重庆育才中学数学旋转几何综合检测题(Word版 含答案)

合集下载

重庆育才中学小升初招生数学真卷word附详细解答

重庆育才中学小升初招生数学真卷word附详细解答

重庆育才中学小升初招生数学真卷(测试时间:60分钟,总分100分)一、选择题(每小题3分,共15分)1、小兵想用三角板画一个角,下面的角他不能用一副三角板画出的角是( )的角. A 、15° B 、75° C 、105° D 、160°2、去年我校入学考试中,某个考室有40名同学参加考试,其中前10名同学的平均分比这个考室全部同学的平均分高9分,那么其余30名同学的平均分比这个考室全部同学的平均分低( )分.A 、3B 、4C 、5D 、63、2014年巴西世界杯足球赛的比赛用球,价格按标价的八折出售,可获利20%,那么按原价出售可获利( )%A 、50B 、51C 、52D 、604、小敏双休日想帮妈妈做下面的事情:洗衣机洗衣服要用20分钟,扫地要用5分钟,擦家具要用14分钟,晾衣服要用4分钟,做完这些事至少要花( )分钟. A 、28 B 、32 C 、24 D 、255、下面的平面图形能围成正方体的有( )个.A 、1B 、2C 、3D 、4 二、填空题(每小题3分,共15分)6、观察数列:12、16、112、120、130,根据找规律,第10个分数是( ).7、某班原有学生110人,后来男生走了16,女生走了10人,剩下的人中,女生人数是男生人数的45,则原来女生有( )人.8、如果2x −4y −3=7,那么x −2y=( ).②9、一个等腰三角形两内角的度数之比为1︰4,则这个等腰三角形顶角的度数为( ).10、商店从一家日杂公司买进了一批蚊香,然后希望获得的纯利润,每袋加价40%定价出售.但是按这种定价卖出这批蚊香的90%时,夏季即将过去.为了加快资金的周转,商店按照定价打七折的优惠价,把剩余的蚊香全部卖出.这样,实际得到的纯利润比希望的纯利润少了15%.按规定,不管按什么价格出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱起作为成本).商店买进这批蚊香时共用了( )元.三、计算题(每小题10分,共30分)l1、60×(35+56−14) 12、1−[16+(34−712)]13、4.8×[1−(56−23)×3]÷113−0.2四、解方程(共10分)14、2x−5=7 15、2−3x=4x−4五、几何题(10分)15、如图,正方形的一个顶点在圆心,另外两个顶点在圆上,正方形面积是8平方厘米,求正方形在圆外部分的面积.(π取3.14)六、解答题(每小题10分,共20分) 17、下面是某学校图书馆藏书情况统计图.(1)该图书室有故事书10000本,该图书室共有图书多少本? (2)科技书和文艺书各有多少本?(3)教科书比工具书多百分之几?(百分号前保留一位小数)18、2011年9月1日起,我国实行新的个人所得税征收标准:税前月收入不超过3500元的不纳税,税前月收入超过3500元的,超过部分按如表所示的标准征税. (1)王叔叔税前月收入是5600元,他每个月应缴个人所得税多少元? (2)张阿姨月税前月收入是4000元,她每个月应缴个人所得税多少元?故事书 文艺书科技书工具书 15%35%12%25%教科书13%重庆育才中学小升初招生数学真卷(测试时间:60分钟,总分100分)一、选择题(每小题3分,共15分)1、小兵想用三角板画一个角,下面的角他不能用一副三角板画出的角是( )的角.A、15°B、75°C、105°D、160°1.解:【三角板角度】一副三角板含有的角度有30°,45°,60°,90°,而15°=60°−45°,75°=45°+30°,105°=60°+45°,故选D.2、去年我校入学考试中,某个考室有40名同学参加考试,其中前10名同学的平均分比这个考室全部同学的平均分高9分,那么其余30名同学的平均分比这个考室全部同学的平均分低( )分.A、3B、4C、5D、62.解:【平均数】前10名同学可“匀出”总分为9×10=90分,其余30同学平均每人可分得90÷30=3分,即他们的平均分比这个考室全部同学的平均分低3分,故选A. 3、2014年巴西世界杯足球赛的比赛用球,价格按标价的八折出售,可获利20%,那么按原价出售可获利( )%A、50B、51C、52D、603.解:【商品利润】令成本价为1,则打折前售价为(1+20%)÷0.8=1.5,即按原价出售可获利50%,选A.4、小敏双休日想帮妈妈做下面的事情:洗衣机洗衣服要用20分钟,扫地要用5分钟,擦家具要用14分钟,晾衣服要用4分钟,做完这些事至少要花( )分钟.A、28B、32C、24D、254.解:【最优化策略】在洗衣机洗衣服时可以扫地、擦家具,故做完这些事至少要花20+4=24分钟,选C.5、下面的平面图形能围成正方体的有( )个.A 、1B 、2C 、3D 、4 5.解:【正方体的展开图】①可以,②可以,③可以,④可以,故选D . 二、填空题(每小题3分,共15分)6、观察数列:12、16、112、120、130,根据找规律,第10个分数是( ).6.解:【找规律】观察发现分母依次为1×2,2×3,3×4,…,故第10个分数是110×11=1110.7、某班原有学生110人,后来男生走了16,女生走了10人,剩下的人中,女生人数是男生人数的45,则原来女生有( )人.7.解:【分数的应用】假设男生不走,只有女生10人,这时女生是男生人数的45×(1−16)= 23,则男生有(110−10)×32+3=60人,则原来女生有110−60=50人.8、如果2x −4y −3=7,那么x −2y=( ).8.解:【整体思想】由2x −4y −3=7可得2x −4y=10,故x −2y=5.9、一个等腰三角形两内角的度数之比为1︰4,则这个等腰三角形顶角的度数为( ).9.解:【等腰三角形】当顶角与底角之比为1︰4,顶角=180°×14+4+1=20°;当底角与顶角之比为1︰4,顶角=180°×41+4+1=120°,故顶角的度数为20°或120°.10、商店从一家日杂公司买进了一批蚊香,然后希望获得的纯利润,每袋加价40%定价出售.但是按这种定价卖出这批蚊香的90%时,夏季即将过去.为了加快资金的周转,商店按照定价打七折的优惠价,把剩余的蚊香全部卖出.这样,实际得到的纯利润比希望的纯利润少了15%.按规定,不管按什么价格出售,卖完这批蚊香必须上缴营业税300元(税金与买蚊香用的钱起作为成本).商店买进这批蚊香时共用了( )元.②10.解:【商品利润】设商店买进这批蚊香时共用了x 元,希望的利润为(40%x −300)元,实际少卖的金额为x ×(1+40)×(1−90%)×(1−70%),少得的利润为(40%x −300)×15%,故x ×(1+40)×(1−90%)×(1−70%)=(40%x −300)×15%,解得x =2500元. 三、计算题(每小题10分,共30分)l1、60×(35+56−14) 12、1−[16+(34−712)]11.原式=60×35+60×56−60×14=36+50−15=7112.原式=1−[212+912−712]=1−13=2313、4.8×[1−(56−23)×3]÷113−0.213.原式=245×[1−(52−2)]÷43−15=245×12×34−15=95−15=85或1.6四、解方程(共10分)14、2x −5=7 15、2−3x =4x −4 14.解:2x =12 15.解:6=7x x =6 x =67五、几何题(10分)15、如图,正方形的一个顶点在圆心,另外两个顶点在圆上,正方形面积是8平方厘米,求正方形在圆外部分的面积.(π取3.14)15.解:【组合图形面积】令正方形边长为a ,则a 2=8平方厘米 8−14×π×a 2=8−2π=1.72(平方厘米)答:正方形在圆外部分的面积为1.72平方厘米. 六、解答题(每小题10分,共20分) 17、下面是某学校图书馆藏书情况统计图.(1)该图书室有故事书10000本,该图书室共有图书多少本? (2)科技书和文艺书各有多少本?(3)教科书比工具书多百分之几?(百分号前保留一位小数)17.解:【百分数的应用】 (1)10000÷25%=40000(本) 答:该图书室共有图书40000本.(2)40000×12%=4800(本),40000×35%=14000(本) 答:科技书和文艺书分别有4800本、14000本.(3)40000×(15%−13%)÷[40000×13%]×100%=800÷5200×100%≈15.4% 答:教科书比工具书多15.4%.18、2011年9月1日起,我国实行新的个人所得税征收标准:税前月收入不超过3500元的不纳税,税前月收入超过3500元的,超过部分按如表所示的标准征税. (1)王叔叔税前月收入是5600元,他每个月应缴个人所得税多少元? (2)张阿姨月税前月收入是4000元,她每个月应缴个人所得税多少元?(1)5600−3500=2100,1500×3%+(2100−1500)×10%=45+60=105(元)故事书 文艺书科技书工具书 15%35%12%25%教科书13%答:他每个月应缴个人所得税105元.(2)4000−3500=500,500×3%=15(元) 答:她每个月应缴个人所得税15元.。

2019-2020学年重庆市九龙坡区育才中学九年级(上)第一次月考数学试卷 (含解析)

2019-2020学年重庆市九龙坡区育才中学九年级(上)第一次月考数学试卷 (含解析)
系如图所示,当慢车到达甲地时,快车与乙地
的距离为______千米.
18.一、二班共有100名学生参加期末体育测试,两班的平均达标率为81%,其中一班的达标率为
87.5%,二班的达标率为75%,设一班有学生名,二班有学生名,根据题意,可以得到方程
x
y
组______.
三、计算题(本大题共1小题,共10.0分)
=54°,
=90°−
=90°−54°=36°,
=
=36°,
故选A.
4.答案:B
解析:
【分析】
先根据切线的性质得
的度数.
=90°,则利用互余得到
=25°,然后根据等腰三角形的性质求出
本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,
构造定理图,得出垂直关系.
【解答】
abc
p
=______,
(3)若,都是“相异数”,其中=
mn
+23,=150+
=16时,求的值.
≤≤
≤9且,都
xy
是正整数),若=
,当
+
k
26.
抛物线=2+

+2−−3与x轴交于A、B两点在B左侧),与y轴交于点C
图1
图2
图3
第1页,共25页
(1)如图1,当=0时,连接、,求△
ACBC
的面积;
(2)如图2,在(1)的条件下,若点为在第四象限的抛物线上的一点,且
+
=135°,
P
求点坐标;
P
(3)如图3,当−1<<3时,若是抛物线上、之间的一点(不与、重合),直线QA、

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题

重庆市育才中学教育集团2024-2025学年九年级上学期9月月考数学试题一、单选题1.下面这四个图形中,不是轴对称图形的是( )A .B .C .D . 2.要使分式12x x +-有意义,则x 的取值应满足( ) A .1x ≠-且2x ≠ B .0x ≠ C .1x ≠- D .2x ≠3.一元二次方程2312x x +=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法判断4.甲流病毒是一种传染性极强的急性呼吸道传染病,感染者的临床以发热、乏力、干咳为主要表现.在“甲流”初期,若有一人感染了“甲流”,若得不到有效控制,则每轮传染平均一个人传染x 人,经过两轮传染后共有256人感染了“甲流”.则关于x 的方程为( ) A .(1)256x x x ++=B .2256x x +=C .1(1)256x x x +++=D .2(1)(1)256x x +++=5.根据下列表格的对应值,估计方程2430x x +-=的一个解的范围是( )A .0.40.5x <<B .0.50.6x <<C .0.60.7x <<D .0.70.8x << 6.下列命题中,错误的命题是( )A .一组对边平行且相等的四边形是平行四边形;B .两条对角线互相垂直且相等的四边形是正方形;C .对角线相等的平行四边形是矩形;D .对角线互相垂直的平行四边形是菱形. 7.2024年3月24日,长安汽车重庆马拉松在美丽的海棠烟雨公园鸣枪起跑.甲、乙两人参加了40千米的比赛,甲每小时比乙多跑了2千米,最终甲比乙早1小时到达.设乙的速度为每小时x 千米,则可列方程为( )A .404012x x =+-B .404012x x =--C .404012x x =++D .404012x x =-+ 8.函数2(0)y mx nx m =+≠与y mx n =+的图象可能是( )A .B .C .D .9.已知四边形ABCD 和DEFG 都是正方形,点F 在线段AB 上,连接,AE BD BD 、交FG 于点H .若AEF α∠=,则BHF ∠=( )A .2αB .45α︒+C .22.5α︒+D .90α︒+10.将有序实数对(),m n 进行操作后可得到一个新的有序实数对(),m n m n ---,将得到的新的有序实数对按上述规则继续操作下去,每得到一个新的有序实数对称为一次操作.例如:()2,1经过一次操作后得到()1,3-,()2,1经过二次操作后得到()4,2,…,下列说法: ①若(),5m 经过三次操作后得到有序实数对(),5x ,则25x =-;②在平面直角坐标系中,将()m,2所对应的点标记为点P ,将()m ,2经过二次操作、五次操作所得的有序实数对分别标记为点M ,点N ,若直线MN 垂直于x 轴,则PMN V 的面积为56;③若3x y +=,2xy =-且x y <,则()22,x y 经过三次操作后的结果为()26--. 其中正确的个数是( )A .0B .1C .2D .3二、填空题11.计算:)201222-⎛⎫+-+-π= ⎪⎝⎭. 12.某商品原价200元,连续两次降价后售价为128元,则平均每次降价的百分数为. 13.已知一个多边形的每一个外角都等于72︒,则这个多边形的边数是.14.已知四边形ABCD 是菱形,若(0,0),(3,1)A C ,则直线BD 与x 轴的交点的坐标为. 15.如图所示,抛物线形拱桥的顶点距水面2m 时,测得拱桥内水面宽为12m .当水面升高1m 后,拱桥内水面的宽度为m .16.若二次函数()2142y a x x =+--的图象与x 轴有两个公共点,且关于y 的不等式组2423210y a y -⎧<⎪⎨⎪--≤⎩至少有两个整数解,则符合条件的所有整数a 的和为. 17.如图,在矩形ABCD中,4,AB BC ==P 是BC 边上一点,连接AP ,以A 为中心,将线段AP 绕点A 逆时针旋转60︒得到AQ ,连接CQ DQ 、,且BCQ DCQ ∠=∠,则CQ 的长度为.18.一个各数位上的数字均不为0的四位自然数abcd ,若百位数字与十位数字的乘积等于千位数字与个位数字组成的两位数,即b c ad ⋅=,则称这个数为“功能数”例如:四位数1342,∵3412⨯=,∴1342是“功能数”.若349d 是一个“功能数”,则这个数为;对于一个“功能数”P ,将P 的千位数字和十位数字交换位置,百位数字和个位数字交换位置得到的新数记为P ',若4P P '+除以13的余数为P 的十位数字的2倍,则满足条件的P 的值为.三、解答题19.计算:(1)()()22x x y x y -++; (2)22111a a a a -⎛⎫+÷ ⎪+⎝⎭. 20.为了解学生的安全知识掌握情况,某校举办了安全知识竞赛.现从七、八年级的学生中各随机抽取20名学生的竞赛成绩(百分制)进行收集、整理、描述、分析.所有学生的成绩均高于60分(成绩得分用x 表示,共分成四组:A .6070x <≤;B .7080x <≤;C .8090x <≤;D .90100x <≤),下面给出了部分信息:七年级20名学生的竞赛成绩为:66,67,68,68,75,83,84,86,86,86,86,87,87,89,95,95,96,98,98,100.八年级20名学生的竞赛成绩在C 组的数据是:81,82,84,87,88,89.七、八年级所抽学生的竞赛成绩统计表根据以上信息,解答下列问题:(1)上述图表中a =______,b =______,m =______;(2)根据以上数据分析,你认为该校七、八年级中哪个年级学生的安全知识竞赛成绩较好?请说明理由(写出一条理由即可);(3)该校七年级有400名学生,八年级有500名学生参加了此次安全知识竞赛,估计该校七、八年级参加此次安全知识竞赛成绩优秀()90x >的学生人数是多少?21.在学习了矩形与菱形的相关知识后,小明同学进行了更深入的研究,他发现,过矩形的一条对角线的中点作这条对角线的垂线,与矩形两边相交的两点和这条对角线的两个端点构成的四边形是菱形,可利用证明三角形全等得到此结论.根据他的想法与思路,完成以下作图与填空:(1)如图,在矩形ABCD 中,点O 是对角线AC 的中点.用尺规过点O 作AC 的垂线,分别交AB ,CD 于点E ,F ,连接AF ,CE .(不写作法,保留作图痕迹) (2)已知:矩形ABCD ,点E ,F 分别在AB ,CD 上,EF 经过对角线AC 的中点O ,且EF AC ⊥.求证:四边形AECF 是菱形.证明:∵四边形ABCD 是矩形,∴AB CD ∥. ∴①,OCF OAE ∠=∠.∵点O 是AC 的中点, ∴②.∴CFO AEO ≅△△(AAS ). ∴③.又∵OA OC =,∴四边形AECF 是平行四边形.∵EF AC ⊥,∴四边形AECF 是菱形.进一步思考,如果四边形ABCD 是平行四边形呢?请你模仿题中表述,写出你猜想的结论:④.22.某水果店商家购进了一批哈密瓜和脆桃.商家用1600元购买哈密瓜,800元购买脆桃,每斤哈密瓜比每斤脆桃的进价贵6元,且购进脆桃的数量是哈密瓜的2倍.(1)求商家购买每斤哈密瓜和每斤脆桃的进价;(2)商家在销售过程中发现,当哈密瓜的售价为每斤14元,脆桃的售价为每斤5元时,平均每天可售出20斤哈密瓜,40斤脆桃.调查,哈密瓜的售价每降低0.5元平均每天可多售出5斤,且降价幅度不低于10%.商家在保证脆桃的售价和销量不变且不考虑其他因素的情况下,想使哈密瓜和胞桃平均每天的总获利为270元,则每斤哈密瓜的售价为多少元? 23.如图,在Rt ABC △中,90C ∠=︒,4AC =,3BC =,点D 是AC 的中点,动点P 以每秒1个单位长度的速度从点D 出发沿折线D A B →→方向运动,到达点B 时停止运动,设点P 的运动时间为x 秒,BCP V 的面积记为y .(1)请直接写出y 关于x 的函数表达式,并注明自变量x 的取值范围;(2)在给定的平面直角坐标系中画出这个函数的图象,并写出该函数的一条性质;(3)结合函数图象,若直线11y x b 2=+与该函数图象有且仅有两个交点,则b 的取值范围是______.24.如图,四边形ABCD 是休闲公园的人行步道.AC ,BD 是两条自行车道且相交于点O ,点B 是休闲公园入口.经测量,点A 在点D 的西偏南45︒方向,点C 在点D 的东偏南30︒方向,点C 在点A 的北偏东75︒方向,AD =(1)求自行车道AC 的长度(精确到个位数);(2)测得45AOB ∠=︒,小刚从A 点出发步行沿步道AB 去B 处取快餐,小刚步行的速度为60米每分钟,送餐员等待的时间不超过5分钟,请计算说明小刚能否在送餐员规定的时间内取1.414≈ 1.732≈2.449)25.如图,抛物线25y ax ax b =++经过点()1,5D --,且交x 轴于()6,0A -,B 两点(点A 在点B 的左侧),交y 轴于点C .(1)求抛物线的解析式.(2)如图1,过点D 作DM x ⊥轴,垂足为M ,点P 在直线AD 下方抛物线上运动,过点P 作PE AD ⊥,PF DM ⊥PF +的最大值,以及此时点P 的坐标.(3)将原抛物线沿射线CA G ,使得45CAG ∠=︒,请写出所有符合条件的点G 的横坐标,并写出其中一个的求解过程. 26.已知ABC V 为等边三角形,D 是边AB 上一点,连接CD ,点E 为CD 上一点,连接BE .(1)如图1,延长BE 交AC 于点F ,若45CBF ∠=︒,BF =CF 的长;(2)如图2,将BEC V 绕点C 顺时针旋转60︒到AGC V ,延长BC 至点H ,使得CH BD =,连接AH 交CG 于点N ,求证2CE DE GN =+;(3)如图3,4AB =,点H 是BC 上一点,且2BD CH =,连接DH ,点K 是AC 上一点,CK AD =,连接DK ,BK ,将△BKD 沿BK 翻折到BKQ V ,连接CQ ,当ADK △的周长最小时,直接写出CKQ V的面积.。

