第2章习题解答
教材第二章习题解答
第二章原子结构和元素周期律习题解答1.指出下列各原子轨道相应的主量子数n及角量子数l的数值是多少?轨道数分别是多少?2p 3d 4s 4f 5s【解答】 2p 主量子数2,角量子数1,轨道数33d 主量子数3,角量子数2,轨道数54s 主量子数4,角量子数0,轨道数14f 主量子数4,角量子数3,轨道数75s 主量子数5,角量子数0,轨道数1 2.当主量子数n=4时,可能有多少条原子轨道?分别用Ψn,l,m 表示出来。
电子可能处于多少种运动状态?(考虑自旋在内)【解答】当n=4时,可能有n2=16条原子轨道。
n l M4 01230,±10,±1,±20,±1,±2,±3Ψ4,0,0,Ψ4,1,0,Ψ4,1,1,Ψ4,1,-1,Ψ4,2,0,Ψ4,2,1,Ψ4,2,-1,Ψ4,2,2,Ψ4,2,-2,Ψ4,3,0,Ψ4,3,1,Ψ4,3,-1,Ψ4,3,2,Ψ4,3,-2,Ψ4,3,3,Ψ4,3,-3 每条轨道上可以容纳两个自旋相反的电子,16条原子轨道,电子可能处于32种运动状态。
3.将下列轨道上的电子填上允许的量子数。
(1)n=,l=2,m=0,ms=±1/2(2)n=2,l= ,m=0,ms=±1/2(3)n=4,l=2,m= ,ms=-1/2(4)n=3,l=2,m=2,m=s=-1/2(5)n=2,l= ,m=-1,ms=+1/2(6)n=5,l=0,m= ,ms【解答】(1) 3,4,5,……,正整数;(2) 0,1(3) 0,±1,±2(4) +1/2,-1/2(5) 1(6) 04.填上n、l、m、m s等相应的量子数:量子数确定多电子原子轨道能量E的大小;Ψ的函数式则是由量子数所确定;确定核外电子运动状态的量子数是;原子轨道或电子云的角度分布图的不同情况取决于量子数。
【解答】主量子数n和角量子数l;主量子数n、角量子数l和磁量子数m;主量子数n、角量子数l、磁量子数m和自旋量子数m;s 角量子数l和磁量子数m。
第2章 逻辑门电路-习题答案
第2章逻辑门电路2.1 题图2.1(a)画出了几种两输入端的门电路,试对应题图2.1(b)中的A、B波形画出各门的输出F1~F6的波形。
题图2.1解:2.2 求题图2.2所示电路的输出逻辑函数F1、F2。
题图2.2解:2.3 题图2.3中的电路均为TTL门电路,试写出各电路输出Y1~Y8状态。
题图2.3解: Y1=0, Y2=0, Y3=Hi-Z, Y4=0, Y5=0, Y6=0, Y7=0, Y8=0.2.4 题图2.4中各门电路为CMOS电路,试求各电路输出端Y1、Y2和Y的值。
题图2.4解: Y1=1, Y2=0, Y3=0.2.5 6个门电路及A、B波形如题图2.5所示,试写出F1~F6的逻辑函数,并对应A、B波形画出F1~F6的波形。
题图2.5解:2.6 电路及输入波形分别如题图2.6(a)和2.6(b)所示,试对应A、B、C、x1、x2、x3波形画出F端波形。
题图2.6解:2.7 TTL与非门的扇出系数N是多少?它由拉电流负载个数决定还是由灌电流负载决定?解: N≤8 N由灌电流负载个数决定.2.8 题图2.8表示三态门用于总线传输的示意图,图中三个三态门的输出接到数据传输总线,D1D2、D3D4、…、D m D n为三态门的输入端,EN1、EN2、EN n分别为各三态门的片选输入端。
试问:EN信号应如何控制,以便输入数据D1D2、D3D4、…、D m D n顺序地通过数据总线传输(画出EN1~EN n 的对应波形)。
题图2.8解:用下表表示数据传输情况2.9 某工厂生产的双互补对称反相器(4007)引出端如题图2.9所示,试分别连接成:(1)反相器;(2)三输入与非门;(3)三输入或非门。
题图2.9解: (1) 反向器(2)与非门 (3)或非门2.10 按下列函数画出NMOS 电路图。
123()()()F AB CD E H G F A B CD AB CD F A B=+++=+++=⊕解:(1)(2) (3)2.11 将两个OC门如题图2.11连接,试写出各种组合下的输出电压u o及逻辑表达式。
离散数学 第2章 习题解答
习题 2.11.将下列命题符号化。
(1) 4不是奇数。
解:设A(x):x是奇数。
a:4。
“4不是奇数。
”符号化为:¬A(a)(2) 2是偶数且是质数。
解:设A(x):x是偶数。
B(x):x是质数。
a:2。
“2是偶数且是质数。
”符号化为:A(a)∧B(a)(3) 老王是山东人或河北人。
解:设A(x):x是山东人。
B(x):x是河北人。
a:老王。
“老王是山东人或河北人。
”符号化为:A(a)∨B(a)(4) 2与3都是偶数。
解:设A(x):x是偶数。
a:2,b:3。
“2与3都是偶数。
”符号化为:A(a)∧A(b)(5) 5大于3。
解:设G(x,y):x大于y。
a:5。
b:3。
“5大于3。
”符号化为:G(a,b)(6) 若m是奇数,则2m不是奇数。
解:设A(x):x是奇数。
a:m。
b:2m。
“若m是奇数,则2m不是奇数。
”符号化为:A(a)→A(b)(7) 直线A平行于直线B当且仅当直线A不相交于直线B。
解:设C(x,y):直线x平行于直线y。
设D(x,y):直线x相交于直线y。
a:直线A。
b:直线B。
“直线A平行于直线B当且仅当直线A不相交于直线B。
”符号化为:C(a,b)↔¬D(x,y)(8) 小王既聪明又用功,但身体不好。
解:设A(x):x聪明。
B(x):x用功。
C(x):x身体好。
a:小王。
“小王既聪明又用功,但身体不好。
”符号化为:A(a)∧B(a)∧¬C(a)(9) 秦岭隔开了渭水和汉水。
解:设A(x,y,z):x隔开了y和z。
a:秦岭。
b:渭水。
c:汉水。
“秦岭隔开了渭水和汉水。
”符号化为:A(a,b,c)(10) 除非小李是东北人,否则她一定怕冷。
解:设A(x):x是东北人。
B(x):x怕冷。
a:小李。
“除非小李是东北人,否则她一定怕冷。
”符号化为:B(a)→¬A(a)2.将下列命题符号化。
并讨论它们的真值。
(1) 有些实数是有理数。
解:设R(x):x是实数。
第二章习题解答
第二章2-3 设系统传递函数为342)(2++=s s s G 初始条件0/)0(,1)0(=-=dt dc c 。
求单位阶跃输入r (t)=1(t)时,系统的输出响应c (t)。
【解】系统传递函数与微分方程是一一对应的,故通过传递函数先求出微分方程,然后通过拉氏变换的方法求解微分方程。
系统对应的微分方程为 4()3()2()c c t c t r t ++= 在给定的非零初始条件下,进行拉氏变换22(43)()(0)(0)4(0)s s C s sc c c s++---=整理后2221()(43)(43)s C s s s s s s +=-++++部分分式展开后,拉氏反变换111223242/35/25/6()[()][][](43)(43)13255326t t s c t L C s L L s s s s s s s s e e -----+==-=-+++++++=-+2-4 在图2-48中,已知G (s) 和H (s)两方框对应的微分方程分别为()2()5()4()3()6()c t c t e t b t b t c t +=+=图2-48 习题2-4系统结构框图且初始条件为零,试求传递函数C (s)/R (s)。
【解】求出每个方框的传递函数,利用反馈等效的方法求C(s)/R(s)。
根据定义可得 5()2G s s =+,6()43H s s =+ 255()5()25(43)10075(2)56()1()()(2)(43)30411361(2)(43)C s G s s s s R s G s H s s s s s s s +++====+++++++++2-5 图2-49是由电阻、电容和运算法放大器组成的无源网络和有源网络,试列写以V in (t)为输入量,V out (t)为输出量的传递函数。
(a) (b )(c) (d)图2-49 习题2-5电路图【解】(a) 1211211,1RZ R Z C s RC s C s===+ 22112121211()1()11Z C s RC s G s R Z Z R C C s RC s C s +===+++++(b ) 21122211R Z R Z R Cs R Cs ===+ 2222111211()1R Z R Cs R G s Z R R R Cs +=-==-+ (c) 32321123232321()(1)1()1()1R R R R Cs Cs Z R Z R R Cs R R Cs R R Cs++==+==++++ 323232211132(1)()11()()1R R Cs R R Cs R Z R Cs G s Z R R R R Cs ++++=-=-=-++ (d)本题和(b)、(c)做法图通,因为反馈通路有接地的部分。
第二章课后习题答案
第二章课后习题答案第二章牛顿定律2-1如图(a)所示,质量为m的物体用平行于斜面的细线联结置于光滑的斜面上,若斜面向左方作加速运动,当物体刚脱离斜面时,它的加速度的大小为()(A)ginθ(B)gcoθ(C)gtanθ(D)gcotθ分析与解当物体离开斜面瞬间,斜面对物体的支持力消失为零,物体在绳子拉力FT(其方向仍可认为平行于斜面)和重力作用下产生平行水平面向左的加速度a,如图(b)所示,由其可解得合外力为mgcotθ,故选(D).求解的关键是正确分析物体刚离开斜面瞬间的物体受力情况和状态特征.2-2用水平力FN把一个物体压着靠在粗糙的竖直墙面上保持静止.当FN逐渐增大时,物体所受的静摩擦力Ff的大小()(A)不为零,但保持不变(B)随FN成正比地增大(C)开始随FN增大,达到某一最大值后,就保持不变(D)无法确定分析与解与滑动摩擦力不同的是,静摩擦力可在零与最大值μFN范围内取值.当FN增加时,静摩擦力可取的最大值成正比增加,但具体大小则取决于被作用物体的运动状态.由题意知,物体一直保持静止状态,故静摩擦力与重力大小相等,方向相反,并保持不变,故选(A).2-3一段路面水平的公路,转弯处轨道半径为R,汽车轮胎与路面间的摩擦因数为μ,要使汽车不至于发生侧向打滑,汽车在该处的行驶速率()μgR(B)必须等于μgR(C)不得大于μgR(D)还应由汽车的质量m决定(A)不得小于分析与解由题意知,汽车应在水平面内作匀速率圆周运动,为保证汽车转弯时不侧向打滑,所需向心力只能由路面与轮胎间的静摩擦力提供,能够提供的最大向心力应为μFN.由此可算得汽车转弯的最大速率应为v=μRg.因此只要汽车转弯时的实际速率不大于此值,均能保证不侧向打滑.应选(C).2-4一物体沿固定圆弧形光滑轨道由静止下滑,在下滑过程中,则()(A)它的加速度方向永远指向圆心,其速率保持不变(B)它受到的轨道的作用力的大小不断增加(C)它受到的合外力大小变化,方向永远指向圆心(D)它受到的合外力大小不变,其速率不断增加分析与解由图可知,物体在下滑过程中受到大小和方向不变的重力以及时刻指向圆轨道中心的轨道支持力FN作用,其合外力方向并非指向圆心,其大小和方向均与物体所在位置有关.