为1000m ,且点D ,A ,B 在同一水平直线上,试求这条江的宽度AB (结果精确到1m 1.7321≈≈)26.(2022·湖南郴州)如图是某水库大坝的横截面,坝高20m CD =,背水坡BC 的坡度为11:1i =.为了对水库大坝进行升级加固,降低背水坡的倾斜程度,设计人员准备把背水坡的坡度改为2i =新起点A 与原起点B 之间的距离. 1.41≈ 1.73≈.结果精确到0.1m )27.(2022·海南)无人机在实际生活中应用广泛.如图8所示,小明利用无人机测量大楼的高度,无人机在空中P 处,测得楼CD 楼顶D 处的俯角为45︒,测得楼AB 楼顶A 处的俯角为60︒.已知楼AB 和楼CD 之间的距离BC 为100米,楼AB 的高度为10米,从楼AB 的A 处测得楼CD 的D 处的仰角为30︒(点A 、B 、C 、D 、P 在同一平面内).(1)填空:APD ∠=___________度,ADC ∠=___________度;(2)求楼CD 的高度(结果保留根号);(3)求此时无人机距离地面BC 的高度.28.(2022·辽宁)如图,一艘货轮在海面上航行,准备要停靠到码头C ,货轮航行到A 处时,测得码头C 在北偏东60°方向上.为了躲避A ,C 之间的暗礁,这艘货轮调整航向,沿着北偏东30°方向继续航行,当它航行到B 处后,又沿着南偏东70°方向航行20海里到达码头C .求货轮从A 到B 航行的距离(结果精确到0.1海里.参考数据:sin50°≈0.766,cos50°≈0.643,tan50°≈1.192).29.(2022·四川遂宁)数学兴趣小组到一公园测量塔楼高度.如图所示,塔楼剖面和台阶的剖面在同一平面,在台阶底部点A 处测得塔楼顶端点E 的仰角50.2GAE ∠=︒,台阶AB 长26米,台阶坡面AB 的坡度5:12i =,然后在点B 处测得塔楼顶端点E 的仰角63.4EBF ∠=︒,则塔顶到地面的高度EF 约为多少米.(参考数据:tan 50.2 1.20︒≈,tan 63.4 2.00︒≈,sin 50.20.77︒≈,sin 63.40.89︒≈)30.(2022·四川广安)八年级二班学生到某劳动教育实践基地开展实践活动,当天,他们先从基地门口A 处向正北方向走了450米,到达菜园B 处锄草,再从B 处沿正西方向到达果园C 处采摘水果,再向南偏东37°方向走了300米,到达手工坊D 处进行手工制作,最后从D 处回到门口A 处,手工坊在基地门口北偏西65°方向上.求菜园与果园之间的距离.(结果保留整数)参考数据:sin65°≈ 0.91,cos65°≈0.42,tan65°≈2.14,sin37°≈ 0.60,cos37°≈ 0.80,tan37°≈0.7531.(2022·内蒙古呼和浩特)“一去紫台连朔漠,独留青冢向黄昏”,美丽的昭君博物院作为著名景区现已成为外地游客到呼和浩特市旅游的打卡地.如图,为测量景区中一座雕像AB 的高度,某数学兴趣小组在D 处用测角仪测得雕像顶部A 的仰角为30︒,测得底部B 的俯角为10︒.已知测角仪CD 与水平地面垂直且高度为1米,求雕像AB 的高.(用非特殊角的三角函数及根式表示即可)32.(2022·贵州铜仁)为了测量高速公路某桥的桥墩高度,某数学兴趣小组在同一水平地面C 、D 两处实地测量,如图所示.在C 处测得桥墩顶部A 处的仰角为60︒和桥墩底部B 处的俯角为40︒,在D 处测得桥墩顶部A 处的仰角为30︒,测得C 、D 两点之间的距离为80m ,直线AB 、CD 在同一平面内,请你用以上数据,计算桥墩AB 的高度.(结果保留整数,参考数据:sin 400.64,cos 400.77,tan 40 1.73︒≈︒≈︒≈≈)33.(2022·贵州遵义)如图1所示是一种太阳能路灯,它由灯杆和灯管支架两部分构成如图2,AB 是灯杆,CD 是灯管支架,灯管支架CD 与灯杆间的夹角60BDC ∠=︒.综合实践小组的同学想知道灯管支架CD 的长度,他们在地面的点E 处测得灯管支架底部D 的仰角为60°,在点F 处测得灯管支架顶部C 的仰角为30°,测得3AE =m ,8EF =m (A ,E ,F 在同一条直线上).根据以上数据,解答下列问题:(1)求灯管支架底部距地面高度AD 的长(结果保留根号);(2)求灯管支架CD 的长度(结果精确到0.1m ,参考数据:1.73≈).34.(2022·山东烟台)如图,某超市计划将门前的部分楼梯改造成无障碍通道.已知楼梯共有五级均匀分布的台阶,高AB =0.75m ,斜坡AC 的坡比为1:2,将要铺设的通道前方有一井盖,井盖边缘离楼梯底部的最短距离ED =2.55m .为防止通道遮盖井盖,所铺设通道的坡角不得小于多少度?(结果精确到1)(参考数据表)计算器按键顺序计算结果(已精确到0.001)11.3100.00314.7440.00535.(2022·湖北恩施)如图,湖中一古亭,湖边一古柳,一沉静,一飘逸、碧波荡漾,相映成趣.某活动小组赏湖之余,为了测量古亭与古柳间的距离,在古柳A 处测得古亭B 位于北偏东60°,他们向南走50m 到达D点,测得古亭B位于北偏东45°,求古亭与古柳之间的距离AB 1.41≈,≈,结果精确到1m).1.7336.(2022·吉林)动感单车是一种新型的运动器械.图①是一辆动感单车的实物图,图②是其侧面示意图.△BCD为主车架,AB为调节管,点A,B,C在同一直线上.已知BC长为70cm,∠BCD的度数为58°.当AB长度调至34cm时,求点A到CD的距离AE的长度(结果精确到1cm).(参考数据:sin58°=0.85,cos58°=0.53,tan58°=1.60)37.(2022·山西)随着科技的发展,无人机已广泛应用于生产和生活,如代替人们在高空测量距离和角度.某校“综合与实践”活动小组的同学要测星AB,CD两座楼之间的距离,他们借助无人机设计了如下测量方案:无人机在AB,CD两楼之间上方的点O处,点O距地面AC的高度为60m,此时观测到楼AB底部点A处的俯角为70°,楼CD上点E处的俯角为30°,沿水平方向由点O飞行24到达点F,测得点E处俯角为60°,其中点A,B,C,D,E,F,O均在同一竖直平面内.请根据以上数据求楼AB与CD之间的距离AC的长(结果精确到1m.参考数据:sin700.94cos700.34tan70 2.75 1.73,,).︒≈︒≈︒≈≈38.(2022·河南)开封清明上河园是依照北宋著名画家张择端的《清明上河图》建造的,拂云阁是园内最高的建筑.某数学小组测量拂云阁DC的高度,如图,在A处用测角仪测得拂云阁顶端D的仰角为34°,沿AC 方向前进15m到达B处,又测得拂云阁顶端D的仰角为45°.已知测角仪的高度为1.5m,测量点A,B与︒≈,拂云阁DC的底部C在同一水平线上,求拂云阁DC的高度(结果精确到1m.参考数据:sin340.56︒≈,tan340.67︒≈).cos340.8339.(2022·四川宜宾)宜宾东楼始建于唐代,重建于宜宾建城2200周年之际的2018年,新建成的东楼(如图1)成为长江首城会客厅、旅游休闲目的地、文化地标打卡地.某数学小组为测量东楼的高度,在梯步A 处(如图2)测得楼顶D的仰角为45°,沿坡比为7:24的斜坡AB前行25米到达平台B处,测得楼顶D的仰角为60°,求东楼的高度DE.(结果精确到1 1.7≈ 1.4≈)40.(2022·湖南岳阳)喜迎二十大,“龙舟故里”赛龙舟.丹丹在汩罗江国际龙舟竞渡中心广场点P处观看200米直道竞速赛.如图所示,赛道AB为东西方向,赛道起点A位于点P的北偏西30 方向上,终点B位于点P AB=米,则点P到赛道AB的距离约为______米(结果保留整数,参考数据:的北偏东60︒方向上,200≈).1.73241.(2022·湖北荆州)荆州城徽“金凤腾飞”立于古城东门外.如图,某校学生测量其高AB(含底座),先在点C处用测角仪测得其顶端A的仰角为32°,再由点C向城徽走6.6m到E处,测得顶端A的仰角为45°,已知B,E,C三点在同一直线上,测角仪离地面的高度CD=EF=1.5m,求城徽的高AB.(参考数据:︒≈,tan320.625︒≈)︒≈,cos320.848sin320.53042.(2022·广西贺州)如图,在小明家附近有一座废旧的烟囱,为了乡村振兴,美化环境,政府计划把这片区域改造为公园.现决定用爆破的方式拆除该烟囱,为确定安全范围,需测量烟囱的高度AB,因为不能直接到达烟囱底部B 处,测量人员用高为1.2m 的测角器在与烟囱底部B 成一直线的C ,D 两处地面上,分别测得烟囱顶部A 的仰角60,30B C A B D A ''''∠=︒∠=︒,同时量得CD 为60m .问烟囱AB 的高度为多少米?(精确到0.1m 1.732≈≈)43.(2022·内蒙古包头)如图,AB 是底部B 不可到达的一座建筑物,A 为建筑物的最高点,测角仪器的高1.5DH CG ==米.某数学兴趣小组为测量建筑物AB 的高度,先在H 处用测角仪器测得建筑物顶端A 处的仰角ADE ∠为α,再向前走5米到达G 处,又测得建筑物顶端A 处的仰角ACE ∠为45︒,已知7tan ,9AB BH α=⊥,H ,G ,B 三点在同一水平线上,求建筑物AB 的高度.44.(2022·湖北武汉)小红同学在数学活动课中测量旗杆的高度,如图,己知测角仪的高度为1.58米,她在A点观测杆顶E的仰角为30°,接着朝旗杆方向前进20米到达C处,在D点观测旗杆顶端E的仰角为60°,求旗杆EF的高度.(结果保留小数点后一位) 1.732)45.(2022·江苏泰州)小强在物理课上学过平面镜成像知识后,在老师的带领下到某厂房做验证实验.如图,老师在该厂房顶部安装一平面镜MN,MN与墙面AB所成的角∠MNB=118°,厂房高AB= 8 m,房顶AM与水平地面平行,小强在点M的正下方C处从平面镜观察,能看到的水平地面上最远处D到他的距离CD是多少?(结果精确到0.1 m,参考数据:sin34°≈0.56,tan34°≈0.68,tan56°≈1.48)46.(2022·山东威海)小军同学想利用所学的“锐角三角函数”知识测量一段两岸平行的河流宽度.他先在河岸设立A ,B 两个观测点,然后选定对岸河边的一棵树记为点M .测得AB =50m ,∠MAB =22°,∠MBA =67°.请你依据所测数据求出这段河流的宽度(结果精确到0.1m ).参考数据:sin22°≈38,cos22°≈1516,tan22°≈25,sin67°≈1213,cos67°≈513,tan67°≈125.47.(2022·黑龙江绥化)如图所示,为了测量百货大楼CD 顶部广告牌ED 的高度,在距离百货大楼30m 的A 处用仪器测得30DAC ∠=︒;向百货大楼的方向走10m ,到达B 处时,测得48EBC ∠=︒,仪器高度忽略不计,求广告牌ED 的高度.(结果保留小数点后一位)1.732≈,sin 480.743︒≈,cos 480.669︒≈,tan 48 1.111︒≈)48.(2022·湖南长沙)为了进一步改善人居环境,提高居民生活的幸福指数.某小区物业公司决定对小区环境进行优化改造.如图,AB 表示该小区一段长为20m 的斜坡,坡角30BAD BD AD ∠=︒⊥,于点D .为方便通行,在不改变斜坡高度的情况下,把坡角降为15︒.(1)求该斜坡的高度BD ;(2)求斜坡新起点C 与原起点A 之间的距离.(假设图中C ,A ,D 三点共线)49.(2022·广西梧州)今年,我国“巅峰使命”2022珠峰科考团对珠穆朗玛峰进行综合科学考察,搭建了世界最高海拔的自动气象站,还通过释放气球方式进行了高空探测.某学校兴趣小组开展实践活动,通过观测数据,计算气球升空的高度AB .如图,在平面内,点B ,C ,D 在同一直线上,AB CB ⊥垂足为点B ,52ACB ∠=︒,60ADB ∠=︒,200m CD = ,求AB 的高度.(精确到1m )(参考数据:sin520.79︒≈﹐cos520.62︒≈﹐tan 52 1.28︒≈ 1.73≈)50.(2022·湖北鄂州)亚洲第一、中国唯一的航空货运枢纽一一鄂州花湖机场,于2022年3月19日完成首次全货运试飞,很多市民共同见证了这一历史时刻.如图,市民甲在C 处看见飞机A 的仰角为45°,同时另一市民乙在斜坡CF 上的D 处看见飞机A 的仰角为30°,若斜坡CF 的坡比=1:3,铅垂高度DG =30米(点E 、G 、C 、B 在同一水平线上).求:(1)两位市民甲、乙之间的距离CD ;(2)此时飞机的高度AB ,(结果保留根号)51.(2022·四川广元)如图,计划在山顶A 的正下方沿直线CD 方向开通穿山隧道EF .在点E 处测得山顶A 的仰角为45°,在距E 点80m 的C 处测得山顶A 的仰角为30°,从与F 点相距10m 的D 处测得山顶A 的仰角为45°,点C 、E 、F 、D 在同一直线上,求隧道EF 的长度.52.(2022·四川眉山)数学实践活动小组去测量眉山市某标志性建筑物的高CD.如图,在楼前平地A处测得楼顶C处的仰角为30 ,沿AD方向前进60m到达B处,测得楼顶C处的仰角为45︒,求此建筑物的高. 1.41≈)≈ 1.73。

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28 解直角三角形(58题)(原卷版)--2024年中考数学真题分类汇编

专题28解直角三角形(58题)一、单选题1.(2024·吉林长春·中考真题)2024年5月29日16时12分,“长春净月一号”卫星搭乘谷神星一号火箭在黄海海域成功发射.当火箭上升到点A 时,位于海平面R 处的雷达测得点R 到点A 的距离为a 千米,仰角为θ,则此时火箭距海平面的高度AL 为()A .sin a θ千米B .sin aθ千米C .cos a θ千米D .cos aθ千米2.(2024·天津·2cos451- 的值等于()A .0B .1C .212-D 213.(2024·甘肃临夏·中考真题)如图,在ABC 中,5AB AC ==,4sin 5B =,则BC 的长是()A .3B .6C .8D .94.(2024·四川自贡·中考真题)如图,等边ABC 钢架的立柱CD AB ⊥于点D ,AB 长12m .现将钢架立柱缩短成DE ,60BED ∠=︒.则新钢架减少用钢()A .(243m-B .(243m-C .(2463m-D .(243m-5.(2024·四川德阳·中考真题)某校学生开展综合实践活动,测量一建筑物CD 的高度,在建筑物旁边有一高度为10米的小楼房AB ,小李同学在小楼房楼底B 处测得C 处的仰角为60︒,在小楼房楼顶A 处测得C 处的仰角为30︒.(AB CD 、在同一平面内,B D 、在同一水平面上),则建筑物CD 的高为()米A .20B .15C .12D .10+6.(2024·广东深圳·中考真题)如图,为了测量某电子厂的高度,小明用高1.8m 的测量仪EF 测得的仰角为45︒,小军在小明的前面5m 处用高1.5m 的测量仪CD 测得的仰角为53︒,则电子厂AB 的高度为()(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈)A .22.7mB .22.4mC .21.2mD .23.0m7.(2024·内蒙古包头·中考真题)如图,在矩形ABCD 中,,E F 是边BC 上两点,且BE EF FC ==,连接,,DE AF DE 与AF 相交于点G ,连接BG .若4AB =,6BC =,则sin GBF ∠的值为()A .10B .10C .13D .238.(2024·黑龙江大兴安岭地·中考真题)如图,菱形ABCD 中,点O 是BD 的中点,AM BC ⊥,垂足为M ,AM 交BD 于点N ,2OM =,8BD =,则MN 的长为()A 5B 455C 355D 259.(2024·四川乐山·中考真题)如图,在菱形ABCD 中,60ABC ∠=︒,1AB =,点P 是BC 边上一个动点,在BC 延长线上找一点Q ,使得点P 和点Q 关于点C 对称,连接DP AQ 、交于点M .当点P 从B 点运动到C 点时,点M 的运动路径长为()A .36B 33C 32D 310.(2024·山东泰安·中考真题)如图,菱形ABCD 中,=60B ∠︒,点E 是AB 边上的点,4AE =,8BE =,点F 是BC 上的一点,EGF △是以点G 为直角顶点,EFG ∠为30︒角的直角三角形,连结AG .当点F 在直线BC 上运动时,线段AG 的最小值是()A .2B .432-C .23D .411.(2024·四川泸州·512-的美感.如图,把黄金矩形ABCD 沿对角线AC 翻折,点B 落在点B '处,AB '交CD 于点E ,则sin DAE ∠的值为()A 55B .12C .35D 25512.(2024·黑龙江大兴安岭地·中考真题)如图,在正方形ABCD 中,点H 在AD 边上(不与点A 、D 重合),90BHF ∠=︒,HF 交正方形外角的平分线DF 于点F ,连接AC 交BH 于点M ,连接BF 交AC 于点G ,交CD 于点N ,连接BD .则下列结论:①45HBF ∠=︒;②点G 是BF 的中点;③若点H 是AD 的中点,则sinNBC ∠BN =;⑤若12AH D H =,则112BND AHM S S =△△,其中正确的结论是()A .①②③④B .①③⑤C .①②④⑤D .①②③④⑤二、填空题13.(2024·黑龙江绥化·中考真题)如图,用热气球的探测器测一栋楼的高度,从热气球上的点A 测得该楼顶部点C 的仰角为60︒,测得底部点B 的俯角为45︒,点A 与楼BC 的水平距离50m AD =,则这栋楼的高度为m (结果保留根号).14.(2024·内蒙古赤峰·中考真题)综合实践课上,航模小组用无人机测量古树AB 的高度.如图,点C 处与古树底部A 处在同一水平面上,且10AC =米,无人机从C 处竖直上升到达D 处,测得古树顶部B 的俯角为45︒,古树底部A 的俯角为65︒,则古树AB 的高度约为米(结果精确到0.1米;参考数据:sin 650.906︒≈,cos 650.423︒≈,tan 65 2.145︒≈).15.(2024·湖北武汉·中考真题)黄鹤楼是武汉市著名的旅游景点,享有“天下江山第一楼”的美誉.在一次综合实践活动中,某数学小组用无人机测量黄鹤楼AB 的高度,具体过程如下:如图,将无人机垂直上升至距水平地面102m 的C 处,测得黄鹤楼顶端A 的俯角为45︒,底端B 的俯角为63︒,则测得黄鹤楼的高度是m .(参考数据:tan632︒≈)16.(2024·四川内江·中考真题)如图,在矩形ABCD 中,3AB =,5AD =,点E 在DC 上,将矩形ABCD 沿AE 折叠,点D 恰好落在BC 边上的点F 处,那么tan ∠=EFC .17.(2024·江苏盐城·中考真题)如图,小明用无人机测量教学楼的高度,将无人机垂直上升距地面30m 的点P 处,测得教学楼底端点A 的俯角为37︒,再将无人机沿教学楼方向水平飞行26.6m 至点Q 处,测得教学楼顶端点B 的俯角为45︒,则教学楼AB 的高度约为m .(精确到1m ,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)18.(2024·北京·中考真题)如图,在正方形ABCD 中,点E 在AB 上,AF D E ⊥于点F ,CG DE ⊥于点G .若5AD =,CG 4=,则AEF △的面积为.19.(2024·甘肃临夏·中考真题)如图,对折边长为2的正方形纸片ABCD ,OM 为折痕,以点O 为圆心,OM 为半径作弧,分别交AD ,BC 于E ,F 两点,则 EF的长度为(结果保留π).20.(2024·黑龙江齐齐哈尔·中考真题)如图,数学活动小组在用几何画板绘制几何图形时,发现了如“花朵”形的美丽图案,他们将等腰三角形OBC 置于平面直角坐标系中,点O 的坐标为(00),,点B 的坐标为(1)0,,点C 在第一象限,120OBC ∠=︒.将OBC △沿x 轴正方向作无滑动滚动,使它的三边依次与x 轴重合,第一次滚动后,点O 的对应点为O ',点C 的对应点为C ',OC 与O C ''的交点为1A ,称点1A 为第一个“花朵”的花心,点2A 为第二个“花朵”的花心;……;按此规律,OBC △滚动2024次后停止滚动,则最后一个“花朵”的花心的坐标为.21.(2024·黑龙江大兴安岭地·中考真题)矩形ABCD 中,3AB =,4BC =,将AB 沿过点A 的一条直线折叠,折痕交直线BC 于点P (点P 不与点B 重合),点B 的对称点落在矩形对角线所在的直线上,则PC 长为.22.(2024·山东泰安·中考真题)在综合实践课上,数学兴趣小组用所学数学知识测量大汶河某河段的宽度,他们在河岸一侧的瞭望台上放飞一只无人机,如图,无人机在河上方距水面高60米的点P 处测得瞭望台正对岸A 处的俯角为50︒,测得瞭望台顶端C 处的俯角为63.6︒,已知瞭望台BC 高12米(图中点A ,B ,C ,P 在同一平面内),那么大汶河此河段的宽AB 为米.(参考数据:3sin 405︒≈,9sin 63.610︒≈,6tan 505︒≈,tan 63.62︒≈)23.(2024·四川达州·中考真题)如图,在Rt ABC △中,90C ∠=︒.点D 在线段BC 上,45BAD ∠=︒.若4AC =,1CD =,则ABC 的面积是.24.(2024·贵州·中考真题)如图,在菱形ABCD 中,点E ,F 分别是BC ,CD 的中点,连接AE ,AF .若4sin 5EAF ∠=,5AE =,则AB 的长为.25.(2024·广东深圳·中考真题)如图,在ABC 中,AB BC =,5tan 12B ∠=,D 为BC 上一点,且满足85BD CD =,过D 作DE AD ⊥交AC 延长线于点E ,则CEAC=.26.(2024·黑龙江绥化·中考真题)在矩形ABCD 中,4cm AB =,8cm BC =,点E 在直线AD 上,且2cm DE =,则点E 到矩形对角线所在直线的距离是cm .三、解答题27.(2024·内蒙古通辽·0322sin60(π)-+︒--.28.(2024·四川甘孜·中考真题)如图,一艘海轮位于灯塔P 的北偏东37︒方向,距离灯塔100海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45︒方向上的B 处.这时,B 处距离A 处有多远?(参考数据:sin 370.60︒≈,cos370.80︒≈,tan 370.75︒≈)29.(2024·北京·中考真题)计算:()0582sin 302π-︒+-30.(2024·湖南长沙·中考真题)计算:()011(32cos 30π 6.84-+-︒-.31.(2024·广东深圳·中考真题)计算:()112cos 45 3.14124π-⎛⎫-⋅︒+-++ ⎪⎝⎭.32.(2024·黑龙江大兴安岭地·中考真题)先化简,再求值:22222111m m m m m m ⎛⎫-+÷- ⎪-+⎝⎭,其中cos60m =︒.33.(2024·吉林·中考真题)图①中的吉林省广播电视塔,又称“吉塔”.某直升飞机于空中A 处探测到吉塔,此时飞行高度873m AB =,如图②,从直升飞机上看塔尖C 的俯角37EAC ∠=︒,看塔底D 的俯角45EAD ∠=︒,求吉塔的高度CD (结果精确到0.1m ).(参考数据:sin 370.60︒=,cos370.80︒=,tan 370.75︒=)34.(2024·青海·018tan 452π︒+--.35.(2024·内蒙古呼伦贝尔·中考真题)计算:301tan6032(π2024)2-⎛⎫--+︒-+- ⎪⎝⎭.36.(2024·内蒙古呼伦贝尔·中考真题)综合实践活动中,数学兴趣小组利用无人机测量大楼的高度.如图,无人机在离地面40米的D 处,测得操控者A 的俯角为30︒,测得楼BC 楼顶C 处的俯角为45︒,又经过人工测量得到操控者A 和大楼BC 之间的水平距离是80米,则楼BC 的高度是多少米?(点A B C D ,,,都3 1.7≈)37.(2024·内蒙古通辽·中考真题)在“综合与实践”活动课上,活动小组测量一棵杨树的高度.如图,从C 点测得杨树底端B 点的仰角是30︒,BC 长6米,在距离C 点4米处的D 点测得杨树顶端A 点的仰角为45︒,求杨树AB 的高度(精确到0.1米,AB ,BC ,CD 在同一平面内,点C ,D 在同一水平线上.参考数据:3 1.73)≈.38.(2024·湖南·中考真题)某数学研究性学习小组在老师的指导下,利用课余时间进行测量活动.活动主题测算某水池中雕塑底座的底面积测量工具皮尺、测角仪、计算器等活动过程模型抽象某休闲广场的水池中有一雕塑,其底座的底面为矩形ABCD ,其示意图如下:测绘过程与数据信息①在水池外取一点E ,使得点C ,B ,E 在同一条直线上;②过点E 作GH CE ⊥,并沿EH 方向前进到点F ,用皮尺测得EF 的长为4米;③在点F 处用测角仪测得60.3CFG ∠=︒,45BFG ∠=︒,21.8AFG ∠=︒;④用计算器计算得:sin60.30.87︒≈,cos60.30.50︒≈,tan60.3 1.75︒≈.sin21.80.37︒≈,cos21.80.93︒≈,tan21.80.40︒≈.请根据表格中提供的信息,解决下列问题(结果保留整数):(1)求线段CE 和BC 的长度:(2)求底座的底面ABCD 的面积.39.(2024·贵州·中考真题)综合与实践:小星学习解直角三角形知识后,结合光的折射规律进行了如下综合性学习.【实验操作】第一步:将长方体空水槽放置在水平桌面上,一束光线从水槽边沿A 处投射到底部B 处,入射光线与水槽内壁AC 的夹角为A ∠;第二步:向水槽注水,水面上升到AC 的中点E 处时,停止注水.(直线NN '为法线,AO 为入射光线,OD 为折射光线.)【测量数据】如图,点A ,B ,C ,D ,E ,F ,O ,N ,N '在同一平面内,测得20cm AC =,45A ∠=︒,折射角32DON ∠=︒.【问题解决】根据以上实验操作和测量的数据,解答下列问题:(1)求BC 的长;(2)求B ,D 之间的距离(结果精确到0.1cm ).(参考数据:sin 320.52︒≈,cos320.84︒≈,tan 320.62︒≈)40.(2024·河南·中考真题)如图1,塑像AB 在底座BC 上,点D 是人眼所在的位置.当点B 高于人的水平视线DE 时,由远及近看塑像,会在某处感觉看到的塑像最大,此时视角最大.数学家研究发现:当经过A ,B 两点的圆与水平视线DE 相切时(如图2),在切点P 处感觉看到的塑像最大,此时APB ∠为最大视角.(1)请仅就图2的情形证明APB ADB ∠>∠.(2)经测量,最大视角APB ∠为30︒,在点P 处看塑像顶部点A 的仰角APE ∠为60︒,点P 到塑像的水平距离PH 为6m .求塑像AB 的高(结果精确到0.1m 3 1.73≈).41.(2024·天津·中考真题)综合与实践活动中,要用测角仪测量天津海河上一座桥的桥塔AB 的高度(如图①).某学习小组设计了一个方案:如图②,点,,C D E 依次在同一条水平直线上,36m,DE EC AB =⊥,垂足为C .在D 处测得桥塔顶部B 的仰角(CDB ∠)为45︒,测得桥塔底部A 的俯角(CDA ∠)为6︒,又在E 处测得桥塔顶部B 的仰角(CEB ∠)为31︒.(1)求线段CD 的长(结果取整数);(2)求桥塔AB 的高度(结果取整数).参考数据:tan310.6,tan60.1︒≈︒≈.42.(2024·四川乐山·中考真题)我国明朝数学家程大位写过一本数学著作《直指算法统宗》,其中有一道与荡秋千有关的数学问题是使用《西江月》词牌写的:平地秋千未起,踏板一尺离地.送行二步与人齐,五尺人高曾记.仕女佳人争蹴,终朝笑语欢嬉.良工高士素好奇,算出索长有几?词写得很优美,翻译成现代汉语的大意是:有一架秋千,当它静止时,踏板离地1尺,将它往前推进10尺(5尺为一步),秋千的踏板就和某人一样高,这个人的身高为5尺.(假设秋千的绳索拉的很直)(1)如图1,请你根据词意计算秋千绳索OA 的长度;(2)如图2,将秋千从与竖直方向夹角为α的位置OA '释放,秋千摆动到另一侧与竖直方向夹角为β的地方OA '',两次位置的高度差PQ h =.根据上述条件能否求出秋千绳索OA 的长度?如果能,请用含α、β和h 的式子表示;如果不能,请说明理由.43.(2024·山东·中考真题)【实践课题】测量湖边观测点A 和湖心岛上鸟类栖息点P 之间的距离【实践工具】皮尺、测角仪等测量工具【实践活动】某班甲小组根据湖岸地形状况,在岸边选取合适的点B .测量A ,B 两点间的距离以及∠PAB 和PBA ∠,测量三次取平均值,得到数据:60AB =米,79PAB ∠=︒,64PBA ∠=︒.画出示意图,如图【问题解决】(1)计算A ,P 两点间的距离.(参考数据:sin640.90︒≈,sin790.98︒≈,cos790.19︒≈,sin370.60︒≈,tan370.75︒≈)【交流研讨】甲小组回班汇报后,乙小组提出了另一种方案:如图2,选择合适的点D ,E ,F ,使得A ,D ,E 在同一条直线上,且AD DE =,DEF DAP ∠=∠,当F ,D ,P 在同一条直线上时,只需测量EF 即可.(2)乙小组的方案用到了________.(填写正确答案的序号)①解直角三角形②三角形全等【教师评价】甲、乙两小组的方案都很好,对于实际测量,要根据现场地形状况选择可实施的方案.44.(2024·北京·中考真题)如图,在四边形ABCD 中,E 是AB 的中点,DB ,CE 交于点F ,DF FB =,AF DC .(1)求证:四边形AFCD 为平行四边形;(2)若90EFB ∠=︒,tan 3FEB ∠=,1EF =,求BC 的长.45.(2024·甘肃临夏·中考真题)乾元塔(图1)位于临夏州临夏市的北山公园内,共九级,为砼框架式结构,造型独特别致,远可眺太子山露骨风月,近可收临夏市城建全貌,巍巍峨峨,傲立苍穹.某校数学兴趣小组在学习了“解直角三角形”之后,开展了测量乾元塔高度AB 的实践活动.A 为乾元塔的顶端,AB BC ⊥,点C ,D 在点B 的正东方向,在C 点用高度为1.6米的测角仪(即 1.6CE =米)测得A 点仰角为37︒,向西平移14.5米至点D ,测得A 点仰角为45︒,请根据测量数据,求乾元塔的高度AB .(结果保留整数,参考数据:sin370.60︒≈,cos370.80︒≈,tan370.75︒≈)46.(2024·安徽·中考真题)科技社团选择学校游泳池进行一次光的折射实验,如图,光线自点B 处发出,经水面点E 折射到池底点A 处.已知BE 与水平线的夹角36.9α=︒,点B 到水面的距离 1.20BC =m ,点A 处水深为1.20m ,到池壁的水平距离 2.50m AD =,点B C D ,,在同一条竖直线上,所有点都在同一竖直平面内.记入射角为β,折射角为γ,求sin sin βγ的值(精确到0.1,参考数据:sin 36.90.60︒≈,cos36.90.80︒≈,tan 36.90.75︒≈).47.(2024·浙江·中考真题)如图,在ABC 中,AD BC ⊥,AE 是BC 边上的中线,10,6,tan 1AB AD ACB ==∠=.(1)求BC 的长;(2)求sin DAE ∠的值.48.(2024·甘肃·中考真题)习近平总书记于2021年指出,中国将力争2030年前实现碳达峰、2060年前实现碳中和.甘肃省风能资源丰富,风力发电发展迅速.某学习小组成员查阅资料得知,在风力发电机组中,“风电塔筒”非常重要,它的高度是一个重要的设计参数.于是小组成员开展了“测量风电塔筒高度”的实践活动.如图,已知一风电塔筒AH 垂直于地面,测角仪CD ,EF 在AH 两侧, 1.6m CD EF ==,点C 与点E 相距182m (点C ,H ,E 在同一条直线上),在D 处测得简尖顶点A 的仰角为45︒,在F 处测得筒尖顶点A 的仰角为53︒.求风电塔筒AH 的高度.(参考数据:sin 5345︒≈,cos5335︒≈,tan 5343︒≈.)49.(2024·河北·中考真题)中国的探月工程激发了同学们对太空的兴趣.某晚,淇淇在家透过窗户的最高点P 恰好看到一颗星星,此时淇淇距窗户的水平距离4m BQ =,仰角为α;淇淇向前走了3m 后到达点D ,透过点P 恰好看到月亮,仰角为β,如图是示意图.已知,淇淇的眼睛与水平地面BQ 的距离 1.6m ==AB CD ,点P 到BQ 的距离 2.6m PQ =,AC 的延长线交PQ 于点E .(注:图中所有点均在同一平面)(1)求β的大小及tan α的值;(2)求CP 的长及sin APC ∠的值.50.(2024·四川广元·中考真题)计算:()2012024π32tan 602-⎛⎫-++︒- ⎪⎝⎭.51.(2024·四川广元·中考真题)小明从科普读物中了解到,光从真空射入介质发生折射时,入射角α的正弦值与折射角β的正弦值的比值sin sin αβ叫做介质的“绝对折射率”,简称“折射率”.它表示光在介质中传播时,介质对光作用的一种特征.(1)若光从真空射入某介质,入射角为α,折射角为β,且7cos 4α=30β=︒,求该介质的折射率;(2)现有一块与(1)中折射率相同的长方体介质,如图①所示,点A ,B ,C ,D 分别是长方体棱的中点,若光线经真空从矩形2121A D D A 对角线交点O 处射入,其折射光线恰好从点C 处射出.如图②,已知60α=︒,10cm CD =,求截面ABCD 的面积.52.(2024·内蒙古包头·中考真题)如图,学校数学兴趣小组开展“实地测量教学楼AB 的高度”的实践活动.教学楼周围是开阔平整的地面,可供使用的测量工具有皮尺、测角仪(皮尺的功能是直接测量任意可到达的两点间的距离;测角仪的功能是测量角的大小).(1)请你设计测量教学楼AB 的高度的方案,方案包括画出测量平面图,把应测数据标记在所画的图形上(测出的距离用,m n 等表示,测出的角用,αβ等表示),并对设计进行说明;(2)根据你测量的数据,计算教学楼AB 的高度(用字母表示).53.(2024·甘肃·中考真题)马家窑文化以发达的彩陶著称于世,其陶质坚固,器表细腻,红、黑、白彩共用,彩绘线条流畅细致,图案繁缛多变,形成了绚丽典雅的艺术风格,创造了一大批令人惊叹的彩陶艺术精品,体现了古代劳动人民的智慧.如图1的彩陶纹样呈现的是三等分圆周,古人用等边三角形三点定位的方法确定圆周的三等分点,这种方法和下面三等分圆周的方法相通.如图2,已知O 和圆上一点M .作法如下:①以点M 为圆心,OM 长为半径,作弧交O 于A ,B 两点;②延长MO 交O 于点C ;即点A ,B ,C 将O 的圆周三等分.(1)请你依据以上步骤,用不带刻度的直尺和圆规在图2中将O 的圆周三等分(保留作图痕迹,不写作法);(2)根据(1)画出的图形,连接AB ,AC ,BC ,若O 的半径为2cm ,则ABC 的周长为______cm .54.(2024·黑龙江牡丹江·中考真题)如图,某数学活动小组用高度为1.5米的测角仪BC ,对垂直于地面CD 的建筑物AD 的高度进行测量,BC CD ⊥于点C .在B 处测得A 的仰角=45ABE ∠︒,然后将测角仪向建筑物方向水平移动6米至FG 处,FG CD ⊥于点G ,测得A 的仰角58AFE ∠=︒,BF 的延长线交AD 于点E ,求建筑物AD 的高度(结果保留小数点后一位).(参考数据:sin580.85,cos580.53,tan58 1.60︒≈︒≈︒≈)55.(2024·广东·中考真题)中国新能源汽车为全球应对气候变化和绿色低碳转型作出了巨大贡献.为满足新能源汽车的充电需求,某小区增设了充电站,如图是矩形PQMN 充电站的平面示意图,矩形ABCD 是其中一个停车位.经测量,60ABQ ∠=︒, 5.4m AB =, 1.6m CE =,GH CD ⊥,GH 是另一个车位的宽,所有车位的长宽相同,按图示并列划定.根据以上信息回答下列问题:(结果精确到0.1m 3 1.73≈)(1)求PQ 的长;(2)该充电站有20个停车位,求PN 的长.56.(2024·广东广州·中考真题)2024年6月2日,嫦娥六号着陆器和上升器组合体(简称为“着上组合体”)成功着陆在月球背面.某校综合实践小组制作了一个“着上组合体”的模拟装置,在一次试验中,如图,该模拟装置在缓速下降阶段从A 点垂直下降到B 点,再垂直下降到着陆点C ,从B 点测得地面D 点的俯角为36.87︒,17AD =米,10BD =米.(1)求CD 的长;(2)若模拟装置从A 点以每秒2米的速度匀速下降到B 点,求模拟装置从A 点下降到B 点的时间.(参考数据:sin 36.870.60︒≈,cos36.870.80︒≈,tan 36.870.75︒≈)57.(2024·青海·中考真题)如图,某种摄像头识别到最远点A 的俯角α是17︒,识别到最近点B 的俯角β是45︒,该摄像头安装在距地面5m 的点C 处,求最远点与最近点之间的距离AB (结果取整数,参考数据:sin170.29︒≈,cos170.96︒≈,tan170.31︒≈).58.(2024·陕西·中考真题)问题提出(1)如图1,在ABC 中,15AB =,30C ∠=︒,作ABC 的外接圆O .则 ACB 的长为________;(结果保留π)问题解决(2)如图2所示,道路AB 的一侧是湿地.某生态研究所在湿地上建有观测点D ,E ,C ,线段AD AC ,和BC 为观测步道,其中点A 和点B 为观测步道出入口,已知点E 在AC 上,且AE EC =,60DAB ∠=︒,120ABC ∠=︒,1200m AB =,900m AD BC ==,现要在湿地上修建一个新观测点P ,使60DPC ∠=︒.再在线段AB 上选一个新的步道出入口点F ,并修通三条新步道PF PD PC ,,,使新步道PF 经过观测点E ,并将五边形ABCPD 的面积平分.请问:是否存在满足要求的点P 和点F ?若存在,求此时PF 的长;若不存在,请说明理由.(点A ,B ,C ,P ,D 在同一平面内,道路AB 与观测步道的宽、观测点及出入口的大小均忽略不计,结果保留根号)。