中考数学《旋转的综合》专项训练及答案

中考数学《旋转的综合》专项训练及答案

一、旋转真题与模拟题分类汇编(难题易错题)1.(1)发现:如图1,点A为线段BC外一动点,且BC=a,AB=b.填空:当点A位于时,线段AC的长取得最大值,且最大值为(用含a,b的式子表示) (2)应用:点A为线段BC外一动点,且BC=4,AB=1,如图2所示,分别以AB,AC为边,作等边三角形ABD和等边三角形ACE,连接CD,BE.①请找出图中与BE相等的线段,并说明理由;②直接写出线段BE长的最大值.(3)拓展:如图3,在平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(6,0),点P 为线段AB外一动点,且PA=2,PM=PB,∠BPM=90°,请直接写出线段AM长的最大值及此时点P的坐标.【答案】(1)CB的延长线上, a+b;(2)①CD=BE,理由见解析;②BE长的最大值为5;(3)满足条件的点P坐标(222)或(222),AM的最大值为2+4.【解析】【分析】(1)根据点A位于CB的延长线上时,线段AC的长取得最大值,即可得到结论;(2)①根据已知条件易证△CAD≌△EAB,根据全等三角形的性质即可得CD=BE;②由于线段BE长的最大值=线段CD的最大值,根据(1)中的结论即可得到结果;(3)连接BM,将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,得到△APN是等腰直角三角形,根据全等三角形的性质得到PN=PA=2,BN=AM,根据当N在线段BA的延长线时,线段BN取得最大值,即可得到最大值为2+4;如图2,过P作PE⊥x轴于E,根据等腰直角三角形的性质即可求得点P的坐标.如图3中,根据对称性可知当点P在第四象限时也满足条件,由此求得符合条件的点P另一个的坐标.【详解】(1)∵点A为线段BC外一动点,且BC=a,AB=b,∴当点A位于CB的延长线上时,线段AC的长取得最大值,且最大值为BC+AB=a+b,故答案为CB的延长线上,a+b;(2)①CD=BE,理由:∵△ABD与△ACE是等边三角形,∴AD=AB,AC=AE,∠BAD=∠CAE=60°,∴∠BAD+∠BAC=∠CAE+∠BAC,即∠CAD=∠EAB,在△CAD与△EAB中,AD ABCAD EAB AC AE=⎧⎪∠=∠⎨⎪=⎩,∴△CAD≌△EAB(SAS),∴CD=BE;②∵线段BE长的最大值=线段CD的最大值,由(1)知,当线段CD的长取得最大值时,点D在CB的延长线上,∴最大值为BD+BC=AB+BC=5;(3)如图1,∵将△APM绕着点P顺时针旋转90°得到△PBN,连接AN,则△APN是等腰直角三角形,∴PN=PA=2,BN=AM,∵A的坐标为(2,0),点B的坐标为(6,0),∴OA=2,OB=6,∴AB=4,∴线段AM长的最大值=线段BN长的最大值,∴当N在线段BA的延长线时,线段BN取得最大值,最大值=AB+AN,∵AN=2AP=22,∴最大值为22+4;如图2,过P作PE⊥x轴于E,∵△APN是等腰直角三角形,∴PE=AE2,∴OE=BO﹣AB﹣AE=6﹣42=22,∴P(2﹣2,2).如图3中,根据对称性可知当点P在第四象限时,P(2﹣2,﹣2)时,也满足条件.综上所述,满足条件的点P坐标(2﹣2,2)或(2﹣2,﹣2),AM的最大值为22+4.【点睛】本题综合考查了全等三角形的判定和性质,等腰直角三角形的性质,最大值问题,旋转的性质.正确的作出辅助线构造全等三角形是解题的关键.2.如图:在△ABC中,∠ACB=90°,AC=BC,∠PCQ=45°,把∠PCQ绕点C旋转,在整个旋转过程中,过点A作AD⊥CP,垂足为D,直线AD交CQ于E.(1)如图①,当∠PCQ在∠ACB内部时,求证:AD+BE=DE;(2)如图②,当CQ在∠ACB外部时,则线段AD、BE与DE的关系为_____;(3)在(1)的条件下,若CD=6,S△BCE=2S△ACD,求AE的长.【答案】(1)见解析(2)AD=BE+DE (3)8【解析】试题分析:(1)延长DA到F,使DF=DE,根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得证;(2)在AD上截取DF=DE,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE=CF,再求出∠ACF=∠BCE,然后利用“边角边”证明△ACF和△BCE全等,根据全等三角形的即可证明AF=BE,从而得到AD=BE+DE;(3)根据等腰直角三角形的性质求出CD=DF=DE,再根据等高的三角形的面积的比等于底边的比求出AF=2AD,然后求出AD的长,再根据AE=AD+DE代入数据进行计算即可得解.试题解析:(1)证明:如图①,延长DA到F,使DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ACD+∠ACF=∠DCF=45°.又∵∠ACB=90°,∠PCQ=45°,∴∠ACD+∠BCE=90°﹣45°=45°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD+BE=AD+AF=DF=DE,即AD+BE=DE;(2)解:如图②,在AD上截取DF=DE.∵CD⊥AE,∴CE=CF,∴∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=∠DCE+∠DCF=90°,∴∠BCE+∠BCF=∠ECF=90°.又∵∠ACB=90°,∴∠ACF+∠BCF=90°,∴∠ACF=∠BCE.在△ACF和△BCE中,∵CE CFACF BCEAC BC=⎧⎪∠=∠⎨⎪=⎩,∴△ACF≌△BCE(SAS),∴AF=BE,∴AD=AF+DF=BE+DE,即AD=BE+DE;故答案为:AD=BE+DE.(3)∵∠DCE=∠DCF=∠PCQ=45°,∴∠ECF=45°+45°=90°,∴△ECF是等腰直角三角形,∴CD=DF=DE=6.∵S△BCE=2S△ACD,∴AF=2AD,∴AD =112+×6=2,∴AE=AD+DE=2+6=8.点睛:本题考查了全等三角形的判定与性质,线段垂直平分线上的点到线段两端点的距离相等的性质,等腰直角三角形的性质,综合性较强,但难度不是很大,作辅助线构造出全等三角形是解题的关键.3.如图1,是边长分别为6和4的两个等边三角形纸片ABC和CD1E1叠放在一起.(1)操作:固定△ABC,将△CD1E1绕点C顺时针旋转得到△CDE,连接AD、BE,如图2.探究:在图2中,线段BE与AD之间有怎样的大小关系?并请说明理由;(2)操作:固定△ABC,若将△CD1E1绕点C顺时针旋转30°得到△CDE,连接AD、BE,CE 的延长线交AB于点F,在线段CF上沿着CF方向平移,(点F与点P重合即停止平移)平移后的△CDE设为△PQR,如图3.探究:在图3中,除三角形ABC和CDE外,还有哪个三角形是等腰三角形?写出你的结论(不必说明理由);(3)探究:如图3,在(2)的条件下,设CQ=x,用x代数式表示出GH的长.【答案】(1)BE=CD.理由见解析;(2)△CHQ是等腰三角形;(3)2-x.【解析】试题分析:(1)根据等边三角形的性质可得AB=BC,CD=CE,∠ACB=∠ECD=60°,然后求出∠ACD=∠BCE,再利用“边角边”证明△ACD和△BCE全等,根据全等三角形对应边相等证明即可;(2)求出∠ACF=30°,再根据三角形的一个外角等于与它不相邻的两个内角的和求出∠CHQ=30°,从而得到∠ACF=∠CHQ,判断出△CHQ是等腰三角形;(3)求出∠CGP=90°,然后利用∠ACF的余弦表示出CG,再根据等腰三角形的性质表示出CH,然后根据GH=CG-CH整理即可得解.试题解析:(1)BE=CD.理由如下:∵△ABC与△CDE是等边三角形,∴AC=BC,CE=CD,∠ACB=∠ECD=60°.∴∠ACB-∠ACE=∠ECD-∠ACE,即∠BCE=∠ACD.在△ACD和△BCE中,∴△ACD≌△BCE(SAS),∴BE=AD;(2)∵旋转角为30°,∴∠BCF=30°,∴∠ACF=60°-30°=30°,∴∠CHQ=∠RQP-∠ACF=60°-30°=30°,∴∠ACF=∠CHQ,∴△CHQ是等腰三角形;(3)∠CGP=180°-∠ACF-∠RPQ=180°-30°-60°=90°,∴CG=CP•cos30°=(x+4),∵△CHQ是等腰三角形,∴CH=2•CQcos30°=2x•=x,∴GH=CG-CH=(x+4)-x=2-x.考点:几何变换综合题.4.如图是两个可以自由转动的转盘,甲转盘被等分成3个扇形,乙转盘被等分成4个扇形,每一个扇形上都标有相应的数字.同时转动两个转盘,当转盘停止后,计算指针所指区域内的数字之和.如果指针恰好指在分割线上,那么重转一次,直到指针指向一个数字为止.(1)请你通过画树状图或列表的方法分析,并求指针所指区域内的数字和小于10的概率;(2)小亮和小颖小亮和小颖利用它们做游戏,游戏规则是:指针所指区域内的数字和小于10,小颖获胜;指针所指区域内的数字之和等于10,为平局;指针所指区域内的数字之和大于10,小亮获胜.你认为该游戏规则是否公平?请说明理由;若游戏规则不公平,请你设计出一种公平的游戏规则.【答案】(1)13;(2)不公平.【解析】试题分析:(1)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.(2)判断游戏的公平性,首先要计算出游戏双方赢的概率,概率相等则公平,否则不公平.试题解析:(1)共有12种等可能的结果,小于10的情况有4种,所以指针所指区域内的数字和小于10的概率为13.(2)不公平,因为小颖获胜的概率为;小亮获胜的概率为512.小亮获胜的可能性大,所以不公平.可以修改为若这两个数的和为奇数,则小亮赢;积为偶数,则小颖赢.考点:1.游戏公平性;2.列表法与树状图法.5.在△ABC中,AB=AC,将线段AC绕着点C逆时针旋转得到线段CD,旋转角为,且,连接AD、BD.(1)如图1,当∠BAC=100°,时,∠CBD 的大小为_________;(2)如图2,当∠BAC=100°,时,求∠CBD的大小;(3)已知∠BAC的大小为m(),若∠CBD 的大小与(2)中的结果相同,请直接写出的大小.【答案】(1)30°;(2)30°;(3)α=120°-m°,α=60°或α=240-m°.【解析】试题分析:(1)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,旋转角为α,α=60°时△ACD是等边三角形,且AC=AD=AB=CD,知道∠BAD的度数,进而求得∠CBD的大小.(2)由∠BAC=100°,AB=AC,可以确定∠ABC=∠ACB=40°,连结DF、BF.AF=FC=AC,∠FAC=∠AFC=60°,∠ACD=20°,由∠DCB=20°案.依次证明△DCB≌△FCB,△DAB≌△DAF.利用角度相等可以得到答案.(3)结合(1)(2)的解题过程可以发现规律,求得答案.试题解析:(1)30°;(2)30°;(2)如图作等边△AFC,连结DF、BF.∴AF=FC=AC,∠FAC=∠AFC=60°.∵∠BAC=100°,AB=AC,∴∠ABC=∠BCA=40°.∵∠ACD=20°,∴∠DCB=20°.∴∠DCB=∠FCB=20°.①∵AC=CD,AC=FC,∴DC=FC.②∵BC=BC,③∴由①②③,得△DCB≌△FCB,∴DB=BF,∠DBC=∠FBC.∵∠BAC=100°,∠FAC=60°,∴∠BAF=40°.∵∠ACD=20°,AC=CD,∴∠CAD=80°.∴∠DAF=20°.∴∠BAD=∠FAD=20°.④∵AB=AC,AC=AF,∴AB=AF.⑤∵AD=AD,⑥∴由④⑤⑥,得△DAB≌△DAF.∴FD=BD.∴FD=BD=FB.∴∠DBF=60°.∴∠CBD=30°.(3)α=120°-m°,α=60°或α=240-m°.考点:1.全等三角形的判定和性质;2.等边三角形的判定和性质.6.如图1,矩形ABCD中,E是AD的中点,以点E直角顶点的直角三角形EFG的两边EF,EG分别过点B,C,∠F=30°.(1)求证:BE=CE(2)将△EFG绕点E按顺时针方向旋转,当旋转到EF与AD重合时停止转动.若EF,EG分别与AB,BC相交于点M,N.(如图2)①求证:△BEM≌△CEN;②若AB=2,求△BMN面积的最大值;③当旋转停止时,点B恰好在FG上(如图3),求sin∠EBG的值.【答案】(1)详见解析;(2)①详见解析;②2;62【解析】【分析】(1)只要证明△BAE≌△CDE即可;(2)①利用(1)可知△EBC是等腰直角三角形,根据ASA即可证明;②构建二次函数,利用二次函数的性质即可解决问题;③如图3中,作EH⊥BG于H.设NG=m,则BG=2m,BN=EN=3m,EB=6m.利用面积法求出EH,根据三角函数的定义即可解决问题.【详解】(1)证明:如图1中,∵四边形ABCD是矩形,∴AB=DC,∠A=∠D=90°,∵E是AD中点,∴AE=DE,∴△BAE≌△CDE,∴BE=CE.(2)①解:如图2中,由(1)可知,△EBC是等腰直角三角形,∴∠EBC=∠ECB=45°,∵∠ABC=∠BCD=90°,∴∠EBM=∠ECN=45°,∵∠MEN=∠BEC=90°,∴∠BEM=∠CEN,∵EB=EC,∴△BEM≌△CEN;②∵△BEM≌△CEN,∴BM=CN,设BM=CN=x,则BN=4-x,∴S△BMN=12•x(4-x)=-12(x-2)2+2,∵-12<0,∴x=2时,△BMN的面积最大,最大值为2.③解:如图3中,作EH⊥BG于H.设NG=m,则BG=2m,3m,6m.∴EG=m+3m=(1+3)m , ∵S △BEG =12•EG•BN=12•BG•EH , ∴EH=3?(13)2m m m +=3+32m ,在Rt △EBH 中,sin ∠EBH=3+362246mEHEB m+==. 【点睛】本题考查四边形综合题、矩形的性质、等腰直角三角形的判定和性质、全等三角形的判定和性质、旋转变换、锐角三角函数等知识,解题的关键是准确寻找全等三角形解决问题,学会添加常用辅助线,学会利用参数解决问题,7.如图,在Rt △ABC 中,∠ACB =90°,∠A =30°,点O 为AB 中点,点P 为直线BC 上的动点(不与点B 、点C 重合),连接OC 、OP ,将线段OP 绕点P 顺时针旋转60°,得到线段PQ ,连接BQ .(1)如图1,当点P 在线段BC 上时,请直接写出线段BQ 与CP 的数量关系.(2)如图2,当点P 在CB 延长线上时,(1)中结论是否成立?若成立,请加以证明;若不成立,请说明理由;(3)如图3,当点P 在BC 延长线上时,若∠BPO =15°,BP =4,请求出BQ 的长.【答案】(1)BQ =CP ;(2)成立:PC =BQ ;(3)434-. 【解析】试题分析:(1)结论:BQ =CP .如图1中,作PH ∥AB 交CO 于H ,可得△PCH 是等边三角形,只要证明△POH ≌△QPB 即可;(2)成立:PC =BQ .作PH ∥AB 交CO 的延长线于H .证明方法类似(1);(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,表示出PC ,根据PC +CB =4,可得方程(62)24a a ++=,求出a 即可解决问题;试题解析:解:(1)结论:BQ =CP .理由:如图1中,作PH ∥AB 交CO 于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠OPB =∠OPQ +∠QPB =∠OCB +∠COP ,∵∠OPQ =∠OCP =60°,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(2)成立:PC =BQ .理由:作PH ∥AB 交CO 的延长线于H .在Rt △ABC 中,∵∠ACB =90°,∠A =30°,点O 为AB 中点,∴CO =AO =BO ,∠CBO =60°,∴△CBO 是等边三角形,∴∠CHP =∠COB =60°,∠CPH =∠CBO =60°,∴∠CHP =∠CPH =60°,∴△CPH 是等边三角形,∴PC =PH =CH ,∴OH =PB ,∵∠POH =60°+∠CPO ,∠QPO =60°+∠CPQ ,∴∠POH =∠QPB ,∵PO =PQ ,∴△POH ≌△QPB ,∴PH =QB ,∴PC =BQ .(3)如图3中,作CE ⊥OP 于E ,在PE 上取一点F ,使得FP =FC ,连接CF .∵∠OPC =15°,∠OCB =∠OCP +∠POC ,∴∠POC =45°,∴CE =EO ,设CE =CO =a ,则FC =FP =2a ,EF =3a ,在Rt △PCE 中,PC =22PE CE + =22(23)a a a ++ =(62)a +,∵PC +CB =4,∴(62)24a a ++=,解得a =4226-,∴PC =434-,由(2)可知BQ =PC ,∴BQ =434-.点睛:此题考查几何变换综合题、旋转变换、等边三角形的判定和性质全等三角形的判定和性质等知识,解题的关键是灵活运用所学知识解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.8.如图1,O 为直线AB 上一点,过点O 作射线OC ,AOC 30∠=,将一直角三角板()M 30∠=的直角顶点放在点O 处,一边ON 在射线OA 上,另一边OM 与OC 都在直线AB 的上方.()1将图1中的三角板绕点O 以每秒5的速度沿逆时针方向旋转一周.如图2,经过t 秒后,ON 落在OC 边上,则t =______秒(直接写结果).()2如图2,三角板继续绕点O 以每秒5的速度沿逆时针方向旋转到起点OA 上.同时射线OC 也绕O 点以每秒10的速度沿逆时针方向旋转一周,①当OC 转动9秒时,求MOC ∠的度数.②运动多少秒时,MOC 35∠=?请说明理由.【答案】(1)6;(2)①45;②11秒或25秒,理由见解析. 【解析】【分析】(1)因为∠AOC=30°,所以ON 落在OC 边上时,三角板旋转了30°,即可求出旋转时间;(2)在整个旋转过程中,可以看做这样一个追及问题更容易理解,即:ON 绕点O 以每秒5°的速度沿逆时针方向旋转,同时射线OC 也绕O 点以每秒10°的速度沿逆时针方向旋转; ①9秒时,∠NOC=45°,而OC 旋转了90°,所以∠MOC 的度数就是45°; ②∠MOC=35°时,应分OC 与OM 重合前35°与重合后35°两种情况考虑,分别进行求解即可.【详解】()1AOC 30∠=,而三角板每秒旋转5,∴当ON 落在OC 边上时,有5t 30=,得t 6=,故答案为6;()2①当OC 转动9秒时,COA 30109120∠=+⨯=, 而MOA 309059165∠=++⨯=,又MOC MOA COA ∠∠∠=-,即:MOC 16512045∠=-=,答:当OC 转动9秒时,MOC ∠的度数为45;②设OC 运动起始位置为射线OP(如图1),运动t 秒时,MOC 35∠=,则MOP 905t ∠=+,COP 10t ∠=,当MOC 35∠=时,有()905t 10t 35+-=或()10t 905t 35-+=,得t 11=或t 25=,因为三角板与射线OC 都只旋转一周,所以不考虑再次追及的情况,故当运动11秒或25秒时,MOC 35∠=.【点睛】本题考查的是用方程的思想解决角的旋转的问题,找准等量关系,正确列出一元一次方程是解题的关键.。

2021年重庆市九龙坡区育才中学教育集团中考数学三诊试题(含答案解析)

2021年重庆市九龙坡区育才中学教育集团中考数学三诊试题(含答案解析)