重力的切向分量(mgcoθ)使物体的速率将会不断增加(由机械能守恒亦可判断),则物体作圆周运动的向心力(又称法向力)将不断增大,由轨道法向方向上的动力学方程v2FNmginθm可判断,随θ角的不断增大过程,轨道支持力FN也将不R断增大,由此可见应选(B).2-5图(a)示系统置于以a=1/4g的加速度上升的升降机内,A、B两物体质量相同均为m,A所在的桌面是水平的,绳子和定滑轮质量均不计,若忽略滑轮轴上和桌面上的摩擦,并不计空气阻力,则绳中张力为()(A)58mg(B)12mg(C)mg(D)2mg分析与解本题可考虑对A、B两物体加上惯性力后,以电梯这个非惯性参考系进行求解.此时A、B两物体受力情况如图(b)所示,图中a′为A、B两物体相对电梯的加速度,ma′为惯性力.对A、B两物体应用牛顿第二定律,可解得FT=5/8mg.故选(A).讨论对于习题2-5这种类型的物理问题,往往从非惯性参考系(本题为电梯)观察到的运动图像较为明确,但由于牛顿定律只适用于惯性参考系,故从非惯性参考系求解力学问题时,必须对物体加上一个虚拟的惯性力.如以地面为惯性参考系求解,则两物体的加速度aA和aB均应对地而言,本题中aA和aB的大小与方向均不相同.其中aA应斜向上.对aA、aB、a和a′之间还要用到相对运动规律,求解过程较繁.有兴趣的读者不妨自己尝试一下.2-6图示一斜面,倾角为α,底边AB长为l=2.1m,质量为m的物体从题2-6图斜面顶端由静止开始向下滑动,斜面的摩擦因数为μ=0.14.试问,当α为何值时,物体在斜面上下滑的时间最短?其数值为多少?解取沿斜面为坐标轴O某,原点O位于斜面顶点,则由牛顿第二定律有mginαmgμcoαma(1)又物体在斜面上作匀变速直线运动,故有l11at2ginαμcoαt2coα22则t2l(2)gcoαinαμcoα为使下滑的时间最短,可令dt0,由式(2)有dαinαinαμcoαcoαcoαμinα0则可得tan2α1o,49μ此时t2l0.99gcoαinαμcoα2-7工地上有一吊车,将甲、乙两块混凝土预制板吊起送至高空.甲块质量为m1=2.00某102kg,乙块质量为m2=1.00某102kg.设吊车、框架和钢丝绳的质量不计.试求下述两种情况下,钢丝绳所受的张力以及乙块对甲块的作用力:(1)两物块以10.0m·s-2的加速度上升;(2)两物块以1.0m·s-2的加速度上升.从本题的结果,你能体会到起吊重物时必须缓慢加速的道理吗?解按题意,可分别取吊车(含甲、乙)和乙作为隔离体,画示力图,并取竖直向上为Oy轴正方向(如图所示).当框架以加速度a上升时,有FT-(m1+m2)g=(m1+m2)a(1)FN2-m2g=m2a(2)解上述方程,得FT=(m1+m2)(g+a)(3)FN2=m2(g+a)(4)(1)当整个装置以加速度a=10m·s-2上升时,由式(3)可得绳所受张力的值为FT=5.94某103N乙对甲的作用力为F′N2=-FN2=-m2(g+a)=-1.98某103N(2)当整个装置以加速度a=1m·s-2上升时,得绳张力的值为FT=3.24某103N此时,乙对甲的作用力则为F′N2=-1.08某103N由上述计算可见,在起吊相同重量的物体时,由于起吊加速度不同,绳中所受张力也不同,加速度大,绳中张力也大.因此,起吊重物时必须缓慢加速,以确保起吊过程的安全.2-8如图(a)所示,已知两物体A、B的质量均为m=3.0kg物体A以加速度a=1.0m·s-2运动,求物体B与桌面间的摩擦力.(滑轮与连接绳的质量不计)分析该题为连接体问题,同样可用隔离体法求解.分析时应注意到绳中张力大小处处相等是有条件的,即必须在绳的质量和伸长可忽略、滑轮与绳之间的摩擦不计的前提下成立.同时也要注意到张力方向是不同的.解分别对物体和滑轮作受力分析[图(b)].由牛顿定律分别对物体A、B及滑轮列动力学方程,有mAg-FT=mAa(1)F′T1-Ff=mBa′(2)F′T-2FT1=0(3)考虑到mA=mB=m,FT=F′T,FT1=F′T1,a′=2a,可联立解得物体与桌面的摩擦力Ffmgm4ma7.2N2讨论动力学问题的一般解题步骤可分为:(1)分析题意,确定研究对象,分析受力,选定坐标;(2)根据物理的定理和定律列出原始方程组;(3)解方程组,得出文字结果;(4)核对量纲,再代入数据,计算出结果来.2-9质量为m′的长平板A以速度v′在光滑平面上作直线运动,现将质量为m的木块B轻轻平稳地放在长平板上,板与木块之间的动摩擦因数为μ,求木块在长平板上滑行多远才能与板取得共同速度?分析当木块B平稳地轻轻放至运动着的平板A上时,木块的初速度可视为零,由于它与平板之间速度的差异而存在滑动摩擦力,该力将改变它们的运动状态.根据牛顿定律可得到它们各自相对地面的加速度.换以平板为参考系来分析,此时,木块以初速度-v′(与平板运动速率大小相等、方向相反)作匀减速运动,其加速度为相对加速度,按运动学公式即可解得.该题也可应用第三章所讲述的系统的动能定理来解.将平板与木块作为系统,该系统的动能由平板原有的动能变为木块和平板一起运动的动能,而它们的共同速度可根据动量定理求得.又因为系统内只有摩擦力作功,根据系统的动能定理,摩擦力的功应等于系统动能的增量.木块相对平板移动的距离即可求出.解1以地面为参考系,在摩擦力Ff=μmg的作用下,根据牛顿定律分别对木块、平板列出动力学方程Ff=μmg=ma1F′f=-Ff=m′a2a1和a2分别是木块和木板相对地面参考系的加速度.若以木板为参考系,木块相对平板的加速度a=a1+a2,木块相对平板以初速度-v′作匀减速运动直至最终停止.由运动学规律有-v′2=2a由上述各式可得木块相对于平板所移动的距离为mv22μgmm解2以木块和平板为系统,它们之间一对摩擦力作的总功为W=Ff(+l)-Ffl=μmg式中l为平板相对地面移动的距离.由于系统在水平方向上不受外力,当木块放至平板上时,根据动量守恒定律,有m′v′=(m′+m)v″由系统的动能定理,有μmg由上述各式可得11mv2mmv222mv22μgmm2-10如图(a)所示,在一只半径为R的半球形碗内,有一粒质量为m的小钢球,当小球以角速度ω在水平面内沿碗内壁作匀速圆周运动时,它距碗底有多高?分析维持钢球在水平面内作匀角速度转动时,必须使钢球受到一与向心加速度相对应的力(向心力),而该力是由碗内壁对球的支持力FN的分力来提供的,由于支持力FN始终垂直于碗内壁,所以支持力的大小和方向是随ω而变的.取图示O某y坐标,列出动力学方程,即可求解钢球距碗底的高度.解取钢球为隔离体,其受力分析如图(b)所示.在图示坐标中列动力学方程FNinθmanmRω2inθ(1)Rh(3)且有coθR由上述各式可解得钢球距碗底的高度为hR可见,h随ω的变化而变化.gω22-11火车转弯时需要较大的向心力,如果两条铁轨都在同一水平面内(内轨、外轨等高),这个向心力只能由外轨提供,也就是说外轨会受到车轮对它很大的向外侧压力,这是很危险的.因此,对应于火车的速率及转弯处的曲率半径,必须使外轨适当地高出内轨,称为外轨超高.现有一质量为m的火车,以速率v沿半径为R的圆弧轨道转弯,已知路面倾角为θ,试求:(1)在此条件下,火车速率v0为多大时,才能使车轮对铁轨内外轨的侧压力均为零?(2)如果火车的速率v≠v0,则车轮对铁轨的侧压力为多少?分析如题所述,外轨超高的目的欲使火车转弯的所需向心力仅由轨道支持力的水平分量FNinθ提供(式中θ角为路面倾角).从而不会对内外轨产生挤压.与其对应的是火车转弯时必须以规定的速率v0行驶.当火车行驶速率v≠v0时,则会产生两种情况:如图所示,如v>v0时,外轨将会对车轮产生斜向内的侧压力F1,以补偿原向心力的不足,如v<v0时,则内轨对车轮产生斜向外的侧压力F2,以抵消多余的向心力,无论哪种情况火车都将对外轨或内轨产生挤压.由此可知,铁路部门为什么会在每个铁轨的转弯处规定时速,从而确保行车安全.解(1)以火车为研究对象,建立如图所示坐标系.据分析,由牛顿定律有v2FNinθm(1)解(1)(2)两式可得火车转弯时规定速率为v0gRtanθ(2)当v>v0时,根据分析有v2FNinθF1coθm(3)RFNcoθF1inθmg0(4)解(3)(4)两式,可得外轨侧压力为v2F1mcoθginθR当v<v0时,根据分析有v2FNinθF2coθm(5)RFNcoθF2inθmg0(6)解(5)(6)两式,可得内轨侧压力为v2F2mginθcoθR2-12一杂技演员在圆筒形建筑物内表演飞车走壁.设演员和摩托车的总质量为m,圆筒半径为R,演员骑摩托车在直壁上以速率v作匀速圆周螺旋运动,每绕一周上升距离为h,如图所示.求壁对演员和摩托车的作用力.分析杂技演员(连同摩托车)的运动可以看成一个水平面内的匀速率圆周运动和一个竖直向上匀速直线运动的叠加.其旋转一周所形成的旋线轨迹展开后,相当于如图(b)所示的斜面.把演员的运动速度分解为图示的v1和v2两个分量,显然v1是竖直向上作匀速直线运动的分速度,而v2则是绕圆筒壁作水平圆周运动的分速度,其中向心力由筒壁对演员的支持力FN的水平分量FN2提供,而竖直分量FN1则与重力相平衡.如图(c)所示,其中φ角为摩托车与筒壁所夹角.运用牛顿定律即可求得筒壁支持力的大小和方向解设杂技演员连同摩托车整体为研究对象,据(b)(c)两图应有FN1mg0(1)FN2v2m(2)Rv2vcoθv2πR2πR2h2(3)22FNFN1FN2(4)以式(3)代入式(2),得FN2m4π2R2v24π2Rmv222(5)2222R4πRh4πRh将式(1)和式(5)代入式(4),可求出圆筒壁对杂技演员的作用力(即支承力)大小为22FNFN1FN224π2Rv22mg4π2R2h2与壁的夹角φ为FN24π2Rv2arctanarctan222FN14πRhg讨论表演飞车走壁时,演员必须控制好运动速度,行车路线以及摩托车的方位,以确保三者之间满足解题用到的各个力学规律.2-13一质点沿某轴运动,其受力如图所示,设t=0时,v0=5m·s-1,某0=2m,质点质量m=1kg,试求该质点7s末的速度和位置坐标.分析首先应由题图求得两个时间段的F(t)函数,进而求得相应的加速度函数,运用积分方法求解题目所问,积分时应注意积分上下限的取值应与两时间段相应的时刻相对应.解由题图得0t52t,Ft5t7355t,由牛顿定律可得两时间段质点的加速度分别为a2t,0t5a355t,5t7对0<t<5s时间段,由adv得dtvtv00dvadt积分后得v5t再由v2d某得dtd某vdt某00某t积分后得某25tt将t=5s代入,得v5=30m·s-1和某5=68.7m对5s<t<7s时间段,用同样方法有133dvv0vt5a2dt得v35t2.5t82.5t再由得某=17.5t2-0.83t3-82.5t+147.87将t=7s代入分别得v7=40m·s-1和某7=142m2-14一质量为10kg的质点在力F的作用下沿某轴作直线运动,已知F =120t+40,式中F的单位为N,t的单位的s.