中考数学解直角三角形汇编

中考数学解直角三角形汇编

cos63.4 0.45, tan 63.4 2.00 , 2 1.41 , 3 1.73 )
4. (2019 甘肃中考 7 分)某数学课题研究小组针对兰州市住房窗户“如何设计遮阳篷”这课题进行了探究,过程如下:
问题提出: 如图 1 是某住户窗户上方安装的遮阳蓬,要求设计的遮阳篷既能最大限度地遮挡夏天 炎热的阳光,又能最大限度地使冬天温暖的阳光射入室内. 方案设计: 如图 2,该数学课题研究小组通过调查研究设计了垂直于墙面 AC 的遮阳篷 CD 数据收集: 通过查阅相关资料和实际测量:兰州市一年中,夏至这一天的正午时刻,太阳光线 DA 与遮阳篷 CD 的夹角∠ADC 最大(∠ADC=°):冬至这一天的正午时刻,太阳光线 DB 与遮阳篷 CD 的夹角 ∠BDC 最小(∠BDC=°);窗户的高度 AB=2m 问题解决: 根据上述方案及数据,求遮阳篷 CD 的长. (结果精确到,参考数据:°≈ ,°≈, °≈
OP 为下水管道口直径,OB 为可绕轴 O 自由转动的阀 门,平时阀门被 管道中排出的水冲开,可排出城市污 水;当河水上涨时,阀门会因河水 的压迫而关闭,以 防止河水倒灌入城中,若阀门的直径OB=OP=100cm, OA 为检修时阀门开启的位置,且OA=OB. (1)直接写出阀门被下水道的水冲开与被河水关 闭过程中∠POB 的 取值范围; (2)为了观测水位,当下水道的水冲开阀门到达 OB 位置是,在点A 处测得俯角∠CAB=°,若此时点 B 恰 好与下水道的水平面齐平, 求此时下水道内水的深 度,(结果保留小数点后一位)
7.(2019 广西贺州中考 8)如图,在 A 处的正东方向有一港口 B.某巡逻艇从 A 处沿着北偏 东 60°方向巡逻,到达 C 处时接到命令,立刻在 C 处沿东南方向以 20 海里/小时的速度 行驶 3 小时到达港口 B.求 A,B 间的距离.(≈,≈,结果保留一位小数).

专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题15 解直角三角形-三年(2019-2021)中考真题数学分项汇编(全国通用)(原卷版)