2021年重庆市九龙坡区育才中学教育集团中考数学三诊试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.下列各数中,最大的数是()A.﹣2 B.0 C.3 D.6【答案】D【分析】根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:∵﹣2<0<3<6,∴其中最大的数是6.故选:D.【点睛】本题主要考查了有理数大小比较,熟记有理数大小比较方法是解答本题的关键.2.在下列“禁毒”“和平”“志愿者”“节水”这四个标志中,属于轴对称图形的是( )A.B.C.D.【答案】B【分析】轴对称图形是指将图形沿着某条直线对折,直线两边的图形能够完全重叠,根据定义判断即可.【详解】A、不是轴对称图形,故选项错误;B、是轴对称图形,故选项正确;C、不是轴对称图形,故选项错误;D、不是轴对称图形,故选项错误.【点睛】本题考查轴对称图形的识别,熟记轴对称图形的定义是关键.3.计算(3x3y)2的结果是()A.9x3y2B.9x6y2C.6x3y2D.6x6y2【答案】B【分析】根据积的乘方运算法则进行计算求解.【详解】解:原式=9x6y2,故选:B.【点睛】此题主要考查积的乘方运算,解题的关键是熟知其运算法则.4.如图,点A、B、C在⊙O上,∠ACB=43°,则∠AOB的度数是()A.83°B.84°C.86°D.87°【答案】C【分析】圆周角定理:在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半,根据圆周角定理即可得出答案.【详解】解:∵∠ACB=43°,∴∠AOB=2∠ACB=86°,故选:C.【点睛】本题考查的是圆周角定理,掌握圆周角定理求解圆心角或圆周角是解题的关键.5.下列图形都是由同样大小的实心圆点按一定规律组成的,其中第①个图形一共有5个实心圆点,第②个图形一共有8个实心圆点,第③个图形一共有11个实心圆点,…,按此规律排列下去,第⑦个图形中实心圆点的个数为()A.19 B.20 C.22 D.23【答案】D【分析】观察并比较分析图形的相同点与不同点,得出每两个相邻的图形中后一个图形总是在前一个图形的底部增加1个实心圆点,顶部的两侧各增加1个实心圆点,进而归纳任意两相邻的图形中后一个图形实心圆点数比前一个实心圆点数多3个,从而得出图形实心圆点数的一般变化规律. 【详解】解:第①个图形的实心圆点数是y 1=5个. 第②个图形的实心圆点数是y 2=y 1+3=5+3=8. 第③个图形的实心圆点数是y 3=y 2+3=5+3+3=5+3×2. 第④个图形的实心圆点数是y 4=y 3+3=5+3+3+3=5+3×3. ...以此类推,第n 个图形的实心圆点数是y n =5+3(n ﹣1)个. ∴当n =7时,第⑦个图形的实心圆点数是y 7=5+3×6=23个. 故选:D . 【点睛】本题考查探索与表达—图形变化类.关键是通过归纳与总结,得到其中的规律. 6.已知a ﹣b =4,则代数式44a b-+2的值为( ) A .﹣1 B .0 C .3 D .5【答案】C 【分析】将a ﹣b =4整体代入所求的代数式进行求值即可. 【详解】 解:∵a ﹣b =4, ∴44a b -+2=4a b-+2=44+2=3.故选:C . 【点睛】本题考查代数式的求解.对代数式进行变形,并运用整体代入的思想求解是本题的关键. 7.如图,△A 'B 'C '是△ABC 以点O 为位似中心经过位似变换得到的,若OB =3OB ',则△A 'B 'C '的面积与△ABC 的面积之比是( )A.1:3 B.2:3 C.1:6 D.1:9【答案】D【分析】根据位似图形的概念得到A′B′∥AB,△A'B'C'∽△ABC,根据题意求出13A BAB''=,根据相似三角形的性质解答即可.【详解】解:∵△A'B'C'与△ABC是位似图形,∴A′B′∥AB,△A'B'C'∽△ABC,∴△OA′B′∽△OAB,∴13A B OBAB OB'''==,∴△A'B'C'的面积与△ABC的面积之比=(13)2=1:9,故选:D.【点睛】本题考查的是位似变换的概念、相似三角形的性质,掌握相似三角形的面积比等于相似比的平方是解题的关键.8.今年“五一”节,小雨骑自行车从家出发去图书馆学习,她从家到图书馆过程中,中途休息了一段时间,设她从家出发后所用的时间为t(分钟),所走的路程为S(米),S 与t之间的函数关系如图所示,下列说法错误的是()A.小雨中途休息用了4分钟B.小雨休息前骑车的速度为每分钟400米C.小雨在上述过程中所走的路程为6600米D .小雨休息前骑车的平均速度大于休息后骑车的平均速度 【答案】C 【分析】根据函数图象可知,小雨6分钟所走的路程为2400米,6~10分钟休息,10~16分钟所走的路程为(4200﹣2400)米,所走的总路程为4200米,根据路程、速度、时间之间的关系进行解答即可. 【详解】解:A 、小雨中途休息用了10﹣6=4(分钟),正确,不符合题意; B 、小雨休息前骑车的速度为每分钟24006=400(米),正确,不符合题意; C 、小雨在上述过程中所走的路程为4200米,错误,符合题意; D 、小雨休息后骑车的速度为每分钟420024001610--=300(米)<400米,∴小雨休息前骑车的平均速度大于休息后骑车的平均速度,正确,不符合题意; 故选:C . 【点睛】本题考查了函数图象,读懂函数图象,从图象中获取必要的信息是解决本题的关键. 9.《九章算术》是中国古代的数学专著,下面这道题是《九章算术》中第七章的一道题:“今有共买物,人出八,盈三;人出七,不足四,问人数、物价各几何?”译文:“几个人一起去购买某物品,如果每人出8钱,则多了3钱;如果每人出7钱,则少了4钱.问有多少人,物品的价格是多少?”设有x 人,物品价格为y 钱,可列方程组为( )A .8374x y x y -=⎧⎨+=⎩B .8374x yx y +=⎧⎨-=⎩C .8374y x y x -=⎧⎨-=⎩D .8374x y x y -=⎧⎨-=⎩【答案】A 【分析】根据题意可以找出题目中的等量关系,列出相应的方程组,从而可以解答本题. 【详解】 解:由题意可得,8374x yx y -=⎧⎨+=⎩, 故选:A . 【点睛】本题考查由实际问题抽象出二元一次方程组,解答本题的关键是明确题意,列出相应的10.如图,为了测量某建筑物BC 的高度,某数学兴趣小组采用了如下的方法:先从与建筑物底端B 在同一水平线上的A 点出发,先沿斜坡AD 行走390米至坡顶D 处,再从D 处沿水平方向继续前行一定距离后至点E 处,在E 点处测得该建筑物顶端C 的仰角为68°,建筑物底端B 的俯角为57°,其中A 、B 、C 、D 、E 在同一平面内,斜坡AD 的坡度i =1:2.4,根据数学兴趣小组的测量数据,计算得出建筑物BC 的高度约为( )(计算结果精确到0.1米,参考数据:sin68°≈0.93,tan68°≈2.48,sin57°≈0.84,tan57°≈1.54)A .241.6米B .391.6米C .422.9米D .572.9米【答案】B 【分析】如图作DH ⊥AB 于H ,延长DE 交BC 于F .则四边形DHBF 是矩形,在Rt △ADH 中求出DH ,再在Rt △EFB 中求出EF ,在Rt △EFC 中求出CF 即可解决问题; 【详解】解:如图作DH ⊥AB 于H ,延长DE 交BC 于F .在Rt △ADH 中,AD =390米,DH :AH =1:2.4, ∴DH =150(米), ∵四边形DHBF 是矩形, ∴BF =DH =150米, 在Rt △EFB 中,tan57°=BFEF, ∴EF =tan 57BF, 在Rt △EFC 中,FC =EF •tan68°, ∴CF ≈1501.54×2.48≈241.6(米), ∴BC =BF +CF =391.6米.【点睛】本题考查了解直角三角形、坡度、勾股定理等知识,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.11.若实数a使关于x的不等式组3132122x xa xx+⎧+≤⎪⎪⎨⎪+≤+⎪⎩至少有4个整数解,且使关于y的分式方程32111ayy y--=--有整数解,则符合条件的所有整数a的积为()A.5 B.6 C.10 D.25【答案】B【分析】首先解不等式组,再由分式方程有整数解,从而得出a的取值,再求积,即可得解.【详解】解:3132122x xa xx+⎧+≤⎪⎪⎨⎪+≤+⎪⎩①②,解不等式①,得:x≥﹣3,解不等式②,得:x≤a﹣2,∵不等式组至少有4个整数解,∴a﹣2≥0,解得:a≥2,由32111ayy y--=--去分母,得:3﹣ay﹣(1﹣y)=﹣2,解得:y=41a-,由y为整数,且y≠1,a为整数且a≥2,得:a=2或3,∴符合条件的所有整数a的积为2×3=6.故选:B.【点睛】本题主要考查了解分式方程及利用不等式组的解求待定字母的取值,熟练掌握不等式组的解法及检验分式方程的解是解此题的关键.12.如图,▱OABC 的边OC 在x 轴上,若过点A 的反比例函数ky x=(k ≠0,x <0)的图象还经过BC 边上的中点D ,且S △ABD +S △OCD =21,则k =( )A .﹣12B .﹣24C .﹣28D .﹣32【答案】C 【分析】过点A 、D 分别作OC 的垂线,由反比例函数系数k 的几何意义,可以得到S △AOM =S △DON =|k |,进而得到S 四边形DNMA =S △AOD ,根据ABCD 是平行四边形,S △ABD +S △OCD =21,可得S △AOD =21=S 四边形DNMA ,由D 是BC 的中点,可得出AM =2DN ,设出点D 、A 的坐标,列方程求解即可. 【详解】解:过点A 、D 分别作AM ⊥OC ,DN ⊥OC ,垂足为M 、N , ∵D 是BC 的中点, ∴DN =12AM , ∵四边形ABCD 是平行四边形,S △ABD +S △OCD =21, ∴S △AOD =21,∵点A 、D 在反比例函数ky x=的图象上, ∴S △AOM =S △DON =12|k |, ∵S 四边形DNMA +S △AOM =S △DON +S △AOD , ∴S 四边形DNMA =S △AOD =21, 设点D (k a ,a ),则A (2ka,2a ),即AM =2a ,DN =a ,OM =﹣2k a ,ON =﹣ka, ∴12(a +2a )(2k a ﹣ka)=21, 解得k =﹣28, 故选:C .【点睛】此题主要考查反比例函数与几何综合,解题的关键是熟知反比例函数与平行四边形的性质.二、填空题13.截止2021年5月24日,世界卫生组织公布的全球累计新冠确诊病例约167000000例,请把数167000000用科学记数法表示为_____.【答案】1.67×108【分析】用科学记数法表示较大的数时,一般形式为a×10n,其中1≤|a|<10,n为正整数,确定a和n即可.【详解】解:167000000=1.67×108.故答案是:1.67×108.【点睛】本题考查科学记数法,熟记科学记数法的一般形式,正确确定a和n值是解答的关键.14.计算:(π﹣1)0﹣sin30°=_____.【答案】12【分析】直接利用零指数幂的性质以及特殊角的三角函数值分别化简得出答案.【详解】解:原式=1﹣12=12.故答案为:12.【点睛】此题主要考查实数的混合运算,解题的关键是熟知特殊角的三角函数值.15.现将背面完全相同,正面分别标有数﹣1,1,2,3的四张卡片洗匀后,背面朝上,从中任取一张,将该卡片上的数标记为m,再从剩下的三张卡片中任取一张,将该卡片上的数记为n,则P(m,n)在第四象限的概率为_____.【答案】1 4【分析】画树状图,共有12种等可能的结果,P(m,n)在第四象限的结果有3种,再由概率公式求解即可.【详解】解:画树状图如图:共有12种等可能的结果,P(m,n)在第四象限的结果有3种,∴P(m,n)在第四象限的概率为31 124,故答案为:14.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.16.如图,正方形ABCD的边长为4,分别以B、D为圆心,正方形的边长为半径画圆,则图中的阴影部分面积为_____.(结果保留π)【答案】8π﹣16【分析】由图可知,阴影部分的面积是两个圆心角为90°,且半径为4的扇形的面积与正方形的面积的差,可据此求出阴影部分的面积.【详解】解:由题意可得出:S 阴影=2S 扇形﹣S 正方形=2×2904360π⨯﹣42=8π﹣16,故答案为:8π﹣16. 【点睛】本题考查了扇形的面积,正方形的性质,得出S 阴影=2S 扇形-S 正方形是解题关键. 17.在△ABC 中,点D 为AB 边上一点,连接CD ,把△BCD 沿着CD 翻折,得到△B 'CD ,AC 与B 'D 交于点E ,若∠A =∠ACD ,AE =CE ,S △ACD =S △B 'CE ,BC =212,则点A 到BC 的距离为_____.【分析】过点C 作CM ⊥AB ,结合等腰三角形的性质和全等三角形的判定和性质以及勾股定理求得CM 的长,然后利用三角形面积公式列方程求解. 【详解】解:过点C 作CM ⊥AB ,∵∠A =∠ACD , ∴AD =CD , ∵AE =CE , ∴DE ⊥AC , ∴S △ACD =2S △DCE , 又∵S △ACD =S △B 'CE ,∴2S△DCE=S△B'CE,∴12 DEB E'=,设DE=x,则B′E=2x,由折叠性质可得:DB′=DB=3x,BC=B′C,∠B=∠B′,又∵CM⊥AB,DE⊥AC,∴∠CMB=∠CEB′,∴△CMB≌△CEB′(AAS),∴BM=B′E=2x,CM=CE,又∵CD=CD,∴Rt△CMD≌Rt△CED(HL),∴DM=DE=x,∵S△ABC=12AB•CM=12(AD+BD)•CM=12CM·(AD+3x),S△ABC=S△ADC+S△BDC=2S△CDE+S△BDC=2×12DE•CE+12BD•CM=52x·CM,∴12CM·(AD+3x)=52x·CM,解得:AD=2x,∴AD=CD=2x,在Rt△CMD中,CM,在Rt△BCM中,(2x)2+)2=(212)2,解得:x=,∴CM AB设△ABC中BC边上的高为h,∴S△ABC=12BC•h=12AB•CM,∴1211 222h⨯=解得:h,即点A到BC,.【点睛】本题考查了等腰三角形的判定与性质、全等三角形的判定与性质、折叠性质、三角形的面积公式、勾股定理、解一元二次方程、解一元一次方程等知识,熟练掌握相关知识的联系与运用,会运用等面积法求解是解答的关键.18.端午节吃粽子,是中华民族的传统习俗,随着端午节临近,某商家推出了A、B、C三种粽子礼盒,5月份该商家A、B、C三种粽子礼盒的营业额之比为2:5:3,6月份,由于商家加大了促销宣传力度,预计三种粽子礼盒的营业额都会增加,其中A种粽子礼盒增加的营业额占总增加的营业额的716,此时,A种粽子礼盒的营业额与6月份三种粽子总营业额之比为11:36,为使6月份B、C两种粽子礼盒的营业额之比为3:2,则6月份B种粽子礼盒增加的营业额与6月份总营业额之比为_____.【答案】5:36【分析】首先,题中共4处比值,采用列出了4个未知数,将题目中的比值进行假设:①5月份该商家A、B、C三种粽子礼盒的营业额分别为2a,5a,3a,②6月份A种粽子礼盒增加的营业额为7b,总增加的营业额为16b,③6月份A种粽子礼盒的营业额为11c,三种粽子总营业额为36c,④6月份B、C两种粽子礼盒的营业额分别为3x,2x;其次,找出关键词列出方程:营业额,增加的营业额,总营业额.因为是比值,4个未知数只需要列出三个方程就可以解决本题的问题.【详解】解:设5月份该商家A、B、C三种粽子礼盒的营业额分别为2a,5a,3a,设6月份A种粽子礼盒增加的营业额为7b,总增加的营业额为16b,设6月份A种粽子礼盒的营业额为11c,三种粽子总营业额为36c,设6月份B、C两种粽子礼盒的营业额分别为3x,2x,则6月份B种粽子礼盒增加的营业额:3x﹣5a,6月份总营业额:36c,6月份三种粽子总营业额式子:11c+3x+2x=36c,解得x=5c,③6月份总增加营业额式子:7b+(3x﹣5a)+(2x﹣3a)=16b,①(A、B、C三种粽子各自增加营业额总和=增加营业额);36c﹣(2a+5a+3a)=16b;②(6月份营业额减去5月份营业额=增加营业额)联立①②③,整理得,58918585x a b c a b x c -=⎧⎪-=⎨⎪=⎩, 解得a =2c ,x =5c , ∴3x ﹣5a =15c ﹣10c =5c ,所以6月份B 种粽子礼盒增加的营业额:3x ﹣5a ,与6月份总营业额:36c ,之比: (3x ﹣5a ):36c =5c :36c =5:36,答:6月份B 种粽子礼盒增加的营业额与6月份总营业额之比为 5:36. 故答案为: 5:36 【点睛】本题考查了方程组在实践中的应用;重点是假设未知数,难点对未知数的处理.本题共列出4个未知数,在处理上只要列出三个方程.三、解答题19.(1)(x ﹣y )2+x (2y ﹣x ); (2)2269(1)39a a a a a++-÷--. 【答案】(1)y 2;(2)33a -+ 【分析】(1)根据完全平方公式、单项式乘多项式运算法则可以解答本题; (2)先对式子进行因式分解,再根据分式混合运算法则可以解答本题. 【详解】解:(1)(x ﹣y )2+x (2y ﹣x ) =x 2﹣2xy +y 2+2xy ﹣x 2 =y 2;(2)2269(1)39a a a a a ++-÷-- =()()()2()333333a a a a a a a -÷++---- =3333a a a --+⋅ =﹣33a +. 【点睛】本题考查单项式乘多项式,完全平方公式,分式的混合运算.熟练掌握各项的运算法则是本题解题的关键.20.在△ABC中,点D、E分别为边AB、AC上的点.(1)尺规作图:过点E作AB的平行线交BC于点F(要求,不写作法,保留作图痕迹);(2)在(1)的前提下,若点D、E分别为AB、AC的中点,探究∠ADE与∠EFC的数量关系,并证明.【答案】(1)见解析;(2)∠ADE=∠EFC,证明见解析【分析】(1)如图在DE的下方作∠DEF=∠ADE,EF交BC于点F,射线EF即为所求.(2)利用三角形中位线定理、平行线的性质证明即可.【详解】(1)解:如图,射线EF即为所求.(2)结论:∠ADE=∠EFC.证明:∵点D、E分别为AB、AC的中点,∴DE∥CB,∴∠ADE=∠B,∵AB∥EF,∴∠EFC=∠B,∴∠ADE=∠EFC.【点睛】本题考查尺规作图-作与已知角相等的角、平行线的判定与性质、三角形的的中位线性质,熟练掌握平行线的判定与性质以及三角形的中位线的性质是解答的关键.21.为了宣传垃圾分类从我做起活动,我校举行了垃圾分类相关知识竞赛.为了了解初一、初二两个年级学生的掌握情况.现从两个年级各随机抽取20名学生的竞赛成绩(百分制)进行统计、分析,过程如下:收集数据初一的20名同学的竞赛成绩统计(单位:分)65 68 70 76 77 78 87 88 88 8889 89 89 89 93 95 97 97 98 99初二的20名同学的竞赛成绩统计(单位:分)69 72 72 73 74 74 74 74 76 7678 89 96 97 97 98 98 99 99 99整理数据(成绩得分用x表示)分析数据(平均数、中位数、众数、方差)请根据以上信息,回答下列问题:(1)填空:a=,b=,c=;(2)根据以上数据,你认为(填“初一”或“初二”)的同学的垃圾分类相关知识掌握更好一些,你的理由是;(一条理由即可)(3)该校初一有1500名学生和初二有2000名学生参加了此活动,请估计两个年级成绩达到90分及以上的学生共有多少人?【答案】(1)8、77、89;(2)初一,初一年级的平均数大于初二年级,其平均水平高(答案不唯一);(3)1250人【分析】(1)由初一的20名同学的竞赛成绩统计可得初一成绩在80≤x<90的人数a,再根据众数的概念一组数据中出现次数最多的数据叫做众数可得c的值,继而由初二年级第10、11个数据可得其中位数b的值;(2)从平均数、中位数或方差的意义求解即可;(3)分别用初一、初二年级的总人数乘以各自样本中90分及以上人数所占比例,再求和即可.【详解】解:(1)由初一的20名同学的竞赛成绩统计知a=8,众数c=89,由初二的20名同学的竞赛成绩统计知其中位数b=76782=77,故答案为:8、77、89;(2)根据以上数据,你认为初一的同学的垃圾分类相关知识掌握更好一些,理由是初一年级的平均数大于初二年级,其平均水平高(答案不唯一).故答案为:初一,初一年级的平均数大于初二年级,其平均水平高.(3)估计两个年级成绩达到90分及以上的学生共有1500×620+2000×820=1250(人).【点睛】本题考查了众数、中位数以及平均数、方差,掌握众数、中位数以及平均数、方差的定义和意义是解题的关键.22.随着互联网时代的到来,笔记本电脑成为了人们生活中不可或缺的生活用品.某商场推出了“轻便版办公笔记本”和“畅享版炫酷笔记本”两种品牌的笔记本电脑,两种笔记本的售价分别为3000元和6600元,在今年上半年共售出1200台,总销售额为6120000元.(1)该商场今年上半年销售“畅享版炫酷笔记本”多少台?(2)由于“畅享版炫酷笔记本”深受消费者的喜爱,下半年商场决定将“畅享版炫酷笔记本”的售价在上半年的基础上降低了100元,“轻便版办公笔记本”的价格在上半年的基础上增加了a%,预估“畅享版炫酷笔记本”的销量比上半年增加37a%,“轻便版办公笔记本”的销量比上半年减少2a%,预计销售总额比上半年少70000元,求a的值.【答案】(1)700台;(2)a=15【分析】(1)设该商场今年上半年销售“畅享版炫酷笔记本”x台,则销售“轻便版办公笔记本”(1200﹣x)台,利用总价=单价×数量,即可得出关于x的一元一次方程,解之即可得出结论;(2)利用总价=单价×数量,结合预计下半年销售总额比上半年少70000元,即可得出关于a的一元二次方程,解之取其正值即可得出结论.【详解】解:(1)设该商场今年上半年销售“畅享版炫酷笔记本”x台,则销售“轻便版办公笔记本”(1200﹣x)台,依题意得:3000(1200﹣x)+6600x=6120000,解得:x=700.答:该商场今年上半年销售“畅享版炫酷笔记本”700台.(2)依题意得:3000(1+a%)×(1200﹣700)(1﹣2a%)+(6600﹣100)×700(1+3 7a%)=6120000﹣70000,整理得:300a2﹣4500a=0,解得:a1=15,a2=0(不合题意,舍去).答:a的值为15.【点睛】本题考查了一元一次方程的应用以及一元二次方程的应用,解题的关键是:(1)找准等量关系,正确列出一元一次方程;(2)找准等量关系,正确列出一元二次方程.23.某数学兴趣小组根据学习函数的经验,对函数y=2x+|2x|﹣3的图象与性质进行了探究,请补充完整以下探索过程:(1)计算:a=,b=;并在坐标系中画出函数图象;(2)根据函数图象写出该函数的一条性质;(3)结合所画函数的图象,直接写出方程2x+|2x|﹣3=x+1的解(结果保留一位小数,误差不超过0.2).【答案】(1)73,113,图象见解析;(2)①当x<0时,y随x的增大而减小;②当0<x<1时,y随x的增大而减小;③当1<x时,y随x的增大而增大;④当x>0时,y 的最小值为1,无最大值.(任选一个即可);(3)﹣1.7,0.6,3.4.【分析】(1)把x=﹣3和x=3代入函数求解出a,b的值,然后利用描点法画图象即可;(2)从函数的增减性和最值入手分析函数的性质;(3)两个函数图象交点的横坐标即为方程的解.【详解】解:(1)当x=﹣3时,a=2|2(3)|33+⨯---=73,当x=3时,b=2|23|33+⨯-=113,由表中的点所画图象如右图:故答案为:a=73,b=113,图象见解析,(2)①当x<0时,y随x的增大而减小;②当0<x<1时,y随x的增大而减小;③当1<x时,y随x的增大而增大;④当x>0时,y的最小值为1,无最大值.性质很多,任选一个即可.(3)由图象得:方程2x+|2x|﹣3=x+1的解在﹣2~﹣1.5,0.5~1,3~3.5之间,当x=﹣1.7时,2x+|2x|﹣3=﹣6685,x+1=﹣0.7,当x=﹣1.8时,+|2x|﹣3=﹣2345,x+1=﹣0.8,∵﹣6685<﹣0.7,﹣2345>﹣0.8,∴方程2x+|2x|﹣3=x+1的解x1≈﹣1.7,同理可得,x2≈0.6,x3≈3.4,综上所述:方程2x+|2x|﹣3=x+1的解为﹣1.7,0.6,3.4.【点睛】本题考查了函数的图象画法和函数的性质,函数与方程的关系.画函数图象时要按照“列表−描点−连线”的顺序进行,连线一定记得用平滑的曲线连接;由图象判断方程的解的时候要学会用二分法求出方程的近似解.24.材料一:如果一个自然数右边的数字总比左边的数字小,我们称它为“下滑数”.如果一位三位“下滑数”满足个位数字与十位数字之和等于百位数字,那么称这个数为“下滑和平数”.例如:A=321,满足1<2<3,且1+2=3,所以321是“下滑和平数”;B=643,满足3<4<6,但3+4≠6,所以643不是“下滑和平数”.材料二:对于一个“下滑和平数”m=100a+10b+c(1≤a,b,c≤9且a,b,c为整数)交换其百位和个位数字得到新数m'=100c+10b+a,规定:F(m)=m﹣m'.例如:m=321为“下滑和平数”,m'=123,F(m)=321﹣123=198.(1)请任意写出两个三位“下滑数”,并判断你所写的两个三位“下滑数”是不是“下滑和平数”?并说明理由.(2)若m与m'的和能被7整除,求F(m)的最小值.【答案】(1)两个下滑数:645,987,都不是“下滑和平数”,理由见解析;(2)396 【分析】(1)根据“下滑和平数”的定义判断.(2)表示m,m′,再根据m+m′能被7整除,找到F(m)的最小值.【详解】解:(1)两个下滑数:645,987.∵4+5≠6,7+8≠9.∴645,987都不是“下滑和平数”.(2)设m=100a+10b+c,则m′=100c+10b+a(a.b,c均为整数)∵m是“下滑和平数”.∴b+c=a,且1≤c<b<a≤9.m+m′=101a+20b+101c.F(m)=m﹣m′=99(a﹣c)=99b.∴要使F(m)最小,只需b最小.∵m+m′能被7整除.∴①当b=2,a=3,c=1,m+m′=444,不合题意,舍去.②当b=3,a=4,c=1或a=5,c=2.当a=4,c=1,m+m′=515,不合题意,舍去.当a=5,c=2,m+m′=767,不合题意,舍去.当b=4,a=5,c=1或a=6,c=2或a=7,c=3.当a=5,c=1时,m+m′=686,686能被7整除.综上所述,满足上述条件的b的最小值为4.∴F(m)最小=500+40+1﹣145=396.【点睛】本题考查用新定义解决问题,理解“下滑数”,“下滑和平数”的定义是求解本题的关键.25.如图1,抛物线y=ax2+bx x轴于A(﹣3,0),B(4,0)两点,与y轴交于点C,连接AC,BC.点P是第一象限内抛物线上的一个动点,设点P的横坐标为m,过点P作PM⊥x轴,垂足为点M,PM交BC于点Q,过点P作PN∥AC交BC于点N.(1)求此抛物线的解析式;(2)请用含m的代数式表示PN,并求出PN的最大值以及此时点P的坐标;(3)如图2,将抛物线y=ax2+bx CB的方向平移,使得新抛物线y'过原点,点D为原抛物线y与新抛物线y'的交点,若点E为原抛物线的对称轴上一动点,点F为新抛物线y'上一动点,求点F使得以A,D,E,F为顶点的四边形为平行四边形,请直接写出点F 的坐标,并写出一个F 点的求解过程.【答案】(1)y 2(2))22PN m =-+m =2时,PN ,P (2);(3)F 的坐标为(﹣112,或(132,)或(﹣12,过程见解析 【分析】(1)将点A (﹣3,0),B (4,0)代入y =ax 2+bx(2)先出BC 的解析式为y P (m 2,Q (m ,,求得2PQ =+,过点N 作ND PM ⊥交PM 于点D ,利用PN∥AC ,求得PD =,利用三角函数求得DQ =,根据PQ PD DQ =+,可得)22PN m ==-所以当m =2时,PN ,P (2,); (3)由抛物线沿着射线CB 的方向平移,可设抛物线沿x 轴正方向平移t (t >0)个单位,则沿y 个单位,则平移后的函数解析式为21'2y x t ⎫=--⎪⎝⎭,再由新抛物线y '过原点,可求t =2,则可求新的抛物线解析式为y '2x 2x 2D(3,,由点E 在y '上,则E 点的横坐标为12,由点F 为新抛物线y '上,设F 点横坐标为n ,当以A ,D ,E ,F 为顶点的四边形为平行四边形时,有三种情况:①当AE与DF 为平行四边形的对角线时,﹣3+12=n +3,得F (﹣112;②当AF 与ED 为平行四边形对角线时,﹣3+n =3+12,得F (132;③当AD 与EF 为平行四边形对角线时,﹣3+3=n +12,得F (﹣12. 【详解】解:(1)将点A (﹣3,0),B (4,0)代入y =ax 2+bx9301640a b a b ⎧-+=⎪⎨++=⎪⎩,解得:a b ⎧=⎪⎪⎨⎪=⎪⎩,∴y2(2)∵抛物线与y 轴交于点C , ∴C (0,,设直线BC 的解析式为y =kx +d , 将点B 与点C代入可得,40k d d +=⎧⎪⎨=⎪⎩,解得k d ⎧=⎪⎨=⎪⎩∴y∵点P 的横坐标为m ,PM ⊥x 轴, ∴P (m2,Q (m∴(22PQ =++=, ∵过点N 作ND PM ⊥交PM 于点D ,∵PN ∥AC∴tan tanAO NPD ACO CO ∠=∠==∴tan ND PD NPD ==∠∴PN ==由∵tan OC CBO OB ∠===∴60CBO ∠=︒,∴30NQD MQB ∠=∠=︒,∴tan NDDQ NQD==∠∴PQ PD DQ =+2ND += ∴247m mND -+=∴)22427m m PN m -+==-∴当m =2时,PN ,∴P (2);(3)y 2212x ⎫-⎪⎝⎭, ∵抛物线沿着射线CB 的方向平移,设抛物线沿x 轴正方向平移t (t >0)个单位,则沿y 个单位,平移后的函数解析式为21'2y x t ⎫=--⎪⎝⎭, ∵新抛物线y '过原点,∴0=21+2t ⎫⎪⎝⎭, 解得t =2或t =﹣6(舍),∴25'2y x ⎫=-⎪⎝⎭2x , ∵点D 为原抛物线y 与新抛物线y '的交点,2x 2∴x =3,∴D (3,,∵y 2x =12,∴E 点的横坐标为12,∵点F 为新抛物线y '上一动点, 设F 点横坐标为n ,①当AE 与DF 为平行四边形的对角线时, ∴﹣3+12=n +3,∴n =﹣112,∴F (﹣112;②当AF 与ED 为平行四边形对角线时, ∴﹣3+n =3+12,∴n =132,∴F (132; ③当AD 与EF 为平行四边形对角线时, ∴﹣3+3=n +12, ∴n =﹣12,∴F (﹣12;综上所述:以A ,D ,E ,F 为顶点的四边形为平行四边形时,F 的坐标为(﹣112,或(132)或(﹣12.【点睛】本题是二次函数综合题.综合性较强,主要考查学生对二次函数图象及其性质的运用和理解,同时也需要具备一定的运算能力.26.如图,四边形ABCD 是矩形,点E 在AB 边上,且BC =BE ,连接EC 、AC ,过点B 作BG ⊥AC ,垂足为G ,BG 分别交EC 、DC 于F 、H 两点.(1)如图1,若BC =ECA =15°,求线段EF 的长.(2)如图2,延长AB 到M ,连接MF ,使得∠BMF =∠FBC ,求证:BF +FM =AC . (3)如图3,在(1)的条件下,点N 是线段DC 的三等分点,且DN <CN ,点P 是线段AD 的中点,连接AN ,将△ADN 绕点D 逆时针旋转α°(0≤α≤360)到△A 'DN ',连接PA ',NA ',当3NA ''取最大值时,请直接写出△A 'DH 的面积.【答案】(1)(2)见解析;(3【分析】(1)如图1,过点F 作FK ⊥BC 于K ,由矩形性质得∠ABC =∠BCD =90°,再由BE =BC ,可得∠BCE =∠BEC =45°,进而可得∠BCA =60°,利用三角函数可得CK =FK ,BK ,利用CK +BK =BC ,求出BK ,即可得出答案.(2)如图2,延长MF 交CD 于T ,过点T 作TP ⊥AB 于P ,先证明△TCF ≌△BCF (AAS ),得出FT =BF ,证得四边形APTD 是矩形,得出AD =PT ,再证明△MTP ≌△CAD (AAS ),即可得出答案.(3)如图3,以D 为圆心,DN 、DA 为半径作同心圆,由3NA 'A '′﹣P A ′),可得当3NA 'A '′﹣P A ′的值最大,通过△A ′DN ∽△CDA ′,可得当C 、P 、A ′′﹣P A ′的最大值为PC ,此时3NA 'A '取最大值,作A ′T ⊥CD 的延长线于T ,则A ′T ∥DP ,设A ′T =x ,可得A ′C ,CT =,TD =﹣6,再利用勾股定理建立方程求解即可. 【详解】解:(1)如图1,过点F 作FK ⊥BC 于K , ∵四边形ABCD 是矩形, ∴∠ABC =∠BCD =90°,∵BE =BC =∴∠BCE =∠BEC =45°,CE =, ∵∠ECA =15°,∴∠BCA =∠BCE +∠ECA =60°, ∵BG ⊥AC , ∴∠BGC =90°,∴∠CBG =90°﹣∠BCA =30°, ∵FK ⊥BC ,∴∠CKF =∠BKF =90°,∴CK =FK •tan ∠BCE =FK •tan45°=FK ,BK =tan FK CBG ∠=tan 30FK︒,∵CK +BK =BC ,∴FK =∴FK =3∴CF (3∴EF =CE ﹣CF =﹣()= (2)如图2,延长MF 交CD 于T ,过点T 作TP ⊥AB 于P , ∵四边形ABCD 是矩形,∴AB ∥CD ,∠BAD =∠D =∠BCD =90°, ∴∠BMF =∠CTF , ∵∠BMF =∠FBC , ∴∠CTF =∠FBC , ∵∠BCE =45°,∴∠TCF =∠BCD ﹣∠BCE =90°﹣45°=45°, ∴∠TCF =∠BCE , 在△TCF 和△BCF 中,FTC FBC FCT FCB CF CF ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△TCF ≌△BCF (AAS ), ∴FT =BF , ∵BG ⊥AC , ∴∠BGC =90°, ∴∠BCG +∠FBC =90°, 又∵∠BCG +∠ACD =90°, ∴∠FBC =∠ACD , ∵∠BMF =∠FBC ,∴∠BMF =∠ACD ,即∠TMP =∠ACD , ∵TP ⊥AB ,∴∠APT =∠MPT =90°=∠BAD =∠D , ∴四边形APTD 是矩形, ∴AD =PT ,在△MTP 和△CAD 中, TMP ACD MPT D PT AD ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△MTP ≌△CAD (AAS ), ∴MT =AC , 即FT +FM =AC , ∴BF +FM =AC .(3)如图3,以D 为圆心,DN 、DA 为半径作同心圆, ∵四边形ABCD 是矩形,∴AD ∥BC ,AD =BC =∠ADC =∠BCD =90°, 由(1)得:∠BCA =60°, ∴∠CAD =∠BCA =60°,。

重庆育才中学数学几何图形初步检测题(Word版 含答案)

重庆育才中学数学几何图形初步检测题(Word版 含答案)
3.如图,已知 AB∥ CD,∠ A=40°,点 P 是射线 B 上一动点(与点 A 不重合),CM,CN 分 别平分∠ ACP 和∠ PCD,分别交射线 AB 于点 M,N.
(1)求∠ MCN 的度数. (2)当点 P 运动到某处时,∠ AMC=∠ ACN,求此时∠ ACM 的度数. (3)在点 P 运动的过程中,∠ APC 与∠ ANC 的比值是否随之变化?若不变,请求出这个比 值:若变化,请找出变化规律. 【答案】 (1)解:∵ A B∥ CD, ∴ ∠ ACD=180°﹣∠ A=140°, 又∵ CM,CN 分别平分∠ ACP 和∠ PCD,
= , 故答案为: ∠ BFE=2∠ P. 【分析】(1)延长 EH,交 CD 的延长线与 M,根据平行线的性质及等量代换即可证明 ; ( 2 ) 设 ∠ B=∠ HEF=y , ∠ BFE=x , 根 据 平 行 的 性 质 结 合 三 角 形 的 内 角 和 定 理 得 出 ∠ BFE=2∠ P.
4.如图 1,

.
.如图 2,点
分别是
上的点,且
(1)求证:
F;
(2)若
的角平分线与
的角平分线交于点
接写出 与
之间的关系为________.
【答案】 (1)证明:如图,延长 EH,交 CD 的延长线与 M,
,请补全图形并直
(2)∠ BFE=2∠ P. 【解析】【解答】解:(2)结论:∠ BFE=2∠ P,理由如下: 如图,设∠ B=∠ HEF=y.∠ BFE=x
【分析】(1)根据平行线的性质及平行公理,即可求解; (2)过点 P 作 PN∥ AB,根据平行公理得 PN∥ CD,得出∠ PFC=∠ FPN,由 AB∥ CD 得出 ∠ PEA=∠ NPE, 从而得出∠ FPN=∠ PEA+∠ FPE,即可求出∠ PFC=∠ PEA+∠ FPE,即可求解; (3)根据角平分线的定义得出∠ 1= ∠ PFC,∠ 2=- ∠ PEA,由∠ PFC=∠ PEA+∠ P,得出∠ 1∠ 2= ∠ P,由三角形的外角性质得出∠ G=∠ 3-∠ 1,∠ 3=∠ P+∠ 2,从而求出∠ G= α.