在t=0时,质点位于某=5.0m处,其速度v0=6.0m·s-1.求质点在任意时刻的速度和位置.分析这是在变力作用下的动力学问题.由于力是时间的函数,而加速度a=dv/dt,这时,动力学方程就成为速度对时间的一阶微分方程,解此微分方程可得质点的速度v(t);由速度的定义v=d某/dt,用积分的方法可求出质点的位置.解因加速度a=dv/dt,在直线运动中,根据牛顿运动定律有2某某5d某vdt5t120t40mdvdt依据质点运动的初始条件,即t0=0时v0=6.0m·s-1,运用分离变量法对上式积分,得vv0dv12.0t4.0dt0tv=6.0+4.0t+6.0t2又因v=d某/dt,并由质点运动的初始条件:t0=0时某0=5.0m,对上式分离变量后积分,有d某6.04.0t6.0tdt某t2某00某=5.0+6.0t+2.0t2+2.0t32-15轻型飞机连同驾驶员总质量为1.0某103kg.飞机以55.0m·s-1的速率在水平跑道上着陆后,驾驶员开始制动,若阻力与时间成正比,比例系数α=5.0某102N·s-1,空气对飞机升力不计,求:(1)10s后飞机的速率;(2)飞机着陆后10s内滑行的距离.分析飞机连同驾驶员在水平跑道上运动可视为质点作直线运动.其水平方向所受制动力F为变力,且是时间的函数.在求速率和距离时,可根据动力学方程和运动学规律,采用分离变量法求解.解以地面飞机滑行方向为坐标正方向,由牛顿运动定律及初始条件,有dvαtdtvtαtdvv00mdtα2t得vv02mFmam因此,飞机着陆10s后的速率为v=30m·s-1又tα2d某vdt某0002mt某故飞机着陆后10s内所滑行的距离某某0v0tα3t467m6m2-16质量为m的跳水运动员,从10.0m高台上由静止跳下落入水中.高台距水面距离为h.把跳水运动员视为质点,并略去空气阻力.运动员入水后垂直下沉,水对其阻力为bv2,其中b为一常量.若以水面上一点为坐标原点O,竖直向下为Oy轴,求:(1)运动员在水中的速率v与y的函数关系;(2)如b/m=0.40m-1,跳水运动员在水中下沉多少距离才能使其速率v减少到落水速率v0的1/10?(假定跳水运动员在水中的浮力与所受的重力大小恰好相等)分析该题可以分为两个过程,入水前是自由落体运动,入水后,物体受重力P、浮力F和水的阻力Ff的作用,其合力是一变力,因此,物体作变加速运动.虽然物体的受力分析比较简单,但是,由于变力是速度的函数(在有些问题中变力是时间、位置的函数),对这类问题列出动力学方程并不复杂,但要从它计算出物体运动的位置和速度就比较困难了.通常需要采用积分的方法去解所列出的微分方程.这也成了解题过程中的难点.在解方程的过程中,特别需要注意到积分变量的统一和初始条件的确定.解(1)运动员入水前可视为自由落体运动,故入水时的速度为v02gh运动员入水后,由牛顿定律得P-Ff-F=ma由题意P=F、Ff=bv2,而a=dv/dt=v(dv/dy),代入上式后得-bv2=mv(dv/dy)考虑到初始条件y0=0时,v0t2gh,对上式积分,有vdvmdy0v0vbvv0eby/m2gheby/m(2)将已知条件b/m=0.4m-1,v=0.1v0代入上式,则得ymvln5.76mbv0某2-17直升飞机的螺旋桨由两个对称的叶片组成.每一叶片的质量m=136kg,长l=3.66m.求当它的转速n=320r/min 时,两个叶片根部的张力.(设叶片是宽度一定、厚度均匀的薄片)分析螺旋桨旋转时,叶片上各点的加速度不同,在其各部分两侧的张力也不同;由于叶片的质量是连续分布的,在求叶片根部的张力时,可选取叶片上一小段,分析其受力,列出动力学方程,然后采用积分的方法求解.解设叶片根部为原点O,沿叶片背离原点O的方向为正向,距原点O为r处的长为dr一小段叶片,其两侧对它的拉力分别为FT(r)与FT(r+dr).叶片转动时,该小段叶片作圆周运动,由牛顿定律有dFTFTrFTrdr由于r=l时外侧FT=0,所以有m2ωrdrltFTrdFTlrmω2rdrlmω2222πmn222FTrlrlr2ll上式中取r=0,即得叶片根部的张力FT0=-2.79某105N负号表示张力方向与坐标方向相反.2-18一质量为m的小球最初位于如图(a)所示的A点,然后沿半径为r 的光滑圆轨道ADCB下滑.试求小球到达点C时的角速度和对圆轨道的作用力.分析该题可由牛顿第二定律求解.在取自然坐标的情况下,沿圆弧方向的加速度就是切向加速度at,与其相对应的外力Ft是重力的切向分量mginα,而与法向加速度an相对应的外力是支持力FN和重力的法向分量mgcoα.由此,可分别列出切向和法向的动力学方程Ft=mdv/dt和Fn=man.由于小球在滑动过程中加速度不是恒定的,因此,需应用积分求解,为使运算简便,可转换积分变量.倡该题也能应用以小球、圆弧与地球为系统的机械能守恒定律求解小球的速度和角速度,方法比较简便.但它不能直接给出小球与圆弧表面之间的作用力.解小球在运动过程中受到重力P和圆轨道对它的支持力FN.取图(b)所示的自然坐标系,由牛顿定律得Ftmginαmdv(1)dtmv2FnFNmgcoαm(2)R由vdrdαrdα,得dt,代入式(1),并根据小球从点A运动到点Cdtdtv的始末条件,进行积分,有vv0vdvα90orginαdα得v则小球在点C的角速度为2rgcoαωv2gcoα/rrmv2mgcoα3mgcoα由式(2)得FNmr由此可得小球对圆轨道的作用力为FN3mgcoαFN负号表示F′N与en反向.2-19光滑的水平桌面上放置一半径为R的固定圆环,物体紧贴环的内侧作圆周运动,其摩擦因数为μ,开始时物体的速率为v0,求:(1)t时刻物体的速率;(2)当物体速率从v0减少到12v0时,物体所经历的时间及经过的路程.解(1)设物体质量为m,取图中所示的自然坐标,按牛顿定律,有mv2FNmanRFfmatdvdt由分析中可知,摩擦力的大小Ff=μFN,由上述各式可得v2dvμRdt取初始条件t=0时v=v0,并对上式进行积分,有t0dtRvdvμv0v2vRv0Rv0μt(2)当物体的速率从v0减少到1/2v0时,由上式可得所需的时间为t物体在这段时间内所经过的路程Rμv0vdt0tt0Rv0dtRv0μtRln2μ2-20质量为45.0kg的物体,由地面以初速60.0m·s-1竖直向上发射,物体受到空气的阻力为Fr=kv,且k=0.03N/(m·s-1).(1)求物体发射到最大高度所需的时间.(2)最大高度为多少?分析物体在发射过程中,同时受到重力和空气阻力的作用,其合力是速率v的一次函数,动力学方程是速率的一阶微分方程,求解时,只需采用分离变量的数学方法即可.但是,在求解高度时,则必须将时间变量通过速度定义式转换为位置变量后求解,并注意到物体上升至最大高度时,速率应为零.解(1)物体在空中受重力mg和空气阻力Fr=kv作用而减速.由牛顿定律得mgkvmdv(1)dt某2-25如图(a)所示,电梯相对地面以加速度a竖直向上运动.电梯中有一滑轮固定在电梯顶部,滑轮两侧用轻绳悬挂着质量分别为m1和m2的物体A和B.设滑轮的质量和滑轮与绳索间的摩擦均略去不计.已知m1>m2,如以加速运动的电梯为参考系,求物体相对地面的加速度和绳的张力.分析如以加速运动的电梯为参考系,则为非惯性系.在非惯性系中应用牛顿定律时必须引入惯性力.在通常受力分析的基础上,加以惯性力后,即可列出牛顿运动方程来.解取如图(b)所示的坐标,以电梯为参考系,分别对物体A、B作受力分析,其中F1=m1a,F2=m2a分别为作用在物体A、B上的惯性力.设ar为物体相对电梯的加速度,根据牛顿定律有m1gm1aFT1m1ar(1)m2gm2aFT2m2ar(2)FT2FT2(3)由上述各式可得arm1m2gam1m22m1m2gam1m2FT2FT2由相对加速度的矢量关系,可得物体A、B对地面的加速度值为a1aram1m2g2m2am1m22m1am1m2gm1m2a2araa2的方向向上,a1的方向由ar和a的大小决定.当ar<a,即m1g-m2g-2m2a>0时,a1的方向向下;反之,a1的方向向上.某2-26如图(a)所示,在光滑水平面上,放一质量为m′的三棱柱A,它的斜面的倾角为α.现把一质量为m的滑块B放在三棱柱的光滑斜面上.试求:(1)三棱柱相对于地面的加速度;(2)滑块相对于地面的加速度;(3)滑块与三棱柱之间的正压力.分析这类问题可应用牛顿定律并采用隔离体法求解.在解题的过程中必须注意:(1)参考系的选择.由于牛顿定律只适用于惯性系,可选择地面为参考系(惯性系).因地面和斜面都是光滑的,当滑块在斜面上下滑时,三棱柱受到滑块对它的作用,也将沿地面作加速度为aA的运动,这时,滑块沿斜面的加速度aBA,不再是它相对于地面的加速度aB了.必须注意到它们之间应满足相对加速度的矢量关系,即aB=aA+aBA.若以斜面为参考系(非惯性系),用它求解这类含有相对运动的力学问题是较为方便的.但在非惯性系中,若仍要应用牛顿定律,则必须增添一惯性力F,且有F=maA.(2)坐标系的选择.常取平面直角坐标,并使其中一坐标轴方向与运动方向一致,这样,可使解题简化.(3)在分析滑块与三棱柱之间的正压力时,要考虑运动状态的影响,切勿简单地把它视为滑块重力在垂直于斜面方向的分力mgcoα,事实上只有当aA=0时,正压力才等于mgcoα.解1取地面为参考系,以滑块B和三棱柱A为研究对象,分别作示力图,如图(b)所示.B受重力P1、A施加的支持力FN1;A受重力P2、B施加的压力FN1′、地面支持力FN2.A的运动方向为O某轴的正向,Oy轴的正向垂直地面向上.设aA为A对地的加速度,aB为B对的地加速度.由牛顿定律得FN1inαmaA(1)FN1inαmaB某(2)FN1coαmgmaBy(3)FN1FN1(4)设B相对A的加速度为aBA,则由题意aB、aBA、aA三者的矢量关系如图(c)所示.据此可得aB某aAaBAcoα(5)aByaBAinα(6)解上述方程组可得三棱柱对地面的加速度为aAmginαcoα2mminαmginαcoαmmin2α滑块相对地面的加速度aB在某、y轴上的分量分别为aB某aBymmgin2αmmin2α则滑块相对地面的加速度aB的大小为aBaa2B某2Bym22mmm2in2αginαmmin2α其方向与y轴负向的夹角为amcotαθarctanB某arctanaBymmA与B之间的正压力FN1mmgcoα2mminα解2若以A为参考系,O某轴沿斜面方向[图(d)].在非惯性系中运用牛顿定律,则滑块B的动力学方程分别为mginαmaAcoαmaBA(1)mgcoαFN1maAinα0(2)又因FN1inαmaA0(3)FN1FN1(4)由以上各式可解得aAaBAmginαcoαmmin2αmmginαmmin2α由aB、aBA、aA三者的矢量关系可得m22mmm2in2αaBginαmmin2α以aA代入式(3)可得FN1mmgcoαmmin2α。
第2章习题解答
第2章习题解答2.2已知半径为a 、长为l 的圆柱体内分布着轴对称的体电荷,已知其电荷密度()0Va ρρρρ=,()0a ρ≤≤。
试求总电量Q 。