专题15.解直角三角形一、单选题1.(2021·浙江温州市·中考真题)图1是第七届国际数学教育大会(ICME )的会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图2所示的四边形OABC .若1AB BC ==.AOB α∠=,则2OC 的值为( )A .211sin α+B .2sin 1α+C .211cos α+D .2cos 1α+2.(2021·浙江金华市·中考真题)如图是一架人字梯,已知2AB AC ==米,AC 与地面BC 的夹角为α,则两梯脚之间的距离BC 为( )A .4cos α米B .4sin α米C .4tan α米D .4cos α米 3.(2021·湖北随州市·中考真题)如图,某梯子长10米,斜靠在竖直的墙面上,当梯子与水平地面所成角为α时,梯子顶端靠在墙面上的点A 处,底端落在水平地面的点B 处,现将梯子底端向墙面靠近,使梯子与地面所成角为β,已知3sin cos 5αβ==,则梯子顶端上升了( ) A .1米 B .1.5米 C .2米 D .2.5米4.(2021·湖南株洲市·中考真题)某限高曲臂道路闸口如图所示,AB 垂直地面1l 于点A ,BE 与水平线2l 的夹角为()090αα︒≤≤︒,12////EF l l ,若 1.4AB =米,2BE =米,车辆的高度为h (单位:米),不考虑闸口与车辆的宽度.①当90α=︒时,h 小于3.3米的车辆均可以通过该闸口;②当45α=︒时,h 等于2.9米的车辆不可以通过该闸口;③当60α=︒时,h 等于3.1米的车辆不可以通过该闸口.则上述说法正确的个数为( )A .0个B .1个C .2个D .3个5.(2021·湖南衡阳市·中考真题)如图是某商场营业大厅自动扶梯的示意图.自动扶梯AB 的倾斜角为37︒,大厅两层之间的距离BC 为6米,则自动扶梯AB 的长约为(sin370.6,cos370.8,tan370.75︒≈︒≈︒≈)( ).A .7.5米B .8米C .9米D .10米6.(2021·天津中考真题)tan30︒的值等于( )A B .2 C .1 D .27.(2021·重庆中考真题)如图,在建筑物AB 左侧距楼底B 点水平距离150米的C 处有一山坡,斜坡CD 的坡度(或坡比)为1:2.4i =,坡顶D 到BC 的垂直距离50DE =米(点A ,B ,C ,D ,E 在同一平面内),在点D 处测得建筑物顶A 点的仰角为50°,则建筑物AB 的高度约为(参考数据:sin500.77︒≈;cos500.64︒≈;tan50 1.19︒≈)A .69.2米B .73.1米C .80.0米D .85.7米8.(2021·云南中考真题)在ABC 中,90ABC ∠=︒,若s n 3100,5i A A C ==,则AB 的长是( ) A .5003 B .5035 C .60 D .809.(2021·山东泰安市·中考真题)如图,为了测量某建筑物BC 的高度,小颖采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,沿斜坡AD 行走130米至坡顶D 处,再从D 处沿水平方向继续前行若干米后至点E 处,在E 点测得该建筑物顶端C 的仰角为60°,建筑物底端B 的俯角为45°,点A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度1:2.4i =.根据小颖的测量数据,计算出建筑物BC 的高度约为( )1.732≈)A .136.6米B .86.7米C .186.7米D .86.6米10.(2021·重庆中考真题)如图,相邻两个山坡上,分别有垂直于水平面的通信基站MA 和N D .甲在山脚点C 处测得通信基站顶端M 的仰角为60°,测得点C 距离通信基站MA 的水平距离CB 为30m ;乙在另一座山脚点F 处测得点F 距离通信基站ND 的水平距离FE 为50m ,测得山坡DF 的坡度i =1:1.25.若58ND DE =,点C ,B ,E ,F 在同一水平线上,则两个通信基站顶端M 与顶端N 的高度差为( )(参1.73≈≈)A .9.0mB .12.8mC .13.1mD .22.7m11.(2021·四川泸州市·中考真题)在锐角ABC 中,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,有以下结论:2sinA sinB sinCa cb R ===(其中R 为ABC 的外接圆半径)成立.在ABC 中,若∠A =75°,∠B =45°,c =4,则ABC 的外接圆面积为( ) A .163π B .643π C .16π D .64π12.(2020·柳州市柳林中学中考真题)如图,在Rt △ABC 中,∠C =90°,AB =4,AC =3,则cos B =BC AB=( )A .35B .45CD .3413.(2020·山东济南市·中考真题)如图,△ABC、△FED区域为驾驶员的盲区,驾驶员视线PB与地面BE 的央角∠PBE=43°,视线PE与地面BE的夹角∠PEB=20°,点A,F为视线与车窗底端的交点,AF//BE,AC⊥BE,FD⊥BE.若A点到B点的距离AB=1.6m,则盲区中DE的长度是()(参考数据:sin43°≈0.7,tan43°≈0.9,sin20°≈0.3,tan20°≈0.4)A.2.6m B.2.8m C.3.4m D.4.5m14.(2020·贵州黔南布依族苗族自治州·中考真题)如图,数学活动小组利用测角仪和皮尺测量学校旗杆的高度,在点D处测得旗杆顶端A的仰角ADE∠为55°,测角仪CD的高度为1米,其底端C与旗杆底端B 之间的距离为6米,设旗杆AB的高度为x米,则下列关系式正确的是()A.6tan551x︒=-B.1tan556x-︒=C.1sin556x-︒=D.1cos556x-︒=15.(2020·辽宁大连市·中考真题)如图,小明在一条东西走向公路的O处,测得图书馆A在他的北偏东60︒方向,且与他相距200m,则图书馆A到公路的距离AB为()A.100m B.C.D.m316.(2020·内蒙古赤峰市·中考真题)如图,A经过平面直角坐标系的原点O,交x轴于点B(-4,0),交y 轴于点C(0,3),点D为第二象限内圆上一点.则∠CDO的正弦值是()A.35B.34-C.34D.4517.(2020·江苏镇江市·中考真题)如图①,AB=5,射线AM∥BN,点C在射线BN上,将△ABC沿AC所在直线翻折,点B的对应点D落在射线BN上,点P,Q分别在射线AM、BN上,PQ∥AB.设AP=x,QD =y.若y关于x的函数图象(如图②)经过点E(9,2),则cos B的值等于()A .25B .12C .35D .71018.(2020·吉林长春市·中考真题)比萨斜塔是意大利的著名建筑,其示意图如图所示.设塔顶中心点为点B ,塔身中心线AB 与垂直中心线AC 的夹角为A ∠,过点B 向垂直中心线AC 引垂线,垂足为点D .通过测量可得AB 、BD 、AD 的长度,利用测量所得的数据计算A ∠的三角函数值,进而可求A ∠的大小.下列关系式正确的是( )A .sin BD A AB = B .cos AB A AD =C .tan AD A BD = D .sin AD A AB=19.(2020·山东威海市·中考真题)如图,矩形ABCD 的四个顶点分别在直线3l ,4l ,2l ,1l 上.若直线1234//////l l l l 且间距相等,4AB =,3BC =,则tan α的值为( )A .38B .34CD .1520.(2020·广东深圳市·中考真题)如图,为了测量一条河流的宽度,一测量员在河岸边相距200米的P 、Q 两点分别测定对岸一棵树T 的位置,T 在P 的正北方向,且T 在Q 的北偏西70°方向,则河宽(PT 的长)可以表示为( )A .200tan70°米B .200tan 70︒米C .200sin70°米D . 200sin 70︒米 21.(2020·湖南娄底市·中考真题)如图,撬钉子的工具是一个杠杆,动力臂1cos L L α=⋅,阻力臂2cos L l β=⋅,如果动力F 的用力方向始终保持竖直向下,当阻力不变时,则杠杆向下运动时的动力变化情况是( )A .越来越小B .不变C .越来越大D .无法确定22.(2020·江苏扬州市·中考真题)如图,由边长为1的小正方形构成的网格中,点A ,B ,C 都在格点上,以AB 为直径的圆经过点C 、D ,则sin ADC ∠的值为( )A .13BC .23D .3223.(2020·湖南湘西土家族苗族自治州·中考真题)如图,在平面直角坐标系xOy 中,矩形ABCD 的顶点A 在x 轴的正半轴上,矩形的另一个顶点D 在y 轴的正半轴上,矩形的边,,AB a BC b DAO x ==∠=.则点C 到x 轴的距离等于( )A .cos sin a x b xB .cos cos a x b xC .sin cos a x b xD .sin sin a x b x24.(2019·浙江中考真题)如图,矩形ABCD 的对角线交于点O ,已知,,AB m BAC a =∠=∠则下列结论错误..的是( ) A .BDC α∠=∠ B .tan BC m a =⋅ C .2sin m AO α= D .cos m BD a= 25.(2019·山东中考真题)如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A 处看乙楼楼顶B 处仰角为30°,则甲楼高度为( )A .11米B .(36﹣C .米D .(36﹣)米26.(2019·四川绵阳市·中考真题)公元三世纪,我国汉代数学家赵爽在注解《周髀算经》时给出的“赵爽弦图”如图所示,它是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形.如果大正方形的面积是125,小正方形面积是25,则()2sin cos θθ-=( )A .15BCD .9527.(2019·重庆中考真题)如图,AB 是垂直于水平面的建筑物.为测量AB 的高度,小红从建筑物底端B 点出发,沿水平方向行走了52米到达点C ,然后沿斜坡CD 前进,到达坡顶D 点处,DC BC =.在点D 处放置测角仪,测角仪支架DE 高度为0.8米,在E 点处测得建筑物顶端A 点的仰角AEF ∠为27︒(点A ,B ,C ,D ,E 在同一平面内).斜坡CD 的坡度(或坡比)1:2.4i =,那么建筑物AB 的高度约为( ) (参考数据sin 270.45︒≈,cos270.89︒≈,tan 270.51︒≈)A .65.8米B .71.8米C .73.8米D .119.8米三、填空题28.(2021·四川广元市·中考真题)如图,在44⨯的正方形网格图中,已知点A 、B 、C 、D 、O 均在格点上,其中A 、B 、D 又在O 上,点E 是线段CD 与O 的交点.则BAE ∠的正切值为________.29.(2021·浙江衢州市·中考真题)图1是某折叠式靠背椅实物图,图2是椅子打开时的侧面示意图,椅面CE 与地面平行,支撑杆AD ,BC 可绕连接点O 转动,且OA OB =,椅面底部有一根可以绕点H 转动的连杆HD ,点H 是CD 的中点,F A ,EB 均与地面垂直,测得54cm FA =,45cm EB =,48cm AB =. (1)椅面CE 的长度为_________cm .(2)如图3,椅子折叠时,连杆HD 绕着支点H 带动支撑杆AD ,BC 转动合拢,椅面和连杆夹角CHD ∠的度数达到最小值30时,A ,B 两点间的距离为________cm (结果精确到0.1cm ).(参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈)30.(2021·浙江绍兴市·中考真题)图1是一种矩形时钟,图2是时钟示意图,时钟数字2的刻度在矩形ABCD 的对角线BD 上,时钟中心在矩形ABCD 对角线的交点O 上.若30cm AB =,则BC 长为_______cm (结果保留根号).31.(2021·湖北武汉市·中考真题)如图,海中有一个小岛A ,一艘轮船由西向东航行,在B 点测得小岛A 在北偏东60︒方向上;航行12n mile 到达C 点,这时测得小岛A 在北偏东30方向上.小岛A 到航线BC 的距离是__________n mile (3 1.73≈,结果用四舍五入法精确到0.1).32.(2021·四川乐山市·中考真题)如图,已知点(4,3)A ,点B 为直线2y =-上的一动点,点()0,C n ,23n -<<,AC BC ⊥于点C ,连接AB .若直线AB 与x 正半轴所夹的锐角为α,那么当sin α的值最大时,n 的值为________.33.(2021·四川乐山市·中考真题)如图,为了测量“四川大渡河峡谷”石碑的高度,佳佳在点C 处测得石碑顶A 点的仰角为30,她朝石碑前行5米到达点D 处,又测得石顶A 点的仰角为60︒,那么石碑的高度AB 的长=________米.(结果保留根号)34.(2021·浙江中考真题)如图,已知在Rt ABC 中,90,1,2ACB AC AB ∠=︒==,则sin B 的值是______.35.(2021·浙江宁波市·中考真题)如图,在矩形ABCD 中,点E 在边AB 上,BEC △与FEC 关于直线EC 对称,点B 的对称点F 在边AD 上,G 为CD 中点,连结BG 分别与,CE CF 交于M ,N 两点,若BM BE =,1MG =,则BN 的长为________,sin AFE ∠的值为__________.36.(2021·四川乐山市·中考真题)在Rt ABC 中,90C ∠=︒.有一个锐角为60︒,4AB =.若点P 在直线AB 上(不与点A 、B 重合),且30PCB ∠=︒,则CP 的长为________.37.(2021·浙江杭州市·中考真题)sin30°的值为_____.38.(2020·贵州黔南布依族苗族自治州·中考真题)如图所示,在四边形ABCD 中,90B ∠=︒,2AB =,8CD =.连接AC ,AC CD ⊥,若1sin 3ACB ∠=,则AD 长度是_________. 39.(2020·辽宁阜新市·中考真题)如图,为了了解山坡上两棵树间的水平距离,数学活动小组的同学们测得该山坡的倾斜角20α=︒,两树间的坡面距离5m AB =,则这两棵树的水平距离约为_________m (结果精确到0.1m ,参考数据:sin200.342,cos200.940,tan200.364︒≈︒≈︒≈).40.(2020·湖北荆州市·中考真题)“健康荆州,你我同行”,市民小张积极响应“全民健身动起来”号召,坚持在某环形步道上跑步,已知此步道外形近似于如图所示的Rt ABC ∆,其中90︒∠=C ,AB 与BC 间另有步道DE 相连,D 地在AB 的正中位置,E 地与C 地相距1km ,若3tan ,454ABC DEB ︒∠=∠=,小张某天沿A C E B D A →→→→→路线跑一圈,则他跑了_______km .41.(2020·湖北省直辖县级行政单位·中考真题)如图,海中有个小岛A ,一艘轮船由西向东航行,在点B 处测得小岛A 位于它的东北方向,此时轮船与小岛相距20海里,继续航行至点D 处,测得小岛A 在它的北偏西60°方向,此时轮船与小岛的距离AD 为________海里.42.(2020·湖北孝感市·中考真题)某型号飞机的机翼形状如图所示,根据图中数据计算AB 的长为______m .(结果保留根号)三、解答题43.(2021·青海中考真题)如图1是某中学教学楼的推拉门,已知门的宽度2AD =米,且两扇门的大小相同(即AB CD =),将左边的门11ABB A 绕门轴1AA 向里面旋转35︒,将右边的门11CDD C 绕门轴1DD 向外面旋转45︒,其示意图如图2,求此时B 与C 之间的距离(结果保留一位小数).(参考数据sin350.6︒≈,cos350.8︒≈ 1.4≈).44.(2021·四川成都市·中考真题)越来越多太阳能路灯的使用,既点亮了城市的风景,也是我市积极落实节能环保的举措.某校学生开展综合实践活动,测量太阳能路灯电池板离地面的高度.如图,已知测倾器的高度为1.6米,在测点A 处安置测倾器,测得点M 的仰角33MBC ∠=︒,在与点A 相距3.5米的测点D处安置测倾器,测得点M 的仰角45MEC ∠=︒ (点A ,D 与N 在一条直线上),求电池板离地面的高度MN的长.(结果精确到1米;参考数据:sin330.54,cos330.84,tan330.65︒≈︒≈︒≈)45.(2021·山东聊城市·中考真题)时代中学组织学生进行红色研学活动.学生到达爱国主义教育基地后,先从基地门口A 处向正南方向走300米到达革命纪念碑B 处,再从B 处向正东方向走到党史纪念馆C 处,然后从C 处向北偏西37°方向走200米到达人民英雄雕塑D 处,最后从D 处回到A 处.已知人民英雄雕塑在基地门口的南偏东65°方向,求革命纪念碑与党史纪念馆之间的距离(精确到1米).(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75,sin65°≈0.91,cos65°≈0.42,tan65°≈2.14)46.(2021·四川广元市·中考真题)如图,某无人机爱好者在一小区外放飞无人机,当无人机飞行到一定高度D 点处时,无人机测得操控者A 的俯角为75︒,测得小区楼房BC 顶端点C 处的俯角为45︒.已知操控者A 和小区楼房BC 之间的距离为45米,小区楼房BC 的高度为(1)求此时无人机的高度;(2)在(1)条件下,若无人机保持现有高度沿平行于AB 的方向,并以5米/秒的速度继续向前匀速飞行.问:经过多少秒时,无人机刚好离开了操控者的视线?(假定点A ,B ,C ,D都在同一平面内.参考数据:tan 752︒=,tan152︒=.计算结果保留根号)47.(2021·四川资阳市·中考真题)资阳市为实现5G网络全覆盖,2020-2025年拟建设5G基站七千个.如图,在坡度为1:2.4i=的斜坡CB上有一建成的基站塔AB,小芮在坡脚C测得塔顶A的仰角为45︒,然后她沿坡面CB行走13米到达D处,在D处测得塔顶A的仰角为53︒(点A、B、C、D均在同一平面内)(参考数据:434sin53,cos53,tan53553︒≈︒≈︒≈)(1)求D处的竖直高度;(2)求基站塔AB的高.48.(2021·江苏宿迁市·中考真题)一架无人机沿水平直线飞行进行测绘工作,在点P处测得正前方水平地面上某建筑物AB的顶端A的俯角为30°,面向AB方向继续飞行5米,测得该建筑物底端B的俯角为45°,已知建筑物AB的高为3米,求无人机飞行的高度(结果精确到1米,≈1.414≈=1.732).49.(2021·浙江嘉兴市·中考真题)一酒精消毒瓶如图1,AB 为喷嘴,BCD ∆为按压柄,CE 为伸缩连杆,BE 和EF 为导管,其示意图如图2,108DBE BEF ∠=∠=︒,6cm BD =,4cm BE =.当按压柄BCD ∆按压到底时,BD 转动到'BD ,此时'//BD EF (如图3).(1)求点D 转动到点'D 的路径长;(2)求点D 到直线EF 的距离(结果精确到0.1cm ). (参考数据:sin360.59︒≈,cos360.81︒≈,tan360.73︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)50.(2021·江苏连云港市·中考真题)我市的前三岛是众多海钓人的梦想之地.小明的爸爸周末去前三岛钓鱼,将鱼竿AB 摆成如图1所示.已知 4.8m AB =,鱼竿尾端A 离岸边0.4m ,即0.4m AD =.海面与地面AD 平行且相距1.2m ,即 1.2m DH =.(1)如图1,在无鱼上钩时,海面上方的鱼线BC 与海面HC 的夹角37BCH ∠=︒,海面下方的鱼线CO 与海面HC 垂直,鱼竿AB 与地面AD 的夹角22BAD ∠=︒.求点O 到岸边DH 的距离;(2)如图2,在有鱼上钩时,鱼竿与地面的夹角53BAD ∠=︒,此时鱼线被拉直,鱼线 5.46m BO =,点O 恰好位于海面.求点O 到岸边DH 的距离.(参考数据:3sin 37cos535︒=︒≈,4cos37sin 535=︒︒≈,3tan 374︒≈,3sin 228︒≈,15cos2216︒≈,2tan 225︒≈)51.(2021·浙江绍兴市·中考真题)拓展小组研制的智能操作机器人,如图1,水平操作台为l ,底座AB 固定,高AB 为50cm ,连杆BC 长度为70cm ,手臂CD 长度为60cm .点B ,C 是转动点,且AB ,BC 与CD 始终在同一平面内,(1)转动连杆BC ,手臂CD ,使143ABC ∠=︒,//CD l ,如图2,求手臂端点D 离操作台l 的高度DE 的长(精确到1cm ,参考数据:sin530.8︒≈,cos530.6︒≈).(2)物品在操作台l 上,距离底座A 端110cm 的点M 处,转动连杆BC ,手臂CD ,手臂端点D 能否碰到点M ?请说明理由.52.(2021·四川达州市·中考真题)2021年,州河边新建成了一座美丽的大桥.某学校数学兴趣小组组织了一次测桥墩高度的活动,如图,桥墩刚好在坡角为30的河床斜坡边,斜坡BC 长为48米,在点D 处测得桥墩最高点A 的仰角为35︒,CD 平行于水平线BM ,CD 长为AB 的高(结果保留1位小数).(sin350.57︒≈,cos350.82︒≈,tan350.70︒≈ 1.73≈)53.(2021·四川凉山彝族自治州·中考真题)王刚同学在学习了解直角三角形及其应用的知识后,尝试利用所学知识测量河对岸大树AB 的高度,他在点C 处测得大树顶端A 的仰角为45︒,再从C 点出发沿斜坡走D 点,在点D 处测得树顶端A 的仰角为30︒,若斜坡CF 的坡比为1:3i =(点E C H ,,在同一水平线上).(1)求王刚同学从点C 到点D 的过程中上升的高度;(2)求大树AB 的高度(结果保留根号).54.(2021·四川广安市·中考真题)如图①、图②分别是某种型号跑步机的实物图与示意图.已知跑步机手柄AB 与地面DE 平行,踏板CD 长为1.5m ,CD 与地面DE 的夹角15CDE ∠=︒,支架AC 长为1m ,75ACD ∠=︒,求跑步机手柄AB 所在直线与地面DE 之间的距离.(结果精确到0.1m .参考数据:sin150.26︒≈,cos150.97︒≈,tan150.27︒≈ 1.73≈)55.(2021·湖南邵阳市·中考真题)计算:()020212tan 60π--︒.56.(2021·四川眉山市·中考真题)“眉山水街”走红网络,成为全国各地不少游客新的打卡地!游客小何用无人机对该地一标志建筑物进行拍摄和观测,如图,无人机从A 处测得该建筑物顶端C 的俯角为24°,继续向该建筑物方向水平飞行20米到达B 处,测得顶端C 的俯角为45°,已知无人机的飞行高度为60米,则这栋建筑物的高度是多少米?(精确到0.1米,参考数据:2sin 245≈°,9cos 2410︒≈,9tan 2420︒≈)57.(2021·四川眉山市·中考真题)计算:(1143tan 602-⎛⎫-︒--+ ⎪⎝⎭58.(2021·安徽中考真题)学生到工厂劳动实践,学习制作机械零件.零件的截面如图阴影部分所示,已知四边形AEFD 为矩形,点B 、C 分别在EF 、DF 上,90ABC ∠=︒,53BAD ∠=︒,10AB cm =,6BC cm =.求零件的截面面积.参考数据:sin530.80︒≈,cos530.60︒≈.59.(2021·四川泸州市·中考真题)如图,A ,B 是海面上位于东西方向的两个观测点,有一艘海轮在C 点处遇险发出求救信号,此时测得C 点位于观测点A 的北偏东45°方向上,同时位于观测点B 的北偏西60°方向上,且测得C 点与观测点A 的距离为海里.(1)求观测点B 与C 点之间的距离;(2)有一艘救援船位于观测点B 的正南方向且与观测点B 相距30海里的D 点处,在接到海轮的求救信号后立即前往营救,其航行速度为42海里/小时,求救援船到达C 点需要的最少时间.60.(2021·四川遂宁市·中考真题)小明周末与父母一起到遂宁湿地公园进行数学实践活动,在A 处看到B 、C 处各有一棵被湖水隔开的银杏树,他在A 处测得B 在北偏西45°方向, C 在北偏东30°方向,他从A 处走了20米到达B 处,又在B 处测得 C 在北偏东60°方向.(1)求∠C 的度数;(2)求两颗银杏树B 、C 之间的距离(结果保留根号).61.(2021·四川自贡市·中考真题)在一次数学课外实践活动中,小明所在的学习小组从综合楼顶部B 处测得办公楼底部D 处的俯角是53°,从综合楼底部A 处测得办公楼顶部C 处的仰角恰好是30°,综合楼高24米.请你帮小明求出办公楼的高度.(结果精确到0.1,参考数据tan370.75︒≈,tan53 1.33︒≈ 1.73≈)62.(2020·四川广安市·中考真题)如图所示的是某品牌太阳能热水器的实物图和横断面示意图,己知真空集热管AB 与支架CD 所在直线相交于水箱横断面⊙O 的圆心,支架CD 与水平线AE 垂直,AB=154cm ,∠A=30°,另一根辅助支架DE=78cm ,∠E=60°.(1)求CD 的长度.(结果保留根号)(2)求OD 的长度.(结≈1.414)63.(2020·山东日照市·中考真题)阅读理解:如图1,Rt △ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠C =90°,其外接圆半径为R .根据锐角三角函数的定义:sin A =a c ,sin B =b c ,可得sin a A =sin b B =c =2R ,即:sin a A =sin bB =sin c C=2R ,(规定sin90°=1).探究活动:如图2,在锐角△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,其外接圆半径为R ,那么:sin aAsin bB sin c C(用>、=或<连接),并说明理由. 事实上,以上结论适用于任意三角形.初步应用:在△ABC 中,a ,b ,c 分别是∠A ,∠B ,∠C 的对边,∠A =60°,∠B =45°,a =8,求b . 综合应用:如图3,在某次数学活动中,小凤同学测量一古塔CD 的高度,在A 处用测角仪测得塔顶C 的仰角为15°,又沿古塔的方向前行了100m 到达B 处,此时A ,B ,D 三点在一条直线上,在B 处测得塔顶C的仰角为45°,求古塔CD 的高度(结果保留小数点后一位).,sin15°64.(2020·辽宁铁岭市·中考真题)如图,小明利用学到的数学知识测量大桥主架在水面以上的高度AB,在观测点C处测得大桥主架顶端A的仰角为30°,测得大桥主架与水面交汇点B的俯角为14°,观测点与大A B C M在同一平面内)(1)求大桥主架在桥桥主架的水平距离CM为60米,且AB垂直于桥面.(点,,,面以上的高度AM;(结果保留根号)(2)求大桥主架在水面以上的高度AB.(结果精确到1米)50.(2020·辽宁盘锦市·中考真题)如图,某数学活动小组要测量建筑物AB的高度,他们借助测角仪和皮尺进行了实地测量,测量结果如下表.请根据需要,从上面表格中选择3个测量数据,并利用你选择的数据计算出建筑物AB的高度.(结果精确到0.1米,参考数据:︒=︒≈︒≈)(选择一sin670.92,cos670.39,tan67 2.36︒≈︒=︒=.sin220.37,cos220.93,tan220.40种方法解答即可)65.(2020·云南昆明市·中考真题)(材料阅读)2020年5月27日,2020珠峰高程测量登山队成功登顶珠穆朗玛峰,将用中国科技“定义”世界新高度.其基本原理之一是三角高程测量法,在山顶上立一个规标,找到2个以上测量点,分段测量山的高度,再进行累加.因为地球面并不是水平的,光线在空气中会发生折射,所以当两个测量点的水平距离大于300m时,还要考虑球气差,球气差计算公式为f=20.43dR(其中d为两点间的水平距离,R为地球的半径,R取6400000m),即:山的海拔高度=测量点测得山的高度+测量点的海拔高度+球气差.(问题解决)某校科技小组的同学参加了一项野外测量某座山的海拔高度活动.如图,点A,B的水平距离d=800m,测量仪AC=1.5m,觇标DE=2m,点E,D,B在垂直于地面的一条直线上,在测量点A处用测量仪测得山项觇标顶端E的仰角为37°,测量点A处的海拔高度为1800m.(1)数据6400000用科学记数法表示为;(2)请你计算该山的海拔高度.(要计算球气差,结果精确到0.01m)(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)66.(2020·山东烟台市·中考真题)今年疫情期间,针对各种入口处人工测量体温存在的感染风险高、效率低等问题,清华大学牵头研制一款“测温机器人”,如图1,机器人工作时,行人抬手在测温头处测量手腕温度,体温合格则机器人抬起臂杆行人可通行,不合格时机器人不抬臂杆并报警,从而有效阻隔病原体.(1)为了设计“测温机器人”的高度,科研团队采集了大量数据.下表是抽样采集某一地区居民的身高数据:根据你所学的知识,若要更准确的表示这一地区男、女的平均身高,男性应采用厘米,女性应采用厘米;(2)如图2,一般的,人抬手的高度与身高之比为黄金比时给人的感觉最舒适,由此利用(1)中的数据得出测温头点P距地面105厘米.指示牌挂在两臂杆AB,AC的连接点A处,A点距地面110厘米.臂杆落下时两端点B,C在同一水平线上,BC=100厘米,点C在点P的正下方5厘米处.若两臂杆长度相等,求两臂杆的夹角.(参考数据表)67.(2020·海南中考真题)为了促进海口主城区与江东新区联动发展,文明东越江通道将于今年底竣工通车.某校数学实践活动小组利用无人机测算该越江通道的隧道长度.如图, 隧道AB 在水平直线上,且无人机和隧道在同一个铅垂面内,无人机在距离隧道450米的高度上水平飞行,到达点P 处测得点A 的俯角为30,继续飞行1500米到达点Q 处,测得点B 的俯角为45︒.(1)填空:A ∠=__________度,B ∠=_________度;(2)求隧道AB 的长度(结果精确到1米).( 1.732≈≈)68.(2020·山西中考真题)图①是某车站的一组智能通道闸机,当行人通过时智能闸机会自动识别行人身份,识别成功后,两侧的圆弧翼闸会收回到两侧闸机箱内,这时行人即可通过.图②是两圆弧翼展开时的截面图,扇形ABC 和DEF 是闸机的“圆弧翼”,两圆弧翼成轴对称,BC 和EF 均垂直于地面,扇形的圆心角28ABC DEF ∠=∠=︒,半径60BA ED cm ==,点A 与点D 在同一水平线上,且它们之间的距离为10cm .(1)求闸机通道的宽度,即BC 与EF 之间的距离(参考数据:sin 280.47︒≈,cos280.88︒≈,tan 280.53︒≈); (2)经实践调查,一个智能闸机的平均检票速度是一个人工检票口平均检票速度的2倍,180人的团队通过一个智能闸机口比通过一个人工检票口可节约3分钟,求一个智能闸机平均每分钟检票通过的人数.69.(2020·江西中考真题)如图1是一种手机平板支架,由托板、支撑板和底座构成,手机放置在托板上,图2是其侧面结构示意图,量得托板长120mm AB =,支撑板长80mm CD =,底座长90mm DE =,托板AB 固定在支撑板顶端点C 处,且40mm CB =,托板AB 可绕点C 转动,支撑板CD 可绕点D 转动.(结果保留小数点后一位)(1)若80DCB ︒∠=,60CDE ︒∠=,求点A 到直线DE 的距离;(2)为了观看舒适,在(1)的情况下,把AB 绕点C 逆时针旋转10后,再将CD 绕点D 顺时针旋转,使点B 落在直线DE 上即可,求CD 旋转的角度.(参考数据:sin 400.643,cos 400.766︒︒≈≈,tan 400.839︒≈,sin 26.60.448≈,cos 26.60.894,tan 26.60.500︒︒≈≈ 1.732≈)70.(2020·湖南衡阳市·中考真题)小华同学将笔记本电脑水平放置在桌子上,当是示屏的边缘线OB 与底板的边缘线OA 所在水平线的夹角为120°时,感觉最舒适(如图①).侧面示意图为图②;使用时为了散热,他在底板下面垫入散热架,如图③,点B 、O 、C 在同一直线上,24cm OA OB ==,BC AC ⊥,30OAC ∠=︒.(1)求OC 的长;(2)如图④,垫入散热架后,要使显示屏的边缘线OB '与水平线的夹角仍保持120°,求点B '到AC 的距离.(结果保留根号)71.(2019·上海中考真题)图1是某小型汽车的侧面示意图,其中矩形ABCD 表示该车的后备箱,在打开后备箱的过程中,箱盖ADE 可以绕点A 逆时针方向旋转,当旋转角为60°时,箱盖ADE 落在AD E '的位置(如图2所示),已知90AD =厘米,30DE =厘米,40EC =厘米. (1)求点D 到BC 的距离;(2)求E 、E '两点的距离.72.(2019·江西中考真题)图1是一台实物投影仪,图2是它的示意图,折线B A O --表示固定支架,AO 垂直水平桌面OE 于点O ,点B 为旋转点,BC 可转动,当BC 绕点B 顺时针旋转时,投影探头CD 始终垂直于水平桌面OE ,经测量: 6.8cm AO =,8cm CD =,30cm AB =,35cm BC =.(结果精确到0.1)(1)如图2,70ABC ︒∠=,//BC OE .①填空:BAO ∠=_________°;②求投影探头的端点D 到桌面OE 的距离.(2)如图3,将(1)中的BC 向下旋转,当投影探头的端点D 到桌面OE 的距离为6cm 时,求ABC ∠的大小.(参考数据:sin 700.94︒≈,cos200.94︒≈,sin36.80.60︒≈,cos53.20.60︒≈)。

中考数学解直角三角形试题汇编

中考数学解直角三角形试题汇编

中考数学解直角三角形试题分类汇编含答案一、选择题1、(2007山东淄博)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )350m(B )100 m(C )150m (D )3100m解:作出如图所示图形,则∠BAD =90°-60°=30°,AB =100,所以BD =50,cos30°=ADAB,所以,AD =503,CD =200-50=150,在Rt △ADC 中, AC =22AD CD +=22(503)150+=1003,故选(D )。

2、(2007浙江杭州)如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )AA.82米B.163米C.52米D.70米3、(2007南充)一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).B (A )30海里 (B )40海里 (C )50海里 (D )60海里4、(2007江苏盐城)利用计算器求sin30°时,依次按键则计算器上显示的结果是( )AA .0.5B .0.707C .0.866D .15、(2007山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D(A )150m(B )350m(C )100 m(D )3100m6、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( ) A.68米 B.70米 C.121米 D.123米图145︒30︒BAD C(注:数据3 1.732≈,2 1.414≈供计算时选用)B二、填空题1、(2007山东济宁)计算45tan 30cos 60sin -的值是 。

(完整版)初中解直角三角形练习题

(完整版)初中解直角三角形练习题

解直角三角形练习题一、 真空题: 1、 在Rt △ABC 中,∠B =900,AB =3,BC =4,则sinA= 2、在Rt △ABC 中,∠C =900,AB =,35cm BC cm=则SinA= cosA= 3、Rt △ABC 中,∠C =900,SinA=54,AB=10,则BC =4、α是锐角,若sin α=cos150,则α= 若sin53018\=0.8018,则cos36042\=5、 ∠B 为锐角,且2cosB -1=0则∠B =6、在△ABC 中,∠C =900,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,a =9,b =12,则sinA= sinB=7、 Rt △ABC 中,∠C =900,tanA=0.5,则cotA= 8、 在Rt △ABC 中,∠C =900,若b a 32=则tanA= 9.等腰三角形中,腰长为5cm ,底边长8cm ,则它的底角的正切值是10、若∠A 为锐角,且tan 2A+2tanA -3=0则∠A = 11、Rt △ABC 中,∠A =600,c=8,则a = ,b = 12、在△ABC 中,若32=c ,b =3,则tanB= ,面积S = 13、在△ABC 中,AC :BC =1:3,AB =6,∠B = ,AC = BC = 14、在△ABC 中,∠B =900,AC 边上的中线BD =5,AB =8,则tanACB=二、选择题1、在Rt △ABC 中,各边的长度都扩大2倍,那么锐角A 的正弦、余弦值 ( )A 、都扩大2倍B 、都扩大4倍C 、没有变化D 、都缩小一半2、若∠A 为锐角,且cotA <3,则∠A ( )A 、小于300B 、大于300C 、大于450且小于600D 、大于600 3、在Rt △ABC 中,已知a 边及∠A ,则斜边应为 ( ) A 、asinA B 、A a sin C 、acosA D 、Aa cos 4、等腰三角形底边与底边上的高的比是2:3,则顶角为( ) A 、600 B 、900 C 、1200 D 、15005、在△ABC 中,A ,B 为锐角,且有sinA =cosB ,则这个三角形是( )A 、等腰三角形B 、直角三角形C 、钝角三角形D 、锐角三角形6、有一个角是300的直角三角形,斜边为1cm ,则斜边上的高为( )A 、41cmB 、21cmC 、43cmD 、23cm三、求下列各式的值1、sin 2600+cos 26002、sin600-2sin300cos3003. sin300-cos 24504. 2cos450+|32-|5. 0045cos 360sin 2+ 6. 130sin 560cos 300-7. 2sin 2300·tan300+cos600·cot300 8. sin 2450-tan 2300四、解答下列各题1、在Rt △ABC 中,∠C =900,,AB =13,BC =5, 求sinA, cosA, tanA, cotA2. 在Rt △ABC 中,∠C =900,若1312sin =A 求cosA, sinB, cosB3. 在Rt △ABC 中,∠C =900,b=17, ∠B=450,求a, c 与∠A四、根据下列条件解直角三角形。

“解直角三角形”中考试题选编(含答案)

“解直角三角形”中考试题选编(含答案)