重庆市育才中学2024-2025学年度高2026届高二上学期10月月考数学试题答案

重庆市育才中学2024-2025学年度高2026届高二上学期10月月考数学试题答案

重庆市育才中学校高2026届高二(上)十月月考数学试题参考答案一、选择题:本题共8个小题,每小题5分,共40分.1-4:ADBB5-8:CCBD8【解析】:如图所示,取PA 中点为O ,由于PB AB ⊥,PC AC ⊥,则OB OC OP OA ===,故O 是三棱锥的外接球的球心,易知4PA =,PB PC ==.过点P 作PH ABC ⊥平面,连接AH ,易知AH 过BC 中点M ,连接PM .因为AM =PM =,4PA =,则直线PA 与平面ABC 所成角PAM ∠,由余弦定理可得22243cos3PAM +-∠==,故选D.二、选择题:本题共3小题,每小题6分,共18分,在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,选对但不全的得部分分,有选错的得0分.三、填空题:本题共3个小题,每小题5分,共15分.2121==+OP d d ;9)8()8(88221,82,82222122212221=-+-≤--=⨯=-=-=d d d d BD AC S d BD d AC ABCD 当且仅当21d d =时取得等号.四、解答题:本题共5小题,15题13分,16、17题15分,18、19题17分,共77分,解答应写出文字说明、证明过程或演算步骤.15.(1)过点(5,1)A -,点(3,7)B 的直线的两点式方程为:157135y x -+=-+,......................................................................................(2分)整理得:34190x y -+=∴直线l 的方程为34190x y -+=..........................................................................................(4分)(2)设线段MN 的中点为P ,则由(1,0)M ,(3,2)N 有(2,1)P ,且直线MN 的斜率为20131MN k -==-,因此线段MN 的垂直平分线l '的方程为:1(2)y x -=--,即30x y +-=,.........................(7分)由垂径定理可知,圆心C 也在线段MN 的垂直平分线上,则有301341904x y x x y y +-==-⎧⎧⇒⎨⎨-+==⎩⎩∴圆C 的坐标是(1,4)-;..................................................(9分)圆的半径22(11)(40)25r MC ==--+-=,................................................................(11分)∴圆C 的标准方程是22(1)(4)20x y ++-=.....................................................................(13分)16.(1)连接1BC ,设11BC B C O = ,连接OD ,由三棱柱的性质可知,侧面11BCC B 为平行四边形,∴O 为1BC 的中点,........................................(2分)又∵D 为AB 中点,∴在1ABC 中,1//OD AC ,又∵OD ⊂平面1CDB ,1AC ⊄平面1CDB ,..................................................(5分)∴1//AC 平面1CDB ................................................................................(7分)(2)由题意可知1,,CA CB CC 两两垂直故以1,,CA CB CC 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()0,0,0C ,()6,0,0A ,()16,0,8A ,()3,4,0D ,()10,8,8B .所以()10,0,8AA = ,()3,4,0CD = ,()10,8,8CB =,...................................(9分)设平面1CDB 的法向量为n(),,x y z =,则1340880C y CBD n x n y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ 令4x =,得()4,3,3n =- ;........................................................................(12分)设1AA 与平面1CDB 所成角为θ,则sin θ=111cos ,n AA n AA n AA ⋅===所以1AA 与平面1CDB 所成角的正弦值为33434..........................................................................(15分)17.(1)由BC BA ==90CBA ∠=︒,所以2AC =.取AC 的中点O ,连接PO ,BO ,由题意,得112PO BO AC ===,再由PB 222PO BO PB +=,即PO BO ⊥........(3分)由题易知PO AC ⊥,又AC BO O ⋂=,,BO AC ⊂面ABC ,所以⊥PO 平面ABC ,............(5分)又PO ⊂平面PAC ,所以平面PAC ⊥平面ABC ..........................................................(6分)(2)由(1)可知PO OB ⊥,PO OC ⊥,又OB AC ⊥,故以OC ,OB ,OP 所在直线为x 轴、y 轴、z 轴建立如图所示的空间直角坐标系.则()1,0,0C ,()0,1,0B ,()1,0,0A -,0,0,1.所以()1,0,1AP = ,()1,1,0BC =- ,()1,0,1PC =- ,...........................(8分)令(),0,AM AP λλλ==,()01λ<<所以()1,0,M λλ-.所以()2,0,MC λλ=--.设平面MBC 的法向量为m()111,,x y z =,则()1111020BC m x y MC m x z λλ⎧⋅=-=⎪⎨⋅=--=⎪⎩ 令11x =,得m 21,1,λλ-⎛⎫= ⎪⎝⎭;..................................................(10分)设平面PBC 的法向量为()222,,n x y z =,222200BC n x y PC n x z ⎧⋅=-=⎪⎨⋅=-=⎪⎩ ,令21x =,得()1,1,1n = ;...................................................................(12分)则cos ,n m n m n m⋅=79=,设2t λλ-=,()1,t ∞∈+,则上式可化为2115450t t --=,..................................................(14分)即()()51110t t -+=,所以5t =(111t =-舍去),所以25λλ-=,解得13λ=.....................(15分)18.解:(1)设动点M 坐标为),(y x ,由MA MO 21=,即2222)3(21y x y x ++=+,.....................................................................................(4分)整理得4)1(22=+-y x ......................................................................................(6分)(2)设直线l 的方程为2-=kx y ,Q P ,两点的坐标分别为),(),(2211y x y x ,联立⎩⎨⎧-==+-24)1(22kx y y x ,整理得01)24()1(22=++-+x k x k (*)..........................................(9分)因为(*)式的两根为21,x x ,所以121222421,11k x x x x k k ++==++,........................................(10分)0)1(4)24(22>+-+=∆k k ,即34-<k 或0>k .........................................(11分)则2121212121212(2)(2)(1)2()43OP OQ x x y y x x kx kx k x x k x x ⋅=+=+--=+-++=-,..............(13分)将121222421,11k x x x x k k ++==++代入上式,化简解得2=k .........................................(15分)而2=k 满足0>∆,故直线l 的方程为)1(2-=x y .因为圆心)0,1(M 在直线l 上,所以4=PQ ...................................................................(17分)19.解:(1)在EB D '∆中,易得4B E '=,33B D '=,7DE =,由余弦定理可得2223cos 22B E B D DE DB E B E B D ''+-'∠=='',从而6DB E π'∠=..............(4分)提示:可建立空间坐标系利用向量求夹角的余弦值为32,从而得出6DB E π'∠=.(2)(i )曲线Γ是椭圆...............................................................................................(6分)因为二面角B AC D --为直二面角,且90ACB ︒∠=,所以B C α'⊥,如图1,不妨取AC 的中点为O ,以OD 为x 轴,OC 为y 轴,过点O 作B C '的平行线为z 轴建立空间直角坐标系.则点(0,3,23)B ',(0,1,0)E ,设(,,0)P x y ,(0,2,23)B E '=-- ,(,3,23)B P x y '=--,...........(8分)图1由(1)可知6PB E DB E π''∠=∠=,从而222183cos 24(3)12B E B P y PB E B E B P x y ''⋅-+'∠===''+-+ ,...............(10分)化简可得:22169x y +=,即为Γ的方程.......................................................(12分)说明:不同的建系可能得到不同的方程,只要得出椭圆的方程即可得分.(ii )将立体几何平面化,只需研究平面α上几何关系.不防将(i )中椭圆所在坐标系逆时针旋转90︒得到图2,在新坐标系下椭圆方程为22196x y +=,直线l 的方程为3530x y +-=,引理:点11(,)M x y 与直线0mx ny c ++=上一动点22(,)N x y 的最小曼哈顿距离为{}11min (,)max ,mx ny cd M N m n ++=.证明:如图3,当m n >,即12MM MM <时,由于111111(,)d M N MN N N MN N M MM =+≥+=,当点N 在点1M 处取得等号成立,即111min 1(,)mx ny c ny cd M N x m m+++=+=,同理可以得出m n ≤时的最小曼哈顿距离,综上{}11min (,)max ,mx ny cd M N m n ++=得证.设点(3cos ,6sin )M θθ.由引理可知:{}min 35333cos 6sin 53(,)5113max3,1M M x y d M N θθ+-+-==≥-,所以(,)d M N 的最小值为511-.........................................................(17分)图2图3。

2020-2021中考数学专题《初中数学 旋转》综合检测试卷附答案解析

2020-2021中考数学专题《初中数学 旋转》综合检测试卷附答案解析

2020-2021中考数学专题《初中数学 旋转》综合检测试卷附答案解析一、旋转1.在△ABC 中,AB=AC ,∠BAC=α(︒<<︒600α),将线段BC 绕点B 逆时针旋转60°得到线段BD 。

(1)如图1,直接写出∠ABD 的大小(用含α的式子表示); (2)如图2,∠BCE=150°,∠ABE=60°,判断△ABE 的形状并加以证明; (3)在(2)的条件下,连结DE ,若∠DEC=45°,求α的值。

【答案】(1)1302α︒-(2)见解析(3)30α=︒【解析】解:(1)1302α︒-。

(2)△ABE 为等边三角形。

证明如下:连接AD ,CD ,ED ,∵线段BC 绕点B 逆时针旋转60︒得到线段BD , ∴BC=BD ,∠DBC=60°。

又∵∠ABE=60°,∴1ABD 60DBE EBC 302α∠=︒-∠=∠=︒-且△BCD 为等边三角形。

在△ABD 与△ACD 中,∵AB=AC ,AD=AD ,BD=CD ,∴△ABD ≌△ACD (SSS )。

∴11BAD CAD BAC 22α∠=∠=∠=。

∵∠BCE=150°,∴11BEC 180(30)15022αα∠=︒-︒--︒=。

∴BEC BAD ∠=∠。

在△ABD 和△EBC 中,∵BEC BAD ∠=∠,EBC ABD ∠=∠,BC=BD , ∴△ABD ≌△EBC (AAS )。

∴AB=BE 。

∴△ABE 为等边三角形。

(3)∵∠BCD=60°,∠BCE=150°,∴DCE 1506090∠=︒-︒=︒。

又∵∠DEC=45°,∴△DCE 为等腰直角三角形。

∴DC=CE=BC 。

∵∠BCE=150°,∴(180150)EBC 152︒-︒∠==︒。

而1EBC 30152α∠=︒-=︒。

∴30α=︒。

七年级上册重庆育才中学数学期末试卷检测题(Word版 含答案)

七年级上册重庆育才中学数学期末试卷检测题(Word版 含答案)

七年级上册重庆育才中学数学期末试卷检测题(Word版含答案)一、初一数学上学期期末试卷解答题压轴题精选(难)1.(1)如图①,已知:Rt△ABC中,AB=AC,直线m经过点A,BD⊥m于D,CE⊥m于E,求证:DE=BD+CE;(2)如图②,将(1)中的条件改为:△ABC中,AB=AC,并且∠BDA=∠AEC=∠BAC=α,α为任意锐角或钝角,请问结论DE=BD+CE是否成立?如成立,请证明;若不成立,请说明理由;(3)应用:如图③,在△ABC中,∠BAC是钝角,AB=AC,∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,直线m与BC的延长线交于点F,若BC=2CF,△ABC的面积是12,求△ABD与△CEF的面积之和.【答案】(1)证明:∵BD⊥直线m,CE⊥直线m,∴∠BDA=∠CEA=90°,∵∠BAC=90°,∴∠BAD+∠CAE=90°,∵∠BAD+∠ABD=90°,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(2)解:结论DE=BD+CE成立;理由如下:∵∠BDA=∠BAC=α,∴∠DBA+∠BAD=∠BAD+∠CAE=180°-α,∴∠CAE=∠ABD,在△ADB和△CEA中,∴△ADB≌△CEA(AAS),∴AE=BD,AD=CE,∴DE=AE+AD=BD+CE;(3)解:∵∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,在△ABD和△CEA中,∴△ABD≌△CEA(AAS),∴S△ABD=S△CEA,设△ABC的底边BC上的高为h,则△ACF的底边CF上的高为h,∴S△ABC= BC•h=12,S△ACF= CF•h,∵BC=2CF,∴S△ACF=6,∵S△ACF=S△CEF+S△CEA=S△CEF+S△ABD=6,∴△ABD与△CEF的面积之和为6.【解析】【分析】(1)根据BD⊥直线m,CE⊥直线m得∠BDA=∠CEA=90°,而∠BAC=90°,根据等角的余角相等得∠CAE=∠ABD,由AAS证得△ADB≌△CEA,则AE=BD,AD=CE,即可得出结论;(2)由∠BDA=∠BAC=α,则∠DBA+∠BAD=∠BAD+∠CAE=180°-α,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA即可得出答案;(3)由∠BAD>∠CAE,∠BDA=∠AEC=∠BAC,∴∠CAE=∠ABD,得出∠CAE=∠ABD,由AAS证得△ADB≌△CEA,得出S△ABD=S△CEA,再由不同底等高的两个三角形的面积之比等于底的比,得出S△ACF即可得出结果.2.如图在数轴上A点表示数a,B点表示数b,AB表示A点和B点之间的距离,且a、b满足|2a+4|+|b-6|=0(1)求A,B两点之间的距离;(2)若在数轴上存在一点C,且AC=2BC,求C点表示的数;(3)若在原点O处放一个挡板,一个小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动:设运动的时间为(秒).①分别表示甲、乙两小球到原点的距离(用t表示);②求甲、乙两小球到原点的距离相等时经历的时间【答案】(1)解:因为,所以2a+4=0,b-6=0,所以a=−2,b=6;所以AB的距离=|b−a|=8;(2)解:设数轴上点C表示的数为c.因为AC=2BC,所以|c−a|=2|c−b|,即|c+2|=2|c−6|.因为AC=2BC>BC,所以点C不可能在BA的延长线上,则C点可能在线段AB上和线段AB的延长线上.①当C点在线段AB上时,则有−2<c<6,得c+2=2(6−c),解得c= ;②当C点在线段AB的延长线上时,则有c>6,得c+2=2(c−6),解得c=14.故当AC=2BC时,c= 或c=14;(3)解:①因为甲球运动的路程为:1×t=t,OA=2,所以甲球与原点的距离为:t+2;乙球到原点的距离分两种情况:(Ⅰ)当0⩽t⩽3时,乙球从点B处开始向左运动,一直到原点O,因为OB=6,乙球运动的路程为:2×t=2t,所以乙球到原点的距离为:6−2t;(Ⅱ)当t>3时,乙球从原点O处开始一直向右运动,此时乙球到原点的距离为:2t−6;②当0<t⩽3时,得t+2=6−2t,解得t= ;当t>3时,得t+2=2t−6,解得t=8.故当t= 秒或t=8秒时,甲乙两小球到原点的距离相等.【解析】【分析】(1)先根据非负数的性质求出a、b的值,再根据两点间的距离公式即可求得A、B两点之间的距离;(2)分C点在线段AB上和线段AB的延长线上两种情况讨论即可求解;(3)①甲球到原点的距离=甲球运动的路程+OA的长,乙球到原点的距离分两种情况:(Ⅰ)当0<t≤3时,乙球从点B处开始向左运动,一直到原点O,此时OB的长度-乙球运动的路程即为乙球到原点的距离;(Ⅱ)当t>3时,乙球从原点O处开始向右运动,此时乙球运动的路程-OB的长度即为乙球到原点的距离;②分两种情况:(Ⅰ)0≤t≤3,(Ⅱ)t>3,根据甲、乙两小球到原点的距离相等列出关于t的方程,解方程即可.3.如图,数轴上点 A、B 到表示-2 的点的距离都为 6,P 为线段 AB 上任一点,C,D 两点分别从 P,B 同时向 A 点移动,且 C 点运动速度为每秒 2 个单位长度,D 点运动速度为每秒 3 个单位长度,运动时间为 t 秒.(1)A 点表示数为________,B 点表示的数为________,AB=________.(2)若 P 点表示的数是 0,①运动 1 秒后,求 CD 的长度;②当 D 在 BP 上运动时,求线段 AC、CD 之间的数量关系式.(3)若 t=2 秒时,CD=1,请直接写出 P 点表示的数.【答案】(1)-8;4;12(2)解:①运动一秒后,C点为-2,D点为1,所以CD=3;②当点D在BP上运动时, ,此时C在线段AP上,AC=8-2t,CD=2t+4-3t=4-t,所以AC=2CD(3)解:若 t=2秒时,D点为-2,若 CD=1,则 C=-3 或-1,①当 C=-3 时,CP=4,此时 P=1;②当 C=-1 时,P=3.【解析】【解答】解:⑴故答案为:-8;4;12;【分析】(1)由已知数轴上点 A、B 到表示-2 的点的距离都为 6 ,且点A在点B的左边,就可求出点A和点B表示的数,再利用两点间的距离公式求出AB的长。

重庆市中考数学题型复习题型三几何图形综合计算类型三旋转问题练习0413196

重庆市中考数学题型复习题型三几何图形综合计算类型三旋转问题练习0413196

类型三旋转问题针对演练ABCDEAFAEBCEAFCDF,交交1. (2017贺州)如图,在正方形于点内作∠,=45°,于点EFAAHEFHADFAABGBE=2若顺时针旋转⊥,垂足为90°得到△,将△,连接,过点绕点作,DFAH 的长为________.=3,则2题图1题图第第ABCDABBDDCBD点,如图,在正方形是对角线,将△中,绕着=4)2. (2017重庆巴蜀模拟DEFBFCEGEGBF,则1、相交于=(90°<逆时针旋转αα<180°),得到△点,若,连接=________.ABCDABBCCEACBABEM,交=3,于点=4,)3. (2017重庆指标到校卷已知矩形平分∠中,CEBMBCMCBCMBMADQCM′′交,将△绕点,顺时针旋转至△′于′,′延长连接为的中点,ADPPQPMPQ =若.________=′则交于点第3题图. 1答案ABCDDAFBAGAFAG为正方形,=∠1. 6 【解析】由旋转的性质可知:,∠=,∵四边形DAFBAEBADEAF+∠∴∠=45°,∴∠=90°,又∵∠=45°,AF=AG???∠GAE=∠FAE,GAEGAEFAEBAGBAEGAEFAE∴△和△=∠∴∠中+∠,在△=45°,∴∠??AE=AE xxECAHFAEABGEEFABAHGEEF,=2,设正方形的边长为,≌△,则.∵=⊥,-⊥=,∴5=22222xEFxFCRtEFCECFCx,解得-3,在3)△中,由勾股定理得,252)=(=++=,即(--AHABx6.,∴=6.∴==6FDBEENECEMEDCFBGD, 62【解析】如解图,过点+2 ,连接作=∠2.⊥.∵∠,⊥EGMBDCDCEABGEFGBGCDBFDFDBDEDC=45°,,∠=∠=45°,,=,∴∠∴∠=∠∴∠=,=∠222FMEMGEGEFEMMGED EM,又∵-=4=∴△是等腰直角三角形,∵1=,∴,∴===EF2621EDENFEDGENFENDEGEGEF,∴△==16-=,又∵∠=∠==90°,∴∠=∠,,22BFDGFGDDFBEGDEDGEFNENF的中线,∴=90°,∴≌△是等腰△,∴∠=∠=135°,∴∠262FG2. 62=+=2=2()+222题解图第210225BCNDACEANPQx,∴∠和∥3.-【解析】设,交于点=,则,如解图,延长38BE BECBECAENACBBCECEBCEACEAENANE∴,∵,平分∠,∴∠∴△=∠=∠,,又∠∽△=∠AE10102BE4454BC CMCEBEABBCACAE,,∴,=5∴=,∴==,∴=,∴=,∵==3,=4,33AE533AC ACEBCMBMCMEMCBMCEMBCE,==∠是直角三角形,∴=∵点是=∠的中点,且△,∴∠PQMMPMQPQBCMBCMBCMBCMP′,∴∠′′≌△=∠又△,′∵′是△∴△旋转得到的,=′′PQMACBCADCMBACBABCDADBC′==∠∴∠是矩形,∴,=2∠∥′′=∠∴∠,∵四边形,QACPCADACBMPMQCADACPPQMPM,∴△,∴∥=∠′′=∠′,∴∠,∴∠′∠=∠′,∴∠101022CPAQCMPMPAPACPQMPCPQ+==∴,′都是等腰三角形,∴′==,∴=′,和△3310210222222xCDxCDPxRtCPPD,令)+,在+△中,根据勾股定理得:9=)=+(4,(--332525210221025102522PQttxtxxt=+=,∴,∴=,∴==-,∴9-+,则=(4)+8383883210-.33第3题解图4计划教研组工作学年度第一学期生物20XX—019指导思想以新一轮课程改革为抓手,更新教育理念,积极推进教学改革。

重庆市九龙坡区育才中学2024年高三年级第二学期数学试题统一练习(二)

重庆市九龙坡区育才中学2024年高三年级第二学期数学试题统一练习(二)

重庆市九龙坡区育才中学2024年高三年级第二学期数学试题统一练习(二)考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。

2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。

3.考生必须保证答题卡的整洁。

考试结束后,请将本试卷和答题卡一并交回。

一、选择题:本题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的。

1.要得到函数1cos 2y x =的图象,只需将函数1sin 223y x π⎛⎫=+ ⎪⎝⎭的图象上所有点的( )A .横坐标缩短到原来的12(纵坐标不变),再向左平移3π个单位长度B .横坐标缩短到原来的12(纵坐标不变),再向右平移6π个单位长度C .横坐标伸长到原来的2倍(纵坐标不变),再向左平移6π个单位长度 D .横坐标伸长到原来的2倍(纵坐标不变),再向右平移3π个单位长度 2.已知复数,则的共轭复数在复平面对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限3.已知全集U =R ,集合{|lg(1)}A x y x ==-,|B x y x ⎧==⎨⎩则()U A B =( ) A .(1,)+∞ B .(0,1) C .(0,)+∞D .[1,)+∞4.设{}n a 是等差数列,且公差不为零,其前n 项和为n S .则“*n N ∀∈,1n n S S +>”是“{}n a 为递增数列”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件5.函数cos 2320,2y x x x π⎛⎫⎡⎤=-∈ ⎪⎢⎥⎣⎦⎝⎭的单调递增区间是( ) A .06,π⎡⎤⎢⎥⎣⎦B .0,3π⎡⎤⎢⎥⎣⎦ C .,62ππ⎡⎤⎢⎥⎣⎦D .,32ππ⎡⎤⎢⎥⎣⎦6.已知数列{}n a 为等差数列,n S 为其前n 项和,6353a a a +-=,则7S =( ) A .42B .21C .7D .37.已知236a b ==,则a ,b 不可能满足的关系是() A .a b ab +=B .4a b +>C .()()22112a b -+-< D .228a b +>8.设i 为虚数单位,若复数(1)22z i i -=+,则复数z 等于( ) A .2i -B .2iC .1i -+D .09.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-10.如图,点E 是正方体ABCD -A 1B 1C 1D 1的棱DD 1的中点,点F ,M 分别在线段AC ,BD 1(不包含端点)上运动,则( )A .在点F 的运动过程中,存在EF //BC 1B .在点M 的运动过程中,不存在B 1M ⊥AEC .四面体EMAC 的体积为定值D .四面体FA 1C 1B 的体积不为定值 11.已知||23z z i =-(i 为虚数单位,z 为z 的共轭复数),则复数z 在复平面内对应的点在( ). A .第一象限B .第二象限C .第三象限D .第四象限12.设()f x 、()g x 分别是定义在R 上的奇函数和偶函数,且21()()(1)2x f x g x x ++=+-,则(1)(1)f g -=( ) A .1-B .0C .1D .3二、填空题:本题共4小题,每小题5分,共20分。