解:2π200002d d d d π3laV VQ V z la aρρρρρϕρ===⎰⎰⎰⎰2.3 半径为0R 的球面上均匀分布着电荷,总电量为Q 。
当球以角速度ω绕某一直径(z 轴)旋转时,试求其表面上的面电流密度。
解:面电荷密度为 24πS QR ρ=面电流密度为 00200sin sin sin 4π4πS S S Q Q J v R R R R ωθρρωθωθ=⋅=== 2.4 均匀密绕的螺旋管可等效为圆柱形面电流0S S J e J ϕ=。
已知导线的直径为d ,导线中的电流为0I ,试求0S J 。
解:每根导线的体电流密度为 00224π(/2)πI I J d d== 由于导线是均匀密绕,则根据定义面电流密度为 04πS IJ Jd d ==因此,等效面电流密度为 04πS IJ e dϕ=2.6 两个带电量分别为0q 和02q 的点电荷相距为d ,另有一带电量为0q 的点电荷位于其间。
为使中间的点电荷处于平衡状态,试求其位置。
当中间的点电荷带电量为-0q 时,结果又如何? 解:设实验电荷0q 离02q 为x ,那么离0q 为x d -。
由库仑定律,实验电荷受02q 的排斥力为12214πq F xε=实验电荷受0q 的排斥力为02214π()q F d x ε=- 要使实验电荷保持平衡,即21F F =,那么由00222114π4π()q q x d x εε=-,可以解得 d d x 585.0122=+=如果实验电荷为0q -,那么平衡位置仍然为d d x 585.0122=+=。
只是这时实验电荷与0q 和02q 不是排斥力,而是吸引力。
2.7 边长为a 的正方形的三个顶点上各放置带电量为0q 的点电荷,试求第四个顶点上的电场强度E 。
第2章(计算机组成原理) 练习题、参考答案
第2章练习题参考答案一、判断题(正确Y,错误N)1. CPU在很大程度上决定了计算机的性能,CPU的运算速度又与CPU的工作频率密切相关。
因此,在其它配置相同时,使用主频为500MHz的Pentium4作为CPU 的PC机,比使用主频为1GHz Pentium4作为CPU的PC机速度快。
N2. 近年来,PC机中使用的1394接口比USB传输速度更快。
Y3. Cache存储器的存取速度比主存储器要快得多。
因此,为了提高程序的运行速度,在软件开发时,应尽可能多地使用Cache存储器。
N4. 主存储器在物理结构上由若干插在主板上的内存条组成。
目前,内存条上的芯片一般选用DRAM而不采用SRAM。
Y5. 在Pentium处理器中,整数ALU和浮点运算器可以分别对整数和实数同时进行运算处理。
Y6. RAM是随机存取存储器的缩写,其中“随机”的含义是:不论从(向)哪个地址读出或写入数据,所需时间都是相同的。
N7. 3.5英寸软盘的角上有一个小口,当滑动保护片将其盖住时,软盘就不能进行读写操作了。
N8. CPU工作时,它所执行的指令和处理的数据都是直接从磁盘或光盘中取出,处理结果也直接存入磁盘。
N9. 一般情况下,计算机加电后自动执行BIOS中的程序,将所需的操作系统软件装载到内存中,这个过程称为“自举”或“引导”。
Y10. 若某台PC机主板上的CMOS信息丢失,则该机器将不能正常运行,此时只要将其他计算机中的CMOS信息写入后,该机器便能正常运行。
N11. BIOS芯片和CMOS芯片实际上是一块芯片的两种叫法,是启动计算机工作的重要部件。
N12. 一个完整的计算机系统的两个基本组成部分是操作系统和数据库系统.N13. USB接口是一种高速的并行接口。
N14. 计算机中总线的重要指标之一是带宽,它指的是总线中数据线的宽度,用二进位数目来表示(如16位,32位总线)。
N15. 在BIOS中不包含扫描仪、打印机等设备的驱动程序。
第二章习题与答案
第二章会计科目、会计账户和借贷复式记账法一、单项选择题1.账户是根据()开设的,用来连续、系统地记载各项经济业务的一种手段。
A.会计凭证B.会计对象C.会计科目D.财务指标2.根据借贷记账法的原理,记录在账户贷方的是()。
A.费用的增加B.收入的增加C.负债的减少D.所有者权益的减少3.会计科目是()的名称。
A.会计账户B.会计等式C.会计对象D.会计要素4借贷记账法的记账规则是()。
A.同增、同减、有增、有减B.同收、同付、有收、有付C.有增必有减,增减必相等D.有借必有贷,借贷必相等5.在借贷记账法中,账户的哪一方记录增加,哪一方记录减少是由()决定的。
A.账户的性质B.记账规则C.账户的结构D.业务的性质6.复试记账法的基本理论依据是()的平衡原理。
A.资产=负债+所有者权益B.收入–费用=利润C.期初余额+本期增加数-本期减少数=期末余额D.借方发生额=贷方发生额8.按照借贷记账法的记录方法,下列四组账户中,增加额均记在贷方的是()。
A.资产类和负债类B.负债类和所有者权益类C.成本类和损益类D.损益类中的收入和支出类9.会计科目与账户之间的区别在于()。
A.反映经济内容不同B.账户有结构而会计科目无结构C.分类的对象不同D.反映的结果不同10.按照借贷记账法的记录方法,下列账户的贷方登记增加额的是()。
A.库存现金B.应收账款C.应付账款D.原材料11.按照借贷记账法的记录方法,下列账户中,账户的借方登记增加额的是()。
A.实收资本B.应付职工薪酬C.累计折旧D.所得税费用12.目前我国会计制度规定,企业会计采用的记账方法是()。
A.增减记账法B.现金收付记账法C.借贷记账法D.财产收付记账法13.账户的基本结构分为左右两方,其基本依据是()。
A.登记收支业务B.借贷原理C.收付原理D.资金在运动中量的增加和减少14.不属于损益类会计科目的是()。
A.投资收益B.管理费用C.主营业务成本D.生产成本15.下列属于资产类的会计科目是()。
第二章习题答案
第二章习题答案2.1.1 质点的运动学方程为j t i t r j i t r ˆ)14(ˆ)32()2(ˆ5ˆ)23()1(-+-=++=求质点的轨迹并用图表示解:(1)⎭⎬⎫=+=523y t x 平行于x 轴的直线:y=5(2)⎭⎬⎫-=-=1432t y t x 消去t 的轨迹方程:0534=-+y x2.1.2 质点的运动学方程为kj e i e r t t ˆ2ˆˆ22++=-。
(1)求质点的轨迹。
(2)求自t = -1 至t = 1质点的位移解:(1)由运动方程得质点轨迹的参数方程为 )3()2()1(222⎪⎩⎪⎨⎧===-z ey e x tt (1)x (2)消去t ,得轨迹方程 ⎩⎨⎧==21z xy(2)自t = -1 至t = 1质点的位移:je e i e e r r r k j e i e r k j e i e r t t ˆ)(ˆ)(ˆ2ˆˆˆ2ˆˆ,1,1222211221221-------+-=-=∆++=++==-= 2.1.3 质点的运动学方程为j t i t r ˆ)32(ˆ42++=。
(1)求质点的轨迹;(2)求自t=0至t=1质点的位移解:由质点的运动方程⎩⎨⎧+==)2(32)1(42t y t x (1) 质点的轨迹:消去t 得:2)3(-=y x(2) 位移:ji r r r j i r j r t t ˆ2ˆ4ˆ5ˆ4ˆ3101221+=-=∆+====2.2.1 雷达站于某瞬时测得飞机位置为R 1=4100m ,θ1=33.70,0.75s 后测得R 2=4240m ,θ2=29.30,R 1,R 2均在铅直平面内,求飞机瞬时速度的近似值和飞行方向(α角)。
解:取雷达站位置为原点,飞机在两个时刻的位置矢量分别为r 1和r 2,则| r 1|=R 1, | r 2|=R 2,如图所示由余弦定理,在0.75s 时间间隔内飞机的位移的大小为mR R R R r r r r r 4.349)3.297.33cos(42404100242404100)cos(2)cos(200222121222121212221≈-⨯⨯-+=--+=--+=∆θθθθ飞机的瞬时速度的大小:==∆∆≈smt r v 75.04.349465.8m/s飞机的瞬时速度方向:由正弦定理)3.297.33sin(4.349sin 4240)sin(sin 00212-=⇒-∆=γθθγr r100001207.341806.11193.0arcsin 18090,93.04.4sin 4.3494240sin ≈--=∴≈-=∴>∴>≈=γθαγγγr r另解:利用矢量在直角坐标系中的正交分解. 选平面直角坐标系,取雷达站的位置为坐标原点,x 轴沿水平方向,y 轴铅直向上,则在两个时刻飞机的位置矢量分别可表示为ji j i jR i R r ji j i jR i R r ˆ98.2074ˆ57.3697ˆ3.29sin 4240ˆ3.29cos 4240ˆsin ˆcos ˆ86.2274ˆ01.3411ˆ7.33sin 4100ˆ7.33cos 4100ˆsin ˆcos 00222220011111+=⨯+⨯=+=+=⨯+⨯=+=θθθθ 飞机飞行0.75s 后的位移矢量为j i r r r ˆ88.199ˆ56.28612-=-=∆飞机瞬时速度的大小的近似值:s m t rv /8.46575.038.34975.088.19956.28622=≅+=∆∆≈飞机瞬时速度的方向与x 轴的夹角:09.3482.038.34956.286ˆcos =∴==∆⋅∆=ααr i r2.2.2 一圆柱体沿抛物线轨道运动.抛物线的轨道方程为y=x 2/200(长度:mm).第一次观测到圆柱体在x=249mm 处,经过时间2ms 后圆柱体移到x=234mm 处.求圆柱体瞬时速度的近似解:第一次观测时,x=249mm, y=x 2/200=(249)2/200≈310mm ,j i r ˆ310ˆ2491+=2ms 后,x=234mm, y=x 2/200=(234)2/200≈273.78mm ,j i r ˆ78.273ˆ2342+=圆柱体的位移:mm r j i r r r 2.3922.3615ˆ22.36ˆ152212≈+=∆--=-=∆∴ms mm msmm t r v /6.1922.39==∆∆≈速度与x 轴的夹角:5.112383.02.3915ˆcos -≈∴-≈-=∆⋅∆=ααr i r2.2.3 一人在北京音乐厅内听音乐,离演奏着17m 。
第二章习题解答.doc
8第二章 高频小信号放大器典型例题分析与计算例2-1 图2-18所示电路为一等效电路,其中L =0.8uH,Q 0=100,C =5pF,C 1 =20pF,C 2 =20pF,R =10k Ω,R L =5k Ω,试计算回路的谐振频率、谐振电阻。
题意分析 此题是基本等效电路的计算,其中L 为有损电感,应考虑损耗电阻0R (或电导0g )。
解由图2-18可画出图2-19所示的等效电路。