“解直角三角形”中考试题选编1、(2008广东)如图,梯形ABCD 是拦水坝的横断面图,(图中3:1=i 是指坡面的铅直高度DE 与水平宽度CE 的比),∠B=60°,AB=6,AD=4,求拦水坝的横断面ABCD 的面积.(结果保留三位有效数字.参考数据:3≈1.732,2≈1.414)2、(2008乌鲁木齐)如图,河流两岸a b ,互相平行,C D ,是河岸a 上间隔50m 的两个电线杆.某人在河岸b 上的A 处测得30DAB ∠=,然后沿河岸走了100m 到达B 处,测得60CBF ∠=,求河流的宽度CF 的值(结果精确到个位).3、(2008青岛)在一次课题学习课上,同学们为教室窗户设计一个遮阳蓬,小明同学绘制的设计图如图所示,其中,AB 表示窗户,且2AB =米,BCD 表示直角遮阳蓬,已知当地一年中在午时的太阳光与水平线CD 的最小夹角α为18.6,最大夹角β为64.5. 请你根据以上数据,帮助小明同学计算出遮阳蓬中CD 的长是多少米?(结果保留两个有效数字)(参考数据:sin18.60.32=,tan18.60.34=,sin 64.50.90=,tan 64.5 2.1=)A DB E i =1:3C B ED C F a b A4、(2008吉林)如图所示,张伯伯利用假日在某钓鱼场钓鱼.风平浪静时,鱼漂露出水面部分6cm AB =,微风吹来时,假设铅锤P 不动,鱼漂移动了一段距离BC ,且顶端恰好与水面平齐(即PA PC =),水平线l 与OC 夹角8α=(点A 在OC 上).请求出铅锤P 处的水深h .(参考数据:2721sin8cos8tan87≈,≈,≈)5、(2008荆州)载着“点燃激情,传递梦想”的使用,6月2日奥运圣火在古城荆州传递,途经A 、B 、C 、D 四地.如图,其中A 、B 、C 三地在同一直线上,D 地在A 地北偏东45º方向,在B 地正北方向,在C 地北偏西60º方向.C 地在A 地北偏东75º方向.B 、D 两地相距2km .问奥运圣火从A 地传到D 地的路程大约是多少?(最后结果....保留整数,1.7≈≈)l C 鱼漂 铅锤 P A Bα O h6(2008辽宁)如图,某数学兴趣小组在活动课上测量学校旗杆高度.已知小明的眼睛与地面的距离()AB 是1.7m ,看旗杆顶部M 的仰角为45;小红的眼睛与地面的距离()CD 是1.5m ,看旗杆顶部M 的仰角为30.两人相距28米且位于旗杆两侧(点B N D ,,在同一条直线上).请求出旗杆MN 的高度.1.41.7,结果保留整数)7、气象台发布的卫星云图显示,代号为W 的台风在某海岛(设为点O )的南偏东45方向的B点生成,测得OB .台风中心从点B 以40km/h 的速度向正北方向移动,经5h 后到达海面上的点C 处.因受气旋影响,台风中心从点C 开始以30km/h 的速度向北偏西60方向继续移动.以O 为原点建立如图12所示的直角坐标系.(1)台风中心生成点B 的坐标为 ,台风中心转折点C 的坐标为 ;(结果保留根号)(2)已知距台风中心20km 的范围内均会受到台风的侵袭.如果某城市(设为点A )位于点O 的正北方向且处于台风中心的移动路线上,那么台风从生成到最初..侵袭该城要经过多长时间?MN BA DC30° 45°C60458、(2007山东威海)如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里)友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈1.7329、(2007苏州)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l .6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D ,C),且∠DAB=66. 5°. (1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)P 北403010、(2005 哈尔滨)如图,拦水坝的横断面为梯形ABCD ,坝顶宽BC 为6m ,坝高为3.2m .为了提高水坝的拦水能力,需要将水坝加高2m ,并且保持坝顶宽度不变,迎水坡CD 的坡度不变,但是背水坡的坡度由原来的12i =∶变成1 2.5i '=∶,(有关数据在图上已注明).求加高后的坝底HD 的长为多少?11、沪杭甬高速公路拓宽宁波段工程进入全面施工阶段,在现有双向四车道的高速公路两侧经加宽形成双向八车道.如图,路基原横断面为等腰梯形ABCD ,AD BC ∥,斜坡DC的坡度为1i ,在其一侧加宽7.75DF =米,点E 、 F 分别在BC 、AD 的延长线上,斜 坡FE 的坡度为221()i i i <.设路基的高DM h =米,拓宽后横断面一侧增加的四边形DCEF 的面积为2S 米.(1) 已知211.7i =∶,3h =米,求ME 的长;(2) 不同路段的1i 、2i 、h 是不同的,请你设计一个求面积S 的公式(用含1i 、2i 、h 的代数式表示).(通常把坡面的铅直高度h 和水平宽度l 的比叫做坡度.坡度常用字线i 表示,即hi l=通常写成1m ∶的形式HAN G F D12(2008黑龙江哈尔滨)如图,一艘轮船位于灯塔P 的北偏东60°方向,与灯塔P 的距离为80海里的A 处,它沿正南方向航行一段时间后,到达位于灯塔P 的南偏东45°方向上的B 处.求此时轮船所在的B 处与灯塔P 的距离(结果保留根号). 13、(2008天津市卷)热气球的探测器显示,从热气球看一栋高楼顶部的仰角为︒30,看这栋高楼底部的俯角为︒60,热气球与高楼的水平距离为66 m ,这栋高楼有多高?(结果精确到0.1 m ,参考数据:73.13≈)14、(2008内蒙赤峰)如图,在海岸边有一港口O .已知:小岛A 在港口O 北偏东30的方向,小岛B 在小岛A 正南方向,60OA =海里,OB = (1)小岛B 在港口O 的什么方向? (2)求两小岛A B ,的距离.CAB15、(2008山东滨州)如图,AC 是某市坏城路的一段,AE 、BF 、CD 都是南北方向的街道,其与环城路AC 的交叉路口分别是A 、B 、C 经测量花卉世界D 位于点A 的北偏东45°方向,点B 的北偏东30°方向上,AB=2km ,∠DAC=15°. (1)求∠ADB 的大小;(2)求B 、D 之间的距离;(3)求C 、D 之间的距离.300150450环城路和平路文化路中山路FBEDCA16、(2008山东济南)某大草原上有一条笔直的公路,在紧靠公路相距40千米的A 、B 两地,分别有甲、乙两个医疗站,如图,在A 地北偏东45°、B 地北偏西60°方向上有一牧民区C .一天,甲医疗队接到牧民区的求救电话,立刻设计了两种救助方案,方案I :从A 地开车沿公路到离牧民区C 最近的D 处,再开车穿越草地沿DC 方向到牧民区C .方案II :从A 地开车穿越草地沿AC 方向到牧民区C . 已知汽车在公路上行驶的速度是在草地上行驶速度的3倍.(1)求牧民区到公路的最短距离CD .(2)你认为甲医疗队设计的两种救助方案,哪一种方案比较合理?并说明理由.(结果精确到0.11.731.41)AD B北东17、(2008山东烟台)某地震救援队探测出某建筑物废墟下方点C 处有生命迹象,已知废墟一侧地面上两探测点A、B 相距3 米,探测线与地面的夹角分别是30°和60°(如图),试确定生命所在点C 的深度.(结果精确到0.11.41 1.73≈≈)18、(08年江苏常州)如图,港口B位于港口O正西方向120海里外,小岛C位于港口O北偏西60°的方向.一艘科学考察船从港口O出发,沿北偏东30°的OA方向以20海里/小时的速度驶离港口O.同时一艘快艇从港口B出发,沿北偏东30°的方向以60海里/小时的速度驶向小岛C,在小岛C用1小时装补给物资后,立即按原来的速度给考察船送去.(1)快艇从港口B到小岛C需要多少时间?(2)快艇从小岛C出发后最少需要多少时间才能和考察船相遇?19、(2008年江苏南通)如图,海上有一灯塔P ,在它周围6海里内有暗礁.一艘海轮以18海里/时的速度由西向东方向航行,行至A 点处测得灯塔P 在它的北偏东60°的方向上,继续向东行驶20分钟后,到达B 处又测得灯塔P 在它的北偏东45°方向上,如果海轮不改变方向继续前进有没有触礁的危险?20、(2008年江苏泰州)如图,某堤坝的横截面是梯形ABCD ,背水坡AD 的坡度i (即tan α)为1︰1.2,坝高为5米。

解直角三角形中考经典专题

解直角三角形中考经典专题

第一章复习题(一)1. 菱形OABC 在平面直角坐标系中的位置如图所示,452AOC OC ∠==°,,则点B 的坐标为( )A .(21),B.(12),C .(211)+,D .(121)+,2. 如图,菱形ABCD 的周长为20cm ,DE ⊥AB ,垂足为E ,54A cos =,则下列结论中正确的个数为( ) ①DE=3cm ; ②EB=1cm ; ③2ABCD 15S cm =菱形.A .3个B .2个C .1个D .0个3. 如图,小明要测量河内小岛B 到河边公路l 的距离,在A 点测得30BAD ∠=°,在C 点测得60BCD ∠=°,又测得50AC =米,则小岛B 到公路l 的距离为( )米. A .25B .253C .10033D .25253+4. 如图,在梯形ABCD 中,AD//BC ,AC ⊥AB ,AD =CD ,cos ∠DCA=54,BC =10,则AB 的值是( ) A .3 B .6 C .8 D .9 5. 在一次夏令营活动中,小亮从位于A 点的营地出发,沿北偏东60°方向走了5km 到达B 地,然后再沿北偏西30°方向走了若干千米到达C 地,测得A 地在C 地南偏西30°方向,则A .C 两地的距离为( ) (A )km 3310 (B )km 335 (C )km 25 (D )km 35 6. 如图,在等腰Rt △ABC 中,∠C =90o ,AC =6,D 是AC 上一点,若tan ∠DBA =51,则AD 的长为( ) (A ) 2 (B )3 (C )2 (D )17. 如图,在矩形ABCD 中,DE ⊥AC 于E ,∠EDC ∶∠EDA=1∶3,且AC=10,则DE 的长度是( ) A .3 B .5 C .25 D .2258. 如图,在ABC △中,C ∠9060B D =∠=°,°,是AC 上一点,DE AB ⊥于E ,且21CD DE ==,,则BC 的长为( ) A .2 B .433C .23D .43 xy O C BABCAD lA C DE9. 小明同学在东西方向的环海路A 处,测得海中灯塔P 在北偏东60°方向上,在A 处东500米的B 处,测得海中灯塔P 在北偏东30°方向,则灯塔P 到环海路的距离PC = 米。

九年级解直角三角形经典习题汇编附答案(120分)

九年级解直角三角形经典习题汇编附答案(120分)

解直角三角形自测题命题人:罗成1、已知:如图,在ΔABC中,∠ACB=90°,CD⊥AB,垂足为D,若∠B=30°,CD=6,求AB的长.2、我国为了维护队钓鱼岛P的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP∥BD),当轮船航行到距钓鱼岛20km的A处时,飞机在B处测得轮船的俯角是45°;当轮船航行到C处时,飞机在轮船正上方的E处,此时EC=5km.轮船到达钓鱼岛P时,测得D处的飞机的仰角为30°.试求飞机的飞行距离BD(结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为,路基高度为5.8米,求路基下底宽(精确到0.1米).4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB,在地面上事先划定以B为圆心,半径与AB等长的圆形危险区,现在某工人站在离B点3米远的D处,从C点测得树的顶端A点的仰角为60°,树的底部B点的俯角为30°. 问:距离B点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD,坝顶宽CD=5米,斜坡AD=16米,坝高 6米,斜坡BC的坡度.求斜坡AD的坡角∠A(精确到1分)和坝底宽AB.(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1)在测点A处安置测倾器,测得旗杆顶部M的仰角∠MCE=α;(2)量出测点A到旗杆底部N的水平距离AN=m;(3)量出测倾器的高度AC=h。

根据上述测量数据,即可求出旗杆的高度MN。

如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)1)在图2中,画出你测量小山高度MN的示意图2)写出你的设计方案。

8、如图,小方在五月一日假期中到郊外放风筝,风筝飞到C 处时的线长为20米,此时小方正好站在A处,并测得∠CBD=60°,牵引底端B离地面1.5米,求此时风筝离地面的高度(结果精确到个位)9、如图,广安市防洪指挥部发现渠江边一处长400米,高8米,背水坡的坡角为45°的防洪大堤(横截面为梯形ABCD)急需加固.经调查论证,防洪指挥部专家组制定的加固方案是:背水坡面用土石进行加固,并使上底加宽2米,加固后,背水坡EF的坡比i=1:2.(1)求加固后坝底增加的宽度AF的长;(2)求完成这项工程需要土石多少立方米?10、某船向正东航行,在A处望见灯塔C在东北方向,前进到B处望见灯塔C在北偏西30o,又航行了半小时到D处,望灯塔C恰在西北方向,若船速为每小时20海里,求A、D两点间的距离。

中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题

中考数学关于解直角三角形的18道经典题1、如图,一架飞机在空中P 处探测到某高山山顶D 处的俯角为60°,此后飞机以300米/秒的速度沿平行于地面AB 的方向匀速飞行,飞行10秒到山顶D 的正上方C 处,此时测得飞机距地平面的垂直高度为12千米,求这座山的高(精确到0.1千米) 解:延长CD 交AB 于G ,则CG=12(千米)依题意:PC=300×10=3000(米)=3(千米) 在Rt △PCD 中: PC=3,∠P=60° CD=PC ·tan ∠P =3×tan60°=33∴12-CD=12-33≈6.8(千米) 答:这座山的高约为6.8千米.2、如图,水坝的横断面是梯形,背水坡AB 的坡 角∠BAD=60,坡长AB=m 320,为加强水坝强度, 将坝底从A 处向后水平延伸到F 处,使新的背水坡 的坡角∠F= 45,求AF 的长度(结果精确到1米,参考数据: 414.12≈,732.13≈).答案:(10分)解:过B作BE ⊥AD 于E在Rt △ABE 中,∠BAE= 60, ∴∠ABE= 30 ∴AE =21AB31032021=⨯=∴BE ()()303103202222=-=-=AE AB∴在Rt △BEF 中, ∠F= 45, ∴EF =BE =30 ∴AF=EF-AE=30-310∵732.13=, ∴AF =12.68≈133、施工队准备在一段斜坡上铺上台阶方便通行.现测得斜坡上铅垂的两棵树间水平距离AB =4米,斜面距离BC =4.25米,斜坡总长DE =85米.参考数据cos20°≈0.94, sin20°≈0.34, sin18°≈0.31, cos18°≈0.95AB12千米P C D G60°(1)求坡角∠D 的度数(结果精确到1°);(2)若这段斜坡用厚度为17cm 的长方体台阶来铺,需要铺几级台阶?解:(1) cos ∠D =cos ∠ABC =BC AB =25.44≈0.94, …………………………………3分 ∴∠D ≈20°. ………………………………………………………………………1分 (2)EF =DE sin ∠D =85sin20°≈85×0.34=28.9(米) , ……………………………3分 共需台阶28.9×100÷17=170级. ………………………………………………1分4、在玉溪州大河旁边的路灯杆顶上有一个物体,它的抽象几何图形如图, 若 60ABC 10,AC 4,AB =∠==, 求B 、C 两点间的距离.解:过A 点作AD ⊥BC 于点D , …………1分在Rt △ABD 中,∵∠ABC=60°,∴∠BAD=30°. …………2分 ∵AB=4,∴BD=2, ∴AD=23. …………4分 在Rt △ADC 中,AC=10,∴CD=22AD AC -=12100-=222 . …………5分 ∴BC=2+222 . …………6分 答:B 、C 两点间的距离为2+222. …………7分5、在东西方向的海岸线l 上有一长为1km 的码头MN(如图),在码头西端M 的正西19.5 km 处有一观察站A .某时刻测得一艘匀速直线航行的轮船位于 A 的北偏西30°,且与A 相距40km 的B 处;经过1小时20分钟,又测得该轮船位于A 的北偏东NM 东北BCAlCBA17cm(第19题) A BCF60°,且与A相距83的C处.(1)求该轮船航行的速度(保留精确结果);(2)如果该轮船不改变航向继续航行,那么轮船能否正好行至码头MN靠岸?请说明理由.答案解:(1)由题意,得∠BAC=90°,………………(1分)∴2240(83)167BC=+=.…………(2分)∴轮船航行的速度为41671273÷=时.……(3分)(2)能.……(4分)作BD⊥l于D,CE⊥l于E,设直线BC交l于F,则BD=AB·cos∠BAD=20,CE=AC·sin∠CAE=43,AE=AC·cos∠CAE=12.∵BD⊥l,CE⊥l,∴∠BDF=∠CEF=90°.又∠BFD=∠CFE,∴△BDF∽△CEF,……(6分)∴,DF BDEF CE=∴3220343EFEF+=,∴EF=8.……(7分)∴AF=AE+EF=20.∵AM<AF<AN,∴轮船不改变航向继续航行,正好能行至码头MN靠岸.6、如图是某货站传送货物的平面示意图. 为了提高传送过程的安全性,工人师傅欲减小传送带与地面的夹角,使其由45°改为30°. 已知原传送带AB长为4米.(1)求新传送带AC的长度;(2)如果需要在货物着地点C的左侧留出2米的通道,试判断距离B点4米的货物MNQP 是否需要挪走,并说明理由.(说明:⑴⑵的计算结果精确到0.1米,参考数据:2≈1.41,3≈1.73,5≈2.24,6≈2.45)答案(1)如图,作AD⊥BC于点D……………………………………1分Rt△ABD中,AD=AB sin45°=42222=⨯……2分在Rt△ACD中,∵∠ACD=30°FEDlAC北东M NABE FQ P ∴AC =2AD =24≈6.5………………………3分即新传送带AC 的长度约为6.5米. ………………………………………4分 (2)结论:货物MNQP 应挪走. ……………………………………5分 解:在Rt △ABD 中,BD =AB cos45°=42222=⨯……………………6分 在Rt △ACD 中,CD =AC cos30°=622324=⨯∴CB =CD —BD =)26(22262-=-≈2.1∵PC =PB —CB ≈4—2.1=1.9<2 ………………………………7分 ∴货物MNQP 应挪走. …………………………………………………………8分7、如图,大海中有A 和B 两个岛屿,为测量它们之间的距离,在海岸线PQ 上点E 处测得∠AEP =74°,∠BEQ =30°;在点F 处测得∠AFP =60°,∠BF Q =60°,EF =1km .(1)判断ABAE 的数量关系,并说明理由;(2)求两个岛屿A 和B 之间的距离(结果精确到0.1km ).(参考数据:3≈1.73,sin74°≈,cos74°≈0.28,tan74°≈3.49,sin76°≈0.97,cos76°≈0.24)答案 (1)相等30,6030BEQ BFQ EBF EF BF ∠=∠=∴∠=∴=....................................2分 又6060AF P BFA ∠∠=∴∠=在AEF 与△ABF 中,,EF BF AFE AFB AF AFAFE AFB AE AB=∠=∠=∴≅∴=...........................................................................5分 (2)法一:作AH PQ ⊥,垂足为H 设 AE=x 则AH=xsin74°HE= xcos74° HF=xcos74°+1 ...............................................................................................7分tan60Rt AHF AH HF=中,所以xsin74°=(xcos74°+1)tan60°即0.96x=(0.28x+1)×1.73所以 3.6x≈即AB 3.6km≈法二:设AF与BE的交点为G,在Rt△EGF中,因为EF=1, 所以 EG=3在Rt△AEG中376,cos760.24 3.6 AEG AE EG∠==÷=÷≈答: 两个岛屿A与B之间的距离约为3.6km8、在一个阳光明媚、清风徐来的周末,小明和小强一起到郊外放风筝﹒他们把风筝放飞后,将两个风筝的引线一端都固定在地面上的C处(如图).现已知风筝A的引线(线段AC)长20m,风筝B的引线(线段BC)长24m,在C处测得风筝A的仰角为60°,风筝B的仰角为45°.(1)试通过计算,比较风筝A与风筝B谁离地面更高?(2)求风筝A与风筝B的水平距离.(精确到0.01 m;参考数据:sin45°≈0.707,cos45°≈0.707,tan45°=1,sin60°≈0.866,cos60°=0.5,tan60°≈1.732)解:(1)分别过A,B作地面的垂线,垂足分别为D,E.在Rt△ADC中,∵AC﹦20,∠ACD﹦60°,AB45°60°C E D∴AD ﹦20×sin 60°﹦103≈17.32m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴BE ﹦24×sin 45°﹦122≈16.97 m∵17.32>16.97∴风筝A 比风筝B 离地面更高. ……………………………………………3分 (2)在Rt △ADC 中,∵AC ﹦20,∠ACD ﹦60°, ∴DC ﹦20×cos 60°﹦10 m在Rt △BEC 中,∵BC ﹦24,∠BEC ﹦45°,∴EC ﹦BC ≈16.97 m∴EC -DC ≈16.97-10﹦6.97m即风筝A 与风筝B 的水平距离约为6.97m .…………………………………3分9、为了缓解长沙市区内一些主要路段交通拥挤的现状,交警队在一些主要路口设立了交通路况显示牌(如图).已知立杆AB 高度是3m ,从侧面D 点测得显示牌顶端C 点和底端B 点的仰角分别是60°和45°.求路况显示牌BC 的高度.解:∵在Rt △ADB 中,∠BDA =45°,AB =3 ∴DA =3 …………2分 在Rt △ADC 中,∠CDA =60°∴tan60°=CAAD∴CA =33 …………4分 ∴BC=CA -BA =(33-3)米答:路况显示牌BC 的高度是(33-3)米 ………………………6分10、永乐桥摩天轮是天津市的标志性景观之一.某校数学兴趣小组要测量摩天轮的高度.如图,他们在C 处测得摩天轮的最高点A 的仰角为45︒,再往摩天轮的方向前进50 m 至D 处,测得最高点A 的仰角为60︒. 求该兴趣小组测得的摩天轮的高度AB (3 1.732≈,第19题图A45°60°结果保留整数).解:根据题意,可知45ACB ∠=︒,60ADB ∠=︒,50DC =.在Rt △ABC 中,由45BAC BCA ∠=∠=︒,得BC AB =. 在Rt △ABD 中,由tan ABADB BD∠=, 得3tan tan 60AB AB BD AB ADB ===∠︒. ..............................6分 又 ∵ BC BD DC -=,∴ 350AB AB -=,即(33)150AB -=. ∴ 11833AB =≈-.答:该兴趣小组测得的摩天轮的高度约为118 m. .....................8分11、小明想知道湖中两个小亭A 、B 之间的距离,他在与小亭A 、B 位于同一水平面且东西走向的湖边小道l 上某一观测点M 处,测得亭A 在点M 的北偏东30°, 亭B 在点M 的北偏东60°,当小明由点M 沿小道l 向东走60米时,到达点N 处,此时测得亭A 恰好位于点N 的正北方向,继续向东走30米时到达点Q 处,此时亭B 恰好位于点Q 的正北方向,根据以上测量数据,请你帮助小明计算湖中两个小亭A 、B 之间的距离.25.连结AN 、BQ∵点A 在点N 的正北方向,点B 在点Q 的正北方向 ∴l AN ⊥ l BQ ⊥--------------------------1分 在Rt △AMN 中:tan ∠AMN=MNAN∴AN=360-----------------------------------------3分 在Rt △BMQ 中:tan ∠BMQ=MQBQ∴BQ=330----------------------------------------5分 过B 作BE ⊥AN 于点E 则:BE=NQ=30∴AE= AN -BQ -----------------------------------8分 在Rt △ABE 中,由勾股定理得:222BE AE AB +=22230)330(+=AB∴AB=60(米)12、我们知道当人的视线与物体表面互相垂直时的视觉效果最佳.如图是小明站在距离墙壁1.60米处观察装饰画时的示意图,此时小明的眼睛与装饰画底部A 处于同一水平线上,视线恰好落在装饰画中心位置E 处,且与AD 垂直.已知装饰画的高度AD 为0.66米, 求:⑴ 装饰画与墙壁的夹角∠CAD 的度数(精确到1°);⑵ 装饰画顶部到墙壁的距离DC (精确到0.01米).解:⑴ ∵AD =0.66,∴AE =21CD =0.33. 在Rt △ABE 中,………………1分 ∵sin ∠ABE =AB AE =6.133.0, ∴∠ABE ≈12°. ………………4分∵∠CAD +∠DAB =90°,∠ABE +∠DAB =90°, ∴∠CAD =∠ABE =12°.∴镜框与墙壁的夹角∠CAD 的度数约为12°. ………………5分 ⑵ 解法一:在Rt △∠ABE 中, ∵sin ∠CAD =ADCD, ∴CD =AD ·sin ∠CAD =0.66×sin12°≈0.14. ………………7分ACD EBABCD第19题图解法二: ∵∠CAD =∠ABE , ∠ACD =∠AEB =90°,∴△ACD ∽△BEA. ………………6分 ∴AB ADAE CD =. ∴6.166.033.0=CD . ∴CD ≈0.14. ………………7分∴镜框顶部到墙壁的距离CD 约是0.14米.………………8分13、如图,某天然气公司的主输气管道从A 市的东偏北30°方向直线延伸,测绘员在A 处测得要安装天然气的M 小区在A 市东偏北60°方向,测绘员沿主输气管道步行2000米到达C 处,测得小区M 位于C 的北偏西60°方向,请你在主输气管道上寻找支管道连接点N ,使到该小区铺设的管道最短,并求AN 的长.第23题图解:过M 作MN ⊥AC ,此时MN 最小,AN =1500米1、(2010山东济南)图所示,△ABC 中,∠C =90°,∠B =30°,AD 是△ABC 的角平分线,若AC 3求线段AD 的长.解:∵△ABC 中,∠C =90º,∠B =30º,∴∠BAC =60º,∵AD 是△ABC 的角平分线,∴∠CAD =30º, ··················· 1分 ∴在Rt △ADC 中,cos30ACAD =︒············· 2分=3×3··········· 3分=2 . ·············· 4分14、热气球的探测器显示,从热气球A 处看一栋高楼顶部的仰角为45°,看这栋高楼底部的俯角为60°,A 处与高楼的水平距离为60m ,这栋高楼有多高?(结果精确到0.1m ,参考数据:2 1.414,3 1.732≈≈)答案: 解:过点A 作BC 的垂线,垂足为D 点 ……………1分由题意知:∠CAD = 45°, ∠BAD =60°, AD = 60m在Rt △ACD 中,∠CAD = 45°, AD ⊥BC∴ CD = AD = 60 ……………………3分 在Rt △ABD 中,∵BDtan BAD AD∠=……………………4分 ∴ BD = AD ·tan ∠BAD= 603 ……………………5分∴BC = CD+BD= 60+603 ……………………6分≈ 163.9 (m) …………………7分答:这栋高楼约有163.9m . …………………8分 (本题其它解法参照此标准给分)15、如图,直角ABC ∆中,90C ∠=︒,25AB =,5sin B =,点P 为边BC 上一动点,PD ∥AB ,PD 交AC 于点D ,连结AP . (1)求AC 、BC 的长;(2)设PC 的长为x ,ADP ∆的面积为y .当x 为何值时,y 最大,并PD CBA求出最大值.22.(1)在Rt ABC ∆中,5sin B =,25AB =, 得5AC AB =,∴2AC =,根据勾股定理得:4BC =. …… 3分(2)∵PD ∥AB ,∴ABC ∆∽DPC ∆,∴12DC AC PC BC == 设PC x =,则12DC x =,122AD x =- ∴2211111(2)(2)122244ADP S AD PC x x x x x ∆=⋅=-⋅=-+=--+ ∴当2x =时,y 的最大值是1. ……… 8分16、小明家所在居民楼的对面有一座大厦AB ,AB =80米.为测量这座居民楼与大厦之间的距离,小明从自己家的窗户C 处测得大厦顶部A 的仰角为37°,大厦底部B 的俯角为48°.求小明家所在居民楼与大厦的距离CD 的长度.(结果保留整数) (参考数据:o o o o 33711sin37tan37sin 48tan48541010≈≈≈≈,,,)答案:解:设CD = x .在Rt △ACD 中,tan37AD CD︒=, 则34AD x=, ∴34AD x =. 在Rt △BCD 中,tan48° = BD CD, 则1110BD x=, ∴1110BD x =. ∵AD +BD = AB , B37° 48° D CA 第19题图∴31180 410x x+=.解得:x≈43.17、在市政府广场进行了热气球飞行表演,如图,有一热气球到达离地面高度为36米的A处时,仪器显示正前方一高楼顶部B的仰角是37°,底部C的俯角是60°.为了安全飞越高楼,气球应至少再上升多少米?(结果精确到0.1米)(参考数据:,75.037tan,80.037cos,60.037sin≈︒≈︒≈︒73.13≈)解:过A作AD⊥CB,垂足为点D.………………………1分在Rt△ADC中,∵CD=36,∠CAD=60°.∴AD=31233660tan==︒CD≈20.76.……5分在Rt△ADB中,∵AD≈20.76,∠BAD=37°.∴BD=37tan⨯AD≈20.76×0.75=15.57≈15.6(米).………8分答:气球应至少再上升15.6米.…………………………9分18、图1为已建设封顶的16层楼房和其塔吊图,图2为其示意图,吊臂AB与地面EH平行,测得A点到楼顶D点的距离为5m,每层楼高3.5m,AE、BF、CH都垂直于地面,EF=16m,求塔吊的高CH的长.【答案】解:根据题意得:DE=3.5×16=56,AB=EF=16∵∠ACB=∠CBG-∠CAB=15°,∴∠ACB =∠ CAB∴CB=AB=16.∴CG=BCsin30°=8CH=CG+HG=CG+DE+AD=8+56+5=69.∴塔吊的高CH的长为69m.BACD。