重庆育才中学2023-2024学年七年级下学期入学自主作业数学试题

重庆育才中学2023-2024学年七年级下学期入学自主作业数学试题

重庆育才中学2023-2024学年七年级下学期入学自主作业数学试题一、单选题1.6的相反数的是( )A .16-B .16C .6-D .62.如图是由七个完全相同的小正方体组成的立体图形,则它的主视图是( )A .B .C .D .3.下列各式中,不是整式的是( )A .0B .1yC .2x y -D .xy4.如图,直线,a b 被直线c 所截,则1∠与2∠的位置关系是( )A .对顶角B .同旁内角C .内错角D .同位角 5.下列运算正确的是( )A .55m m -=B .235224a a a +=C .()3131x x -=-D .2xy xy xy -=- 6.若方程()2140m m x +++=是一元一次方程,则( )A .1m =-或3-B .1m =-C .3m =-D .0m = 7.下列说法正确的是( )A .过一点有且只有一条直线与已知直线平行B .对顶角一定相等C .直线外一点到这条直线的垂线段,叫做点到直线的距离D .互补的两个角是邻补角8.用圆圈按如图所示的规律拼图案,其中第①个图案中有2个圆圈,第②个图案中有5个圆圈,第③个图案中有8个圆圈,第④个图案中有11个圆圈,...,按此规律排列下去,则第⑨个图案中圆圈的个数为( )A .23B .26C .29D .329.下列各式变形错误的是( )A .若a b c c =,则a b =B .若a b =,则2211a b c c =++ C .若22a b =,则a b =± D .若a b =,则11a b= 10.小才从家骑自行车到学校,每小时骑15千米,可早到8分钟,每小时骑12千米就会迟到4分钟,求他家到学校的路程,设他家到学校的路程是x 千米,则根据题意列出的方程是( )A .8415601260x x +=- B .8415601260x x -=- C .8415601260x x -=+ D .841512x x +=- 11.已知关于x 的一元一次方程3122ax x +=+的解为整数,且关于y 的多项式62638ay y y --为六次多项式,则所有满足条件的整数a 的和为( )A .9B .16C .24D .4812.对于若干个数,我们先将任意两个数作差(相同的两个数只作一次差),再将这些差的绝对值进行求和,这样的运算称为对这若干个数作“差绝对值运算”.例如:对于123,,作“差绝对值运算”,得到1213234-+-+-=.则( )①对2-,1-,4,5,7作“差绝对值运算”的结果是46;②对x ,12-,1,3作“差绝对值运算”的结果的最小值为212;③对()x y z x y z ≠≠,,作“差绝对值运算”的结果一共有7种.以上说法中正确的个数为( )A .3B .2C .1D .0二、填空题13.据统计,虎年春晚在某网络平台累计有3680000点击量,将3680000用科学记数法表示为.14.比较大小:65-54-(填“>”、“<”、“=”). 15.一个角的补角等于它的余角的6倍,则这个角的度数为.16.若29x =,5y =,且满足0x y -<,则x y +的值为.17.如图,直线AB 和CD 相交于点O ,OE CD ⊥于点O ,2BOE BOD ∠=∠,则AOC ∠的度数为.18.已知43b a =-,则代数式82b a --的值为.19.已知数a 、b 、c 在数轴上的位置如图所示,化简a b c b a c +--++=.20.若线段24AB =,点D 是线段AB 的中点,线段AB 上有一点C ,且3CD BC =,则线段CD =.21.如图,已知150AOB ∠=︒,50COD =︒∠,OM 平分AOD ∠,ON 平分BOC ∠,则M O N ∠的度数为.22.如果一个四位自然数abcd 的各数位上的数字均不为0,且满足ab bc cd +=,那么称这个四位数为“递增数”.例如:四位数2358,∵233558+=,∴2358是“递增数”;又如:四位数1645,166445+≠,1645不是“递增数”,若一个“递增数”为369m ,则m 的值为;若一个“递增数”A 的前三个数字组成的三位数abc 与后三个数字组成的三位数bcd 的差,再减去6a ,结果能被5整除,则满足条件的A 的最大值与最小值的差为.三、解答题23.计算:(1)()()433617+-++- (2)()311625433744⎛⎫⎛⎫--+--- ⎪ ⎪⎝⎭⎝⎭ (3)13512488⎛⎫⎛⎫-+÷- ⎪ ⎪⎝⎭⎝⎭(4)()2202412124547⎛⎫⎡⎤---⨯⨯-- ⎪⎣⎦⎝⎭ 24.化简:(1)()213x x +--(2)()()22232x y xy x y xy xy +--+25.如图,平面内有一点C 及射线AP ,点B 为射线AP 上一点.(1)尺规作图:①作线段AC ;②作射线CB ;③线段AC a =,BC b =,在射线BP 上求作线段BD ,使2BD a b =-(要求:不写作法,只保留作图痕迹)(2)若2AB =, 1.5AC =,1BC =,用一根和线段AD 长度相等的铁丝,首尾相接围成一个正方形,且将该正方形绕其一边旋转一周,得到一个几何体,求此几何体的体积.(结果保留π) 26.已知2332A x mx y =-+,2233B nx x y =-+是关于x y ,的多项式,其中m n ,为常数.(1)若A B +的值与x 的取值无关,求m n ,的值.(2)在(1)的条件下,先化简()222124322m n m n n m n n ⎛⎫-+++ ⎪⎝⎭,再求值. 27.有一批核桃要加工成罐头,甲每天能加工12公斤,乙每天能加工16公斤,且甲单独加工这批核桃要比乙单独加工多用14天.(1)甲,乙单独加工这批核桃分别需要多少天?(2)为了尽快完成加工,先由甲、乙按原速度合作一段时间后,甲停工,乙单独完成剩余部分,此时乙每天的生产速度提高50%,且乙的全部工作时间是甲工作时间的4倍多3天,求甲的加工天数.28.某商场用4800元同时购进A B 、两种新型节能日光灯共120盏,A 型日光灯每盏进价为30元,B 型日光灯每盏进价为45元.(1)求A B 、两种新型节能日光灯各购进多少盏?(2)由于B 型日光灯的需求量增大,商场为了节省采购成本决定直接找厂家再购进一些B 型日光灯.已知B 型日光灯的出厂价为每盏36元,厂家给出了如下优惠措施:已知该商场第一次在厂家加购B 型日光灯支付1836元,第二次在厂家加购B 型日光灯支付3024元,若将两次购买改由一次性购买,则一次性购买时支付的总金额比两次分开购买时支付的总金额少多少元?29.如图1,在AO B ∠的内部引一条射线OC ,则图中共有3个角,分别是AOB ∠、AOC ∠和BOC ∠.若其中有一个角的度数是另一个角的度数的两倍,则称射线OC 是AOB ∠的“定分线”.(1)一个角的角平分线______这个角的“定分线”(填“是”或“不是”);(2)如图2,若87MPN ∠=o ,其中射线PQ 是MPN ∠的“定分线”,请求出MPQ ∠的度数;(3)如图3,若140MPN ∠=o ,射线PQ 绕点P 从PN 位置开始,以每秒15o 的速度逆时针旋转,当PQ 与PN 成105o 时停止旋转,旋转的时间为t 秒.同时射线PM 绕点P 以每秒10o 的速度顺时针旋转,并与PQ 同时停止旋转.请直接写出射线PQ 是MPN ∠“定分线”时t 的值. 30.已知两点A B 、在数轴上,a 与31-互为相反数,点A 表示的数是a ,且10AB =.(1)点B 表示的数为______;(2)如图1,当点A B 、位于原点O 的同侧时,动点P Q 、分别从点A B 、处在数轴上同时相向而行,动点P 的速度是动点Q 的速度的1.5倍,4秒后两动点相遇,当动点Q 到达点A 时,运动停止.在整个运动过程中,是否存在某个时刻t (秒),使得,P Q 两点的距离为5,若存在,请求出t 的值,若不存在,请说明理由;(3)如图2,当点A B 、位于原点O 的异侧时,动点P Q 、分别从点A B 、处在数轴上向右运动,动点Q 比动点P 晚出发1秒;当动点Q 运动2秒后,动点P 到达点C 处,此时动点P 立即掉头以原速向左运动3秒恰与动点Q 相遇;相遇后动点P 又立即掉头以原速的2倍向右运动6秒,此时动点P 到达点M 处,动点Q 到达点N 处,当2OM ON -=时,求动点P 的原速和Q 运动的速度.。

2020-2021学年重庆市育才成功校数学八下期末监测试题含解析

2020-2021学年重庆市育才成功校数学八下期末监测试题含解析

2020-2021学年重庆市育才成功校数学八下期末监测试题注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题(每小题3分,共30分)1.如图,在菱形ABCD 中,AB=5,∠BCD=120°,则△ABC 的周长等于( )A .20B .15C .10D .52.一次函数y=kx+b ,当k<0,b<0时,它的图象大致为( )A .B .C .D .3.如图,在△ABC 中,BC =5,AC =8,AB 的垂直平分线交AB 于点D ,交AC 于点E ,则△BCE 的周长等于( )A .18B .15C .13D .124.如图,在ABC ∆中,90ACB ∠=,CD AB ⊥,垂足为D ,点E 是边AB 的中点,10AB =,4DE =,则AEC S ∆=( )A .8B .7.5C .7D .65.已知不等式组122123x a x x -≥⎧⎪+-⎨>⎪⎩的解集如图所示(原点未标出,数轴的单位长度为1),则 a 的值为( )A .4B .3C .2D .16.如图,在菱形ABCD 中,点E ,F ,G ,H 分别是边AB ,BC ,CD 和DA 的中点,连接EF ,FG ,GH 和HE ,若EH=2EF=2,则菱形ABCD 的边长为( )A .5B .2 5C .2D .47. “弘扬柳乡工匠精神,共筑乡村振兴之梦”第三届柳编文化节暨首届“襄阳人游襄州”启动仪式在浩然广场举行。

为了迎接此次盛会,某工艺品厂柳编车间组织16名工人赶制一批柳编工艺品,为了解每名工人的日均生产能力,随机调查了某天每个工人的生产件数,获得数据如下表:则这一天16名工人生产件数的众数和中位数分别是( )A .5件、4件B .3件、2件C .3件、4件D .5件、3件8.下列多项式中不能用公式进行因式分解的是( )A .a 2+a +14B .a 2+b 2-2abC .2225a b -+D .24b --9.若一个三角形各边的长度都扩大2倍,则扩大后的三角形各角的度数都( )A .缩小2倍B .不变C .扩大2倍D .扩大4倍10.现有一块长方形绿地,它的短边长为20 m ,若将短边增大到与长边相等(长边不变),使扩大后的绿地的形状是正方形,则扩大后的绿地面积比原来增加300 m 2,设扩大后的正方形绿地边长为xm ,下面所列方程正确的是( )A .x(x-20)=300B .x(x+20)=300C .60(x+20)=300D .60(x-20)=300二、填空题(每小题3分,共24分)11.当1≤x≤5时,()215_____________x x -+-=12.在□ABCD 中,∠A ,∠B 的度数之比为2:7,则∠C=__________.13.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有60个,除颜色外,形状、大小、质地等完全相同.小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,则口袋中白色球的个数很可能是 .14.一个矩形在直角坐标平面上的三个顶点的坐标分别是(﹣2,﹣1)、(3,﹣1)、(﹣2,3),那么第四个顶点的坐标是_____.15.如图,正方形ABCD 的边长为5 cm ,E 是AD 边上一点,3AE =cm.动点P 由点D 向点C 运动,速度为2 cm/s ,EP 的垂直平分线交AB 于M ,交CD 于N .设运动时间为t 秒,当//PM BC 时,t 的值为______.16.如图,五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,连接A 、B 两个顶点,过顶点C 作CD ⊥AB ,垂足为D .“十字”形被分割为了①、②、③三个部分,这三个部分恰好可以无缝隙、不重合地拼成一个矩形,这个矩形的长与宽的比值为________.1721+=_____. 18.利用因式分解计算:2012-1992=_________;三、解答题(共66分)19.(10分)小明和同桌小聪在课后复习时,对练习册“目标与评定”中的一道思考题,进行了认真地探索.(思考题)如图,一架2.5米长的梯子AB 斜靠在竖直的墙AC 上,这时B 到墙C 的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么点B 将向外移动多少米?(1)请你将小明对“思考题”的解答补充完整:解:设点B将向外移动x米,即BB1=x,则A1B1=2.5,在Rt△A1B1C中,由B1C2+A1C2=A1B12,得方程______,解方程,得x1=______,x2=______,∴点B将向外移动______米.(2)解完“思考题”后,小聪提出了如下两个问题:①(问题一)在“思考题”中,将“下滑0.4米”改为“下滑0.9米”,那么该题的答案会是0.9米吗?为什么?②(问题二)在“思考题”中,梯子的顶端从A处沿墙AC下滑的距离与点B向外移动的距离,有可能相等吗?为什么?请你解答小聪提出的这两个问题.20.(6分)如图,在中,AD平分交BC于点D,F为AD上一点,且,BF的延长线交AC于点E.备用图(1)求证:;(2)若,,,求DF的长;21.(6分)如图1,矩形ABCD的四边上分别有E、F、G、H四点,顺次连接四点得到四边形EFGH.若∠1=∠2=∠3=∠4,则四边形EFGH为矩形ABCD的“反射四边形”.(1)请在图2,图3中分别画出矩形ABCD的“反射四边形EFGH”.(2)若AB=4,BC=8,请在图2,图3中任选其一,计算“反射四边形EFGH”的周长.22.(8分)某商店销售10台A 型和20台B 型电脑的利润为4000元,销售20台A 型和10台B 型电脑的利润为3500元.(1)求每台A 型电脑和B 型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B 型电脑的进货量不超过A 型电脑的2倍,设购进A 型电脑x 台,这100台电脑的销售总利润为y 元.①求y 关于x 的函数关系式;②该商店购进A 型、B 型电脑各多少台,才能使销售总利润最大?最大利润是多少?23.(8分)如图,点D 是ABC ∆边BC 上的中点,,⊥⊥DE AC DF AB ,垂足分别是点E F 、.(1)若B C ∠=∠,求证:∆≅∆BFD CED ;(2)若90B C ∠+∠=︒,求证:四边形AEDF 是矩形.24.(8分)已知:如图,在△ABC 中,D 是AC 上一点,32CB CA CD CB ==,△BCD 的周长是24cm . (1)求△ABC 的周长;(2)求△BCD 与△ABD 的面积比.25.(10分)在正方形ABCD 中,点E 是边CD 的中点,点M 是对角线AC 上的动点,连接ME ,过点M 作MF ME ⊥交正方形的边于点F ;(1)当点F 在边BC 上时,①判断ME 与MF 的数量关系;②当AEM DFM ∠=∠时,判断点M 的位置;(2)若正方形的边长为2,请直接写出点F 在BC 边上时,AM 的取值范围.26.(10分)已知n 边形的内角和θ=(n ﹣2)×180°.(1)甲同学说,θ能取900°;而乙同学说,θ也能取800°.甲、乙的说法对吗?若对,求出边数n .若不对,说明理由;(2)若n 边形变为(n +x )边形,发现内角和增加了540°,用列方程的方法确定x .参考答案一、选择题(每小题3分,共30分)1、B【解析】∵ABCD 是菱形,∠BCD=120°,∴∠B=60°,BA=BC .∴△ABC 是等边三角形.∴△ABC 的周长=3AB=1.故选B2、B【解析】【分析】根据一次函数的性质可得出结论.【详解】解:因为0k <,一次项系数0k <, 则y 随x 的增大而减少,函数经过二,四象限; 常数项0b <,则函数一定经过三、四象限; 因而一次函数y kx b =+的图象一定经过第二、三、四象限.故选B .【点睛】本题考查了一次函数的图像和性质,熟练掌握函数的性质是解题关键.3、C【解析】【分析】先根据线段垂直平分线的性质得出AE BE =,故可得出BCE ∆的周长()BE CE BC AC BC =++=+,由此即可得出结论.【详解】 解:在ABC ∆中,8AC =,5BC =,DE 是线段AB 的垂直平分线,AE BE ∴=,BCE ∴∆的周长()8513BE CE BC AC BC =++=+=+=.故选:C .【点睛】本题考查的是线段垂直平分线的性质,即线段垂直平分线上的点到线段两端的距离相等.4、B【解析】【分析】根据直角三角形的性质得到AE=BE=CE=12AB=5,根据勾股定理得到,根据三角形的面积公式即可得到结论.【详解】解:∵在△ABC 中,∠ACB=90°,C 点E 是边AB 的中点,∴AE=BE=CE=12AB=5, ∵CD ⊥AB ,DE=4,∴,∴S △AEC =S △BEC =12×BE•CD=12×5×3=7.5, 故选:B .【点睛】本题考查了直角三角形斜边上的中线,能求出AE=CE 是解此题的关键,注意:直角三角形斜边上的中线等于斜边的一半5、A【解析】【分析】首先解不等式组,然后即可判定a 的值.【详解】1x a -≥,解得1x a ≥+22123x x +->,解得8x < 由数轴,得4a =故选:A.【点睛】此题主要考查根据不等式组的解集求参数的值,熟练掌握,即可解题.6、A【解析】【分析】连接AC 、BD 交于O ,根据菱形的性质得到AC ⊥BD ,OA=OC ,OB=OD ,根据三角形中位线定理、矩形的判定定理得到四边形EFGH 是矩形,根据勾股定理计算即可.【详解】连接AC 、BD 交于O ,∵四边形ABCD 是菱形,∴AC ⊥BD ,OA=OC ,OB=OD ,∵点E 、F 、G 、H 分别是边AB 、BC 、CD 和DA 的中点,∴EF=12AC ,EH=12BD, EF ∥AC ,EH ∥BD , ∴四边形EFGH 是平行四边形,EH⊥EF,∴四边形EFGH 是矩形,∵EH=2EF =2,∴OB=2OA =2,∴==.故选:A.【点睛】考查的是中点四边形,掌握菱形的性质、三角形中位线定理是解题的关键.7、C【解析】【分析】中位数是将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数,如果数据的个数是偶数就是中间两个数的平均数,众数是指一组数据中出现次数最多的数据.【详解】数据3出现的次数最多,所以众数为3件;因为共16人,所以中位数是第8和第9人的平均数,即中位数=4+42=4件, 故选:C.【点睛】本题考查众数和中位数,解题关键在于熟练掌握计算法则.8、D【解析】【分析】A.B 可以用完全平方公式()2222a ab b a b ±+=±;C.可以用完全平方公式()()22a b a b a b -=+-;D. 不能用公式进行因式分解.【详解】A. 221142a a a ⎛⎫++=+ ⎪⎝⎭,用完全平方公式; B .()2222a b ab a b +-=-,用完全平方公式;C. ()()222555a b b a b a -+=+-,用平方差公式;D. ()2244b b--=-+不能用公式.故正确选项为D. 【点睛】此题主要考核运用公式法因式分解.解题的关键在于熟记整式乘法公式,要分析式子所具备的必要条件,包括符号问题.9、B【解析】【分析】由一个三角形各边的长度都扩大2倍,可得新三角形与原三角形相似,然后由相似三角形的对应角相等,求得答案.【详解】解:∵一个三角形各边的长度都扩大2倍,∴新三角形与原三角形相似,∴扩大后的三角形各角的度数都不变.故选:B .【点睛】此题考查了相似三角形的判定与性质.注意根据题意得到新三角形与原三角形相似是解此题的关键.10、A【解析】【分析】设扩大后的正方形绿地边长为xm ,根据“扩大后的绿地面积比原来增加300m 2”建立方程即可.【详解】设扩大后的正方形绿地边长为xm ,根据题意得x (x-20)=300,故选A .【点睛】本题考查了由实际问题抽象出一元二次方程,解题的关键是弄清题意,并找到等量关系.二、填空题(每小题3分,共24分)11、1.【解析】试题分析:根据x 的取值范围,可判断出x-1和x-5的符号,然后再根据二次根式的性质和绝对值的性质进行化简. 试题解析:∵1≤x≤5,∴x-1≥2,x-5≤2.故原式=(x-1)-(x-5)=x-1-x+5=1.考点: 二次根式的性质与化简.12、40°【解析】分析:平行四边形两组对边分别平行,两直线平行,同旁内角互补.又因为∠A,∠B的度数之比为2:1.所以可求得两角分别是40°,140°,根据平行四边形的两组对角分别相等,可得∠C等于40°.详解:∵ABCD是平行四边形,∴AB∥CD,∠A=∠C,∴∠A+∠B=180°.又∵∠A,∠B的度数之比为2:1,∴∠A=180°×29=40°,∠B=180°×79=140°,∴∠C=40°.故答案为:40°.点睛:本题考查的是平行四变形的性质:平行四边形两组对边分别平行;平行四边形的两组对角分别相等.13、24【解析】∵小刚通过多次摸球实验后发现其中摸到红色、黑色球的频率稳定在15%和45%,∴口袋中白色球的个数很可能是(1-15%-45%)×60=24个.14、(3,3)【解析】【分析】因为(-2,-1)、(-2,3)两点横坐标相等,长方形有一边平行于y轴,(-2,-1)、(3,-1)两点纵坐标相等,长方形有一边平行于x轴,即可求出第四个顶点的坐标.【详解】解:过(﹣2,3)、(3,﹣1)两点分别作x轴、y轴的平行线,交点为(3,3),即为第四个顶点坐标.故答案为:(3,3).【点睛】此题考查坐标与图形性质,解题关键在于画出图形15、2【解析】【分析】连接ME ,根据MN 垂直平分PE ,可得MP=ME ,当//PM BC 时,BC=MP=5,所以可得EM=5,AE=3,可得AM=DP=4,即可计算出t 的值.【详解】连接ME根据MN 垂直平分PE可得PME ∆为等腰三角形,即ME=PM//PM BC5BC MP ∴==5EM ∴=3AE =4AM DP ∴==422t ∴== 故答案为2.【点睛】本题主要考查等腰三角形的性质,这类题目是动点问题的常考点,必须掌握方法.16、2【解析】【分析】如图,连接AC 、BC 、BE 、AE ,根据图形可知四边形ACBE 是正方形,进而利用正方形的性质求出即可【详解】如图,连接AC 、BC 、BE 、AE ,∵五个全等的小正方形无缝隙、不重合地拼成了一个“十字”形,∴四边形ACBE 是正方形,∵CD ⊥AB ,∴点D 为对角线AB 、CE 的交点,∴CD=12AB , ∴这个矩形的长与宽的比值为AB CD =2,故答案为:2【点睛】此题主要考查了图形的剪拼,正确利用正方形的性质是解题关键. 17、【解析】【详解】 22121(21)(21)==++-, 21考点:分母有理化18、800【解析】分析:先利用平方差公式分解因式,然后计算即可求解.详解:2012-1992=(201+199)(201-199)=800.故答案为800.点睛:本题考查了因式分解在进行有理数的乘法中的运用,涉及的是平方差公式的运用,使运算简便.三、解答题(共66分)19、 (1) (x +0.7)2+22=2.52 ,0.8,-2.2(舍去),0.8 ;(2)【问题一】不会是0.9米,理由见解析;【问题二】有可能,理由见解析.【解析】(1)直接把B1C、A1C、A1B1的值代入进行解答即可;(2)把(1)中的0.4换成0.9可知原方程不成立;设梯子顶端从A处下滑x米,点B向外也移动x米代入(1)中方程,求出x的值符合题意.【详解】(1) (x+0.7)2+22=2.52,0.8 , -2.2(舍去), 0.8;(2)【问题一】不会是0.9米.若AA1=BB1=0.9,则A1C=2.4-0.9=1.5,B1C=0.7+0.9=1.6,1.52+1.62=4.81,2.52=6.25,∵A1C2+B1C2≠A1B12,∴该题的答案不会是0.9米;【问题二】有可能.设梯子顶端从A处下滑x米,点B向外也移动x米,则有(x+0.7)2+(2.4-x)2=2.52,解得x=1.7或x=0(舍去).∴当梯子顶端从A处下滑1.7米时,点B向外也移动1.7米,即梯子顶端从A处沿墙AC下滑的距离与点B向外移动的距离有可能相等.【点睛】本题考查的是解直角三角形的应用及一元二次方程的应用,根据题意得出关于x的一元二次方程是解答此题的关键.20、(1)详见解析;(2)【解析】【分析】(1)证△AFB∽△ADC即可(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC=3,再证△BHD∽△CND即可【详解】(1)∵AD平分∠BAC∴∠BAF=∠DAC又∵BF=BD∴∠BFD=∠FDB∴∠AFB=∠ADC∴△AFB∽△ADC∴AB•AD=AF•AC(2)作BH⊥AD于H,作CN⊥AD于N,则BH=AB=2,CN=AC=3∴AH=BH=2,AN=CN=3∴HN=∵∠BHD=∠CDN∴△BHD∽△CND∴∴HD=又∵BF=BD,BH⊥DF∴DF=2HD=【点睛】考查相似三角形的性质,含30°角的直角三角形.灵活运用相似三角形的边的比例关系是解题的关键.21、(1)见解析;(2)5【解析】【分析】(1)根据反射四边形的定义即可得;(2)利用勾股定理分别求得各边的长度,由周长公式求解可得.【详解】解:(1)如图所示,四边形EFGH即为所求;(2)在图②中,EF=FG=GH=HE222425+=,∴反射四边形EFGH的周长为5在图③中,EF=GH2222125,HE GF3635+===+=∴反射四边形EFGH的周长为2523585⨯=.【点睛】本题主要考查作图-应用与设计作图,熟练掌握勾股定理是解题的关键.22、(1)A型:100元,B型:150元;(2)①y=-50x+15000;②34台A型电脑和66台B型,利润最大,最大利润是1元【解析】【分析】(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;然后根据销售10台A型和20台B型电脑的利润为4000元,销售20台A型和10台B型电脑的利润为3500元列出方程组,然后求解即可;(2)①根据总利润等于两种电脑的利润之和列式整理即可得解;②根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可.【详解】解:(1)设每台A型电脑销售利润为a元,每台B型电脑的销售利润为b元;根据题意得10204000 20103500a ba b+=⎧⎨+=⎩,解得100150 ab=⎧⎨=⎩.答:每台A型电脑销售利润为100元,每台B型电脑的销售利润为150元;(2)①根据题意得,y=100x+150(100-x),即y=-50x+15000;②据题意得,100-x≤2x,解得x≥3313,∵y=-50x+15000,∴y随x的增大而减小,∵x为正整数,∴当x=34时,y取最大值,则100-x=66,此时最大利润是y=-50×34+15000=1.即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是1元.【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握.23、(1)证明见解析;(2)证明见解析.【解析】【分析】(1)由“SAS”可证△BFD≌△CED;(2)由三角形内角和定理可得∠A=90°,由三个角是直角的四边形是矩形可判定四边形AEDF是矩形.【详解】证明:(1)∵点D是△ABC边BC上的中点∴BD=CD又∵DE⊥AC,DF⊥AB,垂足分别是点E、F∴∠BFD=∠DEC=90°∵BD=CD,∠BFD=∠DEC,∠B=∠C∴△BFD≌△CED (AAS)(2)∵∠B+∠C=90°,∠A+∠B+∠C=180°∴∠A=90°∵∠BFD=∠DEC=90°∴∠A=∠BFD=∠DEC=90°∴四边形AEDF是矩形【点睛】本题考查了矩形的判定,全等三角形的判定和性质,熟练运用矩形的判定是本题的关键.24、 (1)36cm;(2)45【解析】 试题分析:(1)根据相似三角形的周长的比等于相似比进行计算即可;(2)根据相似三角形的面积的比等于相似比的平方进行计算即可.试题解析:(1) ∵CB CA CD CB=,C C ∠=∠ ∴BCD ∆∽ACB ∆ ∴23BCD ACB C C ∆∆= ∵BCD ∆的周长是24cm∴ABC ∆的周长是36cm(2) ∵BCD ∆∽ACB ∆ ∴49BCD ACB S S ∆∆= ∴45BCD ACD S S ∆∆= 25、(1)①ME MF =,理由详见解析;②点M 位于正方形两条对角线的交点处(或AC 中点出),理由详见解析;(2AM << 【解析】【分析】(1) ①过点M 作MG CD ⊥于点G ,MH BC ⊥于点H ,通过证,MFH MGE ∆∆≌可得ME=MF ;②点M 位于正方形两条对角线的交点处时,,AE DF MFD MAE =∆∆≌,可得AEM DFM ∠=∠;(2)当点F 分别在BC 的中点处和端点处时,可得M 的位置,进而得出AM 的取值范围。