图2-18 等效电路 图2-19 等效电路(1)回路的谐振频率0f由等效电路可知L =0.8H μ,回路总电容C ∑为12122020515(pF)2020C C C C C C ∑⨯=+=+=++则0f ==45.97(MHz)=(2)R L 折合到回路两端时的接入系数p 为211212121112C C p C C C C C C ωω===++则9()2233110.50.0510s 510L P R -=⨯=⨯⨯ 电感L 的损耗电导0g 为0660011245.97100.810100g LQ ωπ-==⨯⨯⨯⨯⨯ ()643.3010s -=⨯总电导 23-3031110.0433100.05101010L g g P R R ∑-=++=+⨯+⨯⨯ ()30.193310s -=⨯谐振电阻 ()P 1 5.17k R g ∑==Ω例2-2 有一个RLC 并联谐振电路如图2-20所示,已知谐振频率f 0=10MHz,L =4μH ,Q 0=100,R =4k Ω。
试求(1)通频带20.7f ∆;(2)若要增大通频带为原来的2倍,还应并联一个多大电阻?题意分析 此题是一个RLC 并联谐振电路的基本计算,了解通频带的变化与回路电阻的关系。
解 (1)计算通频带电感L 的损耗电导0g 为 图2-20 RLC 并联谐振回路066001121010410100g LQ ωπ-==⨯⨯⨯⨯⨯()639.810s -=⨯回路总电导6031139.810410g g R ∑-=+=+⨯⨯ ()6289.810s -=⨯10回路的有载品质因数L Q 为666011g 21010410289.810L Q L ∑ωπ--==⨯⨯⨯⨯⨯⨯13.74=回路通频带()()6600.7101020.72810Hz 0.728MHz 13.74L f f Q ∆⨯===⨯= (2)若通带增大一倍,即20.71.456MHz f ∆=,计算应再并多大电阻R '根据题意要求通频带增大一倍,则回路的有载品质因数应减小一倍,即16.872LL Q Q '== 对应的'g ∑应该增大一倍,即 ()6'2579.610s g g ∑∑-==⨯ 因为0'11g g R R∑=++' 所以0''11g g g g R R ∑∑∑⎛⎫=-+=- ⎪'⎝⎭()6289.810s -=⨯则 3.45k R '=Ω图2-21 单调谐放大电路11例2-3 单调谐放大器如图2-21所示。
第二章部分习题答案
习题6、试从动态性、并发性和独立性上比较进程和程序。
答:(1)从动态性角度:进程的实质是进程实体的一次执行过程,因此,动态性是进程的最基本的特征。
动态性还表现在:“它由创建而产生,由调度而执行,由撤消而消亡”。
可见,进程实体有一定的生命期,而程序则只是一组有序指令的集合,并存放于某种介质上,其本身并不具有运动的含义,因而是静态的。
(2)从并发性角度:这是指多个进程实体同存于内存中,且能在一段时间内同时运行。
并发性是进程的重要特征,同时也成为OS的重要特征。
引入进程的目的也正是为了使其进程实体能和其它进程实体并发执行;而程序(没有建立PCB)是不能并发执行的。
(3)从独立性角度:在传统的OS中,独立性是指进程实体是一个能独立运行、独立分配资源和独立接受调度的基本单位。
凡未建立PCB的程序都不能作为一个独立的单位参与运行。
7、试说明PCB的作用,为什么说PCB是进程存在的惟一标志?答:(1)进程控制块PCB的作用是使一个在多道程序环境下不能独立运行的程序(含数据),成为一个能独立运行的基本单位,一个能与其它进程并发执行的进程。
(2)在进程的整个生命期中,系统总是通过PCB对进程进行控制的,亦即,系统是根据进程的PCB而不是任何别的什么而感知到该进程的存在的。
所以说,PCB 是进程存在的惟一标志。
9、为什么要引入挂起状态?该状态有哪些性质?答:引入挂起状态的原因:(1)终端用户的请求。
(2)父进程请求。
(3)负荷调节的需要。
(4)操作系统的需要。
处于挂起状态的进程最大的特点是主动放弃CPU调度。
引入挂起状态后,进程状态转换图中增加了活动阻塞、静止阻塞、活动就绪、静止就绪四个状态,并增加了活动就绪与静止就绪之间的相互转换,活动阻塞与静止阻塞之间的相互转换。
16、进程在运行时存在哪两种形式的制约?并举例说明之。
答:(1)间接相互制约关系。
同处于一个系统中的进程,通常都共享着某种系统资源,如共享CPU、共享I/O设备等。
第二章习题答案
1
011…1B (231–1) > 100…0B (–231)
1
11…1B (–1) > 11…10B (–2)
1
11…1B (232–1) > 11…10B (232–2)
9.以下是一个 C 语言程序,用来计算一个数组 a 中每个元素的和。当参数 len 为 0 时,返回值应该是 0,
但是在机器上执行时,却发生了存储器访问异常。请问这是什么原因造成的,并说明程序应该如何
10. 设某浮点数格式为:
数符 1位
阶码 5 位移码
尾数 6 位补码
其中,移码的偏置常数为 16,补码采用一位符号位,基数为 4。 (1) 用这种格式表示下列十进制数:+1.7,–0.12,+19,–1/8。 (2) 写出该格式浮点数的表示范围,并与 12 位定点补码整数表示范围比较。 参考答案:(假定采用 0 舍 1 入法进行舍入) (1) +1.7 = +1.1011001B = 0.011011B× 41, 故阶码为 1 +16 = 17 = 10001B, 尾数为+0.011011 的补码,
7 位原码
参考答案: (1)无符号整数:0~216–1。 (2)原码定点小数:–(1–2–15) ~ + (1–2–15)。 (3)补码定点小数:–1 ~ + (1–2–15)。 (4)补码定点整数:–32768 ~ +32767。 (5)浮点数:负数:– (1–2–7)×2+127 ~ –2–7×2–128。
(2)[x]补=10000000 (4)[x]补=11010011
x = –0.0011001B x = –10000000B = –128 x = +0.101001B x = – 101101B = – 45
第二章习题解答
第二章习题解答2.12.3答:⑴执行单元EU负责执行指令。
EU在工作时不断地从指令队列取出指令代码,对其译码后产生完成指令所需要的控制信息。
数据在ALU中进行运算,运算结果的特征保留在标志寄存器FLAGS中。
总线接口单元BIU负责CPU与存储器、I/O接口之间的信息传送。
BIU取出的指令被送入指令队列供EU执行,BIU取出的数据被送入相关寄存器中以便做进一步的处理。
⑵执行单元EU不能直接访问存储器2.4答:(1)要利用信号线包括WR#、RD#、IO/M#、ALE以及AD0~AD7、A8~A19。
(2)同(1)。
(3)所有三态输出的地址信号、数据信号和控制信号均置为高阻态。
2.5答:在每个总线周期的T3的开始处若READY为低电平,则CPU在T3后插入一个等待周期TW。
在TW的开始时刻,CPU还要检查READY状态,若仍为低电平,则再插入一个TW 。
此过程一直进行到某个TW开始时,READY已经变为高电平,这时下一个时钟周期才转入T4。
可以看出,插入TW周期的个数取决于READY电平维持的时间。
2.62.72.8通用寄存器包含以下8个寄存器:AX、BX、CX和DX寄存器一般用于存放参与运算的数据或运算的结果。
除此之外:AX:主要存放算术逻辑运算中的操作数,以及存放I/O操作的数据。
BX:存放访问内存时的基地址。
CX:在循环和串操作指令中用作计数器。
DX:在寄存器间接寻址的I/O指令中存放I/O地址。
在做双字长乘除法运算时,DX 与AX合起来存放一个双字长数。
SP:存放栈顶偏移地址。
BP:存放访问内存时的基地址。
SP和BP也可以存放数据,但它们的默认段寄存器都是SS。
SI:常在变址寻址方式中作为源地址指针。
DI:常在变址寻址方式中作为目标地址指针。
专用寄存器包括4个段寄存器:CS:代码段寄存器,用于存放代码段的段基地址。
DS:数据段寄存器,用于存放数据段的段基地址。
SS:堆栈段寄存器,用于存放堆栈段的段基地址。
第2章习题解答
2.7 总量为q 的电荷均匀分布于半径为a 的球体中,分别求球内、外的电场强度 解:由题意得,球体内的电荷体密度为3=4V 3q qa ρπ=由高斯定理:(1)当r>a 时,01svE d s dv ρε=⎰⎰外即:sin 222014=aE r r drd d πππρθθϕε⎰⎰⎰外r 2=4qE e r πε外 (2)当r<a 时,201svE d s dv ρε=⎰⎰即:224=E r πsin 2201r r drd d ππρθθϕε⎰⎰⎰2r 30=4qrE e a πε2.14 电场中有一半径为a 的介质球,已知1cos cos 300020-=-E +2r a E rεεθθεεΦ+(r a ≥)cos 02003=-E +2r εθεεΦ (r a ≤)验证球表面的边界条件,并计算球表面的极化电荷密度 解:(1)对于法向边界条件,cos 011003==-E +2n r εθεε∂Φ∂Φ∂∂cos 22003==-E +2n r εθεε∂Φ∂Φ∂∂ 由于 102==εεεε, 故:1212-+=n nεε∂Φ∂Φ∂∂cos cos )00000033--E +-E +2+2εεεθεθεεεε()(=0 满足法向边界条件 对于切向边界条件: 在r=a 处,3cos cos 010020E E +2r a rεεθθεε-Φ=-+=cos 0003-E +2a εθεε2Φ=cos 003-E +2r εθεε= cos 0003-E +2a εθεε即:21Φ=Φ,满足切向边界条件(2)球表面的自由电荷密度 s ρ=0故极化电荷面密度: 2112()0ps n n n n D D E E ρε=-+- =(cos cos )00000033E -E +2+2εεεθθεεεε=()cos 00003E +2εεεθεε-2.19 有一半径为a ,带电量为q 的导体球,其球心位于两种介质的分界面上,两种介质的介电常数分别是1ε和2ε,分界面可视为无限大平面。
第二章课后习题与答案
第2章人工智能与知识工程初步1. 设有如下语句,请用相应的谓词公式分别把他们表示出来:s(1)有的人喜欢梅花,有的人喜欢菊花,有的人既喜欢梅花又喜欢菊花。
解:定义谓词dP(x):x是人L(x,y):x喜欢y其中,y的个体域是{梅花,菊花}。
将知识用谓词表示为:(∃x )(P(x)→L(x, 梅花)∨L(x, 菊花)∨L(x, 梅花)∧L(x, 菊花))(2)有人每天下午都去打篮球。
解:定义谓词P(x):x是人B(x):x打篮球A(y):y是下午将知识用谓词表示为:a(∃x )(∀y) (A(y)→B(x)∧P(x))(3)新型计算机速度又快,存储容量又大。
解:定义谓词NC(x):x是新型计算机F(x):x速度快B(x):x容量大将知识用谓词表示为:(∀x) (NC(x)→F(x)∧B(x))(4)不是每个计算机系的学生都喜欢在计算机上编程序。
解:定义谓词S(x):x是计算机系学生L(x, pragramming):x喜欢编程序U(x,computer):x使用计算机将知识用谓词表示为:¬(∀x) (S(x)→L(x, pragramming)∧U(x,computer))(5)凡是喜欢编程序的人都喜欢计算机。