【精品】初中数学中考专题《解直角三角形》真题汇编

【精品】初中数学中考专题《解直角三角形》真题汇编

专题16 解直角三角形真题汇编1总分数 100分时长:不限题型单选题填空题简答题综合题题量 2 3 15 4总分 4 6 60 441(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 83(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:si n15°=cos75°≈0.259).4(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.7(3分)(2017株洲中考)计算:.8(3分)(2017益阳中考)计算:.9(3分)(2017岳阳中考)计算:10(3分)(2017邵阳中考)计算:.11(3分)(2017永州中考)计算:.12(3分)(2017娄底中考)计算:.13(3分)(2017怀化中考)计算:. 14(3分)(2017张家界中考)计算:.15(3分)(2017湘西土家族苗族自治州中考)计算:16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.专题16 解直角三角形真题汇编1参考答案与试题解析1(2分)(2017怀化中考)如图,在平面直角坐标系中,点A的坐标为(3,4),那么的值是()A.B.C.D.【解析】本题考查坐标网格中的三角函数计算,作AB⊥x轴于点B,由勾股定理得OA=5,D 在Rt△AOB中,利用正弦函数的定义得出,故选C.【答案】C2(2分)(2017常德中考)如表是一个4×4(4行4列共16个“数”组成)的奇妙方阵,从这个方阵中选四个“数”,而且这四个“数”中的任何两个不在同一行,也不在同一列,有很多选法,把每次选出的四个“数”相加.其和是定值.则方阵中第三行三列的“数”是()-3 -2 0|-5| 64A. 5B. 6C. 7D. 8【解析】本题考查实数的运算.分别选取第一行一列,第二行二列,第三行四列,第四行三列的四个“数”,求其和为.设第三行三列,第四行二列的四个“数”,求其和为,解得x=7,故选C.【答案】C3(2分)(2017岳阳中考)我国魏晋时期的数学家刘徽创立了“割圆术”,认为圆内接正多边形边数无限增加时,周长就越接近圆周长,由此求得了圆周率π的近似值.设半径为r的圆内接正n边形的周长为L,圆的直径为d.如图所示,当n=6时,,那么当n=12时,____1____(结果精确到0.01,参考数据:sin15°=cos75°≈0.259).【解析】本题考查圆周率的近似值的计算.当n=12时,如图所示,由题意可知,作OC⊥AB,则∠AOC=15°.在直角三角形AOC中,,所以AC≈0.259r,AB=2AC≈0.518r,L=AB≈6.216r,所以.【答案】3.114(2分)(2017张家界中考)如图,在正方形ABCD中,,把边BC绕点B逆时针旋转30°得到线段BP,连接AP并延长交CD于点E,连接PC,则三角形PCE的面积为____1____.【解析】本题考查正方形的性质、等边三角形的性质、三角形面积的计算.∵四边形ABCD 是正方形,∴AB=BC,∠ABC=90°,又BC=BP,∠CBP=30°,∴AB=BP,∠ABP=60°.∴是等边三角形,∴,∠DAE=30°.,AE=2DE=2×2=4,,.过点P作PF⊥CD,垂足为F,则∠EPF=∠DAE=30°,,∴.【答案】5(2分)(2017邵阳中考)如图所示,运载火箭从地面L处垂直向上发射,当火箭到达A点时,从位于地面R处的雷达测得AR的距离是40 km,仰角是30°.n秒后,火箭到达B点,此时仰角是45°,则火箭在这n秒中上升的高度是____1____km.【解析】本题考查利用特殊的角解直角三角形,在Rt△ALR中,由∠ARL=30°,AR=40 km,得AL=20 km,,所以.【答案】6(3分)(2017长沙中考)计算:|-3|+(π-2017)0-2sin30°+.【解析】【名师指导】本题考查绝对值、零次幂、负指数幂的运算法则、特殊角的正弦值.根据去绝对值符号法则、零次幂、负指数幂的运算法则、特殊角的正弦值分别计算求解.【答案】解:原式=3+1-2×+3=6.7(3分)(2017株洲中考)计算:.【解析】【名师指导】本题考查有理数运算的化简与求值.【答案】解:原式.(其中:)8(3分)(2017益阳中考)计算:.【解析】【名师指导】本题考查绝对值、特殊角的三角函数值、零指数幂的计算.【答案】解:原式==-5.9(3分)(2017岳阳中考)计算:【解析】【名师指导】本题考查实数的相关计算、三角函数、负指数、零指数、绝对值. 【答案】解:原式===2.10(3分)(2017邵阳中考)计算:.【解析】【名师指导】本题考查二次根式、特殊角三角函数值的计算、负指数的计算. 【答案】解:原式===-211(3分)(2017永州中考)计算:.【解析】【名师指导】本题考查二次根式、零指数幂、特殊角的三角函数值的混合运算. 根据运算法则计算即可.【答案】解:==-1.12(3分)(2017娄底中考)计算:.【解析】【名师指导】本题考查实数的综合运算.先化简二次根式,计算负指数幂,求特殊角的三角函数值,计算零指数幂,然后进行综合运算,求出算式的结果即可.【答案】解:原式===-2.13(3分)(2017怀化中考)计算:.【解析】【名师指导】本题考查实数的计算,涉及绝对值、零指数、负指数、特殊角的三角函数值及立方根的运算.【答案】解:原式==-2.14(3分)(2017张家界中考)计算:.【解析】【名师指导】本题考查整数指数幂、三角函数值、绝对值的意义.【答案】解:原式==2.15(3分)(2017湘西土家族苗族自治州中考)计算:【解析】【名师指导】本题考查实数的相关计算、二次根式、指数幂、三角函数.【答案】解:原式=.(其中)16(8分)(2017长沙中考)为了维护国家主权和海洋权利,海监部门对我国领海实现了常态化巡航管理.如图,正在执行巡航任务的海监船以每小时50海里的速度向正东方向航行,在A处测得灯塔P在北偏东60°方向上,继续航行1小时到达B处,此时测得灯塔P在北偏东30°方向上.(1)(4分)求∠APB的度数;(2)(4分)已知在灯塔P的周围25海里内有暗礁,问海监船继续向正东方向航行是否安全?【解析】(1)本题考查解直角三角形的应用.根据方位角的概念得到三角形中角的度数,进而求解;(2)根据含特殊角的直角三角形的边的关系求解相关线段的长度,进而求解.【答案】(1)解:依题意得,∠PAB=30°,∠PBE=60°,∵∠PBE=∠PAB+∠APB,∴∠APB=∠PBE-∠PAB=60°-30°=30°.(2)由(1)知∠PAB=∠APB=30°,∴PB=AB=50(海里),如图,过点P作PC⊥AB于点C,在中,PC=PB·sin60°=(海里).∵>25,∴海监船继续向正东方向航行是安全的.17(6分)(2017衡阳中考)衡阳市城市标志来雁塔坐落在衡阳市雁峰公园内.如图,为了测量来雁塔的高度,在E处用高为1.5米的测角仪AE,测得塔顶C的仰角为30°,再向塔身前进10.4米,又测得塔顶C的仰角为60°.求来雁塔的高度.(结果精确到0.1米)【解析】【名师指导】本题考查利用解直角三角形解决实际问题.根据已知条件可得等腰三角形ABC,从而得AB=BC,再在直角三角形中利用锐角三角函数求解或设CD为x米,锐角三角函数表示出BD,找到等量关系,建立方程求解.【答案】解法一:∵∠CAB=30°,∠CBD=60°,∴∠ACB=30°,∴AB=BC=10.4.又∵∠CDA=90°∴CD=BC·sin∠CBD=10.4×sin60°=10.4×≈9.0064,9.006 4+1.5≈10.5答:来雁塔高约10.5米.解法二:设CD为x米.∵∠CBD=60°,∠CDA=90°,∴.又∵∠CAB=30°,∴.∴10.4+x,x≈9.0064,9.006 4+1.5≈10.5(米).答:来雁塔高约10.5米.18(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5.所以这架无人机的长度为5米.19(6分)(2017郴州中考)如图所示,C城市在A城市正东方向.现计划在A,C两城市问修建一条高速铁路(即线段AC).经测量,森林保护区的中心P在A城市的北偏东60°方向上,在线段AC上距A城市120 km的B处测得P在北偏东30°方向上,已知森林保护区是以点P 为圆心,100 km为半径的圆形区域.请问计划修建的这条高速铁路是否穿越保护区,为什么?(参考数据:≈1.73)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于将实际问题转化到直角三角形中求解.【答案】解:过点P作PH⊥AC垂足为点H,由题意可知∠EAP=60°,∠FBP=30°,∴PAB=30°,∠PBH=60°,∴∠APB=30°,∴AB=PB=120.在,∵,∴,∵103.80>100,∴要修建的这条高速铁路不会穿越森林保护区.20(6分)(2017常德中考)图1,2分别是某款篮球架的实物图与示意图,已知底座BC=0.60米,底座BC与支架AC所成的角∠ACB=75°,支架AF的长为2.50米,篮板顶端F点到篮筐D的距离FD=1.35米,篮板底部支架HE与支架AF所成的角∠FHE=60°,求篮筐D到地面的距离(精确到0.01米).(参考数据:cos75°≈0.2588,sin75°≈0.9659,tan75°≈3.732,)【解析】【名师指导】本题考查解直角三角形的实际应用.解题的关键在于添加辅助线构造直角三角形求解.【答案】解:过点E作EP⊥BC,交CB的延长线于点P,过点A作AQ⊥FP于点Q,在Rt△ABC中,,∴AB=CB·tan75°≈0.60×3.732≈2.239,∴四边形ABPQ是矩形,∴PQ≈2.239,又∵HE⊥FP,AQ⊥FP’∴,∴∠FAQ=∠FHE=60°,在中,,∴,∴DQ=FQ-FD≈2.165-1.35=0.815,∴DP=DQ+QP≈0.815+2.239=3.054≈3.05.答:篮筐D到地面的距离约为3.05米.21(6分)(2017娄底中考)数学“综合与实践”课中,老师带领同学们来到娄底市郊区,测算如图所示的仙女峰的高度.李红盛同学利用已学的数学知识设计了一个实践方案,并实施了如下操作:先在水平地面A处测得山顶曰的仰角∠BAC为38.7°,再由A沿水平方向前进377米到达山脚C处,测得山坡BC的坡度为1∶0.6,请你求出仙女峰的高度(参考数据:tan38.7°≈0.8).【解析】【名师指导】本题考查解直角三角形的应用.作垂线构造直角三角形,根据锐角三角函数求出相关线段的长度,再根据线段间的数量关系求出仙女峰的高度.【答案】解:过点B作AC的垂线,交AC的延长线于点D.设BD=x米,在中,,在中,,∵AD-CD=AC,∴,解得x=580.答:仙女峰的高度是580米.22(6分)(2017张家界中考)位于张家界核心景区内的贺龙铜像,是我国近百年来最大的铜像.铜像由像体AD和底座CD两部分组成.如图,在中,∠ABC=70.5°,在中,∠DBC=45°,且CD=2.3米,求像体AD的高度.(最后结果精确到0.1米,参考数据:sin70.5°≈0.943,cos70.5°≈0.334,tan70.5°≈2.824)【解析】【名师指导】本题考查应用解直角三角形的知识解决实际问题.【答案】解:在中,∵∠DBC=45°,∴BC=DC=2.3米,在中,AC=BC·tan70.5°≈6.5米,则AD=AC-DC≈6.5-2.3=4.2(米).23(8分)(2017湘潭中考)某游乐场部分平面图如图所示,C,E,A在同一直线上,D,E,B在同一直线上.测得A处与E处的距离为80米,C处与D处的距离为34米,∠C=90°,∠ABE=90°,∠BAE=30°.(,)(1)(4分)求旋转木马E处到出口B处的距离;(2)(4分)求海洋球D处到出口B处的距离(结果保留整数).【解析】(1)【名师指导】本题考查解直角三角形.利用在直角三角形中,30°角所对的直角边等于斜边的一半求解;(2)根据特殊角的正弦值求解相关线段的长度,进而得到结论.【答案】(1)解:在中,∵∠ABE=90°,∠BAE=30°,AE=80,∴∠AEB=60°,.答:旋转木马E处到出口B处的距离为40米.(2)在中,∵∠C=90°,∴∠CED=∠AEB=60°∵,CD=34,∴(或者).∴DB=DE+BE=40+40=80(慊蛘逥B=DE+BE=40+39=79).答:海洋球D处到出口B处的距离为80(或者79)米(其他方法参照给分).24(14分)(2017株洲中考)如图,一架水平飞行的无人机彻的尾端点A测得正前方的桥的左端点P的俯角为α,其中,无人机的飞行高度AH为米,桥的长度为1255米.(1)(3分)求点H到桥左端点P的距离;(2)(3分)若无人机前端点B测得正前方的桥的右端点Q的俯角为30°,求这架无人机的长度.【解析】(1)【名师指导】本题考查解直角三角形的应用.将角α转化到直角三角形APH中,由三角函数求解即可;(2)解法一:作BT⊥HQ于点T,由AB=HT=HP+PQ-TQ计算;解法二:延长QB,HA交于点M,由三角函数建立方程求得AB的长既可.【答案】(1)解:依题意可知,∠HPA=a,在中,,因为,所以,解得HP=250(米).所以点H到桥左端点P的距离为250米.(2)解法一:作BT⊥HQ于点T,由题意可知,在中,.所以AB=HT=HP+PQ-TQ=250+1255-1500=5(米)所以这架无人机的长度为5米.解法二:延长QB,HA交于点M,由题意可知,∠BQH=30°在中,∠MBA=30°,设AB=x,则,由(1)知HP=250,且PQ=1255,所以HQ=HP+PQ=1505,中,,即,解得x=5. 所以这架无人机的长度为5米.。

解直角三角形精选题

解直角三角形精选题

解直角三角形精选题42道一.选择题(共17小题)1.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=212.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.43.如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.4.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm5.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.B.C.D.26.如图,在△ABC中,sin B=,tan C=2,AB=3,则AC的长为()A.B.C.D.27.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.8.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.9.在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm10.如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.211.在如图所示8×8的网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点E,则∠AED的正切值是()A.2B.C.D.12.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.13.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.14.如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sin A 的值是()A.B.C.D.15.如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()A.B.C.D.16.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值()A.B.C.D.17.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.二.填空题(共17小题)18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.19.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于.20.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于.21.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.22.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.23.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,连接AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.24.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.25.如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.26.△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是.27.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.28.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是.29.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是cm2.30.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为.31.如图,在Rt△ABC中,∠ACB=90°,sin A=,点C关于直线AB的对称点为D,点E为边AC上不与点A,C重合的动点,过点D作BE的垂线交BC于点F,则的值为.32.如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB 上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是(填写正确结论的序号).33.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为.34.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD 中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为.三.解答题(共8小题)35.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.36.已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.37.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.求BC的长.38.如图,在△ABC中,AD⊥BC于点D,若AD=6.tan C=,BC=12,求cos B的值.39.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.40.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sin B=,tan A=,AC=,(1)求∠B的度数和AB的长.(2)求tan∠CDB的值.41.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.42.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=.(1)求CD的长;(2)求tan∠DBC的值.解直角三角形精选题42道参考答案与试题解析一.选择题(共17小题)1.如图,在△ABC中,AB=AC,BC=12,E为AC边的中点,线段BE的垂直平分线交边BC于点D.设BD=x,tan∠ACB=y,则()A.x﹣y2=3B.2x﹣y2=9C.3x﹣y2=15D.4x﹣y2=21【解答】解:过A作AQ⊥BC于Q,过E作EM⊥BC于M,连接DE,∵BE的垂直平分线交BC于D,BD=x,∴BD=DE=x,∵AB=AC,BC=12,tan∠ACB=y,∴==y,BQ=CQ=6,∴AQ=6y,∵AQ⊥BC,EM⊥BC,∴AQ∥EM,∵E为AC中点,∴CM=QM=CQ=3,∴EM=3y,∴DM=12﹣3﹣x=9﹣x,在Rt△EDM中,由勾股定理得:x2=(3y)2+(9﹣x)2,即2x﹣y2=9,故选:B.2.如图,Rt△ABC中,∠C=90°,点D在AC上,∠DBC=∠A.若AC=4,cos A=,则BD的长度为()A.B.C.D.4【解答】解:∵∠C=90°,AC=4,cos A=,∴AB=,∴,∵∠DBC=∠A.∴cos∠DBC=cos∠A=,∴,故选:C.3.如图,点A,B,C在正方形网格的格点上,则sin∠BAC=()A.B.C.D.【解答】解:如图,过点B作BD⊥AC于D,由勾股定理得,AB==,AC==3,∵S△ABC=AC•BD=×3•BD=×1×3,∴BD=,∴sin∠BAC===.故选:B.4.如图,在△ABC中,∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,连接BD,若cos∠BDC=,则BC的长是()A.4cm B.6cm C.8cm D.10cm【解答】解:∵∠C=90°,AC=8cm,AB的垂直平分线MN交AC于D,∴BD=AD,∴CD+BD=8,∵cos∠BDC==,∴=,解得:CD=3,BD=5,∴BC=4.故选:A.5.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tan A=,则CD的值为()A.B.C.D.2【解答】解:延长AD、BC,两线交于O,∵在Rt△ABO中,∠B=90°,tan A==,AB=3,∴OB=4,∵BC=2,∴OC=OB﹣BC=4﹣2=2,在Rt△ABO中,∠B=90°,AB=3,OB=4,由勾股定理得:AO=5,∵∠ADC=90°,∴∠ODC=90°=∠B,∵∠O=∠O,∴△ODC∽△OBA,∴=,∴=,解得:DC=,故选:C.6.如图,在△ABC中,sin B=,tan C=2,AB=3,则AC的长为()A.B.C.D.2【解答】解:过A作AD⊥BC于D,则∠ADC=∠ADB=90°,∵tan C=2=,sin B==,∴AD=2DC,AB=3AD,∵AB=3,∴AD=1,DC=,在Rt△ADC中,由勾股定理得:AC===,故选:B.7.如图,在4×5的正方形网格中,每个小正方形的边长都是1,△ABC的顶点都在这些小正方形的顶点上,那么sin∠ACB的值为()A.B.C.D.【解答】解:如图,过点A作AH⊥BC于H.在Rt△ACH中,∵AH=4,CH=3,∴AC===5,∴sin∠ACH==,故选:D.8.如图,在△ABC中,点O是角平分线AD、BE的交点,若AB=AC=10,BC=12,则tan ∠OBD的值是()A.B.2C.D.【解答】解:如图:作OF⊥AB于F,∵AB=AC,AD平分∠BAC.∴∠ODB=90°.BD=CD=6.∴根据勾股定理得:AD==8.∵BE平分∠ABC.∴OF=OD,BF=BD=6,AF=10﹣6=4.设OD=OF=x,则AO=8﹣x,在Rt△AOF中,根据勾股定理得:(8﹣x)2=x2+42.∴x=3.∴OD=3.在Rt△OBD中,tan∠OBD===.法二:在求出AF=4后∵tan∠BAD==.∴=.∴OF=3.∴OD=OF=3.∴tan∠OBD==.故选:A.9.在Rt△ABC中,∠C=90°,sin A=,AC=6cm,则BC的长度为()A.6cm B.7cm C.8cm D.9cm【解答】解:∵sin A==,∴设BC=4x,AB=5x,又∵AC2+BC2=AB2,∴62+(4x)2=(5x)2,解得:x=2或x=﹣2(舍),则BC=4x=8cm,故选:C.10.如图,Rt△ABC中,∠BAC=90°,cos B=,点D是边BC的中点,以AD为底边在其右侧作等腰三角形ADE,使∠ADE=∠B,连结CE,则的值为()A.B.C.D.2【解答】解:设DE交AC于T,过点E作EH⊥CD于H.∵∠BAC=90°,BD=DC,∴AD=DB=DC,∴∠B=∠DAB,∵∠B=∠ADE,∴∠DAB=∠ADE,∴AB∥DE,∴∠DTC=∠BAC=90°,∵DT∥AB,BD=DC,∴AT=TC,∴EA=EC=ED,∴∠EDC=∠ECD,∵EH⊥CD,∴CH=DH,∵DE∥AB,∴∠EDC=∠B,∴∠ECD=∠B,∴cos∠ECH=cos B=,∴=,∴==2,故选:D.11.在如图所示8×8的网格中,小正方形的边长为1,点A、B、C、D都在格点上,AB与CD相交于点E,则∠AED的正切值是()A.2B.C.D.【解答】解:如图,取格点K,连接AK,BK.观察图形可知AK⊥BK,BK=2AK,BK∥CD,∴∠AED=∠ABK,∴tan∠AED=tan∠ABK==,故选:B.12.如图,在△ABC中,∠ACB=90°,点D在AB的延长线上,连接CD,若AB=2BD,tan∠BCD=,则的值为()A.1B.2C.D.【解答】解:过点D作DM⊥BC,交CB的延长线于点M,∵∠ACB=∠DMB=90°,∠ABC=∠DBM,∴△ABC∽△DBM,∴==,∵AB=2BD,∴===,在Rt△CDM中,由于tan∠MCD==,设DM=2k,则CM=3k,又∵==,∴BC=2k,AC=4k,∴==2,故选:B.13.如图,⊙O的直径AB=4,BC切⊙O于点B,OC平行于弦AD,OC=5,则AD的长为()A.B.C.D.【解答】解:连接BD.∵AB是直径,∴∠ADB=90°.∵OC∥AD,∴∠A=∠BOC,∴cos∠A=cos∠BOC.∵BC切⊙O于点B,∴OB⊥BC,∴cos∠BOC==,∴cos∠A=cos∠BOC=.又∵cos∠A=,AB=4,∴AD=.故选:B.14.如图,在正方形网格中,△ABC的位置如图,其中点A、B、C分别在格点上,则sin A 的值是()A.B.C.D.【解答】解:过点C作CD⊥AB于点D,∵BC=2,∴S△ABC=BC×4=4,∵AB==4,∴CD==,∵AC==2,∴sin A===,故选:A.15.如图,△ABC的顶点是正方形网格的格点,则cos∠ABC的值为()A.B.C.D.【解答】解:法一、如图,在Rt△ABD中,∠ADB=90°,AD=BD=3,∴AB===3,∴cos∠ABC===.故选:B.法二、在Rt△ABD中,∠ADB=90°,AD=BD=3,∴∠ABD=∠BAD=45°,∴cos∠ABC=cos45°=.故选:B.16.如图,在直角△BAD中,延长斜边BD到点C,使DC=BD,连接AC,若tan B=,则tan∠CAD的值()A.B.C.D.【解答】解:如图,延长AD,过点C作CE⊥AD,垂足为E,∵tan B=,即=,∴设AD=5x,则AB=3x,∵∠CDE=∠BDA,∠CED=∠BAD,∴△CDE∽△BDA,∴,∴CE=x,DE=,∴AE=,∴tan∠CAD==.故选:D.17.如图,在边长为1的正方形网格中,连接格点D、N和E、C,DN和EC相交于点P,tan∠CPN为()A.1B.2C.D.【解答】解:连接格点MN、DM,如图所示:则四边形MNCE是平行四边形,△DAM和△MBN都是等腰直角三角形,∴EC∥MN,∠DMA=∠NMB=45°,DM=AD=2,MN=BM=,∴∠CPN=∠DNM,∴tan∠CPN=tan∠DNM,∵∠DMN=180°﹣∠DMA﹣∠NMB=180°﹣45°﹣45°=90°,∴tan∠CPN=tan∠DNM===2,故选:B.二.填空题(共17小题)18.如图,在Rt△ABC中,∠ACB=90°,AC=8,BC=6,CD⊥AB,垂足为D,则tan∠BCD的值是.【解答】解:在Rt△ABC与Rt△BCD中,∠A+∠B=90°,∠BCD+∠B=90°.∴∠A=∠BCD.∴tan∠BCD=tan∠A===.故答案为.19.已知在△ABC中,AB=AC=8,∠BAC=30°,将△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,延长线段AD,交原△ABC的边BC的延长线于点E,那么线段DE的长等于4﹣4.【解答】解:作CH⊥AE于H,如图,∵AB=AC=8,∴∠B=∠ACB=(180°﹣∠BAC)=(180°﹣30°)=75°,∵△ABC绕点A旋转,使点B落在原△ABC的点C处,此时点C落在点D处,∴AD=AB=8,∠CAD=∠BAC=30°,∵∠ACB=∠CAD+∠E,∴∠E=75°﹣30°=45°,在Rt△ACH中,∵∠CAH=30°,∴CH=AC=4,AH=CH=4,∴DH=AD﹣AH=8﹣4,在Rt△CEH中,∵∠E=45°,∴EH=CH=4,∴DE=EH﹣DH=4﹣(8﹣4)=4﹣4.故答案为4﹣4.20.已知△ABC中,AB=10,AC=2,∠B=30°,则△ABC的面积等于15或10.【解答】解:作AD⊥BC交BC(或BC延长线)于点D,①如图1,当AB、AC位于AD异侧时,在Rt△ABD中,∵∠B=30°,AB=10,∴AD=AB sin B=5,BD=AB cos B=5,在Rt△ACD中,∵AC=2,∴CD===,则BC=BD+CD=6,∴S△ABC=•BC•AD=×6×5=15;②如图2,当AB、AC在AD的同侧时,由①知,BD=5,CD=,则BC=BD﹣CD=4,∴S△ABC=•BC•AD=×4×5=10.综上,△ABC的面积是15或10,故答案为15或10.21.如图所示,四边形ABCD中,∠B=90°,AB=2,CD=8,AC⊥CD,若sin∠ACB=,则cos∠ADC=.【解答】解:∵∠B=90°,sin∠ACB=,∴=,∵AB=2,∴AC=6,∵AC⊥CD,∴∠ACD=90°,∴AD===10,∴cos∠ADC==.故答案为:.22.如图所示,∠AOB是放置在正方形网格中的一个角,则sin∠AOB的值是.【解答】解:如图,连接AB.∵OA=AB=,OB=2,∴OB2=OA2+AB2,∴∠OAB=90°,∴△AOB是等腰直角三角形,∴∠AOB=45°,∴sin∠AOB=,故答案为:.23.如图,在△ABC中,AB=4,BC=7,∠B=60°,点D在边BC上,CD=3,连接AD.如果将△ACD沿直线AD翻折后,点C的对应点为点E,那么点E到直线BD的距离为.【解答】解:如图,过点E作EH⊥BC于H.∵BC=7,CD=3,∴BD=BC﹣CD=4,∵AB=4=BD,∠B=60°,∴△ABD是等边三角形,∴∠ADB=60°,∴∠ADC=∠ADE=120°,∴∠EDH=60°,∵EH⊥BC,∴∠EHD=90°,∵DE=DC=3,∴EH=DE•sin60°=,∴E到直线BD的距离为,故答案为.24.如图,在由10个完全相同的正三角形构成的网格图中,∠α、∠β如图所示,则cos(α+β)=.【解答】解:给图中相关点标上字母,连接DE,如图所示.在△ABC中,∠ABC=120°,BA=BC,∴∠α=30°.同理,可得出:∠CDE=∠CED=30°=∠α.又∵∠AEC=60°,∴∠AED=∠AEC+∠CED=90°.设等边三角形的边长为a,则AE=2a,DE=2×sin60°•a=a,∴AD==a,∴cos(α+β)==.故答案为:.25.如图,在△ABC中,∠ACB=90°,点D为AB边的中点,连接CD,若BC=4,CD=3,则cos∠DCB的值为.【解答】解:∵在△ABC中,∠ACB=90°,点D为AB边的中点,∴AD=BD=CD=AB,又∵CD=3,∴AB=6,∴cos∠DCB=cos∠B===,故答案为:.26.△ABC中,AB=12,AC=,∠B=30°,则△ABC的面积是21或15.【解答】解:①如图1,作AD⊥BC,垂足为点D,在Rt△ABD中,∵AB=12、∠B=30°,∴AD=AB=6,BD=AB cos B=12×=6,在Rt△ACD中,CD===,∴BC=BD+CD=6+=7,则S△ABC=×BC×AD=×7×6=21;②如图2,作AD⊥BC,交BC延长线于点D,由①知,AD=6、BD=6、CD=,则BC=BD﹣CD=5,∴S△ABC=×BC×AD=×5×6=15,故答案为:21或15.27.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.【解答】解:设菱形ABCD边长为t,∵BE=2,∴AE=t﹣2,∵cos A=,∴,∴=,∴t=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故答案为:2.28.如图,△ABC的顶点B、C的坐标分别是(1,0)、(0,),且∠ABC=90°,∠A=30°,则顶点A的坐标是(4,).【解答】解:过点A作AG⊥x轴,交x轴于点G.∵B、C的坐标分别是(1,0)、(0,),∴OC=,OB=1,∴BC==2.∵∠ABC=90°,∠BAC=30°,∴AB====2.∵∠ABG+∠CBO=90°,∠BCO+∠CBO=90°,∴∠ABG=∠BCO.∴sin∠ABG===,cos∠ABG===,∴AG=,BG=3.∴OG=1+3=4,∴顶点A的坐标是(4,).故答案为:(4,).29.将一副三角尺如图所示叠放在一起,若AB=4cm,则阴影部分的面积是2cm2.【解答】解:∵∠B=30°,∠ACB=90°,AB=4cm,∴AC=2cm.由题意可知BC∥ED,∴∠AFC=∠ADE=45°,∴AC=CF=2cm.故S△ACF=×2×2=2(cm2).故答案为:2.30.如图,在等腰Rt△ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=,则AD的长为2.【解答】解:作DE⊥AB于E,如图,∵∠C=90°,AC=BC=6,∴△ACB为等腰直角三角形,AB=AC=6,∴∠A=45°,在Rt△ADE中,设AE=x,则DE=x,AD=x,在Rt△BED中,tan∠DBE==,∴BE=5x,∴x+5x=6,解得x=,∴AD=×=2.故答案为:2.31.如图,在Rt△ABC中,∠ACB=90°,sin A=,点C关于直线AB的对称点为D,点E为边AC上不与点A,C重合的动点,过点D作BE的垂线交BC于点F,则的值为.【解答】解:如图,设DF交AB于M,CD交AB于N,BE交DF于J.∵∠ACB=90°,∴sin A==,∴可以假设BC=4k,AB=5k,则AC=3k,∵C,D关于AB对称,∴CD⊥AB,CN=DN,∵S△ABC=×BC×AC=×AB×CN,∴CN=DN=k,∴CD=k,∵∠FCD+∠DCA=90°,∠DCA+∠A=90°,∴∠DCF=∠A,∵DF⊥BE,CD⊥AB,∴∠BJM=∠DNM=90°,∵∠BMJ=∠DMN,∴∠D=∠ABE,∴△DCF∽△BAE,∴===.32.如图,点D为△ABC的AB边上的中点,点E为AD的中点,△ADC为正三角形,给出下列结论,①CB=2CE,②tan∠B=,③∠ECD=∠DCB,④若AC=2,点P是AB 上一动点,点P到AC、BC边的距离分别为d1,d2,则d12+d22的最小值是3.其中正确的结论是①③④(填写正确结论的序号).【解答】解:∵D是AB中点∴AD=BD∵△ACD是等边三角形,E是AD中点∴AD=CD,∠ADC=60°=∠ACD,CE⊥AB,∠DCE=30°∴CD=BD∴∠B=∠DCB=30°,且∠DCE=30°,CE⊥AB∴∠ECD=∠DCB,BC=2CE,tan∠B=故①③正确,②错误∵∠DCB=30°,∠ACD=60°∴∠ACB=90°若AC=2,点P是AB上一动点,点P到AC、BC边的距离分别为d1,d2,∴四边形PMCN是矩形∴MN=CP∵d12+d22=MN2=CP2∴当CP为最小值,d12+d22的值最小∴根据垂线段最短,则当CP⊥AB时,d12+d22的值最小此时:∠CAB=60°,AC=2,CP⊥AB∴CP=∴d12+d22=MN2=CP2=3即d12+d22的最小值为3故④正确故答案为①③④33.已知,在△ABC中,∠A=45°,AB=4,BC=5,则△ABC的面积为2或14.【解答】解:过点B作AC边的高BD,Rt△ABD中,∠A=45°,AB=4,∴BD=AD=4,在Rt△BDC中,BC=5,∴CD==3,①△ABC是钝角三角形时,AC=AD﹣CD=1,∴S△ABC=AC•BD==2;②△ABC是锐角三角形时,AC=AD+CD=7,∴S△ABC=AC•BD=×7×4=14,故答案为:2或14.34.新定义:有一组对角互余的凸四边形称为对余四边形,如图,已知在对余四边形ABCD 中,AB=10,BC=12,CD=5,tan B=,那么边AD的长为9.【解答】解:如图,过点A作AH⊥BC于H,过点C作CE⊥AD于E,连接AC.在Rt△ABH中,tan B==,∴可以假设AH=3k,BH=4k,则AB=5k=10,∴k=2,∴AH=6,BH=8,∵BC=12,∴CH=BC﹣BH=12﹣8=4,∴AC===2,∵∠B+∠D=90°,∠D+∠ECD=90°,∴∠ECD=∠B,在Rt△CED中,tan∠ECD==,∵CD=5,∴DE=3,CE=4,∴AE===6,∴AD=AE+DE=9.故答案为:9.三.解答题(共8小题)35.如图,已知△ABD中,AC⊥BD,BC=8,CD=4,cos∠ABC=,BF为AD边上的中线.(1)求AC的长;(2)求tan∠FBD的值.【解答】解:(1)∵AC⊥BD,cos∠ABC==,BC=8,∴AB=10,在Rt△ACB中,由勾股定理得,AC===6,即AC的长为6;(2)如图,连接CF,过F点作BD的垂线,垂足E,∵BF为AD边上的中线,即F为AD的中点,∴CF=AD=FD,在Rt△ACD中,由勾股定理得,AD===2,∵三角形CFD为等腰三角形,FE⊥CD,∴CE=CD=2,在Rt△EFC中,EF===3,∴tan∠FBD===.解法二:∵BF为AD边上的中线,∴F是AD中点,∵FE⊥BD,AC⊥BD,∴FE∥AC,∴FE是△ACD的中位线,∴FE=AC=3,CE=CD=2,∴在Rt△BFE中,tan∠FBD===.36.已知:如图,在△ABC中,AD⊥BC于点D,E是AD的中点,连接CE并延长交边AB 于点F,AC=13,BC=8,cos∠ACB=.(1)求tan∠DCE的值;(2)求的值.【解答】解:(1)∵AD⊥BC,∴∠ADC=90°,在Rt△ADC中,AC=13,cos∠ACB==,∴CD=5,由勾股定理得:AD==12,∵E是AD的中点,∴ED=AD=6,∴tan∠DCE==;(2)过D作DG∥CF交AB于点G,如图所示:∵BC=8,CD=5,∴BD=BC﹣CD=3,∵DG∥CF,∴==,==1,∴AF=FG,设BG=3x,则AF=FG=5x,BF=FG+BG=8x∴=.37.在△ABC中,AD是BC边上的高,∠C=45°,sin B=,AD=1.求BC的长.【解答】解:在Rt△ABD中,∵,又∵AD=1,∴AB=3,∵BD2=AB2﹣AD2,∴.在Rt△ADC中,∵∠C=45°,∴CD=AD=1.∴BC=BD+DC=+1.38.如图,在△ABC中,AD⊥BC于点D,若AD=6.tan C=,BC=12,求cos B的值.【解答】解:∵tan C===,∴CD=4.∴BD=12﹣4=8.在Rt△ABD中,AB==10.∴cos B==.39.如图,在△ABC中,∠A=30°,∠B=45°,AC=,求AB的长.【解答】解:过C作CD⊥AB于D,∴∠ADC=∠BDC=90°,∵∠B=45°,∴∠BCD=∠B=45°,∴CD=BD,∵∠A=30°,AC=2,∴CD=,∴BD=CD=,由勾股定理得:AD==3,∴AB=AD+BD=3+,答:AB的长是3+.40.如图,在△ABC中,CD是边AB上的中线,∠B是锐角,sin B=,tan A=,AC=,(1)求∠B的度数和AB的长.(2)求tan∠CDB的值.【解答】解:(1)作CE⊥AB于E,设CE=x,在Rt△ACE中,∵tan A==,∴AE=2x,∴AC==x,∴x=,解得x=1,∴CE=1,AE=2,在Rt△BCE中,∵sin B=,∴∠B=45°,∴△BCE为等腰直角三角形,∴BE=CE=1,∴AB=AE+BE=3,答:∠B的度数为45°,AB的值为3;(2)∵CD为中线,∴BD=AB=1.5,∴DE=BD﹣BE=1.5﹣1=0.5,∴tan∠CDE===2,即tan∠CDB的值为2.41.一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB=90°,∠E=45°,∠A=60°,AC=10,试求CD的长.【解答】解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=60°,AC=10,∴∠ABC=30°,BC=AC×tan60°=10,∵AB∥CF,∴BM=BC×sin30°=10×=5,CM=BC×cos30°=15,在△EFD中,∠F=90°,∠E=45°,∴∠EDF=45°,∴MD=BM=5,∴CD=CM﹣MD=15﹣5.42.如图,在△ABC中,∠C=90°,点D,E分别在AC,AB上,BD平分∠ABC,DE⊥AB于点E,AE=6,cos A=.(1)求CD的长;(2)求tan∠DBC的值.【解答】解:(1)在Rt△ADE中,∠AED=90°,AE=6,cos A=,∴AD==10,∴==8.∵BD平分∠ABC,DE⊥AB,DC⊥BC,∴CD=DE=8;(2)由(1)AD=10,DC=8,∴AC=AD+DC=18,在△ADE与△ABC中,∵∠A=∠A,∠AED=∠ACB,∴△ADE∽△ABC,∴,即=,∴BC=24,∴.。