育才中学数学试题及答案

育才中学数学试题及答案

育才中学数学试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 3.1415B. πC. 0.33333D. √22. 已知a > 0,b < 0,且|a| < |b|,下列哪个不等式是正确的?A. a + b > 0B. a - b > 0C. a + b < 0D. a - b < 03. 函数f(x) = 2x^2 - 3x + 1在x=1处的导数值是:A. 1B. 4C. -2D. 54. 一个圆的半径为5,那么它的面积是:A. 25πB. 50πC. 100πD. 200π5. 一个直角三角形的两条直角边分别为3和4,斜边的长度是:A. 5B. 6C. 7D. 86. 集合A={1, 2, 3},集合B={2, 3, 4},那么A∩B是:A. {1}B. {2, 3}C. {3, 4}D. {1, 2, 3}7. 已知等差数列的首项为a1=2,公差为d=3,第5项a5的值是:A. 14B. 17C. 20D. 238. 一个正方体的体积为27立方厘米,那么它的边长是:A. 3厘米B. 6厘米C. 9厘米D. 12厘米9. 已知函数y=x^2-4x+4,当x=2时,y的值是:A. 0B. 4C. 8D. 1210. 一个圆的周长为44厘米,那么它的半径是:A. 7厘米B. 11厘米C. 22厘米D. 44厘米答案:1. B2. C3. B4. B5. A6. B7. A8. A9. A10. B二、填空题(每题2分,共20分)1. 一个数的平方根是4,那么这个数是 _ 。

2. 一个三角形的内角和等于 _ 度。

3. 一个等腰三角形的底边长为6,两腰长为5,它的周长是 _ 。

4. 一个二次方程ax^2+bx+c=0的判别式是 _ 。

5. 一个数的对数以10为底是2,那么这个数是 _ 。

6. 一个圆的直径为14厘米,那么它的半径是 _ 厘米。

重庆第一中学数学旋转几何综合易错题(Word版 含答案)

重庆第一中学数学旋转几何综合易错题(Word版 含答案)

重庆第一中学数学旋转几何综合易错题(Word版含答案)一、初三数学旋转易错题压轴题(难)1.探究:如图①和②,在四边形ABCD中,AB=AD,∠BAD=90°,点E、F分别在BC、CD 上,∠EAF=45°.(1)如图①,若∠B、∠ADC都是直角,把ABE△绕点A逆时针旋转90°至△ADG,使AB与AD重合,则能得EF=BE+DF,请写出推理过程;(2)如图②,若∠B、∠D都不是直角,则当∠B与∠D满足数量关系时,仍有EF=BE+DF;(3)拓展:如图③,在ABC中,∠BAC=90°,AB=AC=22,点D、E均在边BC上,且∠DAE=45°.若BD=1,求DE的长.【答案】(1)见解析;(2)∠B+∠D=180°;(3)5 3【解析】【分析】(1)根据已知条件证明△EAF≌△GAF,进而得到EF=FG,即可得到答案;(2)先作辅助线,把△ABE绕A点旋转到△ADG,使AB和AD重合,根据(1),要使EF=BE+DF,需证明△EAF≌△GAF,因此需证明F、D、G在一条直线上,即180ADG ADF∠+∠=︒,即180B D∠+∠=︒;(3)先作辅助线,把△AEC绕A点旋转到△AFB,使AB和AC重合,连接DF,根据已知条件证明△FAD≌△EAD,设DE=x,则DF=x,BF=CE=3﹣x,然后再Rt BDF中根据勾股定理即可求出x的值,即DE的长.【详解】(1)解:如图,∵把△ABE绕点A逆时针旋转90°至△ADG,使AB与AD重合,∴AE=AG,∠BAE=∠DAG,BE=DG,∵∠BAD=90°,∠EAF=45°,∴∠BAE+∠DAF=45°,∴∠DAG+∠DAF=45°,即∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;(2)解:∠B+∠D=180°,理由是:如图,把△ABE绕A点旋转到△ADG,使AB和AD重合,则AE=AG,∠B=∠ADG,∠BAE=∠DAG,∵∠B+∠ADC=180°,∴∠ADC+∠ADG=180°,∴F、D、G在一条直线上,和(1)类似,∠EAF=∠GAF=45°,在△EAF和△GAF中AF AFEAF GAFAE AG=⎧⎪∠=∠⎨⎪=⎩∴△EAF≌△GAF(SAS),∴EF=GF,∵BE=DG,∴EF=GF=BE+DF;故答案为:∠B+∠D=180°;(3)解:∵△ABC中,2BAC=90°,∴∠ABC=∠C=45°,由勾股定理得:22AB AC+,如图,把△AEC 绕A 点旋转到△AFB ,使AB 和AC 重合,连接DF .则AF=AE ,∠FBA=∠C=45°,∠BAF=∠CAE ,∵∠DAE=45°,∴∠FAD=∠FAB+∠BAD=∠CAE+∠BAD=∠BAC ﹣∠DAE=90°﹣45°=45°,∴∠FAD=∠DAE=45°,在△FAD 和△EAD 中AD AD FAD EAD AF AE =⎧⎪∠=∠⎨⎪=⎩∴△FAD ≌△EAD ,∴DF=DE ,设DE=x ,则DF=x ,∵BD=1,∴BF=CE=4﹣1﹣x=3﹣x ,∵∠FBA=45°,∠ABC=45°,∴∠FBD=90°,由勾股定理得:222DF BF BD =+,22(3)1x x =-+, 解得:x=53, 即DE=53. 【点睛】本题综合考查三角形的性质和判定、正方形的性质应用、全等三角形的性质和判定、勾股定理等知识,解题关键在于正确做出辅助线得出全等三角形.2.如图1,在Rt ABC △中,90A ∠=︒,AB AC =,点D ,E 分别在边AB ,AC 上,AD AE =,连接DC ,点M ,P ,N 分别为DE ,DC ,BC 的中点.(1)观察猜想:图1中,线段PM 与PN 的数量关系是_________,位置关系是_________;(2)探究证明:把ADE 绕点A 逆时针方向旋转到图2的位置,连接MN ,BD ,CE ,判断PMN 的形状,并说明理由;(3)拓展延伸:把ADE 绕点A 在平面内自由旋转,若4=AD ,10AB =,请直接写出PMN 面积的最大值.【答案】(1)PM PN =,PM PN ⊥;(2)等腰直角三角形,见解析;(3)492【解析】【分析】(1)由三角形中位线定理及平行的性质可得PN 与PM 等于DE 或CE 的一半,又△ABC 为等腰直角三角形,AD=AE ,所以得PN=PM ,且互相垂直;(2)由旋转可推出BAD CAE ∆∆≌,再利用PM 与PN 皆为中位线,得到PM=PN ,再利用角度间关系推导出垂直即可;(3)找到面积最大的位置作出图形,由(2)可知PM=PM ,且PM ⊥PN ,利用三角形面积公式求解即可.【详解】(1)PM PN =,PM PN ⊥;已知点M ,P ,N 分别为DE ,DC ,BC 的中点,根据三角形的中位线定理可得 12PM EC =,12PN BD =,//PM EC ,//PN BD 根据平行线性质可得DPM DCE ∠=∠,NPD ADC ∠=∠在Rt ABC ∆中,90A ∠=︒,AB AC =,AD AE =可得BD EC =,90DCE ADC ∠+∠=︒即得PM PN =,PM PN ⊥故答案为:PM PN =;PM PN ⊥.(2)等腰直角三角形,理由如下:由旋转可得BAD CAE ∠=∠,又AB AC =,AD AE =∴BAD CAE ∆∆≌∴BD CE =,ABD ACE ∠=∠,∵点M ,P 分别为DE ,DC 的中点∴PM 是DCE ∆的中位线∴12PM CE =,且//PM CE , 同理可证12PN BD =,且//PN BD ∴PM PN =,MPD ECD ∠=∠,PNC DBC ∠=∠,∴MPD ECD ACD ACE ACD ABD ∠=∠=∠+∠=∠+∠,DPN PNC PCN DBC PCN ∠=∠+∠=∠+∠,∴90MPN MPD DPN ACD ABD DBC PCN ABC ACB ∠=∠+∠=∠+∠+∠+∠=∠+∠=︒,即PMN ∆为等腰直角三角形.(3)把ADE ∆绕点A 旋转的如图的位置,此时1()72PN AD AB =+=,1()72PM AE AC =+= 且PN 、PM 的值最长,由(2)可知PM PN =,PM PN ⊥ 所以PMN ∆面积最大值为1497722⨯⨯=. 【点睛】本题主要考查三角形中位线的判定及性质、全等三角形的判定及性质、等腰直角三角形的判定及性质、旋转的性质等相关知识,解题关键在于找到图形中各角度之间的数量关系.3.在△ABC 中,∠C =90°,AC =BC =6.(1)如图1,若将线段AB 绕点B 逆时针旋转90°得到线段BD ,连接AD ,则△ABD 的面积为 .(2)如图2,点P 为CA 延长线上一个动点,连接BP ,以P 为直角顶点,BP 为直角边作等腰直角△BPQ ,连接AQ ,求证:AB ⊥AQ ;(3)如图3,点E ,F 为线段BC 上两点,且∠CAF =∠EAF =∠BAE ,点M 是线段AF 上一个动点,点N是线段AC上一个动点,是否存在点M,N,使CM+NM的值最小,若存在,求出最小值:若不存在,说明理由.【答案】(1)36;(2)详见解析;(3)存在,最小值为3.【解析】【分析】(1)根据旋转的性质得到△ABD是等腰直角三角形,求得AD=2BC=12,根据三角形的面积公式即可得到结论;(2)如图2,过Q作QH⊥CA交CA的延长线于H,根据等腰直角三角形的性质,得到PQ =PB,∠BPQ=90°,根据全等三角形的性质得到PH=BC,QH=CP,求得CP=AH,得到∠HAQ=45°,于是得到∠BAQ=180°﹣45°﹣45°=90°,即可得到结论;(3)根据已知条件得到∠CAF=∠EAF=∠BAE=15°,求得∠EAC=30°,如图3,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,则此时,CM+NM的值最小,且最小值=DN,求得AD=AC=6,根据直角三角形的性质即可得到结论.【详解】解:(1)∵将线段AB绕点B逆时针旋转90°得到线段BD,∴△ABD是等腰直角三角形,∵∠ACB=90°,∴BC⊥AD,∴AD=2BC=12,∴△ABD的面积=12AD•BC=1212×6=36,故答案为:36;(2)如图,过Q作QH⊥CA交CA的延长线于H,∴∠H=∠C=90°,∵△BPQ是等腰直角三角形,∴PQ=PB,∠BPQ=90°,∴∠HPQ+∠BPC=∠QPH+∠PQH=90°,∴∠PQH=∠BPC,∴△PQH≌△BPC(AAS),∴PH=BC,QH=CP,∵AC=BC,∴PH=AC,∴CP=AH,∴QH=AH,∴∠HAQ=45°,∵∠BAC=45°,∴∠BAQ=180°﹣45°﹣45°=90°,∴AB⊥AQ;(3)如图,作点C关于AF的对称点D,过D作DN⊥AC于N交AF于M,∵∠CAF=∠EAF=∠BAE,∠BAC=45°,∴∠CAF=∠EAF=∠BAE=15°,∴∠EAC=30°,则此时,CM+NM的值最小,且最小值=DN,∵点C和点D关于AF对称,∴AD=AC=6,∵∠AND=90°,∴DN=12AD=126=3,∴CM+NM最小值为3.【点睛】本题是几何变换综合题,考查了全等三角形的判定与性质,旋转的性质,等腰直角三角形的性质,含30°角的直角三角形的性质,正确的作出作辅助线构造全等三角形是解题的关键.4.综合与实践问题情境在一节数学活动课上,老师带领同学们借助几何画板对以下题目进行了研究.如图1,MN是过点A的直线,点C为直线MN外一点,连接AC,作∠ACD=60°,使AC=DC,在MN上取一点B,使∠DBN=60°.观察发现(1)根据图1中的数据,猜想线段AB、DB、CB之间满足的数量关系是;(2)希望小组认真思考后提出一种证明方法:将CB所在的直线以点C为旋转中心,逆时针旋转60°,与直线MN交于点E,即可证明(1)中的结论. 请你在图1中作出线段CE,并根据此方法写出证明过程;实践探究(3)奋进小组在继续探究的过程中,将点C绕点A逆时针旋转,他们发现当旋转到图2和图3的位置时,∠DBN=120°,线段AB、BD、CB的大小发生了变化,但是仍然满足一定的数量关系,请你直接写出这两种关系:在图2中,线段AB、DB、CB之间满足的数量关系是;在图3中,线段AB、DB、CB之间满足的数量关系是;提出问题(4)智慧小组提出一个问题:若图3中BC⊥CD于点C时,BC=2,则AC为多长?请你解答此问题.【答案】(1)AB+DB=CB;(2)见解析;(3)AB-DB=CB;DB-AB=CB;(4)23【解析】【分析】(1)根据图中数据直接猜想AB+DB=CB(2)在射线AM上一点E,使得∠ECB=60°,证明△ACE≌△DCB,推出EB=CB从而得出(1)中的结论;(3)利用旋转的性质和线段的和差关系以及全等三角形的性质得出线段关系;(4)过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.证明△ACE≌△DCB,得出BC=EC,结合△ECB为等边三角形,得出∠ECA=90°,在Rt△AEC中根据边长计算出AC的长度.【详解】综合与实践(1)AB+DB=CB(2)线段CE如图所示.证明:∵∠ECB=∠ACD=60º,∴∠2+∠ACB=∠1+∠ACB,∴∠2=∠1.∵∠ACD=∠DBN=60º, ∠ABD+∠DBN=180º,∴∠ABD+∠ACD=180º,∴在四边形ACDB中,∠CAB+∠3=180º.∵∠CAB+∠4=180º,∴∠4=∠3.又∵AC=DC,∴△ACE≌△DCB(ASA)∴EA=BD,EC=BC.又∵∠ECB=60°,∴△ECB为等边三角形,∴EB=CB.而EB=EA+AB=DB+AB,∴CB=DB+AB.(3) AB-DB=CB;DB-AB=CB;(4)证明:如图,过点C作∠BCE=60º,边CE与直线MN交于点E,设AC与BD交于点F.∵∠DCA=60º∴∠ECB+∠BCA=∠DCA+∠BCA即∠ECA=∠BCD∵∠DBN=120º∴∠DBA=60º又∵∠AFB=∠DFC∴∠EAF=∠BDC又∵AC=DC∴△ACE≌△DCB(ASA)∴BC=EC∴△ECB为等边三角形∴∠CEB=60º∵BC⊥CD∴∠ECA=∠BCD=90º∴在Rt△AEC中,∠CAE=30º∵BC=2,EC=BC∴AC=EC·tan60º= 3【点睛】本题考查了全等三角形的判定和性质,旋转的性质,根据题中条件适当添加辅助线构造全等三角形,利用全等的性质得出线段关系是本题的关键.5.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F 为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.6.请认真阅读下面的数学小探究系列,完成所提出的问题:()1探究1:如图1,在等腰直角三角形ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 求证:BCD 的面积为21.(2a 提示:过点D 作BC 边上的高DE ,可证ABC ≌)BDE ()2探究2:如图2,在一般的Rt ABC 中,90ACB ∠=,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 请用含a 的式子表示BCD 的面积,并说明理由. ()3探究3:如图3,在等腰三角形ABC 中,AB AC =,BC a =,将边AB 绕点B 顺时针旋转90得到线段BD ,连接.CD 试探究用含a 的式子表示BCD 的面积,要有探究过程.【答案】(1)详见解析;(2)BCD 的面积为212a ,理由详见解析;(3)BCD 的面积为214a . 【解析】【分析】 ()1如图1,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()2如图2,过点D 作BC 的垂线,与BC 的延长线交于点E ,由垂直的性质就可以得出ABC ≌BDE ,就有DE BC a.==进而由三角形的面积公式得出结论;()3如图3,过点A 作AF BC ⊥与F ,过点D 作DE BC ⊥的延长线于点E ,由等腰三角形的性质可以得出1BF BC 2=,由条件可以得出AFB ≌BED 就可以得出BF DE =,由三角形的面积公式就可以得出结论.【详解】()1如图1,过点D 作DE CB ⊥交CB 的延长线于E ,BED ACB 90∠∠∴==,由旋转知,AB AD =,ABD 90∠=,ABC DBE 90∠∠∴+=,A ABC 90∠∠+=,A DBE ∠∠∴=,在ABC 和BDE 中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AASBC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()2BCD的面积为21a2,理由:如图2,过点D作BC的垂线,与BC的延长线交于点E,BED ACB90∠∠∴==,线段AB绕点B顺时针旋转90得到线段BE,AB BD∴=,ABD90∠=,ABC DBE90∠∠∴+=,A ABC90∠∠+=,A DBE∠∠∴=,在ABC和BDE中,ACB BEDA DBEAB BD∠=∠⎧⎪∠=∠⎨⎪=⎩,ABC∴≌()BDE AAS,BC DE a∴==,BCD1S BC DE2=⋅,2BCD1S a2∴=;()3如图3,过点A作AF BC⊥与F,过点D作DE BC⊥的延长线于点E,AFB E 90∠∠∴==,11BF BC a 22==, FAB ABF 90∠∠∴+=, ABD 90∠=,ABF DBE 90∠∠∴+=,FAB EBD ∠∠∴=,线段BD 是由线段AB 旋转得到的,AB BD ∴=, 在AFB 和BED 中,AFB E FAB EBD AB BD ∠=∠⎧⎪∠=∠⎨⎪=⎩, AFB ∴≌()BED AAS ,1BF DE a 2∴==, 2BCD 1111S BC DE a a a 2224=⋅=⋅⋅=, BCD ∴的面积为21a 4. 【点睛】本题考查了旋转的性质、直角三角形的性质、等腰三角形的性质、全等三角形的判定与性质、三角形的面积等,综合性较强,有一定的难度,正确添加辅助线、熟练掌握和灵活运用相关的性质与定理是解题的关键.7.如图1,在平面直角坐标系xOy 中,抛物线C :y =ax 2+bx +c 与x 轴相交于A ,B 两点,顶点为D (0,4),AB 2F (m ,0)是x 轴的正半轴上一点,将抛物线C 绕点F 旋转180°,得到新的抛物线C ′.(1)求抛物线C 的函数表达式;(2)若抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,求m 的取值范围. (3)如图2,P 是第一象限内抛物线C 上一点,它到两坐标轴的距离相等,点P 在抛物线C ′上的对应点P ′,设M 是C 上的动点,N 是C ′上的动点,试探究四边形PMP ′N 能否成为正方形?若能,求出m 的值;若不能,请说明理由.【答案】(1)2142y x =-+;(2)2<m <223)m =6或m 17﹣3. 【解析】【分析】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-,由此即可解决问题; (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩,消去y 得到222280x mx m -+-=,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩,解不等式组即可解决问题; (3)情形1,四边形PMP ′N 能成为正方形.作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,推出PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,可得M (m +2,m ﹣2),理由待定系数法即可解决问题;情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),利用待定系数法即可解决问题.【详解】(1)由题意抛物线的顶点C (0,4),A (20),设抛物线的解析式为24y ax =+,把A (220)代入可得a =12-, ∴抛物线C 的函数表达式为2142y x =-+. (2)由题意抛物线C ′的顶点坐标为(2m ,﹣4),设抛物线C ′的解析式为()21242y x m =--,由()221421242y x y x m ⎧=-+⎪⎪⎨⎪=--⎪⎩, 消去y 得到222280x mx m -+-= ,由题意,抛物线C ′与抛物线C 在y 轴的右侧有两个不同的公共点,则有()222(2)428020280m m m m ⎧--->⎪⎪>⎨⎪->⎪⎩, 解得2<m <22,∴满足条件的m 的取值范围为2<m <22.(3)结论:四边形PMP ′N 能成为正方形.理由:1情形1,如图,作PE ⊥x 轴于E ,MH ⊥x 轴于H .由题意易知P (2,2),当△PFM 是等腰直角三角形时,四边形PMP ′N 是正方形,∴PF =FM ,∠PFM =90°,易证△PFE ≌△FMH ,可得PE =FH =2,EF =HM =2﹣m ,∴M (m +2,m ﹣2),∵点M 在2142y x =-+上,∴()212242m m -=-++,解得m 17﹣3173(舍弃),∴m 17﹣3时,四边形PMP ′N 是正方形.情形2,如图,四边形PMP ′N 是正方形,同法可得M (m ﹣2,2﹣m ),把M (m ﹣2,2﹣m )代入2142y x =-+中,()212242m m -=--+,解得m =6或0(舍弃),∴m =6时,四边形PMP ′N 是正方形.综上所述:m=6或m=17﹣3时,四边形PMP′N是正方形.8.(操作发现)(1)如图1,△ABC为等边三角形,先将三角板中的60°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于30°),旋转后三角板的一直角边与AB交于点D,在三角板斜边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=30°,连接AF,EF.①求∠EAF的度数;②DE与EF相等吗?请说明理由;(类比探究)(2)如图2,△ABC为等腰直角三角形,∠ACB=90°,先将三角板的90°角与∠ACB重合,再将三角板绕点C按顺时针方向旋转(旋转角大于0°且小于45°),旋转后三角板的一直角边与AB交于点D,在三角板另一直角边上取一点F,使CF=CD,线段AB上取点E,使∠DCE=45°,连接AF,EF.请直接写出探究结果:①∠EAF的度数;②线段AE,ED,DB之间的数量关系.【答案】(1)①120°②DE=EF;(2)①90°②AE2+DB2=DE2【解析】试题分析:(1)①由等边三角形的性质得出AC=BC,∠BAC=∠B=60°,求出∠ACF=∠BCD,证明△ACF≌△BCD,得出∠CAF=∠B=60°,求出∠EAF=∠BAC+∠CAF=120°;②证出∠DCE=∠FCE,由SAS证明△DCE≌△FCE,得出DE=EF即可;(2)①由等腰直角三角形的性质得出AC=BC,∠BAC=∠B=45°,证出∠ACF=∠BCD,由SAS 证明△ACF ≌△BCD ,得出∠CAF =∠B =45°,AF =DB ,求出∠EAF =∠BAC +∠CAF =90°; ②证出∠DCE =∠FCE ,由SAS 证明△DCE ≌△FCE ,得出DE =EF ;在Rt △AEF 中,由勾股定理得出AE 2+AF 2=EF 2,即可得出结论.试题解析:解:(1)①∵△ABC 是等边三角形,∴AC =BC ,∠BAC =∠B =60°.∵∠DCF =60°,∴∠ACF =∠BCD .在△ACF 和△BCD 中,∵AC =BC ,∠ACF =∠BCD ,CF =CD ,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =60°,∴∠EAF =∠BAC +∠CAF =120°;②DE =EF .理由如下:∵∠DCF =60°,∠DCE =30°,∴∠FCE =60°﹣30°=30°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF ;(2)①∵△ABC 是等腰直角三角形,∠ACB =90°,∴AC =BC ,∠BAC =∠B =45°.∵∠DCF =90°,∴∠ACF =∠BCD .在△ACF 和△BCD 中,∵AC =BC ,∠ACF =∠BCD ,CF =CD ,∴△ACF ≌△BCD (SAS ),∴∠CAF =∠B =45°,AF =DB ,∴∠EAF =∠BAC +∠CAF =90°;②AE 2+DB 2=DE 2,理由如下:∵∠DCF =90°,∠DCE =45°,∴∠FCE =90°﹣45°=45°,∴∠DCE =∠FCE .在△DCE 和△FCE 中,∵CD =CF ,∠DCE =∠FCE ,CE =CE ,∴△DCE ≌△FCE (SAS ),∴DE =EF .在Rt △AEF 中,AE 2+AF 2=EF 2,又∵AF =DB ,∴AE 2+DB 2=DE 2.9.已知ABC ∆是边长为4的等边三角形,点D 是射线BC 上的动点,将AD 绕点A 逆时针方向旋转60得到AE ,连接DE .(1).如图,猜想ADE ∆是_______三角形;(直接写出结果)(2).如图,猜想线段CA 、CE 、CD 之间的数量关系,并证明你的结论;(3).①当BD=___________时,30DEC ∠=;(直接写出结果)②点D 在运动过程中,DEC ∆的周长是否存在最小值?若存在.请直接写出DEC ∆周长的最小值;若不存在,请说明理由.【答案】(1)等边三角形;(2)AC CD CE +=,证明见解析;(3)①BD 为2或8时,30DEC ∠=;②最小值为423+【解析】【分析】(1)根据旋转的性质得到,60AD AE DAE =∠=,根据等边三角形的判定定理解答;(2)证明ABD ACE ∆≅∆,根据全等三角形的性质得到BD CE =,结合图形计算即可; (3)①分点D 在线段BC 上和点D 在线段BC 的延长线上两种情况,根据直角三角形的性质解答;②根据ABD ACE ∆≅∆得到CE BD =,根据垂线段最短解答.【详解】解:(1)由旋转变换的性质可知,,60AD AE DAE =∠=,ADE ∴∆是等边三角形,故答案为等边三角形;(2)AC CD CE +=,证明:由旋转的性质可知,60,DAE AD AE ∠==,ABC ∆是等边三角形60AB AC BC BAC ∴∠︒==,=,60BAC DAE ∴∠∠︒==,BAC DAC DAE DAC ∴∠+∠∠+∠=,即BAD CAE ∠∠=,在ABD ∆和ACE ∆中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ABD ACE SAS ∴∆∆≌()BD CE ∴=,CE BD CB CD CA CD ∴++===;(3)①BD 为2或8时,30DEC ∠=,当点D 在线段BC 上时,3060DEC AED ∠︒∠︒=,=,90AEC ∴∠︒=,ABD ACE ∆∆≌,9060ADB AEC B ∴∠∠︒∠︒==,又=,30BAD ∴∠︒=,122BD AB ∴==, 当点D 在线段BC 的延长线上时,3060DEC AED ∠︒∠︒=,=,30AEC ∴∠︒=,ABD ACE ∆∆≌,3060ADB AEC B ∴∠∠︒∠︒==,又=,90BAD ∴∠︒=,28BD AB ∴==,BD ∴为2或8时,30DEC ∠︒=;②点D 在运动过程中,DEC ∆的周长存在最小值,最小值为4+理由如下:ABD ACE ∆∆≌,CE BD ∴=,则DEC ∆的周长DE CE DC BD CD DE BC DE +++++===,当CE 最小时,DEC ∆的周长最小,ADE ∆为等边三角形,DE AD ∴=,AD 的最小值为23,DEC ∴∆的周长的最小值为423+.【点睛】本题考查的是旋转变换的性质、全等三角形的判定和性质、直角三角形的性质,掌握全等三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键.10.已知,正方形ABCD 的边长为4,点E 是对角线BD 延长线上一点,AE=BD .将△ABE 绕点A 顺时针旋转α度(0°<α<360°)得到△AB ′E ′,点B 、E 的对应点分别为B ′、E ′.(1)如图1,当α=30°时,求证:B ′C=DE ;(2)连接B ′E 、DE ′,当B ′E=DE ′时,请用图2求α的值;(3)如图3,点P 为AB 的中点,点Q 为线段B ′E ′上任意一点,试探究,在此旋转过程中,线段PQ 长度的取值范围为 .【答案】(1)证明见解析(2)45°或22.5°(3)2-22+2【解析】【分析】(1)先由正方形的性质得到直角三角形AOE ,再经过简单计算求出角,判断出△ADE ≌△AB′C 即可;(2)先判断出△AEB′≌△AE′D ,再根据旋转角和图形,判断出∠BAB′=∠DAB′即可;(3)先判断出点Q 的位置,PQ 最小时和最大时的位置,进行计算即可.【详解】解:(1)如图1,连接AC,B′C,∵四边形ABCD是正方形,∴AB=AD,AC⊥BD,AC=BD=2OA,∠CAB=ADB=45°,∵AE=BD,∴AC=AE=2OA,在Rt△AOE中,∠AOE=90°,AE=2OA,∴∠E=30°,∴∠DAE=∠ADB-∠E=45°-30°=15°,由旋转有,AD=AB=AB′∠BAB′=30°,∴∠DAE=15°,在△ADE和△AB′C中,'' AD ABDAE CAB AE AC=⎧⎪∠=∠⎨⎪=⎩,∴△ADE≌△AB′C,∴DE=B′C,(2)如图2,由旋转得,AB′=AB=AD,AE′=AE,在△AEB′和△AE′D中,'''' AE AE AD AB DB DE=⎧⎪=⎨⎪=⎩,∴△AEB′≌△AE′D,∴∠DAE′=∠EAB′,∴∠EAE′=∠DAB′,由旋转得,∠EAE′=∠BAB′,∴∠BAB′=∠DAB′,∵∠BAB′+∠DAB′=90°,∴α=∠BAB′=45°,或α=360°-90°-45°=225°;(3)如图3,∵正方形ABCD的边长为4,∴122,连接AC交BD于O,∴OA⊥BD,OA=12AC=122在旋转过程中,△ABE在旋转到边B'E'⊥AB于Q,此时PQ最小,由旋转知,△ABE≌△AB'E',∴AQ=OA=12BD(全等三角形对应边上的高相等),∴PQ=AQ-AP=122-2在旋转过程中,△ABE在旋转到点E在BA的延长线时,点Q和点E'重合,∴2,∴2+2,故答案为2-2+2..。