解:定义谓词P(x):x是人L(x, y):x喜欢y将知识用谓词表示为:(∀x) (P(x)∧L(x,pragramming)→L(x, computer))2请对下列命题分别写出它们的语义网络: (1) 每个学生都有一台计算机。
解:(2) 高老师从3月到7月给计算机系学生讲《计算机网络》课。
解:(3) 学习班的学员有男、有女、有研究生、有本科生。
解:参例2.14(4) 创新公司在科海大街56号,刘洋是该公司的经理,他32岁、硕士学位。
解:参例2.10(5) 红队与蓝队进行足球比赛,最后以3:2的比分结束。
解:2.19 请把下列命题用一个语义网络表示出来: (1) 树和草都是植物; 解:(2) 树和草都有叶和根; 解:(3) 水草是草,且生长在水中; 解:(4) 果树是树,且会结果; 解:(5) 梨树是果树中的一种,它会结梨。
第2章 习题解答
f(t) 1
f(3 t) 1
t
−2 −1 0
12
−1
⇒
t
− 2 −1 0
12
3
3
33
f(-3 t) 1
⇒
t
−2 3
−1 3
0 12 33
f(-3(t-2)) 1
⇒
0
45 33
t 78 33
图2-6 题 2-9(3)解答图
方法二:先翻转、再展缩、后平移。先翻转,再压缩 3 倍,后右移 2 个单位。
f (t) ⎯翻⎯⎯转→ f (−t) ⎯压⎯缩⎯3⎯倍→ f (−3t) ⎯右⎯移⎯2个单⎯⎯位→ f (−(3 t − 2)) = f (−3t + 6)
a
a
2
(2) 根据冲激信号的筛选特性 f (t)δ (t − t0 ) = f (t0 )δ (t − t0 ) ,可得 tδ (t) = 0δ (t) = 0
(3) 根据冲激信号的筛选特性可得 f (t) = sin t ⋅ δ (t − π ) = sin π ⋅δ (t − π ) = δ (t − π ) 。
(4) f (t) = δ (t − 1) − 2δ (t − 2) + δ (t − 3) (5) f (t) = r(t + 1) − r(t −1) − u(t −1) (6) f (t) = r(t + 2) − r(t + 1) − r(t −1) + r(t − 2)
【解】 题中各信号的波形如图 2-1所示。 f(t)
(1) f (3t)
(2) f (3t + 6)
(3) f (−3t + 6)
(4) f ( t ) 3
第二章习题解答
习 题 二1. 设)(1x F 与)(2x F 分别是随机变量X 与Y 的分布函数,为使)()(21x bF x aF -是某个随机变量的分布函数, 则b a ,的值可取为( A ).A . 52,53-==b a B . 32,32==b a C . 23,21=-=b a D . 23,21-==b a2. 一批产品20个, 其中有5个次品, 从这批产品中随意抽取4个, 求这4个产品中的次品数X 的分布律.解:因为随机变量X ={这4个产品中的次品数}X 的所有可能的取值为:0,1,2,3,4.且4015542091{0}0.2817323C C P X C ===≈; 31155420455{1}0.4696969C C P X C ===≈;2215542070{2}0.2167323C C P X C ===≈;1315542010{3}0.0310323C C P X C ===≈;041554201{4}0.0010969C C P X C ===≈.因此所求X 的分布律为:3. 如果服从0-1分布, 又知取1的概率为它取0的概率的两倍, 写出的分布律和分布函数.解:设{1}P x p ==,则{0}1P x p ==-. 由已知,2(1)p p =-,所以23p =X当0x <时,(){}0F x P X x =≤=;当01x ≤<时,1(){}{0}3F x P X x P X =≤===; 当1x ≥时,(){}{0}{1}1F x P X x P X P X =≤==+==.X 的分布函数为:⎪⎩⎪⎨⎧>=<≤<=11103/100)(x x x x F . 4. 一批零件中有7个合格品,3个不合格品,安装配件时,从这批零件中任取一个,若取出不合格品不再放回,而再取一个零件,直到取得合格品为止,求在取出合格品以前,已取出不合格品数的概率分布.解:设X ={在取出合格品以前,已取出不合格品数}. 则X 的所有可能的取值为0,1,2,3.7{0}10P x ==; 377{1}10930P x ==⋅=;3277{2}1098120P x ==⋅⋅=;32171{3}10987120P x ==⋅⋅⋅=.所以X5. 从一副扑克牌(52张)中发出5张,求其中黑桃张数的概率分布. 解:设X ={其中黑桃张数}.则X 的所有可能的取值为0,1,2,3,4,5.0513395522109{0}0.22159520C C P x C ===≈; 14133955227417{1}0.411466640C C P x C ===≈;23133955227417{2}0.274399960C C P x C ===≈; 32133955216302{3}0.0815199920C C P x C ===≈; 411339552429{4}0.010739984C C P x C ===≈; 50133955233{5}0.000566640C C P x C ===≈. 所以X 的概率分布为:6. 一家大型工厂聘用了100名新员工进行上岗培训,据以前的培训情况,估计大约有4%的培训者不能完成培训任务. 求: (1)恰有6个人不能完成培训的概率; (2)不多于4个的概率. 解:设X ={不能完成培训的人数}.则(100,0.04)X B ,(1)6694100{6}0.040.960.1052P X C ==⋅=;(2)4100100{4}0.040.960.629kk k k P X C-=≤=⋅=∑.7. 一批产品的接收者称为使用方,使用方风险是指以高于使用方能容许的次品率p 接受一批产品的概率. 假设你是使用方,允许次品率不超过05.0=p ,你方的验收标准为从这批产品中任取100个进行检验,若次品不超过3个则接受该批产品. 试求使用方风险是多少?(假设这批产品实际次品率为0. 06).解:设X ={100个产品中的次品数},则(100,0.06)X B , 所求概率为1001003{3}(0.06)(0.94)0.1430K K K K P X C-≤≤==∑.8. 甲、乙两人各有赌本30元和20元,以投掷一枚均匀硬币进行赌博. 约定若出现正面,则甲赢10元,乙输10元;如果出现反面,则甲输10元,乙赢10元. 分别求投掷一次后甲、乙两人赌本的概率分布及相应的概率分布函数.解:设甲X ={投掷一次后甲的赌本},乙X ={投掷一次后乙的赌本}.则甲X 的取值为40,20,且1{40}{20}2P X P X ====甲甲,1{10}{30}2P X P X ====乙乙, 所以甲X 与乙X 的分布律分别为:9. 设离散型随机变量X 的概率分布为:(1){}2,1,2,,100kP X k a k === ; (2){}2,1,2,kP X k a k -=== ,分别求(1)、(2)中常数a 的值.解:(1)因为{}1001001121,kk k P X k a =====∑∑即1002(12)112a -⋅=-,所以)12(21100-=a . (3)因为{}1121,kk k P X k a ∞∞-=====∑∑即121112a ⋅=-,所以1=a .10. 已知一电话交换台服从4=λ的泊松分布,求:(1)每分钟恰有8次传唤的概率;(2)每分钟传唤次数大于8次的概率.解:设X ={每分钟接到的传唤次数},则()X P λ ,查泊松分布表得 (1){8}{8}{9}0.05110.0214P X P X P X ==≥-≥=-; (2){8}0.02136P X ≥=.11. 一口袋中有5个乒乓球,编号分别为1、2、3、4、5,从中任取3个,以示3个球中最小号码,写出X 的概率分布.解:X 的所有可能的取值为1,2,3.243563{1}105C P x C ====;23353{2}10C P x C ===;22351{3}10C P x C ===.所以X12. 设随机变量X 的密度函数为 ,010,⎩⎨⎧<<+=x b ax f(x)其它,且⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<3131X P X P ,试求常数a 和b .解:1301()3183a b P X ax b dx ⎧⎫<=+=+⎨⎬⎩⎭⎰;113142()393a b P X ax b dx ⎧⎫>=+=+⎨⎬⎩⎭⎰, 由421183932a b a b +=+=得,71.5,.4a b =-= 13. 已知随机变量X 的概率分布如下, X -1 0 1 2P 0. 2 0. 25 0. 30 0. 25求13+-=X Y 及12+=X Z 的概率分布.解:13+-=X Y 的所有可能的取值为4,1,-2,-5. 且{4}{1}0.2P Y P X ===-=;{1}{0}0.25P Y P X ====; {2}{1}0.3P Y P X =-===;{5}{2}0.25P Y P X =-===.所以13+-=X Y 的分布律为12+=X Z 的所有可能的取值为1,2,5且{1}{0}0.25P Z P X ====;{2}{1}{1}0.5P Z P X P X ===-+==; {5}{2}0.25P Z P X ====.所以12+=X Z 的分布律为14. 服从柯西分布的随机变量ξ的分布函数是F (x )=A +B x arctan , 求常数A , B ;{1}P X <以及概率密度f (x ).解:由()lim (arctan )02()lim (arctan )12x x F A B x A B F A B x A B ππ→-∞→+∞⎧-∞=+=-=⎪⎪⎨⎪+∞=+=+=⎪⎩得121A B π⎧=⎪⎪⎨⎪=⎪⎩.所以11()arctan 2F x x π=+; {1}{11}(1)(1)0.5P X P x F F <=-<<=--=;211()'()1f x F x x π==⋅+.15. 设连续型随机变量X 的分布函数为20,0(),011,1x F x Ax x x <⎧⎪=≤<⎨⎪≥⎩求:(1)常数A 的值;(2)X 的概率密度函数)(x f ;(3){}2≤X P .解:(1)由()F x 的连续性得(10)(10)(1)1F F F -=+==即21lim 1x Ax -→=,所以1A =,20,0(),011,1x F x x x x <⎧⎪=≤<⎨⎪≥⎩;(2)2,01()'()0,x x f x F x <<⎧==⎨⎩其他;(3){2}(2)1P X F ≤==.16. 