中考数学真题专项汇编解析—解直角三角形

中考数学真题专项汇编解析—解直角三角形

中考数学真题专项汇编解析—解直角三角形一.选择题1.(2022·天津)tan 45︒的值等于( )A .2B .1C D 【答案】B【分析】根据三角函数定义:正切=对边与邻边之比,进行求解. 【详解】作一个直角三角形,∠C =90°,∠A =45°,如图:∠∠B =90°-45°=45°,∠∠ABC 是等腰三角形,AC =BC , ∠根据正切定义,tan 1BCA AC∠==, ∠∠A =45°,∠tan 451︒=,故选 B .【点睛】本题考查了三角函数,熟练理解三角函数的定义是解题关键. 2.(2022·四川乐山)如图,在Rt ABC 中,90C ∠=︒,BC =D 是AC 上一点,连接BD .若1tan 2A ∠=,1tan 3ABD ∠=,则CD 的长为( )A.B .3 C D .2【答案】C【分析】先根据锐角三角函数值求出AC =5,AB =过点D作DE AB ⊥于点E ,依据三角函数值可得11,,23DE AE DE BE ==从而得32BE AE =,再由5AE BE +=得AE =2,DE =1,由勾股定理得AD CD .【详解】解:在Rt ABC 中,90C ∠=︒,BC ∠1tan 2BC A AC ∠==∠2AC BC ==由勾股定理得,5AB == 过点D 作DE AB ⊥于点E ,如图,∠1tan 2A ∠=,1tan 3ABD ∠=,∠11,,23DE DE AE BE == ∠11,,23DE AE DE BE == ∠1123AE BE = ∠32BE AE = ∠5,AE BE += ∠352AE AE += ∠2,AE = ∠1DE =, 在Rt ADE ∆中,222AD AE DE =+ ∠AD∠AD CD AC +== ∠CD AC AD =-=故选:C【点睛】本题主要考查了勾股定理,由锐角正切值求边长,正确作辅助线求出DE 的长是解答本题的关键.3.(2022·浙江杭州)如图,已知∠ABC 内接于半径为1的∠O ,∠BAC =θ(θ是锐角),则∠ABC 的面积的最大值为( )A .()cos 1cos θθ+B .()cos 1sin θθ+C .()sin 1sin θθ+D .()sin 1cos θθ+ 【答案】D【分析】要使∠ABC 的面积S =12BC •h 的最大,则h 要最大,当高经过圆心时最大.【详解】解:当∠ABC 的高AD 经过圆的圆心时,此时∠ABC 的面积最大, 如图所示,∠AD ∠BC ,∠BC =2BD ,∠BOD =∠BAC =θ, 在Rt ∠BOD 中,sin θ=1BD BD OB =,cos θ=1OD ODOB =, ∠BD =sin θ,OD =cos θ,∠BC =2BD =2sin θ,AD =AO +OD =1+cos θ, ∠S △ABC =12AD •BC =12•2sin θ(1+cos θ)=sin θ(1+cos θ).故选:D .【点睛】本题主要考查锐角三角函数的应用与三角形面积的求法.4.(2022·云南)如图,已知AB 是∠O 的直径,CD 是OO 的弦,AB ∠CD .垂足为E .若AB =26,CD =24,则∠OCE 的余弦值为( )A .713B .1213C .712D .1312【答案】B【分析】先根据垂径定理求出12CE CD =,再根据余弦的定义进行解答即可. 【详解】解:∠AB 是∠O 的直径,AB ∠CD . ∠112,902CE CD OEC ==∠=︒,OC =12AB =13, ∠12cos 13CE OCE OC ∠==.故选:B . 【点睛】此题考查的是垂径定理,锐角三角函数的定义,熟练掌握垂径定理,锐角三角函数的定义是解答此题的关键.5.(2022·陕西)如图,AD 是ABC 的高,若26BD CD ==,tan 2C ∠=,则边AB 的长为( )B.C.D.A.【答案】D【分析】先解直角ABC求出AD,再在直角ABD△中应用勾股定理即可求出AB.【详解】解:∠26CD=,BD CD==,∠3∠直角ADC中,tan2∠=,∠tan326C=⋅∠=⨯=,AD CD C∠直角ABD△中,由勾股定理可得,AB D.【点睛】本题考查利用锐角函数解直角三角形和勾股定理,难度较小,熟练掌握三角函数的意义是解题的关键.6.(2022·浙江金华)一配电房示意图如图所示,它是一个轴对称图形,已知∠=,则房顶A离地面EF的高度为()6mBC=,ABCαA .(43sin )m α+B .(43tan )m α+C .34m sin α⎛⎫+ ⎪⎝⎭ D .34m tan a ⎛⎫+ ⎪⎝⎭【答案】B【分析】过点A 作AD ∠BC 于D ,根据轴对称图形得性质即可得BD =CD ,从而利用锐角三角函数正切值即可求得答案. 【详解】解:过点A 作AD ∠BC 于D ,如图所示:∠它是一个轴对称图形,∠132BD DC BC ===m ,tan 3AD ADBD α∴==,即3tan AD α=, ∴房顶A 离地面EF 的高度为(43tan )m α+,故选B .【点睛】本题考查解直角三角形,熟练掌握利用正切值及一条直角边求另一条直角边是解题的关键.7.(2022·浙江丽水)如图,已知菱形ABCD 的边长为4,E 是BC 的中点,AF 平分EAD ∠交CD 于点F ,FG AD ∥交AE 于点G ,若1cos 4B =,则FG 的长是( )A.3B.83CD.52【答案】B【分析】过点A作AH垂直BC于点H,延长FG交AB于点P,由题干所给条件可知,AG=FG,EG=GP,利用∠AGP=∠B可得到cos∠AGP=14,即可得到FG的长;【详解】过点A作AH垂直BC于点H,延长FG交AB于点P,由题意可知,AB=BC=4,E是BC的中点,∠BE=2,又∠1cos4B=,∠BH=1,即H是BE的中点,∠AB=AE=4,又∠AF是∠DAE的角平分线,AD∠FG,∠∠F AG=∠AFG,即AG=FG,又∠PF∠AD,AP∠DF,∠PF=AD=4,设FG=x,则AG=x,EG=PG=4-x,∠PF∠BC,∠∠AGP=∠AEB=∠B,∠cos∠AGP=12PGAG=22xx-=14,解得x=83;故选B.【点睛】本题考查菱形的性质、角平分线的性质、平行线的性质和解直角三角形,熟练掌握角平分线的性质和解直角三角形的方法是解决本题的关键.8.(2022·四川广元)如图,在正方形方格纸中,每个小正方形的边长都相等,A、B、C、D都在格点处,AB与CD相交于点P,则cos∠APC的值为()A B C.2D5【答案】B【分析】把AB向上平移一个单位到DE,连接CE,则DE∠AB,由勾股定理逆定理可以证明∠DCE为直角三角形,所以cos∠APC=cos∠EDC即可得答案.【详解】解:把AB向上平移一个单位到DE,连接CE,如图.则DE∠AB,∠∠APC=∠EDC.在∠DCE中,有DE=,EC=DC==5∠222EC DC DE+=+==,52025∠DCE∠=︒,∆是直角三角形,且90DCE∠cos∠APC =cos∠EDC =DC DE = 故选:B .【点睛】本题考查了解直角三角形、平行线的性质,勾股定理,作出合适辅助线是解题关键.9.(2022·湖北随州)如图,已知点B ,D ,C 在同一直线的水平,在点C 处测得建筑物AB 的顶端A 的仰角为α,在点D 处测得建筑物AB 的顶端A 的仰角为β,CD a =,则建筑物AB 的高度为( )A .tan tan a αβ- B .tan tan a βα- C .tan tan tan tan a αβαβ- D .tan tan tan tan a αββα-【答案】D【分析】设AB =x ,利用正切值表示出BC 和BD 的长,CD =BC -BD ,从而列出等式,解得x 即可.【详解】设AB =x ,由题意知,∠ACB =α,∠ADB =β,∠tan x BD β=,tan xBC α=, ∠CD =BC -BD ,∠tan tan x x a αβ-=,∠tan tan tan tan a x αββα=-,即AB =tan tan tan tan a αββα-,故选:D . 【点睛】本题考查了解直角三角形,熟记锐角三角函数的定义是解题的关键. 二.填空题10.(2022·山东泰安)如图,某一时刻太阳光从窗户射入房间内,与地面的夹角30DPC ∠=︒,已知窗户的高度2m AF =,窗台的高度1m CF =,窗外水平遮阳篷的宽0.8m AD =,则CP 的长度为______(结果精确到0.1m ).【答案】4.4m##4.4米【分析】根据题意可得AD ∠CP ,从而得到∠ADB =30°,利用锐角三角函数可得tan 0.46m AB AD ADB =⨯∠=≈,从而得到BC =AF +CF -AB =2.54m ,即可求解.【详解】解:根据题意得:AD ∠CP , ∠∠DPC =30°,∠∠ADB =30°,∠0.8m AD =,∠tan 0.80.46m AB AD ADB =⨯∠=≈, ∠AF =2m ,CF =1m ,∠BC =AF +CF -AB =2.54m , ∠ 2.544.4m tan tan 30BC CP BPC ︒==≈∠,即CP 的长度为4.4m .故答案为:4.4m.【点睛】本题主要考查了解直角三角形、平行线的性质,熟练掌握锐角三角函数是解题的关键.11.(2022·天津)如图,在每个小正方形的边长为1的网格中,圆上的点A ,B ,C 及DPF ∠的一边上的点E ,F 均在格点上.(∠)线段EF 的长等于___________;(∠)若点M ,N 分别在射线,PD PF 上,满足90MBN ∠=︒且BM BN =.请用无刻..度.的直尺,在如图所示的网格中,画出点M ,N ,并简要说明点M ,N 的位置是如何找到的(不要求证明)___________.【答案】 见解析【分析】(∠)根据勾股定理,从图中找出EF 所在直角三角形的直角边的长进行计算;(∠)由图可找到点Q ,EQ BQ EF BF ====EFBQ 是正方形,因为90BM BN MBN =∠=︒,,所以BQM BFN ∆≅∆,点M 在EQ 上,BM 、BN 与圆的交点为直径端点,所以EQ 与PD 交点为M ,通过BM 与圆的交点G 和圆心O 连线与圆相交于H ,所以H 在BN 上,则延长BH 与PF 相交点即为N .【详解】解:(∠)从图中可知:点E 、F 水平方向距离为3,竖直方向距离为1,所以EF ;(∠)连接AC ,与竖网格线相交于点O ,O 即为圆心;取格点Q (E 点向右1格,向上3格),连接EQ 与射线PD 相交于点M ;连接MB 与O 相交于点G ;连接GO 并延长,与O 相交于点H ;连接BH 并延长,与射线PF 相交于点N ,则点M ,N 即为所求,理由如下:连接,BQ BF由勾股定理算出BQ QE EF BF ====由题意得90MQB QEF BFE QBF ∠=∠=∠=∠=︒,∴四边形BQEF 为正方形,在Rt BQM 和Rt BFN 中,BQ BF =,1tan tan 3QBA FBC ∠=∠=,QBA FBC ∴∠=∠, AOG COH ∠=∠,AG CH ∴=,ABG HBC ∴∠=∠,MBQ NBF ∴∠=∠()Rt BQM Rt BFN ASA ∴≌BM BN ∴=,90QBM MBF MBF FBN ∠+∠=∠+∠=︒90MBN ∴∠=,从而确定了点,M N 的位置.【点睛】本题考查作图,锐角三角函数、圆周角定理,三角形全等的判定及性质,解题的关键是掌握圆周角的定理.12.(2022·江苏扬州)在ABC ∆中,90C ∠=︒,a b c 、、分别为A B C ∠∠∠、、的对边,若2b ac =,则sin A 的值为__________.【详解】解:如图所示:在Rt ABC 中,由勾股定理可知:222+=a b c ,2ac b =,22a ac c ∴+=,0a >, 0b >,0c >,2222a ac c c c +∴=,即:21a a c c ⎛⎫+= ⎪⎝⎭,求出ac =a c =,∴在Rt ABC 中:in s a c A == 【点睛】本题考查了锐角三角函数的概念及勾股定理,熟练掌握锐角三角函数的定义是解答本题的关键.在Rt ABC 中,sin A A ∠=的对边斜边 ,cos A A ∠=的邻边斜边,tan A A A ∠=∠的对边的邻边. 13.(2022·湖南衡阳)回雁峰座落于衡阳雁峰公园,为衡山七十二峰之首.王安石曾赋诗联“万里衡阳雁,寻常到此回”.峰前开辟的雁峰广场中心建有大雁雕塑,为衡阳市城徽.某课外实践小组为测量大雁雕塑的高度,利用测角仪及皮尺测得以下数据:如图,10m AE =,30BDG ∠=︒,60BFG ∠=︒.已知测角仪DA 的高度为1.5m ,则大雁雕塑BC 的高度约为_________m .(结果精确到0.1m .参考数据:1.732)【答案】10.2【分析】先根据三角形外角求得30∠=∠=,再根据三角形的等角对等边DBF BDG得出BF=DF=AE=10m,再解直角三角形求得BG即可求解.【详解】解:∠30∠=︒,BFGBDG∠=︒且60∠30∠=∠-∠=︒,DBF BFG BDG∠∠=∠DBF BDG,即10mBF DF AE===.∠=⋅=≈,BG BF︒sin608.66m∠8.66 1.510.2mBC BG GC BG DA=+=+=+≈,故答案为:10.2m.【点睛】本题考查了三角形的外角性质、等腰三角形的判定、解直角三角形的应用,熟练掌握等腰三角形的判定和解直角三角形的解题方法是解答的关键.14.(2022·浙江嘉兴)如图,在ABC中,∠ABC=90°,∠A=60°,直尺的一边与BC重合,另一边分别交AB,AC于点D,E.点B,C,D,E处的读数分别为15,12,0,1,则直尺宽BD的长为_________.【分析】先求解33,,3AB AD 再利用线段的和差可得答案. 【详解】解:由题意可得:1,15123,DE DC 30,90,A ABC 33,tan 603BC AB 同理:13,tan 6033DE AD 3233,33BD AB AD【点睛】本题考查的是锐角的正切的应用,二次根式的减法运算,掌握“利用锐角的正切求解三角形的边长”是解本题的关键.15.(2022·浙江绍兴)如图,10AB =,点C 在射线BQ 上的动点,连接AC ,作CD AC ⊥,CD AC =,动点E 在AB 延长线上,tan 3QBE ∠=,连接CE ,DE ,当CE DE =,CE DE ⊥时,BE 的长是______.【答案】5或35 4【分析】过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN =3x,由∠ACN∠∠CDM可得AN=CM=10+x,CN=DM=3x,由点C、M、D、E四点共圆可得∠NME是等腰直角三角形,于是NE=10-2x,由勾股定理求得AC可得CE,在Rt∠CNE中由勾股定理建立方程求得x,进而可得BE;【详解】解:如图,过点C作CN∠BE于N,过点D作DM∠CN延长线于M,连接EM,设BN=x,则CN=BN•tan∠CBN=3x,∠∠CAD,∠ECD都是等腰直角三角形,∠CA=CD,EC=ED,∠EDC=45°,∠CAN+∠ACN=90°,∠DCM+∠ACN=90°,则∠CAN=∠DCM,在∠ACN和∠CDM中:∠CAN=∠DCM,∠ANC=∠CMD=90°,AC=CD,∠∠ACN∠∠CDM(AAS),∠AN=CM=10+x,CN=DM=3x,∠∠CMD=∠CED=90°,∠点C、M、D、E四点共圆,∠∠CME=∠CDE=45°,∠∠ENM=90°,∠∠NME 是等腰直角三角形,∠NE =NM =CM -CN =10-2x ,Rt ∠ANC 中,ACRt ∠ECD 中,CD =AC ,CE =2CD , Rt ∠CNE 中,CE 2=CN 2+NE 2,∠()()()()2222110331022x x x x ⎡⎤++=+-⎣⎦, 2425250x x -+=,()()4550x x --=,x =5或x =54,∠BE =BN +NE =x +10-2x =10-x ,∠BE =5或BE =354; 故答案为:5或354; 【点睛】本题考查了三角函数,全等三角形的判定和性质,圆内接四边形的性质,勾股定理,一元二次方程等知识;此题综合性较强,正确作出辅助线是解题关键. 16.(2022·山东泰安)如图,在一次数学实践活动中,小明同学要测量一座与地面垂直的古塔AB 的高度,他从古塔底部点处前行30m 到达斜坡CE 的底部点C 处,然后沿斜坡CE 前行20m 到达最佳测量点D 处,在点D 处测得塔顶A 的仰角为30,已知斜坡的斜面坡度i =A ,B ,C ,D ,在同一平面内,小明同学测得古塔AB 的高度是___________.+【答案】(20mm,求出x=10,【分析】过D作DF∠BC于F,DH∠AB于H,设DF=x m,CF则BH=DF=,CF=,DH=BF,再求出AH DH,即可求解.【详解】解:过D作DF∠BC于F,DH∠AB于H,∠DH=BF,BH=DF,∠斜坡的斜面坡度i=1∠:DF CF=m,设DF=x m,CF∠CD==,220x∠x=10,∠BH=DF=10m,CF=,∠DH=BF=(m),∠∠ADH =30°,∠AH10=+m ), ∠AB =AH +BH =20103(m ),故答案为:(20m +.【点睛】本题考查了解直角三角形的应用-仰角俯角问题、坡角坡度问题,正确的作出辅助线构造直角三角形是解题的关键.17.(2022·江苏连云港)如图,在66⨯正方形网格中,ABC 的顶点A 、B 、C 都在网格线上,且都是小正方形边的中点,则sin A =_________.【答案】45【分析】如图所示,过点C 作CE ∠AB 于E ,先求出CE ,AE 的长,从而利用勾股定理求出AC 的长,由此求解即可.【详解】解:如图所示,过点C 作CE ∠AB 于E ,由题意得43CE AE ==,,∠5AC , ∠4sin =5CE A AC =,故答案为:45.【点睛】本题主要考查了求正弦值,勾股定理与网格问题正确作出辅助线,构造直角三角形是解题的关键.18.(2022·四川凉山)如图,CD 是平面镜,光线从A 点出发经CD 上点O 反射后照射到B 点,若入射角为α,反射角为β(反射角等于入射角),AC ∠CD 于点C ,BD ∠CD 于点D ,且AC =3,BD =6,CD =12,则tanα的值为_______.【答案】43【分析】如图(见解析),先根据平行线的判定与性质可得,A B αβ∠=∠=,从而可得A B ∠=∠,再根据相似三角形的判定证出AOC BOD △△,根据相似三角形的性质可得OC 的长,然后根据正切的定义即可得.【详解】解:如图,由题意得:OP CD ⊥,AC CD ⊥,AC OP ∴,A α∴∠=,同理可得:B β∠=,αβ=,A B ∴∠=∠,在AOC △和BOD 中,90A B ACO BDO ∠=∠⎧⎨∠=∠=︒⎩, AOCBOD ∴, OC AC OD BD∴=, 3,6,12,AC BD CD OD CD OC ====-,1236OC OC ∴-=, 解得4OC =,经检验,4OC =是所列分式方程的解, 则4tan tan 3OC A AC α===, 故答案为:43.【点睛】本题考查了相似三角形的判定与性质、正切等知识点,正确找出两个相似三角形是解题关键.19.(2022·四川凉山)如图,在边长为1的正方形网格中,∠O 是∠ABC 的外接圆,点A ,B ,O 在格点上,则cos∠ACB 的值是________.【分析】取AB 中点D ,由图可知,AB =6,AD =BD =3,OD =2,由垂径定理得OD ∠AB ,则OB==cos∠DOB =13OD OB ==,再证∠ACB =∠DOB ,即可解.【详解】解:取AB 中点D ,如图,由图可知,AB =6,AD =BD =3,OD =2,∠OD ∠AB ,∠∠ODB =90°,∠OB==cos∠DOB =OD OB ==, ∠OA =OB ,∠∠BOD =12∠AOB ,∠∠ACB =12∠AOB ,∠∠ACB =∠DOB ,∠cos∠ACB = cos∠DOB【点睛】本题考查勾股定理,垂径定理,圆周角定理,解直角三角形,取AB 中点D ,得Rt ∠ODB 是解题的关键.20.(2022·山东滨州)在Rt ∠ABC 中,∠C =90°,AC =5,BC =12,则sin A =______. 【答案】1213【分析】根据题意画出图形,进而利用勾股定理得出AB 的长,再利用锐角三角函数关系,即可得出答案.【详解】解:如图所示:∠∠C =90°,AC =5,BC =12,∠AB ,∠sin A =1213BC AB =. 故答案为:1213. 【点睛】在直角三角形中求正弦函数值是本题的考点,根据勾股定理求出AB 的长是解题的关键.21.(2022·湖北黄冈)如图,有甲乙两座建筑物,从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离.已知乙建筑物的高度CD 为6m ,则甲建筑物的高度AB 为________m .(sin580.85︒≈,cos580.53︒≈,tan58 1.60︒≈,结果保留整数).【答案】16【分析】过D 点作DE AB ⊥于点E ,则6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,设AE x =,则DE x =,BC x =,6AB AE BE x =+=+,在Rt ABC 中,6tan tan 58 1.60AB x ACB BC x+∠=︒==≈,解得10x ≈,进而可得出答案. 