育才中学九年级数学上册第二十三章《旋转》经典测试(含解析)

育才中学九年级数学上册第二十三章《旋转》经典测试(含解析)

一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D .A 解析:A【分析】根据轴对称图形和中心对称图形的两个概念对各选项分析判断即可得解.【详解】解:A 、既是轴对称又是中心对称图形,故此项正确;B 、是轴对称,不是中心对称图形,故此项错误;C 、不是轴对称,是中心对称图形,故此项错误;D 、是轴对称,不是中心对称图形,故此项错误.故选:A .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 2.已知Rt ABC ∆中,两条直角边4AC =,3BC =,将ABC ∆绕斜边中点O 旋转,使直角顶点与点B 重合,得到与ABC ∆全等的EDB ∆,BE 边和AC 相交于点F ,则EF 的值是( )A .78B .1C .45D .23A 解析:A【分析】由旋转的性质得O 为DE 中点,可证OB=OE ,∠OBE=∠E ,进而证明AF=BF ,然后设设AF=BF=x ,根据勾股定理求解即可.【详解】解:∵ABC ∆≌EDB ∆,∴BE=AC=4, ∠A=∠E , ∠C=∠DBE=90°.∵O 为AB 中点,且△ABC 绕点O 旋转,∴O 为DE 中点,∴OB=OE ,∴∠OBE=∠E ,∴∠OBE=∠A ,∴AF=BF ,设AF=BF=x ,则CF=4-x ,∵222BC CF BF +=,∴2223(4)x x +-=, ∴258x =, ∴258BF =, ∴257488EF BE BF =-=-=. 故选A .【点睛】本题考查了全等三角形的性质,直角三角形斜边上的中线等于斜边的一半,等腰三角形的判定与性质,以及勾股定理等知识,熟练掌握各知识点是解答本题的关键.3.如图,在△ABC 中,以C 为中心,将△ABC 顺时针旋转34°得到△DEC ,边ED ,AC 相交于点F ,若∠A =30°,则∠EFC 的度数为( ) A .60°B .64°C .66°D .68°B解析:B【分析】 由旋转性质得到∠D 和∠DCF 的度数,再由外角性质得到∠EFC 的度数即可.【详解】解:由旋转的性质可得:∠D=∠A=30°,∠DCF=34°,∴∠EFC=∠A+∠DCF=30°+34°=64°;故选:B .【点睛】本题考查旋转的性质以及三角形的外角性质,熟练掌握旋转的性质是解本题的关键. 4.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C .26D .41D解析:D【分析】 根据旋转的性质可得BA =BE ,∠ABE =60°,AC =DE ,进而可得△ABE 是等边三角形,然后根据等边三角形的性质和已知条件可得∠EAD =90°,根据勾股定理可求出DE 的长,即为AC 的长【详解】解:∵△EBD 是由△ABC 旋转得到,∴BA =BE ,∠ABE =60°,AC =DE ,∴△ABE 是等边三角形,∴∠EAB =60°,∵∠BAD =30°,∴∠EAD =90°,∵AE =AB =5,AD =4,∴DE =22AE AD +=2254+=41,即AC=41.故选:D .【点睛】本题考查了旋转的性质、等边三角形的判定和性质以及勾股定理等知识,属于常考题型,熟练掌握上述知识是解题的关键.5.以下关于新型冠状病毒的防范宣传图标中是中心对称图形的是( )A .B .C .D .A解析:A【分析】根据中心对称图形的定义逐一判断即可.【详解】A 是中心对称图形,故A 正确;B 是轴对称图形,故B 错误;C 不是中心对称图形,故C 错误;D 不是中心对称图形,故D 错误;故选A .【点睛】本题考查了中心对称图形的定义:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合,那么就说明这两个图形的形状关于这个点成中心对称. 6.如图,Rt OCB ∆的斜边在y 轴上,3OC =,含30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0)A 解析:A【分析】 如图,利用含30度的直角三角形三边的关系得到1BC =,再利用旋转的性质得到3,1,90OC OC B C BC B C O BCO ====∠''''=='∠︒,然后利用第四象限点的坐标特征写出点B ′的坐标.【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,333133BC OC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 7.如图,点E ,F ,G ,H 分别为四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的是( )A .不是平行四边形B .不是中心对称图形C .一定是中心对称图形D .当AC =BD 时,它为矩形C 解析:C【分析】先连接AC ,BD ,根据EF =HG =12AC ,EH =FG =12BD ,可得四边形EFGH 是平行四边形,当AC ⊥BD 时,∠EFG=90°,此时四边形EFGH 是矩形;当AC=BD 时,EF=FG=GH=HE ,此时四边形EFGH 是菱形,据此进行判断即可.【详解】连接AC ,BD ,如图:∵点E 、F 、G 、H 分别为四边形ABCD 的四边AB 、BC 、CD 、DA 的中点,∴EF =HG =12AC ,EH =FG =12BD , ∴四边形EFGH 是平行四边形,故选项A 错误;∴四边形EFGH 一定是中心对称图形,故选项B 错误;当AC ⊥BD 时,∠EFG =90°,此时四边形EFGH 是矩形,当AC =BD 时,EF =FG =GH =HE ,此时四边形EFGH 是菱形,故选项D 错误;∴四边形EFGH 可能是轴对称图形,∴四边形EFGH 是平行四边形,四边形EFGH 一定是中心对称图形.故选:C .【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.8.下列图形中,既是轴对称图形又是中心对称图形的是( )A .等边三角形B .平行四边形C .正五边形D .菱形D解析:D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、是轴对称图形,不是中心对称图形.故不符合题意;B、不是轴对称图形,是中心对称图形.故不符合题意;C、是轴对称图形,不是中心对称图形.故不符合题意;D、是轴对称图形,也是中心对称图形.故符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.9.如图,正方形网格中,已有两个小正方形被涂黑,再将图中其余小正方形涂黑一个,使整个图案构成一个轴对称图形,那么涂法共有()A.3种B.4种C.5种D.6种C解析:C【分析】根据轴对称图形的定义:沿某条直线折叠,直线两旁的部分能完全重合的图形是轴对称图形进行解答.【详解】如图所示:,共5种,故选C.【点睛】此题主要考查了利用轴对称设计图案,关键是掌握轴对称图形的定义.10.已知点A(1,a)、点B(b,2)关于原点对称,则a+b的值为()A.3 B.-3 C.-1 D.1B解析:B【分析】由关于原点对称的两个点的坐标之间的关系直接得出a、b的值即可.【详解】∵点A (1,a )、点B (b ,2)关于原点对称,∴a =﹣2,b =﹣1,∴a +b =﹣3.故选B.【点睛】关于原点对称的两个点,它们的横坐标互为相反数,纵坐标也互为相反数.二、填空题11.如图,在ABC 中,90ABC ∠=︒,3AC =,4BC =,将ABC 绕着点B 旋转得到A BC ''△,且点A 的对应点A '落在BC 的延长线上,连接AA ',则AA '的长为________.【分析】根据勾股定理可求得AB=5根据旋转的性质得=5则=1再根据勾股定理即可求得的长【详解】解:∵∴由勾股定理得∵绕着点B 旋转得到∴=5∴=﹣BC=5﹣4=1在Rt △中由勾股定理得:故答案为:【点 10【分析】根据勾股定理可求得AB =5,根据旋转的性质得A B AB '==5,则A C '=1,再根据勾股定理即可求得AA '的长.【详解】解:∵90ABC ∠=︒,3AC =,4BC =,∴由勾股定理得2222AB AC BC 345+=+=,∵ABC 绕着点B 旋转得到A BC ''△,∴A B AB '==5,∴A C '=A B '﹣BC=5﹣4=1,在Rt △A CA '中,由勾股定理得: 22223110A A AC A C ''=+=+= 10【点睛】本题考查了勾股定理、旋转的性质,熟练掌握勾股定理和旋转的性质是解答的关键. 12.在平面直角坐标中,点()1,2P -关于原对称的点的坐标为_______________________.【分析】关于原点对称的点横坐标与纵坐标都互为相反数【详解】解:点P 的坐标是(1-2)则关于原对称的点的坐标为(-12)故答案为:(-12)【点睛】本题考查了关于原点对称的点的坐标解决本题的关键是掌握解析:()1,2-【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】解:点P 的坐标是(1,-2),则关于原对称的点的坐标为(-1,2),故答案为:(-1,2).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.13.如图.面积为8的正方形ABCD 的顶点A 在数轴上,点A 表示实数2-,正方形ABCD 绕点A 旋转时,顶点B 的运动轨迹与数轴的交点表示的数为______________或﹣【分析】先由正方形的面积公式求出AB=再根据点A 表示实数即可求出顶点B 的运动轨迹与数轴的交点表示的数【详解】解:∵正方形ABCD 的面积为8∴AB=∵点A 表示实数∴顶点B 的运动轨迹与数轴的交点表示 2或﹣32【分析】先由正方形的面积公式求出AB=22A 表示实数2-,即可求出顶点B 的运动轨迹与数轴的交点表示的数.【详解】解:∵正方形ABCD 的面积为8,∴AB=22∵点A 表示实数2-,∴顶点B 的运动轨迹与数轴的交点表示的数为2-+22=2或2-﹣22=﹣32, 故答案为:2或﹣32.【点睛】本题考查了正方形的面积、实数和数轴、旋转的性质、算术平方根、二次根式的加减运算,理解实数与数轴的关系是解答的关键.14.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.【分析】由旋转角∠BAB′=30°可知∠DAB′=90°﹣30°=60°;构造全等三角形用S 阴影部分=S 正方形﹣S 四边形AB′ED 计算面积即可【详解】如图连接根据旋转角为可知在与中在中故答案为:【点解析:36123-【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;构造全等三角形,用S 阴影部分=S 正方形﹣S 四边形AB′ED ,计算面积即可.【详解】如图,连接AE ,根据旋转角为30,可知,30BAB '∠=︒, 9060DAB ∴∠=︒-30︒='︒,在Rt ADE △与Rt AB E '中,AD AB AE AE '=⎧⎨=⎩()Rt ADE Rt AB E HL '∴△△≌,1302EAD B AD DAB '∴∠=∠=∠='︒, ∴在Rt ADE △中,6AD =,23ED =112623632ADE AD E S D ⋅∴=⨯=⨯=△ 1223ADEB ADE S S '=∴=△,2636ABCD S ==正方形,36123ADEB ABCD S S S '∴-==阴影正方形-故答案为:36123-【点睛】本题考查了正方形的性质及旋转的性质,熟练添加辅助线,证明全等,灵活计算阴影面积是解题关键.15.如图,点E在正方形ABCD的边CB上,将DCE绕点D顺时针旋转90˚到ADF 的位置,连接EF,过点D作EF的垂线,垂足为点H,于AB交于点G,若4AG=,3BG=,则BE的长为___________.【分析】连接EG根据DG垂直平分EF即可得出EG=FG设BE=x则CE=7-x=AFFG=EG=11-x再根据Rt△BEG中BE2+BG2=EG2即可得到BE的长【详解】解:如图所示连接EG由旋转可解析:56 11【分析】连接EG,根据DG垂直平分EF,即可得出EG=FG,设BE=x,则CE=7-x=AF,FG=EG=11-x,再根据Rt△BEG中,BE2+BG2=EG2,即可得到BE的长.【详解】解:如图所示,连接EG,由旋转可知DCE≌ADF,∴DE=AF,CE=AF,∵DG⊥EF,∴H为EF的中点,∴DG垂直平分EF,∴EG=FG ,设BE=x ,则CE=5-x =AF ,FG=EG=8-x ,∵∠B=90°,∴BE 2+BG 2=EG 2即2223(11)x x +=- 解得5611x =故答案为:5611【点睛】 本题主要考查了正方形的性质以及旋转的性质,解题时注意:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.16.如图,在等边△ABC 中,AC=10,点O 在AC 上,且AO=4,点P 是AB 上一动点,连结OP ,将线段OP 绕点O 逆时针旋 转60º得到线段OD .要使点D 恰好落在BC 上,则AP 的长是________.6【分析】根据三角形的外角性质可得∠APO=∠COD 进而可以证明△APO ≌△COD 进而可以证明AP=CO 即可解题【详解】∵∠A+∠APO=∠POD+∠COD ∠A=∠POD=60°∴∠APO=∠COD解析:6【分析】根据三角形的外角性质可得∠APO=∠COD ,进而可以证明△APO ≌△COD ,进而可以证明AP=CO ,即可解题.【详解】∵∠A+∠APO=∠POD+∠COD ,∠A=∠POD=60°,∴∠APO=∠COD ,在△APO 和△COD 中,A C APO COD OD OP ∠∠⎧⎪∠∠⎨⎪⎩===,∴△APO ≌△COD (AAS ),即AP=CO ,∵CO=AC-AO=6,∴AP=6.故答案为:6.【点睛】本题考查了等边三角形的性质,旋转的性质,三角形的外角性质,全等三角形的判定和性质,本题中求证△APO≌△COD是解题的关键.17.如图所示,将△ABC绕AC的中点O顺时针旋转180°得到△CDA,添加一个条件_____,使四边形ABCD为矩形.∠B=90°【分析】根据旋转的性质得AB=CD∠BAC=∠DCA则AB∥CD得到四边形ABCD为平行四边形根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°【详解】∵△ABC绕AC的中点O顺解析:∠B=90°.【分析】根据旋转的性质得AB=CD,∠BAC=∠DCA,则AB∥CD,得到四边形ABCD为平行四边形,根据有一个直角的平行四边形为矩形可添加的条件为∠B=90°.【详解】∵△ABC绕AC的中点O顺时针旋转180°得到△CDA,∴AB=CD,∠BAC=∠DCA,∴AB∥CD,∴四边形ABCD为平行四边形,当∠B=90°时,平行四边形ABCD为矩形,∴添加的条件为∠B=90°.故答案为∠B=90°.【点睛】本题考查了旋转的性质:旋转前后两图形全等;对应点到旋转中心的距离相等;对应点与旋转中心的连线段的夹角等于旋转角.也考查了矩形的判定.18.如图,∠3=30°,为了使白球反弹后能将黑球直接撞入袋中,那么击打白球时,必须保证∠1的度数为________ .60°【解析】要使白球反弹后能将黑球直接撞入袋中∠2+∠3=90°∵∠3=30°∴∠2=60°∴∠1=60°故答案是:60°解析:60°【解析】要使白球反弹后能将黑球直接撞入袋中,∠2+∠3=90°,∵∠3=30°,∴∠2=60°,∴∠1=60°.故答案是:60°.19.如图,Rt ABC 中,90BAC ∠=︒,∠C=30°,AB=2,将ABC 绕着点A 顺时针旋转,得到AMN ,使得点B 落在BC 边上的点M 处,MN 与AC 交于点D ,则ADM △的面积为____.【分析】先根据直角三角形的性质可得再根据旋转的性质可得然后根据等边三角形的判定与性质可得又根据三角形的外角性质三角形的内角和定理可得最后根据直角三角形的性质勾股定理可得据此利用直角三角形的面积公式即 解析:32【分析】先根据直角三角形的性质可得60B ∠=︒,再根据旋转的性质可得2,60AM AB AMN B ==∠=∠=︒,然后根据等边三角形的判定与性质可得60AMB ∠=°,又根据三角形的外角性质、三角形的内角和定理可得30DAM ∠=︒,90ADM ∠=︒,最后根据直角三角形的性质、勾股定理可得1,3DM AD ==用直角三角形的面积公式即可得.【详解】在Rt ABC 中,90,30,2BAC C AB ∠=︒∠=︒=,60B ∴∠=︒,由旋转的性质可知,2,60AM AB AMN B ==∠=∠=︒,ABM ∴是等边三角形,60AMB ∴∠=︒,30DAM AMB C ∴∠=∠-∠=︒,18090ADM DAM AMN ∴∠=︒-∠-∠=︒,在Rt ADM △中,2211,32DM AM AD AM DM ===-=, 则ADM △的面积为11313222DM AD ⋅=⨯⨯=, 故答案为:32. 【点睛】本题考查了旋转的性质、等边三角形的判定与性质、勾股定理、直角三角形的性质等知识点,熟练掌握旋转的性质是解题关键.20.如图,在正方形ABCD 内部有一点P ,PB =1,PC =2,135BPC ∠=︒,则PA = ____. 【分析】将△PBA 沿B 点顺时针旋转90°此时A 与C 点重合P 点旋转到E 点连接PE 易证△BPE 是等腰直角三角形利用勾股定理可求出PE 的长再证明△PCE 是直角三角形利用勾股定理求出CE 的长即可得到PA 的长 解析:6【分析】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,易证△BPE 是等腰直角三角形,利用勾股定理可求出PE 的长,再证明△PCE 是直角三角形.利用勾股定理求出CE 的长,即可得到PA 的长.【详解】将△PBA 沿B 点顺时针旋转90°,此时A 与C 点重合,P 点旋转到E 点,连接PE ,∴PB=BE=1,PA=EC ,∠BPE=90°∴△PEB 是等腰直角三角形,∴∠PEB=∠EPB =45°,∴22,又∵∠BPC=135°,∴∠EPC=135°-45°=90°,∴在直角△PEC中,EC=()2222+=+=,PC PE226∴PA=EC6=,故答案为:6.【点睛】本题考查了正方形的性质、旋转的性质、等腰直角三角形的判断和性质以及勾股定理的运用,解答此题的关键是利用旋转构建直角三角形,由勾股定理求解.三、解答题21.在平面直角坐标系中,△ABC的顶点坐标分别是A(2,4)、B(1,2)、C(5,3),如图:(1)以点(0,0)为旋转中心,将△ABC顺时针转动90°,得到△A1B1C1,在坐标系中画出△A1B1C1,写出A1、B1、C1的坐标;(2)在(1)中,若△ABC上有一点P(m,n),直接写出对应点P1的坐标.(3)作出△ABC关于点O的中心对称图形△A2B2C2.解析:(1)图见解析,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)P1的坐标为(n,﹣m);(3)见解析【分析】(1)依据点(0,0)为旋转中心,将△ABC顺时针转动90°,即可得到△A1B1C1;(2)依据旋转前后坐标的变化规律,即可得到对应点P1的坐标;(3)依据中心对称的性质,即可得到△ABC关于点O的中心对称图形△A2B2C2.【详解】解:(1)如图所示,△A1B1C1即为所求,A1(4,﹣2)、B1(2,﹣1)、C1(3,﹣5);(2)若△ABC上有一点P(m,n),则对应点P1的坐标为(n,﹣m).(3)如图所示,△A2B2C2即为所求.【点睛】本题考查了作图-旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.22.如图,四边形ABCD是正方形,△ADF旋转一定角度后得到△ABE,如图所示,如果AF=4,AB=7,求:(1)指出旋转中心和旋转角度;(2)求DE的长度;(3)BE与DF的位置关系如何?解析:(1)旋转中心:点A,旋转角度:90°或270°;(2)DE= 3;(3)BE⊥DF.【分析】先根据正方形的性质得到:△AFD≌△AEB,从而得出等量关系AE=AF=4,∠EAF=90°,∠EBA=∠FDA,找到旋转中心和旋转角度.这些等量关系即可求出DE=AD-AE=7-4=3;BE⊥DF.【详解】解:(1)根据正方形的性质可知:△AFD≌△AEB,即AE=AF=4,∠EAF=90°,∠EBA=∠FDA;可得旋转中心为点A;旋转角度为:90°或270°;(2)DE=AD-AE=7-4=3;(3)BE⊥DF ;延长BE 交DF 于点G由旋转△ADF ≌△ABE∴∠ADF=∠ABE又∵∠DEG=∠AEB∴∠DGE=∠EAB=90°∴BE ⊥DF .【点睛】本题考查旋转的性质和正方形的性质,旋转变化前后,对应点到旋转中心的距离相等以及每一对对应点与旋转中心连线所构成的旋转角相等.要注意旋转的三要素:①定点——旋转中心;②旋转方向;③旋转角度.23.如图,在10×10的正方形方格之中,ABC 的顶点都在格点上(1)在图1中画出ABC 关于格点O 成中心对称的A B C '''.(2)在图2中画出格点ABEF ,使得ABE A C F B S S =.解析:(1)画图见解析;(2)画图见解析.【分析】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得; (2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得.【详解】(1)先结合网格特点,根据中心对称的定义画出点,,A B C ''',再顺次连接即可得到A B C ''',如图所示:(2)先找出AC 的中点E ,连接BE ,再结合网格特点,根据点B 到点A 的平移方式与点E 到点F 的平移方式相同找出点F ,然后连接AF 、EF 即可得到ABEF ,且ABE A C F B S S =,如图所示:【点睛】本题考查了画中心对称图形、画平行四边形等知识点,熟练掌握中心对称的定义是解题关键.24.如图,在平面直角坐标系中,已知点()4,2A ,()4,0B .(1)画出将OAB 绕原点逆时针旋转90°得到的11OA B ;(2)直接写出A 的对应点1A ( , ),B 的对应点1B ( , );(3)若点A ,1A 关于某点中心对称,则对称中心的坐标为______.解析:(1)图见解析;(2)()12,4A -,()10,4B ;(3)()1,3. 【分析】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A O B 即可得;(2)根据绕原点逆时针旋转90︒的点坐标变换规律即可得;(3)根据中心对称的定义可得点A ,1A 的中心对称点为线段1AA 的中点,由此即可得.【详解】(1)先根据旋转的性质画出点11,A B ,再顺次连接点11,,A O B 即可得11OA B ,如图所示:(2)绕原点逆时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将横坐标变为相反数,()()4,2,4,0A B ,()()112,4,4,0B A -∴,故答案为:()()112,4,0,4A B -;(3)由中心对称的定义得:点A ,1A 的中心对称点为线段1AA 的中点, 则对称中心的坐标为4224,22-+⎛⎫⎪⎝⎭,即()1,3, 故答案为:()1,3.【点睛】本题考查了画旋转图形、找中心对称点等知识点,熟练掌握旋转的性质是解题关键. 25.如图:在ABC 中,90ACB ︒∠=,AC BC =,45PCQ ︒∠=,把PCQ ∠绕点C 旋转,在整个旋转过程中,过点A 作AD CP ⊥,垂足为D ,直线AD 交CQ 于E (1)如图①,当PCQ ∠在ACB ∠内部时,求证:AD BE DE +=;(2)如图②,当 CQ 在ACB ∠外部时,则线段AD BE 、与DE 的关系为________; (3)在(1)的条件下,若12CD =,2BCE ACD S S =△△,求AE 的长.解析:(1)见解析;(2)AD BE DE =+;(3)16【分析】(1)延长DA 到F ,连接CF ,使DF =DE ,根据线段垂直平分线上的点到线段两端点的距离相等可得CE =CF ,再求出∠ACF =∠BCE ,然后利用“边角边”证明△ACF 和△BCE 全等,根据全等三角形的即可证明AF =BE ,从而得证;(2)在AD 上截取DF =DE ,然后根据线段垂直平分线上的点到线段两端点的距离相等可得CE =CF ,再求出∠ACF =∠BCE ,然后利用“边角边”证明△ACF 和△BCE 全等,根据全等三角形的即可证明AF =BE ,从而得到AD =BE +DE ;(3)根据等腰直角三角形的性质求出CD =DF =DE ,再根据等高的三角形的面积的比等于底边的比求出AF =2AD ,然后求出AD 的长,再根据AE =AD +DE 代入数据进行计算即可得解.【详解】证明:如图,延长DA 到F ,使DF DE =,∵CD AE ⊥,∴CE CF =,∴45DCE DCF PCQ ︒∠=∠=∠=,∴45ACD ACF DCF ︒∠+∠=∠=,又∵90,45ACB PCQ ︒︒∠=∠=,∴904545ACD BCE ︒︒︒∠+∠=-=,∴ACF BCE ∠=∠,在ACF 和BCE 中,CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴()ACF BCE SAS ≅,∴AF BE =,∴AD BE AD AF DF DE +=+==即AD BE DE +=;(2)解:如图,在AD 上截取DF DE =,∵CD AE ⊥,∴CE CF =,∴45DCE DCF PCQ ︒∠=∠=∠=,∴90ECF DCE DCF ︒∠=∠+∠=,∴90BCE BCF ECF ︒∠+∠=∠=,又∵90ACB ︒∠=,∴90ACF BCF ︒∠+∠=,∴ACF BCE ∠=∠,在ACF 和BCE 中,CE CF ACF BCE AC BC =⎧⎪∠=∠⎨⎪=⎩,∴()ACF BCE SAS ≅,∴AF BE =,∴AD AF DF BE DE =+=+,即AD BE DE =+;故答案为:AD BE DE =+.(3)如图,由(1)可得AFC BEC BE AF ≅=,∵2BCE ACD S S =△△∴2AF AD =且12AF AD DE CD +===,∴4AD =,∴16AE AD DE =+=.【点睛】本题考查了旋转的性质、全等三角形的判定与性质以及中垂线的性质,作辅助线构造出全等三角形是解题的关键.26.如图1,在菱形ABCD 和菱形AEFG 中,60DAB GAE ∠=∠=︒,且4AE =,连接DG 和BE .(1)求证:DG BE =;(2)如图2,将菱形AEFG 绕着点A 旋转,当菱形AEFG 旋转到使点C 落在线段AE 上时(AC AE <),求点F 到AB 的距离.解析:(1)见解析;(2)6.【分析】(1)根据菱形性质,证明△GAD ≌△EAB ,然后得到边相等;(2)延长FE 交AB 于点H ,根据题意可分析得到△AEH 和△AFH 均为含30°的直角三角形,然后计算EH 即可.【详解】解:(1)∵四边形ABCD 和四边形AEFG 为菱形∴GA=EA ,OA=BA∵∠DAB=∠GAE=60°∴∠GAD+∠DAE=60°∠DAE+∠EAB=60°∴∠GAD=∠EAB∴△GAD ≌△EAB (SAS )∴DG=BE(2)延长FE ,AB 交于点H∵AC 是菱形ABCD 对角线∴∠CAB=12∠DAB=30° ∵∠GAE=60°且四边形AEGF 是菱形∴GA ∥FE∴∠FEA=180°-60°=120°∴∠AEH=180°-120°=60°∵∠EAB=30°∴∠H=90°∵AE=4,在Rt △EAH=30°∴EH=2∴F 到AB 的距离为4+2=6【点睛】本题主要考查菱形的性质,结合旋转和三角形相关性质是解题的关键.27.在Rt ABC ∆中,,90,,AC BC ACB M N ︒=∠=在直线AB 上,且222MN AM BN =+.(1)如图1,当点,M N 在线段AB 上时,求证:45MCN ︒∠=.(2)如图2,当点M 在BA 的延长线上且点N 在线段AB 上时,上述结论是否成立?若成立,请证明,若不成立,请说明理由.解析:(1)证明见解析;(2)成立,证明见解析.【分析】(1)将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,利用旋转的性质和等腰三角形的性质证明'NBM ∆为直角三角形,可证明'MN M N =,利用全等三角形的判定(SSS )可证明()'CMN CM N SSS ∆≅∆,即可证得1'452MCN MCM ︒∠=∠=; (1)仿照(1)中方法将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,证明DBN ∆为直角三角形,再证DN=MN ,进而证明()CMN CDN SSS ∆≅∆即可得出结论.【详解】()1如图1,,90AC BC ACB ︒=∠=,将ACM ∆绕点C 逆时针旋转90︒,得到'BCM ∆,则'ACM NCM ∆≅∆,',','ACM BCM CM CM AM BM ∴∠=∠==,连接'M N ,'CAM CNM ∠=∠=45°,''90M BN CBM CBA ︒∴∠=∠+∠=,'NBM ∴∆为直角三角形,22222''NM BN BM BN AM ∴=+=+,又222MN AM BN =+,'MN M N ∴=, 在CMN ∆和'CM N ∆中''CM CM MC M N CN CN =⎧⎪=⎨⎪=⎩,()'CMN CM N SSS ∴∆≅∆,'MCN M CN ∴∠=∠,1'452MCN MCM ︒∴∠=∠=, 即45MCN ︒∠=;()2如图2,,90AC BC ACB ︒=∠=,将CMA ∆绕点C 逆时针旋转90︒得到CDB ∆,CMA CDB ∴∆≅∆,,,135CM CD AM BD CAM CBD ︒∴==∠=∠=,90DBN CBD CBA ︒∴∠=∠-∠=,DBN ∴∆为直角三角形,22222DN BD BN AM BN ∴=+=+,又222MN AM BN =+,DN MN ∴=, 在CMN ∆和CDN ∆中CM CD CN CN MN DN =⎧⎪=⎨⎪=⎩,()CMN CDN SSS ∴∆≅∆, 1452MCN DCN MCD ︒∴∠=∠=∠=, 45MCN ︒∴∠=.【点睛】本题考查了等腰三角形的性质、旋转的性质、全等三角形的判定与性质、勾股定理,熟练掌握全等三角形的判定与性质,利用旋转性质旋转△ACM 构造直角三角形是解答的关键. 28.如图所示,△ ABC 和△ AEF 为等边三角形,点 E 在△ ABC 内部,且 E 到点 A 、B 、C 的距离分别为 3、4、5,求∠AEB 的度数.解析:150°【分析】连接FC ,可证△AEB ≌△AFC (SAS ),然后根据勾股定理的逆定理可求的∠EFC=90°,然后根据全等的性质可求解.【详解】连接FC ,则△AEB≌△AFC(SAS).在△EFC中,EF=3,FC=4,EC=5,所以是直角三角形,则∠EFC=90°,∠AEB=∠AFC=90°+60°=150°。