设随机变量X 的分布密度函数为 , 01 , 1)(2⎪⎩⎪⎨⎧<-=其它当x xAx f 试求:(1)系数A ;(2)⎭⎬⎫⎩⎨⎧<<221X P ;(3)X 的分布函数)(x F . 解:(1)因为1111()arcsin f x dx A x A π+∞--∞-====⎰⎰所以1A π=,1() 0 ,x f x <=⎩其它; (2)12111221112()arcsin 23P X f x dx x π⎧⎫<<====⎨⎬⎩⎭⎰;(4)当1x <-时,(){}0f x P X x =≤=,当01x ≤<时,11(){}arcsin 2xf x P X x x π-=≤==+⎰, 当1x ≥时,1(){}1f x P X x -=≤==⎰,所以⎪⎪⎩⎪⎪⎨⎧≥<≤-+-<=1,111,arcsin 1211,0x x x x x F π)( 17. 设随机变量)4,5(~N X ,求α使:(1){}903.0=<αX P ;(2){}01.05=>-αX P .解:由)4,5(~N X 得5~(0,1)2X N - (1){}555()0.903222X P X P ααα---⎧⎫<=<=Φ=⎨⎬⎩⎭ 查标准正态分布表得:51.32α-=,所以6.7=α;(2)由{}01.05=>-αX P 得,{}50.99P X α-<=所以{}{}55PX P X ααα-<=-<-<5()()2()10.99222222X P ααααα-⎧⎫=-<<=Φ-Φ=Φ-=⎨⎬⎩⎭即()0.9952αΦ=,查标准正态分布表得2.582α=,所以16.5=α18. 设)2,10(~2N X ,求{}{}210 , 1310<-<<X P X P . 解:由)2,10(~2N X 得10~(0,1)2X N - {}101013=P 0 1.5(1.5)(0)0.99320.50.49322X P X -⎧⎫<<<<=Φ-Φ=-=⎨⎬⎩⎭;{}102{2102}P X P X -<=-<-<10{11}(1)(1)2(1)120.841310.68262X P -=-<<=Φ-Φ-=Φ-=⨯-=. 19. 某地8月份的降水量服从185mm,28mm μσ==的正态分布,求该地区8月份降水量超过250 m m 的概率.解:设随机变量X ={该地8月份的降水量}, 则2(185,28)X N ,从而185(0,1)28X N - 所求概率为185250185{250}{}1(2.32)10.98980.01022828X P X P --≥=>=-Φ=-= 20. 测量某一目标的距离时,产生的随机误差(cm)X 服从正态分布)400,0(N ,求在3次测量中至少有1次误差的绝对值不超过30 cm 的概率.解:由(0,400)X N 得(0,1)20XN 设Y ={在3次测量中误差的绝对值不超过30 cm 的次数},则(3,)Y B p 其中{30}{3030}{ 1.5 1.5}20Xp P X P X P =<=-<<=-<< (1.5)( 1.5)2(1.5)120.933210.8664=Φ-Φ-=Φ-=⨯-=所以P {3次测量中至少有1次误差的绝对值不超过30 cm }={1}P Y ≥0331{0}10.86640.13360.9976P Y C =-==-⋅=21. 自动生产线在调整之后出现废品的概率为p , 当在生产过程中出现废品时立即重新进行调整, 求在两次调整之间生产的合格品数X 的概率函数.解:由已知,()X G p所以()(1),0,1,2i P X i p p i ==-= .22. 已知测量误差2~(7.5,10)X N ,X 的单位是mm ,问必须进行多少次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.解:设必须进行n 次测量才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9.由已知2~(7.5,10)X N ,7.5~(0,1)10X N - 设Y ={n 次测量中,绝对误差不超过10mm 的次数},则(,)Y B n p其中7.5{10}{0.25}(0.25)0.598710X p P X P -=≤=≤=Φ= 所求概率为{1}0.9P Y ≥>,即{0}0.1P Y =≤000.59870.40130.1n n C ⋅≤,解之得,3n ≥必须进行3次测量,才能使至少有一次测量的绝对误差不超过10mm 的概率大于0. 9. 23. 参加某项综合测试的380名学生均有机会获得该测试的满分500分. 设学生的得分)(~2σμ,N X ,某教授根据得分X 将学生分成五个等级:A 级:得分)(σμ+≥X ;B 级:)(σμμ+<≤X ;C 级:μσμ<≤-X )(;D 级:)()2(σμσμ-<≤-X ;F 级:)2(σμ-<X . 已知A 级和C 级的最低得分分别为448分和352分,则: (1)μ和σ是多少?(2)多少个学生得B 级?解:(1)由已知,448352μσμσ+=⎧⎨-=⎩,解之得40048μσ=⎧⎨=⎩(2){}{01}X P X P μμμσσ-≤<+=≤<(1)(0)0.84130.50.3413=Φ-Φ=-=24. 一汽车沿一街道行驶,需要通过三个均设有红绿信号灯的路口,每个信号灯为红或绿是相互独立的,且红、绿两种信号显示时间相同. 以X 表示该汽车首次遇到红灯前已通过的路口数. 求X 的概率分布.解:X 的所有可能的取值为0,1,2,3.且1{0}2P X ==; 111{1}224P X ==⨯=;1111{2}2228P X ==⨯⨯=;1111{3}2228P X ==⨯⨯=;所以X 的概率分布为25. 设顾客在某银行窗口等待服务的时间X (min )服从51=λ的指数分布. 某顾客在窗口等待服务,若超过10 min ,他就离开. 若他一个月到银行5次,求: (1) 一个月内他未等到服务而离开窗口的次数Y 的分布;(2) 求{}1≥Y P .解:(1)由已知,1(),(5,)5X E Y B p其中10{10}1{10}1()p P X P X f x dx -∞=>=-≤=-⎰110250115e dx e --=-=⎰所以Y 的分布为55{}(1)k kk P Y k C p p -==- 2255()(1),(0,1,2,3,4,5)k k k C e e k ---=-=;(2){}02025511{0}1()(1)0.5167P Y P Y C e e --≥=-==--=.26. 设~()X E λ,求)0(>=a aX Y 的概率分布. 解:因为()(0)Y g X aX a ==>所以1'()0,(),'()y g x a h y h y a a =>==,而,0()0,x X e x f x x λλ-⎧≥=⎨<⎩,1()(())|'()|yy aa Y X f y f h y h y ee a aλλλλ--=⋅=⋅=,(0)y ≥ )0(>=a aX Y 的密度函数为,0()0,0y a Y e y f y a y λλ-⎧≥⎪=⎨⎪<⎩.27. 假设你要参加在11层召开的会议,在会议开始前5 min 你正好到达10层电梯口,已知在任意一层等待电梯的时间服从0到10 min 之间的均匀分布. 电梯运行一层的时间为10 s ,从11层电梯口到达会议室需要20 秒. 如果你不想走楼梯而执意等待电梯,则你能准时到达会场的概率是多少?解:设X ={在任意一层等待电梯的时间},则(0,10)X U ,由题意,若能准时到达会场,则在10等电梯的时间不能超过4.5 min , 所求概率为 4.50{ 4.5}0.45100P X -≤==-.28. 已知每天去图书馆的人数服从参数为(0)λλ>的泊松分布. 若去图书馆的读者中每个人借书的概率为(01)p p <<,且读者是否借书是相互独立的. 求每天借书的人数X 的概率分布.解:设Y ={每天去图书馆的人数},则()Y P λ ,{},0,1,2,!iP Y i e i i λλ-===当{}Y i =时,(,)X B i p ,{}{}(1)k k i k i i kP X k P Y i C p p +∞-====⋅-∑!(1)(1)!!!()!iikk i kk i k ii k i ki e C p p e p p i i k i k λλλλ+∞+∞----===⋅-=-⋅-∑∑!(1)(1)!!()!!()!ik k i k k i ki k i ki k i p ep p e p i k i k k i k λλλλλ-+∞+∞----===-=-⋅--∑∑(1)()(1)e!()!!!k ki kk kk i kp pi kp p p ep e ek i k k k λλλλλλλλ-+∞-----==-=⋅=-∑ 即X 的概率分布为(){}e ,0,1,2,!k pp P X k k k λλ-=== . 29. 设某型号的电子元件寿命(h )近似服从正态分布2(160,20)N ,随机选取4件,求4个电子元件的寿命都不小于180 h 的概率.解;设X ={某电子元件的寿命},则2(160,20)X N ,从而160(0,1)20X N - , 设Y ={4个电子元件中寿命不小于180 h 的件数},则(4,)Y B p , 其中160{180}{1}1(1)10.84130.158720X p P X P -=≥=≥=-Φ=-= 所以所求概率为444{4}0.15870.84130.0006P Y C ==⋅≈.。
高等数学第二章习题详细解答答案
1 ⎧ 2 1 ⎪ x sin , x ≠ 0 (2)∵ y = ⎨ ,而 lim y = lim x 2 sin = 0 = y x = 0 ,所以函数在 x = 0 处连续 x x →0 x →0 x ⎪ x=0 ⎩ 0,
1 x = 0 ,所以函数在 x = 0 点处可导. 而 lim x →0 x−0 x 2 sin
−2 sin cos (x + Δx) − cos x 3.解: ( cos x)′ = lim = lim Δx → 0 Δx →0 Δx Δx sin 2 x + Δx 2 = − sin x = - lim sin ⋅ lim Δx → 0 Δx → 0 Δx 2 2
4. 解:(1)不能,(1)与 f ( x ) 在 x0 的取值无关,当然也就与 f ( x ) 在 x0 是否连续无关, 故是 f ′( x0 ) 存在的必要条件而非充分条件. (2)可以,与导数的定义等价. (3)可以, 与导数的定义等价. 5. 解:(1) 5 x
9 −1 = 4 ,而 y′ = (x 2 )′ = 2 x ,令 2 x = 4 , 3 −1
得: x = 2 ,所以该抛物线上过点 (2, 4) 的切线平行于此割线. 10.解:(1)连续,但因为
f (0+ h )− f (0 ) = h
因而 lim
h→0
3
h −0 1 = 2/ 3 h h
f (0 + h) − f (0) 1 = lim 2 / 3 = +∞ ,即导数为无穷大。 → h 0 h h
∴ f +′(0) ≠ f −′(0) = −1 ,所以 f ′(0) 不存在.