【详解】解:如图,过D 点作DE AB ⊥于点E ,设AE x =,根据题意可得:AB BC ⊥,DC BC ⊥,∠90AED BED ABC DCB ∠=∠=∠=∠=︒,∠四边形BCDE 是矩形,∠从甲建筑物A 点处测得乙建筑物D 点的俯角α为45︒,C 点的俯角β为58︒,BC 为两座建筑物的水平距离,乙建筑物的高度CD 为6,∠6BE CD ==,45ADE ∠=︒,58ACB ∠=︒,在Rt ADE △中,45ADE ∠=︒,∠9045EAD ADE ∠=︒-∠=︒,∠EAD ADE ∠=∠,∠DE AE x ==,∠BC DE x ==,∠6AB AE BE x =+=+,在Rt ABC 中,tan ∠=AB ACB BC 即6tan 58 1.60x x+︒=≈, ∠6tan tan 58 1.60AB x ACB BC x +∠=︒==≈ 解得10x ≈,经检验10x ≈是原分式方程的解且符合题意,∠()616AB x m =+≈.故答案为:16.【点睛】本题考查解直角三角形的应用一仰角俯角问题,涉及到锐角三角函数,矩形的判定和性质,等腰三角形的性质,直角三角形两锐角互余,分式方程等知识.熟练掌握锐角三角函数的定义是解答本题的关键.22.(2022·四川广元)如图,直尺AB 垂直竖立在水平面上,将一个含45°角的直角三角板CDE 的斜边DE 靠在直尺的一边AB 上,使点E 与点A 重合,DE =12cm .当点D 沿DA 方向滑动时,点E 同时从点A 出发沿射线AF 方向滑动.当点D 滑动到点A 时,点C 运动的路径长为 _____cm .【答案】(24-【分析】由题意易得CD CE DE ===,则当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,然后可得D C N E C M ''''≌,进而可知点D 沿DA 方向下滑时,点C ′在射线AC 上运动,最后问题可求解.【详解】解:由题意得:∠DEC =45°,DE =12cm ,∠2CD CE DE ===, 如图,当点D 沿DA 方向下滑时,得到D C E '''△,过点C '作C N AB '⊥于点N ,作C M AF '⊥于点M ,∠∠DAM =90°,∠四边形NAMC ′是矩形,∠90NC M '∠=︒,∠90D C N NC E NC E E C M ''''''''∠+∠=∠+∠=︒,∠D C N E C M ''''∠=∠,∠,90D C E C D NC E MC ''''''''=∠=∠=︒,∠D C N E C M ''''≌,∠C N C M ''=,∠C N AB '⊥,C M AF '⊥,∠AC '平分∠NAM ,即点D 沿DA 方向下滑时,点C ′在射线AC 上运动,∠当C D AB ''⊥时,此时四边形C D AE '''是正方形,CC ′的值最大,最大值为(12cm AD AC -=-,∠当点D 滑动到点A 时,点C 运动的路径长为((21224cm ⨯-=-;故答案为(24-.【点睛】本题主要考查正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理,熟练掌握正方形的性质、全等三角形的性质与判定、等腰直角三角形的性质及角平分线的判定定理是解题的关键.23.(2022·湖北宜昌)如图,C岛在A岛的北偏东50︒方向,C岛在B岛的北偏西35︒方向,则ACB∠的大小是_____.【答案】85︒【分析】过C作CF DA∥交AB于F,根据方位角的定义,结合平行线性质即可求解.【详解】解:C岛在A岛的北偏东50︒方向,50∴∠=︒,DACC岛在B岛的北偏西35︒方向,35∴∠=︒,CBE过C作CF DA∥交AB于F,如图所示:∴∥∥,DA CF EB50,35∴∠=∠=︒∠=∠=︒,FCA DAC FCB CBEACB FCA FCB∴∠=∠+∠=︒,85故答案为:85︒.【点睛】本题考查方位角的概念与平行线的性质求角度,理解方位角的定义,并熟练掌握平行线的性质是解决问题的关键.三.解答题24.(2022·江苏宿迁)如图,某学习小组在教学楼AB的顶部观测信号塔CD底部的俯角为30°,信号塔顶部的仰角为45°.已知教学楼AB的高度为20m,求信号塔的高度(计算结果保冒根号).20)m.【答案】(【分析】过点A作AE∠CD于点E,则四边形ABDE是矩形,DE=AB=20m,在Rt∠ADE中,求出AE的长,在Rt∠ACE中,∠AEC=90°,求出CE的长,即可得到CD的长,得到信号塔的高度.【详解】解:过点A作AE∠CD于点E,由题意可知,∠B=∠BDE=∠AED=90°,∠四边形ABDE是矩形,∠DE=AB=20m,在Rt ∠ADE 中,∠AED =90°,∠DAE =30°,DE =20m ,∠tan∠DAE =DE AE ,∠20tan tan 30DE AE DAE ===∠︒, 在Rt ∠ACE 中,∠AEC =90°,∠CAE =45°,∠∠ACE 是等腰直角三角形, ∠CE AE =m ,∠CD =CE +DE =(20)m , ∠信号塔的高度为(20)m .【点睛】此题考查了解直角三角形的应用仰角俯角问题、矩形的判定和性质、等腰直角三角形的判定和性质、特殊角的锐角三角函数等知识,借助仰角俯角构造直角三角形与矩形是解题的关键.25.(2022·天津)如图,某座山AB 的项部有一座通讯塔BC ,且点A ,B ,C 在同一条直线上,从地面P 处测得塔顶C 的仰角为42︒,测得塔底B 的仰角为35︒.已知通讯塔BC 的高度为32m ,求这座山AB 的高度(结果取整数).参考数据:tan350.70tan 420.90︒≈︒≈,.【答案】这座山AB 的高度约为112m【分析】在Rt PAB 中,·tan AB PA APB =∠,在Rt PAC △中,·tan AC PA APC =∠,利用AC AB BC =+,即可列出等式求解.【详解】解:如图,根据题意,324235BC APC APB ︒∠︒=∠==,,.在Rt PAC △中,tan AC APC PA ∠=, ∠tan AC PA APC =∠. 在Rt PAB 中,tan AB APB PA ∠=, ∠tan AB PA APB =∠. ∠AC AB BC =+, ∠tan tan AB BC AB APC APB+=∠∠. ∠()tan 32tan 35320.70112m tan tan tan 42tan 350.900.70BC APB AB APC APB ⋅∠⨯︒⨯==≈=∠-∠︒-︒-.答:这座山AB 的高度约为112m .【点睛】本题考查三角函数测高,解题的关键在运用三角函数的定义表示出未知边,列出方程.26.(2022·浙江湖州)如图,已知在Rt ∠ABC 中,∠C =90°,AB =5,BC =3.求AC 的长和sin A 的值.【答案】AC =4,sin A =35【分析】根据勾股定理求出AC ,根据正弦的定义计算,得到答案.【详解】解:∠∠C =Rt ∠,AB =5,BC =3,∠4AC =.3sin 5BC A AB ==. 【点睛】本题考查的是勾股定理、锐角三角函数的定义,掌握正弦的定义是解题的关键.27.(2022·新疆)周米,王老师布置了一项综合实践作业,要求利用所学知识测量一栋楼的高度.小希站在自家阳台上,看对面一栋楼顶部的仰角为45︒,看这栋楼底部的俯角为37︒,已知两楼之间的水平距离为30m ,求这栋楼的高度.(参考数据:sin 370.60,cos370.80,tan 370.75︒≈︒≈︒≈)【答案】这栋楼的高度为:52.5米【分析】如图,过A 作AE ∠BC 于E ,在Rt ∠AEB 和Rt ∠AEC 中,根据正切的概念分别求出BE 、EC ,计算即可.【详解】解:过A 作AE BC ⊥于E ,∠90AEB AEC ∠=∠=︒由依题意得:45,37,30EAB CAE CD AE ∠=︒∠=︒==,Rt AEB 和Rt AEC 中, ∠tan BAE BE AE ∠=,tan CE CAE AE∠= ∠tan 4530130BE AE =⨯︒=⨯=,tan37300.7522.5CE AE =⨯︒≈⨯=∠3022.552.5BC BE CE =+=+=∠这栋楼的高度为:52.5米.【点睛】本题考查的是解直角三角形的应用﹣仰角俯角问题,掌握仰角俯角的概念、熟练运用锐角三角函数的定义是解题的关键.28.(2022·湖南邵阳)如图,一艘轮船从点A处以30km/h的速度向正东方向航行,在A处测得灯塔C在北偏东60︒方向上,继续航行1h到达B处,这时测得灯塔C在北偏东45︒方向上,已知在灯塔C的四周40km内有暗礁,问这艘轮船继续向正东方向航行是否安全?并说明理由.1.414 1.732≈)【答案】这艘轮船继续向正东方向航行是安全的,理由见解析【分析】如图,过C作CD∠AB于点D,根据方向角的定义及余角的性质求出∠BAC=30°,∠CBD=45°,解Rt∠ACD和Rt∠BCD,求出CD即可.【详解】解:过点C作CD∠AB,垂足为D.如图所示:根据题意可知∠BAC=90°−60°=30°,∠DBC=90°-45°=45°,AB=30×1=30(km),在Rt∠BCD中,∠CDB=90°,∠DBC=45°,tan∠DBC=CDBD ,即CDBD=1∠CD=BD设BD=CD=x km,在Rt∠ACD中,∠CDA=90°,∠DAC=30°,∠tan∠DAC =CD AD ,即30x x =+解得x,∠40.98km>40km∠这艘船继续向东航行安全.【点睛】此题考查了解直角三角形的应用;解题的关键是熟练掌握锐角三角函数定义.29.(2022·湖南怀化)某地修建了一座以“讲好隆平故事,厚植种子情怀”为主题的半径为800米的圆形纪念园.如图,纪念园中心点A 位于C 村西南方向和B 村南偏东60°方向上,C 村在B 村的正东方向且两村相距2.4千米.有关部门计划在B 、C 两村之间修一条笔直的公路来连接两村.问该公路是否穿过纪念园?试通过计算加以说明.≈1.41)【答案】不穿过,理由见解析【分析】先作AD ∠BC ,再根据题意可知∠ACD=45°,∠ABD =30°,设CD =x ,可表示AD 和BD ,然后根据特殊角三角函数值列出方程,求出AD ,与800米比较得出答案即可.【详解】不穿过,理由如下:过点A 作AD ∠BC ,交BC 于点D ,根据题意可知∠ACD=45°,∠ABD =30°. 设CD =x ,则BD=2.4-x ,在Rt ∠ACD 中,∠ACD=45°,∠∠CAD=45°,∠AD=CD =x .在Rt ∠ABD 中,tan 30AD BD ︒=,即2.4x x =-, 解得x =0.88,可知AD=0.88千米=880米,因为880米>800米,所以公路不穿过纪念园.【点睛】本题主要考查了解直角三角形的应用,构造直角三角形是解题的关键.30.(2022·四川成都)2022年6月6日是第27个全国“爱眼日”,某数学兴趣小组开展了“笔记本电脑的张角大小、顶部边缘离桌面的高度与用眼舒适度关系”的实践探究活动.如图,当张角150AOB ∠=︒时,顶部边缘A 处离桌面的高度AC 的长为10cm ,此时用眼舒适度不太理想.小组成员调整张角大小继续探究,最后联系黄金比知识,发现当张角108A OB '∠=︒时(点A '是A 的对应点),用眼舒适度较为理想.求此时顶部边缘A '处离桌面的高度A D '的长.(结果精确到1cm ;参考数据:sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈)【答案】约为19cm【分析】在Rt ∠ACO 中,根据正弦函数可求OA =20cm ,在Rt ∠A DO '中,根据正弦函数求得A D '的值.【详解】解:在Rt ∠ACO 中,∠AOC =180°-∠AOB =30°,AC =10cm ,∠OA =10201sin 302OC,在Rt ∠A DO '中,18072A OC A OB ,20OA OA '==cm , ∠sin72200.9519A D OA cm .【点睛】本题考查了解直角三角形的应用,熟练掌握三角函数的定义是解题的关键.31.(2022·四川泸州)如图,海中有两小岛C ,D ,某渔船在海中的A 处测得小岛C 位于东北方向,小岛D 位于南偏东30°方向,且A ,D 相距10 nmile .该渔船自西向东航行一段时间后到达点B ,此时测得小岛C位于西北方向且与点B 相距nmile.求B,D 间的距离(计算过程中的数据不取近似值).【答案】B,D间的距离为14nmile.【分析】如图,过点D作DE∠AB于点E,根据题意可得,∠BAC=∠ABC=45°,nmile.再根据锐角三角函数即可求出B,∠BAD=60°,AD=10 nmile,BCD间的距离.【详解】解:如图,过点D作DE∠AB于点E,nmile.根据题意可得,∠BAC=∠ABC=45°,∠BAD=60°,AD=10 nmile,BC在Rt∠ABC中,AC=BC=16(nmile),∠AB在Rt∠ADE中,AD=10 nmile,∠EAD=60°,∠DE=AD,AE=1AD=5 (nmile),2∠BE=AB-AE=11(nmile),∠BD=14(nmile),答:B,D间的距离为14nmile.【点睛】本题考查了解直角三角形的应用-方向角问题,解决本题的关键是掌握方向角定义.32.(2022·浙江台州)如图1,梯子斜靠在竖直的墙上,其示意图如图2,梯子与地面所成的角α为75°,梯子AB长3m,求梯子顶部离地竖直高度BC.(结果精确到0.1m ;参考数据:sin75°≈0.97,cos75°≈0.26,tan75°≈3.73)【答案】梯子顶部离地竖直高度BC 约为2.9m .【分析】根据竖直的墙与梯子形成直角三角形,利用锐角三角函数即可求出AC 的长.【详解】解:在Rt ∠ABC 中,AB =3,∠ACB =90°,∠BAC =75°,∠BC =AB ∠sin75°≈3×0.97=2.91≈2.9(m).答:梯子顶部离地竖直高度BC 约为2.9m .【点睛】本题考查了解直角三角形的应用,解决本题的关键是掌握锐角三角函数.33.(2022·湖南湘潭)湘潭县石鼓油纸伞因古老工艺和文化底蕴,已成为石鼓乡村旅游的一张靓丽名片.某中学八年级数学兴趣小组参观后,进行了设计伞的实践活动.小文依据黄金分割的美学设计理念,设计了中截面如图所示的伞骨结构(其中0.618DH AH≈):伞柄AH 始终平分BAC ∠,20cm AB AC ==,当120BAC ∠=︒时,伞完全打开,此时90BDC ∠=︒.请问最少需要准备多长的伞柄?(结果保留整数,1.732)【答案】72cm【分析】过点B 作BE AH ⊥于点E ,解Rt ,Rt ABE BED ,分别求得,AE ED ,进而求得AD ,根据黄金比求得DH ,求得AH 的长,即可求解.【详解】如图,过点B 作BE AH ⊥于点EAB AC =,120BAC ∠=︒,AH 始终平分BAC ∠, 60BAE CAD ∴∠=∠=︒1cos 60102AE AB AB ∴=︒⨯==,BE ==,,AB AC BAD CAD AD AD =∠=∠= ADC ADB ∴≌90BDC ∠=︒45ADB ADC ∴∠=∠=︒BE ED ∴=1027.32AD AE ED ∴=+=+ 0.618DHAH ≈0.618DH DH AD∴≈+ 解得44.2DH ≈27.3244.271.5272AH AD DH ∴=+=+=≈答:最少需要准备72cm 长的伞柄【点睛】本题考查了解直角三角形的应用,掌握直角三角形中边角关系是解题的关键.34.(2022·湖南常德)第24届冬季奥林匹克运动会于今年2月4日至20日在北京举行,我国冬奥选手取得了9块金牌、4块银牌、2块铜牌,为祖国赢得了荣誉,激起了国人对冰雪运动的热情.某地模仿北京首钢大跳台建了一个滑雪大跳台(如图),它由助滑坡道、弧形跳台、着陆坡、终点区四部分组成.图是其示意图,已知:助滑坡道50AF =米,弧形跳台的跨度7FG =米,顶端E 到BD 的距离为40米,HG BC ∥,40AFH ∠=︒,25EFG ∠=︒,36ECB ∠=︒.求此大跳台最高点A 距地面BD 的距离是多少米(结果保留整数).(参考数据:sin 400.64︒≈,cos400.77︒≈,tan 400.84︒≈,sin 250.42︒≈,cos250.91︒≈,tan 250.47︒≈,sin360.59︒≈,cos360.81︒≈,tan360.73︒≈)【答案】70【分析】过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形,可得HB MN =,在Rt AHF △中,求得AH ,根据,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠,7FG =,求得FM ,进而求得MN ,根据AB AH HB AH MN =+=+即可求解.【详解】如图,过点E 作EN BC ⊥,交GF 于点M ,则四边形HBNM 是矩形, HB MN ∴=,50AF =,40AFH ∠=︒,在Rt AHF △中,sin 500.6432AH AF AFH =⋅∠≈⨯=米,HG BC ∥,EGF ECB ∴∠=∠25EFG ∠=︒,36ECB ∠=︒,7FG =,tan tan tan EM EM EM FM MG EFG EGF ECB===∠∠∠ 70.470.73EM EM ∴+=, 解得2EM ≈,顶端E 到BD 的距离为40米,即40EN =米40238MN EN EM ∴=-=-=米.323870AB AH HB AH MN ∴=+=+=+=米.【点睛】本题考查了解直角三角形的应用,掌握直角三角形中的边角关系是解题的关键.35.(2022·湖北宜昌)知识小提示:要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足5372α︒≤≤︒.如图,现有一架长4m 的梯子AB 斜靠在一竖直的墙AO 上.(1)当人安全使用这架梯子时,求梯子顶端A 与地面距离的最大值;(2)当梯子底端B 距离墙面1.64m 时,计算ABO ∠等于多少度?并判断此时人是否能安全使用这架梯子?(参考数据:sin530.80︒≈,cos530.60︒≈,tan53 1.33︒≈,sin720.95︒≈,cos720.31︒≈,tan72 3.08︒≈,sin660.91︒≈,cos660.41︒≈,tan66 2.25︒≈)【答案】(1)梯子顶端A 与地面的距离的最大值3.8米(2)66ABO ∠=︒,人能安全使用这架梯子【分析】(1)AB 的长度固定,当∠ABO 越大,OA 的高度越大,当72α=︒时,AO 取最大值,此时,根据∠ABO 的正弦三角函数计算出OA 长度即可;(2)根据AB=4,OB=1.64,利用∠ABO的余弦函数值,即可求出∠ABO的大小,从而得到答案.(1)∠5372α︒≤≤︒当72α=︒时,AO取最大值,在Rt AOB中,sinAO ABOAB∠=,∠sin4sin7240.95 3.8AO AB ABO=∠=︒≈⨯=,所以梯子顶端A与地面的距离的最大值3.8米.(2)在Rt AOB中,cosBO ABOAB∠=,cos 1.6440.41ABO∠=÷=,cos660.41︒≈,∠66ABO∠=︒,∠5372α︒≤≤︒,∠人能安全使用这架梯子.【点睛】本题考查三角函数的应用,属于中考常见考题,利用图形中的直角三角形,建立三角函数模型是解题的关键.36.(2022·湖南株洲)如图1所示,某登山运动爱好者由山坡∠的山顶点A处沿线段AC至山谷点C处,再从点C处沿线段CB至山坡∠的山顶点B处.如图2所示,将直线l视为水平面,山坡∠的坡角30ACM∠=︒,其高度AM为0.6千米,山坡∠的坡度1:1i=,BN l⊥于N,且CN。

九年级解直角三角形经典习题汇编附答案(超经典)

九年级解直角三角形经典习题汇编附答案(超经典)

解直角三角形命题人:申老师1、已知:如图,在ΔABC 中,∠ACB =90°,CD ⊥AB ,垂足为D ,若∠B =30°,CD =6,求AB 的长.2、我国为了维护队钓鱼岛P 的主权,决定对钓鱼岛进行常态化的立体巡航.在一次巡航中,轮船和飞机的航向相同(AP ∥BD ),当轮船航行到距钓鱼岛20km 的A 处时,飞机在B 处测得轮船的俯角是45°;当轮船航行到C 处时,飞机在轮船正上方的E 处,此时EC =5km .轮船到达钓鱼岛P 时,测得D 处的飞机的仰角为30°.试求飞机的飞行距离BD (结果保留根号).3、如图,某公路路基横断面为等腰梯形.按工程设计要求路面宽度为10米,坡角为︒55,路基高度为5.8米,求路基下底宽(精确到0.1米).C AD B4、为申办2010年冬奥会,须改变哈尔滨市的交通状况。

在大直街拓宽工程中,要伐掉一棵树AB ,在地面上事先划定以B 为圆心,半径与AB 等长的圆形危险区,现在某工人站在离B 点3米远的D 处,从C 点测得树的顶端A 点的仰角为60°,树的底部B 点的俯角为30°.问:距离B 点8米远的保护物是否在危险区内?5、如图,某一水库大坝的横断面是梯形ABCD ,坝顶宽CD =5米,斜坡AD =16米,坝高 6米,斜坡BC 的坡度3:1=i .求斜坡AD 的坡角∠A (精确到1分)和坝底宽AB .(精确到0.1米)6. 在一次实践活动中,某课题学习小组用测倾器、皮尺测量旗杆的高度,他们设计了如下的方案(如图1所示):(1) 在测点A 处安置测倾器,测得旗杆顶部M 的仰角∠MCE =α ; (2) 量出测点A 到旗杆底部N 的水平距离AN =m; (3) 量出测倾器的高度AC =h 。

根据上述测量数据,即可求出旗杆的高度MN 。

如果测量工具不变,请参照上述过程,重新设计一个方案测量某小山高度(如图2)1)在图2中,画出你测量小山高度MN 的示意图2)写出你的设计方案。

中考专项题集----解直角三角形(30题,有简有难,各种类型)

中考专项题集----解直角三角形(30题,有简有难,各种类型)

中考题集----解直角三角形班级_______姓名_________1.在△ABC中,AB=BC=2,∠ABC=120°,将△ABC绕点B顺时针旋转角α(0°<α<90°)得△A1BC1,A1B交AC于点E,A1C1分别交AC、BC于D、F两点.(1)如图1,观察并猜想,在旋转过程中,线段EA1与FC有怎样的数量关系?并证明你的结论;(2)如图2,当α=30°时,试判断四边形BC1DA的形状,并说明理由;(3)在(2)的情况下,求ED的长.2.如图,∠MON=25°,矩形ABCD的对角线AC⊥ON,边BC在OM上,当AC=3时,AD长是多少?(结果精确到0.01)3.如图,在边长为1的小正方形组成的网格中,△ABC的三个顶点均在格点上,请按要求完成下列各题:(1)用签字笔画AD∥BC(D为格点),连接CD;(2)线段CD的长为;(3)请你在△ACD的三个内角中任选一个锐角,若你所选的锐角是,则它所对应的正弦函数值是;(4)若E为BC中点,则tan∠CAE的值是.4.如图,在△ABC中,∠C=90°,点D、E分别在AC、AB上,BD平分∠ABC,DE⊥AB,AE=6,cosA=35.求(1)DE、CD的长;(2)tan∠DBC的值.5.如图,在梯形ABCD中,AD∥BC,AC⊥AB,AD=CD,cosB=513,BC=26.求:(1)cos∠DAC的值;(2)线段AD的长.6.如图,在△ABC中,∠C=90°,sinA=45,AB=15,求△ABC的周长和tanA的值.7.已知∠MAN,AC平分∠MAN.(1)在图1中,若∠MAN=120°,∠ABC=∠ADC=90°,求证:AB+AD=AC;(2)在图2中,若∠MAN=120°,∠ABC+∠ADC=180°,则(1)中的结论是否仍然成立?若成立,请给出证明;若不成立,请说明理由;(3)在图3中:①∠MAN=60°,∠ABC+∠ADC=180°,则AB+AD= AC;②若∠MAN=α(0°<α<180°),∠ABC+∠ADC=180°,则AB+AD= AC(用含α的三角函数表示),并给出证明.8.附加题:由直角三角形边角关系,可将三角形面积公式变形,得1sin2ABCS bc A∆=∠①,即三角形的面积等于两边之长与夹角正弦之积的一半.如图,在△ABC中,CD⊥AB于D,∠ACD=α,∠DCB=β∵S△ABC=S△ADC+S△BDC,由公式①,得12AC•BC•sin(α+β)=12AC•CD•sinα+12BC•CD•sinβ,即AC•BC•sin(α+β)=AC•CD•sinα+BC•CD•sinβ②你能利用直角三角形边角关系,消去②中的AC、BC、CD吗?不能,说明理由;能,写出解决过程.9.已知,如图:△ABC 是等腰直角三角形,∠ABC=90°,AB=10,D 为△ABC 外一点,边结AD 、BD ,过D 作DH ⊥AB ,垂足为H ,交AC 于E .(1)若△ABD 是等边三角形,求DE 的长;(2)若BD=AB ,且tan ∠HDB=34,求DE 的长.10.已知:如图,在△ABC 中,∠B=45°,∠C=60°,AB=6,求BC 的长.(结果保留根号)11.在锐角△ABC 中,∠A ,∠B ,∠C 的对边分别是a ,b ,c .如图所示,过C 作CD ⊥AB 于D ,则cosA=AD b , 即AD=bcosA .∴BD=c-AD=c-bcosA在Rt △ADC 和Rt △BDC 中有CD 2=AC 2-AD 2=BC 2-BD 2∴b 2-b 2cos 2A=a 2-(c-bcosA )2整理得:a2=b2+c2-2bccosA同理可得:b 2=a 2+c 2-2accosBc 2=a 2+b 2-2abcosC这个结论就是著名的余弦定理,在以上三个等式中有六个元素a ,b ,c ,∠A ,∠B ,∠C ,若已知其中的任意三个元素,可求出其余的另外三个元素.如:在锐角△ABC 中,已知∠A=60°,b=3,c=6,则由(1)式可得:a 2=32+62-2×3×6cos60°=27∴a=B ,∠C 则可由式子(2)、(3)分别求出,在此略.根据以上阅读理解,请你试着解决如下问题:已知锐角△ABC 的三边a ,b ,c 分别是7,8,9,求∠A ,∠B ,∠C 的度数.(保留整数)12.已知:如图,在△ABC 中,D 是AB 边上的一点,BD >AD ,∠A=∠ACD ,(1)若∠A=∠B=30°,BD=,求CB 的长;(2)过D 作∠CDB 的平分线DF 交CB 于F ,若线段AC 沿着AB 方向平移,当点A 移到点D 时,判断线段AC 的中点E 能否移到DF 上,并说明理由.13.如图,在△ABC 中,AD 是BC 上的高,tanB=cos ∠DAC .(1)求证:AC=BD ;(2)若sin ∠C=1213,BC=12,求AD 的长.14.如图,在直角坐标平面内,O 为原点,点A 的坐标为(10,0),点B 在第一象限内,BO=5,sin ∠BOA=35求:(1)点B 的坐标;(2)cos ∠BAO 的值.15.请你画出一个以BC 为底边的等腰△ABC ,使底边上的高AD=BC .(1)求tan B 和sinB 的值;(2)在你所画的等腰△ABC 中,假设底边BC=5米,求腰上的高BE .16.如图,在梯形ABCD 中,AB ∥CD ,∠BCD=90°,且AB=1,BC=2,tan ∠ADC=2.(1)求证:DC=BC ;(2)E 是梯形内一点,F 是梯形外一点,且∠EDC=∠FBC ,DE=BF ,试判断△ECF 的形状,并证明你的结论;(3)在(2)的条件下,当BE :CE=1:2,∠BEC=135°时,求sin ∠BFE 的值.17.阅读下列材料,并解决后面的问题.在锐角△ABC 中,∠A 、∠B 、∠C 的对边分别是a 、b 、c .过A 作AD ⊥BC 于D (如图),则sinB=AD c, 是inC=AD b,即AD=c ·sinB ,AD=b ·sinC ,于是c ·sinB=b ·sinC , 即sin sin b c B C =,同理有sin sin c a C A =,sin sin a b A B = 所以asin sin sin a b c A B c==…(*) 即:在一个三角形中,各边和它所对角的正弦的比相等.(1)在锐角三角形中,若已知三个元素a 、b 、∠A ,运用上述结论(*)和有关定理就可以求出其余三个未知元素c 、∠B 、∠C ,请你按照下列步骤填空,完成求解过程:第一步:由条件a 、b 、∠A 用关系式 __________求出∠B ;第二步:由条件∠A 、∠B 用关系式___________求出∠C ;第三步:由条件__________用关系式________求出c .(2)如图,已知:∠A=60°,∠C=75°,a=6,运用上述结论(*)试求b .求:△ABC的面积.(结果可保留根号)19.如图,△ABC中,∠ACB=90°,AC=BC=1,将△ABC绕点C逆时针旋转角α.(0°<α<90°)得到△A1B1C1,连接BB1.设CB1交AB于D,A l B1分别交AB、AC于E、F.(1)在图中不再添加其它任何线段的情况下,请你找出一对全等的三角形,并加以证明(△ABC与△A1B1C1全等除外);(2)当△BB1D是等腰三角形时,求α;(3)当α=60°时,求BD的长.20.已知:如图,在△ABC中,AD是边BC上的高,E为边AC的中点,BC=14,AD=12,sinB=45.求:(1)线段DC的长;(2)tan∠EDC的值.21.如图,已知△BEC是等边三角形,∠AEB=∠DEC=90°,AE=DE,AC,BD的交点为O.(1)求证:△AEC≌△DEB;(2)若∠ABC=∠DCB=90°,AB=2 cm,求图中阴影部分的面积.将矩形ABCD 分割成大小不同的七个相似直角三角形.按从大到小的顺序编号为①至⑦(如图),从而割成一副“三角七巧板”.已知线段AB=1,∠BAC=θ.(1)请用θ的三角函数表示线段BE 的长______________;(2)图中与线段BE 相等的线段是_________________;(3)仔细观察图形,求出⑦中最短的直角边DH 的长.(用θ的三角函数表示)23.先阅读短文,再解答短文后面的问题.规定了方向的线段称为有向线段.比如,对于线段AB ,规定以A 为起点,B 为终点,便可得到一条从A 到B 的有向线段.为强调其方向,我们在其终点B 处画上箭头(如下图-1).以A 为起点,B 为终点的有向线段记为AB (起点字母A 写在前面,终点字母B 写在后面).线段AB 的长度叫做有向线AB 的长度(或模),记为|AB |.显然,有向线段AB 和有向线段BA 长度相同.方向不同,它们不是同一条有向线段.对于同一平面内的有向线段,我们可以在该平面建立直角坐标系进行研究(一般情况,直角坐标系的单位长度与有向线段的单位长度相同).比如,以坐标原点O (0,0)为起点,P (3,0)为终点的有向线段OP ,其方向与x 轴正方向相同,长度(或模)是|OP |=3.问题:(1)在如图所示的平面直角坐标系中画出OA 有向线段,使得OA =OA 与x 轴正半轴的夹角是45°,且与y 轴的负半轴的夹角是45°;(2)若有向线段OB 的终点B 的坐标为(3,试求出它的模及它与x 轴正半轴的夹角;(3)若点M 、A 、P 在同一直线上,||||||MA AP MP +=成立吗?试画出示意图加以说明.(示意图可以不画在平面直角坐标系中)24.如图,△ABC 中,∠BAC=120°,AB=AC ,BC=4,请你建立适当的直角坐标系,并写出A ,B ,C 各点的25.已知:如图,在△ABC中,∠CAB=120°,AB=4,AC=2,AD⊥BC,D是垂足.求AD的长.26.已知:如图,在梯形ABCD中,AD∥BC,∠ABC=90°,∠C=45°,BE⊥CD于点E,AD=1,CD=求:BE的长.27.已知:如图,在Rt△ABC中,∠C=90°,∠ABC=60°,BC,BB l是∠ABC的平分线交AC于点B1,过B1作B1B2⊥AB于点B2,过B2作B2B3∥BC交AC于点B3,过B3作B3B4⊥AB于点B4,过B4作B4B5∥BC交AC于点B5,过B5作B5B6⊥AB于点B6,…,无限重复以上操作.设b0=BB l,b1=B1B2,b2=B2B3,b3=B3B4,b4=B4B5,…,b n=B n B n+1,….(1)求b0,b3的长;(2)求b n的表达式.(用含p与n的式子表示,其中n是正整数)28.在△ABC中,∠C=90°,∠A=60°,斜边上的高CD= 3,求AB的长.29.在矩形纸片ABCD中,AB=3 3,BC=6,沿EF折叠后,点C落在AB边上的点P处,点D落在点Q处,AD与PQ相交于点H,∠BPE=30°.(1)BE的长为___________,QF的长为_________;(2)四边形PEFH的面积为__________.30.如图,在△ABC中,∠B=60°,BA=24cm,BC=16cm.现有动点P从点A出发,沿射线AB向点B运动;动点Q从点C出发,沿射线CB向点B运动,如果点P的速度是4cm/s,点Q的速度是2cm/s,它们同时出发,运动时间为t秒,求:(1)当t为何值时,△PBQ的面积是△ABC的面积的一半;(2)在第(1)问的前提下,P,Q两点之间的距离是多少?。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2007年中考“解直角三角形”试题汇编一、选择题:1.(2007年襄樊市)计算:cos 245°+tan60°•cos30°等于( ).CA 、1BC 、2 D2、(2007湖北省天门)化简( )。

AA 、1-B 1C 1-D 1 3.(2007年兰州市)把Rt △ABC 各边的长度都扩大3倍得Rt △A ’B ’C ’,那么锐角A 、A ’的余弦值的关系为( ).AA 、cosA =cosA ’B 、cosA =3cosA ’C 、3cosA =cosA ’D 、不能确定 4、(2007山东淄博)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D (A )350m(B )100 m(C )150m (D )3100m 解:作出如图所示图形,则∠BAD =90°-60°=30°,AB =100,所以BD =50,cos30°=ADAB,所以,AD = CD =200-50=150,在Rt △ADC 中,AC,故选(D )。

5、(2007浙江杭州)如图1,在高楼前D 点测得楼顶的仰角为30︒,向高楼前进60米到C 点,又测得仰角为45︒,则该高楼的高度大约为( )A A.82米 B.163米 C.52米 D.70米6、(2007南充)一艘轮船由海平面上A 地出发向南偏西40º的方向行驶40海里到达B 地,再由B 地向北偏西10º的方向行驶40海里到达C 地,则A 、C 两地相距( ).B(A )30海里 (B )40海里 (C )50海里 (D )60海里 7、(2007江苏盐城)利用计算器求sin30°时,依次按键则计算器上显示的结果是( )AA .0.5B .0.707C .0.866D .18、(2007山东东营)王英同学从A 地沿北偏西60º方向走100m 到B 地,再从B 地向正南方向走200m 到C 地,此时王英同学离A 地 ( )D (A )150m(B )350m (C )100 m (D )3100m9、(2007浙江台州)一次数学活动中,小迪利用自己制作的测角器测量小山的高度CD .已知她的眼睛与地面的距离为1.6米,小迪在B 处测量时,测角器中的60AOP ∠=°(量角器零度线AC 和铅垂线OP 的夹角,如图);然后她向小山走50米到达点F 处(点B F D ,,在同一直线上),这时测角器中的45EO P ''∠=°,那么小山的高度CD 约为( )BA.68米B.70米C.121米D.123米1.732≈1.414≈供计算时选用)图110.(2007年黄冈市)在△ABC 中,∠A=60°,AC=1,B 为( )C A .60° B .60°或120° C .30°或150° D .30°二、填空题:1.(2007年河池市)已知在Rt ABC △中,∠C 为直角,AC = 4cm ,BC = 3cm ,则sin ∠A = .53 2、(2007山东济宁)计算45tan 30cos 60sin -的值是 。

03、(2007湖北黄冈)计算:2sin60°= .4、(2007年乌兰察布)升国旗时,某同学站在离旗杆24m 处行注目礼,当国旗升至旗杆顶端时, 该同学视线的仰角恰为30°,若两眼距离地面1.2m ,则旗杆高度约为_________。

1.73=,结果精确到0.1m ) 15.0m三、解答题1、(2007云南双柏县)如图,在某建筑物AC 上,挂着“多彩云南”的宣传条幅BC ,小明站在点F 处,看条幅顶端B ,测的仰角为︒30,再往条幅方向前行20米到达点E 处,看到条幅顶端B ,测的仰角为︒60,求宣传条幅BC 的长,(小明的身高不计,结果精确到0.1米)解: ∵∠BFC =︒30,∠BEC =︒60,∠BCF =︒90 ∴∠EBF =∠EBC =︒30 ∴BE = EF = 20 在Rt ⊿BCE 中, )(3.17232060sin m BE BC ≈⨯=︒⋅= 答:宣传条幅BC 的长是17.3米。

2、(2007山东青岛)一艘轮船自西向东航行,在A 处测得东偏北21.3°方向有一座小岛C ,继续向东航行60海里到达B 处,测得小岛C 此时在轮船的东偏北63.5°方向上.之后,轮船继续向东航行多少海里,距离小岛C 最近?(参考数据:sin21.3°≈925,tan21.3°≈25, sin63.5°≈910,tan63.5°≈2)解:过C 作AB 的垂线,交直线AB 于点D ,得到Rt △ACD 与Rt △BCD .设BD =x 海里,在Rt △BCD 中,tan ∠CBD =CD BD, ∴CD =x ·tan63.5°.在Rt △ACD 中,AD =AB +BD =(60+x)海里,tan ∠A =CD AD,∴CD =( 60+x ) ·tan21.3°. ∴x·tan63.5°=(60+x)·tan21.3°,即 ()22605x x =+.解得,x =15.答:轮船继续向东航行15海里,距离小岛C 最近 3、(2007福建晋江)如图所示,一辆吊车的吊臂以63°的倾角倾斜于水平面, 如果这辆吊车支点A 距地面的高度AB 为2m ,且点A 到铅垂线ED 的距离为AC =15m,求吊臂的最A B C北东B C DA高点E 到地面的高度ED 的长(精确到0.1 m )。

答案:31.4m ;4、(2007山东威海)如图,一条小船从港口A 出发,沿北偏东40方向航行20海里后到达B 处,然后又沿北偏西30方向航行10海里后到达C 处.问此时小船距港口A 多少海里?(结果精确到1海里) 友情提示:以下数据可以选用:sin 400.6428≈,cos 400.7660≈,tan 400.8391≈1.732.解:过B 点作BE AP ⊥,垂足为点E ;过C 点分别作CD AP ⊥, CF BE ⊥,垂足分别为点D F ,,则四边形CDEF 为矩形.CD EF DE CF ∴==,, 30QBC ∠=,60CBF ∴∠=.2040AB BAD =∠=,,cos 40200.766015.3AE AB ∴=⨯≈≈; sin 40200.642812.85612.9BE AB =⨯=≈≈. 1060BC CBF =∠=,,sin 60100.8668.668.7CF BC ∴=⨯=≈≈; cos60100.55BF BC ==⨯=.12.957.9CD EF BE BF ∴==-=-=. 8.7DE CF =≈,15.38.724.0AD DE AE ∴=++=≈.∴由勾股定理,得25AC =.P 北4030FP 北4030即此时小船距港口A 约25海里5、(2007贵州贵阳)如图10,一枚运载火箭从地面O 处发射,当火箭到达A 点时,从地面C 处的雷达站测得AC 的距离是6km ,仰角是43.1s 后,火箭到达B 点,此时测得BC 的距离是6.13km ,仰角为45.54,解答下列问题: (1)火箭到达B 点时距离发射点有多远(精确到0.01km )? (2)火箭从A 点到B 点的平均速度是多少(精确到0.1km/s )? 解:(1)在Rt OCB △中,sin 45.54OBCB=6.13sin 45.54 4.375OB =⨯≈(km )火箭到达B 点时距发射点约4.38km (2)在Rt OCA △中,sin 43OACA=6sin 43 4.09(km)OA =⨯=()(4.38 4.09)10.3(km /s)v OB OA t =-÷=-÷≈答:火箭从A 点到B 点的平均速度约为0.3km/s6、(2007湖北潜江)经过江汉平原的沪蓉(上海—成都)高速铁路即将动工.工程需要测量汉江某一段的宽度.如图①,一测量员在江岸边的A 处测得对岸岸边的一根标杆B 在它的正北方向,测量员从A 点开始沿岸边向正东方向前进100米到达点C 处,测得68=∠ACB .(1)求所测之处江的宽度(.48.268tan ,37.068cos ,93.068sin ≈≈≈); (2.68=,∴24848.210068tan =⨯≈⋅=AC AB (米)图10ABC答:所测之处江的宽度约为248米)(2)从所画出的图形中可以看出是利用三角形全等、三角形相似、解直角三角形的知识来解决问题的,只要正确即可得分7、(2007苏州)某学校体育场看台的侧面如图阴影部分所示,看台有四级高度相等的小台阶.已知看台高为l .6米,现要做一个不锈钢的扶手AB 及两根与FG 垂直且长为l 米的不锈钢架杆AD 和BC(杆子的底端分别为D ,C),且∠DAB=66. 5°.(1)求点D 与点C 的高度差DH ;(2)求所用不锈钢材料的总长度l (即AD+AB+BC ,结果精确到0.1米).(参考数据:sin66.5°≈0.92,cos66.5°≈0.40,tan66.5°≈2.30)解:(1)DH=1.6×34=l.2(米).(2)过B 作B M ⊥AH 于M , 则四边形BCHM 是矩形.MH=BC=1 ∴AM=AH-MH=1+1.2一l=l.2. 在RtAMB 中,∵∠A=66.5° ∴AB=1.23.0cos66.50.40AM ≈=︒(米).∴S=AD+AB+BC ≈1+3.0+1=5.0(米).答:点D 与点C 的高度差DH 为l.2米;所用不锈钢材料的总长度约为5.0米8. (2007年昆明市)如图,AB 和CD 是同一地面上的两座相距36米的楼房,在楼AB 的楼顶A 点测得楼CD 的楼顶C 的仰角为45°,楼底D 的俯角为30°.求楼CD 的高(结果保留根号).解:延长过点A 的水平线交CD 于点E则有AE ⊥CD ,四边形ABDE 是矩形,AE=BD =36 ∵∠CAE =45°∴△AEC 是等腰直角三角形(第20题图)∴CE=AE =36在Rt △AED 中,tan ∠EAD =EDAE∴ED =36×tan30°= ∴CD=CE+ED=36+答:楼CD的高是(36+9.(2007年南通市)某商场门前的台阶截面如图所示.已知每级台阶的宽度(如CD)均为30cm ,高度(如BE)均为20cm .为了方便残疾人行走,商场决定将其中一个门的门前台阶改造成供轮椅行走的斜坡,并且设计斜坡的倾斜角为9°.请计算从斜坡起点A 到台阶前的点B 的水平距离.(参考数据:sin9°≈0.16,cos9°≈0.99,tan9°≈0.16)解:过C 作CF AB ⊥,交AB 的延长线于点F .由条件,得80cm CF =,90cm BF =. 在Rt CAF △中,tan CFA AF=. ∴80500tan 90.16CF AF ==≈. ∴50090410AB AF BF =-=-=(cm ).答:从斜坡起点A 到台阶前点B 的距离为410cm . 10.(2007年安徽省)如图,某幢大楼顶部有一块广告牌CD ,甲乙两人分别在相距8米的A 、A (第23题) F(第23题图)B两处测得D点和C点的仰角分别为45°和60°,且A、B、E三点在一条直线上,若BE=15米,求这块广告牌的高度.(取3≈1.73,计算结果保留整数)解:∵AB=8,BE=15,∴AE=23,在Rt△AED中,∠DAE=45°∴DE=AE=23在Rt△BEC中,∠CBE=60°∴CE=BE·tan60°=315∴CD=CE-DE=315-23≈2.95≈3即这块广告牌的高度约为3米11.(兰州市2007年)兰州市城市规划期间,欲拆除黄河岸边的一根电线杆AB(如图),已知距电线杆AB水平距离14米处是河岸,即BD=14米,该河岸的坡面CD的坡角∠CDF的正切值为2,岸高CF为2米,在坡顶C处测得杆顶A的仰角为30°,D、E 之间是宽2米的人行道,请你通过计算说明在拆除电线杆AB时,为确保安全,是否将此人行道封上?(在地面上以点B为圆心,以AB长为半径的圆形区域为危险区域)解:由tan∠CDF=DFCF=2,CF=2米∴DF=1米,BG=2米∵BD=14米∴BF=GC=15米在Rt△AGC中,由tan30°=3∴AG=15×3=≈5×1.732=8.660米∴AB=8.660+2=10.66米BE=BD-ED=12米∵BE>AB∴不需要封人行道.(第19题图)A BCDE45°60°(第27题图)12.(2007年呼和浩特市)如图,在小岛上有一观察站A .据测,灯塔B 在观察站A 北偏西45的方向,灯塔C 在B 正东方向,且相距10海里,灯塔C 与观察站A相距海里,请你测算灯塔C 处在观察站A 的什么方向?解:过点C 作CD AB ⊥,垂足为D .∵灯塔B 在观察站A 北偏西45°的方向, 45B ∠=∴°. 又10BC =∵海里 ∴在Rt BCD △中,sin CD B BC ∠=sin 45CDBC=∴°sin 4510CD BC ===∴·. 在Rt ACD △中,AC =∵1sin 2CD CAD AC ∠===∴ 即1sin 2CAD ∠=30CAD ∠=∴°453015CAF BAF CAD ∠=∠-∠=-=∴°°° 答:灯塔C 处在观察站A 北偏西15°的方向.13.(2007年鄂尔多斯市)如图13,A B ,两镇相距60km ,小山C 在A 镇的北偏东60方向,在B 镇的北偏西30方向.经探测,发现小山C 周围20km 的圆形区域内储有大量煤炭,有关部门规定,该区域内禁止建房修路.现计划修筑连接A B ,两镇的一条笔直的公路,试分析这条公路是否会经过该区域?解:作CD AB ⊥于D ,由题意知:30CAB =∠60CBA =∠ 90ACB =∠BF 北B60图1330DCB ∴=∠∴在Rt ABC △中,1302BC AB ==在Rt DBC △中,cos30CD BC =302=⨯20=> 答:这条公路不经过该区域.14.(2007年云南省)已知:如图,在△ABC 中,∠B = 45°,∠C = 60°,AB = 6. 求BC 的长(结果保留根号).解:过点A 作AD ⊥BC 于点D . 在Rt △ABD 中,∠B = 45°, ∴AD = BD . 设AD = x , 又∵AB = 6,∴ x 2+ x 2 = 62,解得x=AD = BD=在Rt △ACD 中,∠ACD = 60°, ∴∠CAD = 30°, tan30°=CD AD=,解得CD= .∴BC = BD + DC=6015.(2007年福建省宁德市)图1是小明在健身器材上进行仰卧起坐锻炼时情景.图2是小明锻炼时上半身由EM 位置运动到与地面垂直的EN 位置时的示意图. 已知0.64BC =米,0.24AD =米, 1.30AB =米. (1)求AB 的倾斜角α的度数(精确到1);(2)若测得0.85EN =米,试计算小明头顶由M 点运动到N 点的路径MN 的长度(精确到0.01米)解:(1)过A 作AF DC ∥,分别交BC NE ,延长线于F H ,.AD CD ⊥∵,BC CD ⊥,AD BC ∴∥.∴四边形AFCD 为矩形.0.4BF BC AD =-=∴. 在Rt ABF △中,0.40sin 1.30BF AB α==∵, 18α≈∴°.即AB 的倾斜角度数约为18°. (2)NE AF ⊥∵,901872AEH ∠=-=∴°°°.180108MEN AEH ∠=-∠=∴°°. MN ∴的长108π0.851.60180⨯⨯=≈(米). 答:小明头顶运动的路径MN 的长约为1.60米.图1图2BCEDAMαNBCE DAMαNF H。

相关文档
最新文档