13. 解 : 当 x > 0 时 , f ( x) = x 是 初 等 函 数 , 所 以 f ′( x) = 3 x ; 同 理 , 当 x < 0 时
第二章 课后习题解答
13.在生产者—消费者问题中,如果两个 .在生产者 消费者问题中 如果两个wait操 消费者问题中, 操 作即wait(mutex)和wait(empty)位置互换, 位置互换, 作即 和 位置互换 会产生什么后果? 会产生什么后果? 解答】如果两个wait操作即 操作即wait(mutex)和 【解答】如果两个 操作即 和 wait(empty)位置互换,则有可能产生死锁。 位置互换, 位置互换 则有可能产生死锁。
6
10.在创建一个进程时,所要做的工作有 .在创建一个进程时, 哪些? 哪些? 解答】 【解答】操作系统通过进程创建原语来创 建一个进程。 建一个进程。创建原语通过下述步骤创建 一个进程: 一个进程: (1)申请空白 )申请空白PCB。 。 (2)为新进程分配资源。 )为新进程分配资源。 (3)初始化进程控制块。 )初始化进程控制块。 (4)将新建进程插入就绪态队列。 )将新建进程插入就绪态队列。
8
第2章 进程管理 章
12.在生产者—消费者问题中,如果缺少了 .在生产者 消费者问题中 消费者问题中, signal(full)或signal(empty),对执行结果将 或 , 会有何影响? 会有何影响? 【解答】若缺少释放资源的原语操作,则会导致生产者或 解答】若缺少释放资源的原语操作,
消费者进程不能再继续工作。 消费者进程不能再继续工作。 如缺少了signal(full),则消费者进程可能得不到所需的临 如缺少了 , 界资源如缓冲区,不能取一件产品;同样,如果缺少signal 界资源如缓冲区,不能取一件产品;同样,如果缺少 empty),则生产者进程又可能得不到所需的资源, ),则生产者进程又可能得不到所需的资源 (empty),则生产者进程又可能得不到所需的资源,不 能存放一件产品。 能存放一件产品。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章习题解答2.01 试给出数据通信系统的基本模型并说明其主要组成构件的作用。
答:1)信源和信宿信源就是信息的发送端,是发出待传送信息的设备;信宿就是信息的接收端,是接收所传送信息的设备,在实际应用中,大部分信源和信宿设备都是计算机或其他数据终端设备(data terminal equipment,DTE)。
2)信道信道是通信双方以传输媒体为基础的传输信息的通道,它是建立在通信线路及其附属设备(如收发设备)上的。
该定义似乎与传输媒体一样,但实际上两者并不完全相同。
一条通信介质构成的线路上往往可包含多个信道。
信道本身也可以是模拟的或数字方式的,用以传输模拟信号的信道叫做模拟信道,用以传输数字信号的信道叫做数字信道。
3)信号转换设备其作用是将信源发出的信息转换成适合于在信道上传输的信号,对应不同的信源和信道,信号转换设备有不同的组成和变换功能。
发送端的信号转换设备可以是编码器或调制器,接收端的信号转换设备相对应的就是译码器或解调器。
2.02 试解释以下名词:数据,信号,模拟数据,模拟信号,数字数据,数字信号。
答:数据:通常是指预先约定的具有某种含义的数字、符号和字母的组合。
信号:信号是数据在传输过程中的电磁波的表示形式。
模拟数据:取值是连续的数据。
模拟信号:是指幅度随时间连续变化的信号。
数字数据:取值是离散的数据。
数字信号:时间上是不连续的、离散性的信号2.03 什么叫传信速率?什么叫传码速率?说明两者的不同与关系。
答:传信速率又称为比特率,记作R b,是指在数据通信系统中,每秒钟传输二进制码元的个数,单位是比特/秒(bit/s,或kbit/s或Mbit/s)。
传码速率又称为调制速率、波特率,记作N Bd,是指在数据通信系统中,每秒钟传输信号码元的个数,单位是波特(Baud)。
若是二电平传输,则在一个信号码元中包含一个二进制码元,即二者在数值上是相等的;若是多电平(M电平)传输,则二者在数值上有R b=N Bd×log2 M的关系。
2.04 设数据信号码元长度为833×10-6秒,若采用16电平传输,试求传码速率和传信速率。
答:由于T=833×10-6秒,所以传码速率N Bd=1/T≈1200波特由于传送的信号是16电平,所以,M=16。
则传信速率R b = N Bd log2 M =4800bit/s。
2.05 异步传输中,假设停止位为1位,无奇偶校验,数据位为8位,求传输效率为多少?答:传输效率=字符的数据位/字符的总长度则传输效率=8/(1+1+8)×100%=80%2.06 奈氏准则与香农公式在数据通信中的意义是什么?比特和波特有何区别?答:奈氏准则与香农公式的意义在于揭示了信道对数据传输率的限制,只是两者作用的范围不同。
奈氏准则给出了每赫带宽的理想低通信道的最高码元的传输速率是每秒2个码元。
香农公式则推导出了带宽受限且有高斯白噪声干扰的信道的极限信息传输速率C=Wlog2(1+S/N),其中W 为信道的带宽(以赫兹为单位),S为信道内所传信号的平均功率,N为信道内部的高斯噪声功率。
比特和波特是两个完全不同的概念,比特是信息量的单位,波特是码元传输的速率单位。
但信息的传输速率“比特/每秒”一般在数量上大于码元的传输速率“波特”,且有一定的关系,若使1个码元携带n比特的信息量,则M Baud的码元传输速率所对应的信息传输率为M×n bit/s。
2.07 假设带宽为3000Hz的模拟信道中只存在高斯白噪声,并且信噪比是20dB,则该信道能否可靠的传输速率为64kb/s的数据流?答:按Shannon定理:在信噪比为20db的信道上,信道最大容量为:C=Wlog2(1+S/N)已知信噪比电平为20db,则信噪功率比S/N = 100C = 3000⨯log2(1+100)=3000⨯6.66=19.98 kbit/s则该信道不能可靠的传输速率为64kb/s的数据流2.08常用的传输媒体有哪几种?各有何特点?答:有线传输媒体主要有双绞线、同轴电缆和光缆等,无线传输媒体主要包括无线电波、地面微波、卫星微波、红外线。
特点请参见教材23-27页。
2.09什么是曼彻斯特编码和差分曼彻斯特编码?其特点如何?答:在曼彻斯特编码中,每一位的中间有一跳变,位中间的跳变既作时钟信号,又作数据信号;从高到低跳变表示"1",从低到高跳变表示"0"。
差分曼彻斯特码是差分编码和曼彻斯特编码相结合的一种编码方式,首先按照差分编码的规则变换成差分码,再按照曼彻斯特编码规则进行转换即可。
2.10 数字通信系统具有哪些优点?它的主要缺点是什么?答:优点:抗干扰能力强,尤其是数字信号通过中继再生后可消除噪声积累; 数字信号易于加密处理,所以数字通信保密性强。
其缺点是比模拟信号占带宽。
2.11带宽为6MHz的电视信道,如果使用量化等级为4的数字信号传输,则其数据传输率是多少?假设信道是无噪声的。
答:由奈氏准则,其数据传输率=2Wlog2 M=2×6 M×log2 4=24Mbit/s2.12对于带宽为3kHz、信噪比为20dB的信道,当其用于发送二进制信号时,它的最大数据传输率是多少?答:按Shannon定理:在信噪比为20db的信道上,信道最大容量为:C=Wlog2(1+S/N)已知信噪比电平为20db,则信噪功率比S/N = 100C = 3000⨯log2(1+100)=3000⨯6.66=19.98 kbit/s而奈氏极限值是6 kbit/s,显然,瓶颈是奈氏极限,所以,最大传输速率是6 kbit/s2.13一个每毫秒钟采样一次的4kHz无噪声信道的最大数据传输率是多少?答:不管采样速率如何,一个无噪声信道都可以运载任意数量的信息,因为每个采样值都可以发送大量数据。
事实上,对于4KHz的信道,以高于每秒8000次的速率来采样是没有意义的。
因为本题中每毫秒采样一次,则采样频率为1000次/秒,若每个采样点的值用4bit编码,则速率是4kb/s, 若每个采样点的值用16bit编码,则速率可达16kb/s。
2.14 什么是多路复用?按照复用方式的不同,多路复用技术基本上分为几类?分别是什么?答:多路复用技术是指在一条传输信道中传输多路信号,以提高传输媒体利用率的技术。
分为:时分复用、频分复用、码分复用和波分复用四类。
2.15比较频分多路复用和时分多路复用的异同点。
答:略,见教材41-43页。
2.16 简述电路交换和分组交换的优缺点。
答:电路交换的优点:电路交换是一种实时交换,适用于实时要求高的话音通信(全程≤200 ms )。
缺点:(1)在通信前要通过呼叫,为主、被叫用户建立一条物理的、逻辑的连接。
(2)电路交换是预分配带宽,话路接通后,即使无信息传送也虚占电路,据统计,传送数字话音时电路利用率仅为36%。
(3)在传送信息时,没有任何差错控制措施,不利于传输可靠性要求高的突发性数据业务。
分组交换优点:(1)能够实现不同类型的数据终端设备(含有不同的传输速率、不同的代码、不同的通信控制规程等)之间的通信。
(2)分组多路通信功能。
(3)数据传输质量高、可靠性高。
(4)经济性好。
缺点:(1)由于采用存储—转发方式处理分组,所以分组在网内的平均时延可达几百毫秒(2)每个分组附加的分组标题,都会需要交换机分析处理,而增加开销,因此分组交换适宜于计算机通信的突发性或断续性业务的需求,而不适合于在实时性要求高、信息量大的环境中应用;(3)分组交换技术比较复杂,涉及到网络的流量控制、差错控制、代码、速率的变换方法和接口;网络的管理和控制的智能化等。
2.17 在循环冗余校验系统中,利用生成多项式G(x)= x 5 + x 4 +x+1判断接收到的报文010*********是否正确?并计算100110001的冗余校验码。
答:若收到的报文是1010110001101,则用其去除以生成多项式对应的码组110011,1 1 0 0 0 1 0 0110011⌡1 0 1 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 11 1 0 0 0 0 1 1 0 0 1 11 1 0 0 1 1 1 1 0 0 1 10 1 ≠0可知结果不是全零,所以肯定是有错的。
当要发送的数据是100110001,根据生成多项式,可知所对应的冗余校验码为5位,则在100110001后添加00000,用10011000100000/110011后,所得余数为110,则冗余校验码为00110。
2.18 一码长为n=15的汉明码,监督位应为多少?编码效率为多少?答:因为对于汉明码来说,应满足2 r -1≥n又因为n=15,所以监督位r 至少应为4。
编码效率100%k R n =⨯154100%15-=⨯=73.3%2.19 已知(7,4)汉明码接收码组为0100100,计算其校正子并确定错码在哪一位。
答:因为校正子S 1= c 6 ⊕ c 5 ⊕ c 4 ⊕c 2=0,S 2= c 6 ⊕ c 5 ⊕ c 3 ⊕c 1=1,S 3= c 6 ⊕ c 4 ⊕ c 3 ⊕c 0=0,因为三个校正因子不全为0,说明码字有错。
S=S 1S 2S 3=010,说明信息位c 1有错,将c 1上的0变为1,即可纠正错误。
2.20 常用的差错控制的方法有哪些?各有什么特点?答:(1)自动请求重发(ARQ ):接收端检测到接收信息有错时,通过自动要求发送端重发保存的副本以达到纠错的目的,这种方式需要在发送端把所要发送的数据序列编成能够检测错误的码,在后面的数据链路层中将会详细介绍这种差错控制的方法。
(2)前向纠错(FEC ):接收端检测到接收信息有错后,通过计算,确定差错的位置,并自动加以纠正,这种方式需要发送端将输入的数据序列变换成能够纠正错误的码。
(3)混合方式:接收端采取纠检错混合(在ATM 中应用),即对少量差错予以自动纠正,而超过其纠正能力的差错则通过重发的方法加以纠正。
(4)信息反馈(IRQ ):接收端把收到的数据序列全部由反向信道送回给发送端,发送端比较其发送的数据序列与送回的数据序列,从而发现是否有错误,并把认为错误的数据序列的原始数据再次发送,直到发送端没有发现错误为止,这种方式不需要发送端进行差错控制编码。
2.21 简述(7,4)汉明码中7和4的含义。
答:7是指一个码组的总长度是7位,4是指一个码组中信息位的长度是4位。
2.22 简述DTE 和DCE 的概念。
答:DTE:数据终端设备(DTE,Data Terminal Equipment)是泛指智能终端(各类计算机系统、服务器)或简单终端设备(如打印机),内含数据通信(或传输)控制单元,其又称为计算机系统。