重庆市育才中学九年级数学上册第二十三章《旋转》经典复习题(含答案)

重庆市育才中学九年级数学上册第二十三章《旋转》经典复习题(含答案)

一、选择题1.观察下列“风车”的平面图案,其中既是轴对称又是中心对称图形的有( ) A . B . C . D . 2.如图,在△ABC 中,AB =AC ,∠BAC =45°,点D 在AC 边上.将△ABD 绕点A 逆时针旋转45°得到△ACD ′,且D ′、D 、B 三点在同一条直线上,则∠ABD 的大小为( )A .15°B .22.5°C .25°D .30°3.下列图形一定不是中心对称图形的是( ) A .正六边形 B .线段()213y x x =-+≤≤C .圆D .抛物线2y x x =+ 4.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 5.如图,△ABC 中,AB =6,AC =4,以BC 为对角线作正方形BDCF ,连接AD ,则AD 长不可能是( )A .2B .4C .6D .86.下列图形中,是中心对称图形的是( )A .B .C .D .7.如图,将ABC 绕点C 顺时针旋转80°,得到DEC ,若3120B A ∠=∠=︒,则α∠的度数是( )A .60︒B .50︒C .40︒D .308.已知点(2,3)A ,O 是坐标原点,将线段OA 绕点O 逆时针旋转90︒,点A 旋转后的对应点1A ,则点1A 的坐标是( )A .(2,3)--B .(2,3)-C .(3,2)-D .(3,2)- 9.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C .26D .41 10.下列关于防范“新冠肺炎”的标志中既是轴对称图形,又是中心对称图形的是( ) A .戴口罩讲卫生 B .勤洗手勤通风C .有症状早就医D .少出门少聚集11.下列图形中,既是轴对称又是中心对称图形的是( )A .B .C .D .12.下列图形中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 13.如图所示,在平面直角坐标系中,点A 、B 的坐标分别为(﹣2,0)和(2,0).月牙①绕点B 顺时针旋转90︒得到月牙②,则点A 的对应点A’的坐标为 ( )A .(2,2)B .(2,4)C .(4,2)D .(1,2) 14.下列图标中,既是轴对称图形,又是中心对称图形的是( )A .B .C .D . 15.如图,在△ABC 中,AB =2.2,BC =3.6,∠B =60°,将△ABC 绕点A 按逆时针方向旋转得到△ADE ,若点B 的对应点D 恰好落在BC 边上时,则CD 的长为( )A .1.5B .1.4C .1.3D .1.2二、填空题16.如图,在ABC 中,90ABC ∠=︒,3AC =,4BC =,将ABC 绕着点B 旋转得到A BC ''△,且点A 的对应点A '落在BC 的延长线上,连接AA ',则AA '的长为________.17.如图,在AOB 中,90AOB ∠=︒,30B ∠=︒,A OB ''△是由AOB 绕点O 顺时针旋转1(8)0αα<︒角度得到的,若点A '在AB 上,则旋转角α=___︒.18.如图,在Rt ABC △中,C 为直角顶点,20ABC ∠=︒,O 为斜边AB 的中点,将OA 绕点O 逆时针旋转()0180θθ︒<<︒至OP ,当BCP 恰为以BC 为腰的等腰三角形时,θ的值为______.19.如图,P 是等边三角形ABC 内一点,且PA =4,PB =23,PC =2,以下五个结论:①∠BPC =120°;②∠APC =120°;③S △ABC =143;④AB =28;⑤点P 到△ABC 三边的距离分别为PE ,PF ,PG ,则有PE +PF +PG =32AB ,其中正确的有_________.20.如图,已知EAD 32∠=,ADE 绕着点A 旋转50后能与ABC 重合,则BAE ∠=________度.21.如图所示,将△ABC 绕AC 的中点O 顺时针旋转180°得到△CDA ,添加一个条件_____,使四边形ABCD 为矩形.22.如图,如果正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,连接DG ,那么∠DGE =________.23.如图,在平面直角坐标系中,点P (1,1),N (2,0),△MNP 和△M 1N 1P 1的顶点都在格点上,△MNP 与△M 1N 1P 1是关于某一点中心对称,则对称中心的坐标为_____.24.矩形是中心对称图形,对矩形ABCD 而言,点A 的对称点是点____.25.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.26.点)1,5A a -与点()2,5B b +-关于原点对称,则(a +b )2 020=____ . 三、解答题27.如图,方格纸中每个小正方形的边长均为1个单位长度,小正方形的顶点成为格点.Rt ABC 的三个顶点()2,2A -、()0,5B 、()0,2C .(1)将ABC 以点C 为旋转中心旋转180°,得到11A B C ,画出11A B C ,并直接写出点1A 、1B 的坐标;(2)平移ABC ,使点A 的对应点为()22,6A --,请画出平移后对应的222A B C △; (3)若将11A B C 绕某一点旋转可得到222A B C △,请直接写出旋转中心的坐标. 28.(1)如图,点E 、F 分别在正方形ABCD 的边BC 、CD 上,45EAF ∠=︒,求证:EF BE FD =+;(2)如图,四边形ABCD 中,90≠︒∠BAD ,AB AD =,180B D ∠+∠=︒,点E 、F 分别在边BC 、CD 上,则当EAF ∠与BAD ∠满足什么关系时,仍有EF BE FD =+,说明理由.29.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点Р是正方形ABCD 内一点,1,2,3PA PB PC ===,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC ∆绕点B 逆时针旋转90,得到'P BA ∆,连接'PP ,可求出APB ∠的度数;思路二:将PAB ∆绕点B 顺时针旋转90,得到'P CB ∆,连接'PP ,可求出APB ∠的度数.请参照小明的思路,任选一种写出完整的解答过程.(2)如图2,若点P 是正方形ABCD 外一点,要使45APB ∠=,线段PA ,PB ,PC 应满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.30.在Rt ABC ∆中,,90,,AC BC ACB M N ︒=∠=在直线AB 上,且222MN AM BN =+.(1)如图1,当点,M N 在线段AB 上时,求证:45MCN ︒∠=.(2)如图2,当点M 在BA 的延长线上且点N 在线段AB 上时,上述结论是否成立?若成立,请证明,若不成立,请说明理由.。

重庆育才中学九年级数学上册第三单元《旋转》检测(答案解析)

重庆育才中学九年级数学上册第三单元《旋转》检测(答案解析)

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是( )A .B .C .D . 2.如图,在平面直角坐标系中,点A 的坐标为(3,1)-,将OA 绕原点O 按顺时针方向旋转90︒得到OA ',则点A '的坐标为( )A .(3,1)B .(3,1)-C .(1,3)--D .(1,3) 3.如图,△ABC 中,AB =6,AC =4,以BC 为对角线作正方形BDCF ,连接AD ,则AD 长不可能是( )A .2B .4C .6D .8 4.若点P(-m ,m -3)关于原点对称的点是第二象限内的点,则m 满足( ) A .m >3 B .0<m≤3 C .m <0 D .m <0或m >3 5.下列图形:线段、等边三角形、平行四边形、矩形、菱形、正方形、直角梯形,既是轴对称图形又是中心对称图形的个数是( )A .6B .5C .4D .36.如图,在平面直角坐标系中,点A 、B 、C 的坐标分别为(1,0),(0,1),()1,0-.一个电动玩具从坐标原点O 出发,第一次跳跃到点1P ,使得点1P 与点O 关于点A 成中心对称;第二次跳跃到点2P ,使得点2P 与点1P 关于点B 成中心对称;第三次跳跃到点3P ,使得点3P 与点2P 关于点C 成中心对称:第四次跳跃到点4P ,使得点4P 与点3P 关于点A 成中心对称;第五次跳跃到点5P ,使得点6P 与点4P 关于点B 成中心对称;…,照此规律重复下去,则点2013P 的坐标为( )A .(2,2)B .()2,2-C .()0,2-D .()2,0- 7.如图,在平面直角坐标系中Rt △ABC 的斜边BC 在x 轴上,点B 坐标为(1,0),AC=2,∠ABC=30°,把Rt △ABC 先绕B 点顺时针旋转180°,然后再向下平移2个单位,则A 点的对应点A′的坐标为( )A .(﹣4,﹣2﹣3)B .(﹣4,﹣2+3)C .(﹣2,﹣2+3)D .(﹣2,﹣2﹣3)8.如图,△ABC 的顶点坐标分别为A (4,6)、B (5,2)、C (2,1),如果将△ABC 绕点C 按逆时针方向旋转90°,得到△''A B C ,那么点A 的对应点'A 的坐标是( ).A .(-3,3)B .(3,-3)C .(-2,4)D .(1,4) 9.如图,Rt OCB ∆的斜边在y 轴上,3OC =30︒角的顶点与原点重合,直角顶点C 在第二象限,将Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',则B 点的对应点B ′的坐标是( )A .(3,1)-B .(1,3)-C .(2,0)D .(3,0) 10.如图,点E ,F ,G ,H 分别为四边形ABCD 四条边AB 、BC 、CD 、DA 的中点,则关于四边形EFGH ,下列说法正确的是( )A .不是平行四边形B .不是中心对称图形C .一定是中心对称图形D .当AC =BD 时,它为矩形 11.如图,将△ABC 绕点A 逆时针旋转一定角度,得到△ADE ,若∠CAE=65°,∠E=70°,且AD ⊥BC ,∠BAC 的度数为( ).A .60 °B .75°C .85°D .90°12.下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .二、填空题13.有两个直角三角板,其中45E ∠=︒,30C ∠=︒,按图①的方式叠放,先将ABC 固定,再将AED 绕顶点A 顺时针旋转,使//BC DE (如图②所示),则旋转角BAD ∠的度数为______.14.如图,将边长为6的正方形ABCD 绕点A 逆时针方向旋转30︒后得到正方形A B C D '''',则图中阴影部分面积为____________.15.如图,在平面直角坐标系中,将正方形OABC 绕点O 逆时针旋转45︒后得到正方形111OA B C ,依此方式,绕点O 连续旋转2019次得到正方形201920192019OA B C ,如果点A 的坐标为(1,0),那么点2019B 的坐标为________.16.在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是_____.17.在平面直角坐标系中,点A (-5,b)关于原点对称的点为B (a ,6),则(a+b)2019=____.18.在平面直角坐标系中,△OAB 的位置如图所示,将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;……依此类推,第2020次旋转得到△OA 2020B 2020,则项点A 的对应点A 2020的坐标是_______.19.若点()3,5B n +与点()4,A m 关于原点O 中心对称,则m n +=______________.20.如图,在Rt ABC 中,5AB =,4BC =,如果ABC 绕点B 旋转,使点C 落在AB 边上的点D 处得到EBD △,则点A 到BE 的距离是__________.三、解答题21.如图,在平面直角坐标系中,已知△ABC 的三个顶点的坐标分别为A (1,0),B (4,0),C (5,2).将△ABC 绕着点A 按逆时针方向旋转90︒后得到△AB 1C 1. (1)请画出△AB 1C 1;(2)写出点B 1,C 1的坐标;(3)求出线段1BB 的长.22.如图,在Rt ABC 中,90ACB ∠=︒,点D ,E 分别在AB ,AC 上,CE BC =,连结CD ,将线段CD 绕点C 按顺时针方向旋转90︒后得CF ,连结EF .(1)补充完成图形;(2)求证:BD EF =.23.如图,等腰Rt △ABC 中,∠A =45°,∠ABC =90°,点D 在AC 上,将△ABD 绕点B 沿顺时针方向旋转90°后,得到△CBE .(1)求∠DCE 的度数;(2)若AB=4,CD=3AD,求DE的长.24.将一张透明的平行四边形胶片沿对角线剪开,得到图①中的两张全等的三角形胶片△ABC和△DEF,将这两张三角形胶片的顶点B与顶点E重合,把△DEF绕点B顺时针方向旋转,这时AC与DF相交于点O.(1)当△DEF旋转至如图②位置,点B(E),C,D在同一直线上时,AF与CD的数量关系是_______;(2)当△DEF继续旋转至如图③位置时,(1)中的结论还成立吗?请说明理由.25.如图,正方形ABCD中,E是BC的中点,以点A为中心,把△ABE逆时针旋转90°,设点E的对应点为F.(1)画出旋转后的三角形和点E经过的路径;(2)若正方形ABCD的边长为2,求线段EF的长.26.在正方形ABCD中,点E是BC上的一点,连结AE.(1)画出△ABE绕点A逆时针旋转90°后的图形(点E的对应点为F);(2)若AB=3,则四边形AECF的面积为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【分析】根据中心对称图形的概念进行判断即可;【详解】A、图形旋转180度之后不能与原图形重合,故不是中心对称图形;B、图形旋转180度之后不能与原图形重合,故不是中心对称图形;C、图形旋转180度之后能与原图形重合,故是中心对称图形;D、图形旋转180度之后不能与原图形重合,故不是中心对称图形;故选:C.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后两部分重合;2.D解析:D【分析】根据绕原点顺时针旋转90︒的点坐标变换规律即可得.【详解】绕原点顺时针旋转90︒的点坐标变换规律:先将横、纵坐标互换位置,再将纵坐标变为相反数,A-,(3,1)A,(1,3)故选:D.【点睛】本题考查了绕原点顺时针旋转90︒的点坐标变换规律,熟练掌握绕原点顺时针旋转90︒的点坐标变换规律是解题关键.3.D解析:D【分析】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC,DE=AD,等腰Rt△ADE中,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<<10求出AD的范围即可.【详解】将△ABD绕点D顺时针旋转90º得△ECD,AB=EC=6,DE=AD,在Rt△ADE中由勾股定理得AE=2AD,在△ACE中由三边关系得,CE-AC<AE<CE+AC,即2<2AD<10,2<AD<52=508<,故选:D.【点睛】本题考查AD的范围问题,掌握正方形的性质,和旋转性质,由条件分散,将已知与未知化归一个三角形中,利用旋转构造等腰直角三角形△ACE实现转化,利用三边关系确定AE 的范围是解题关键.4.C解析:C【分析】两个点关于原点对称时,它们的坐标符号相反,即点P(-m,m-3)关于原点O的对称点是P′(m,3-m),再由第二象限内的点横坐标为负数,纵坐标为正数,可得m的取值范围.【详解】解:点P(-m,m-3)关于原点O的对称点是P′(m,3-m),∵P′(m,3-m),在第二象限,∴30 mm<⎧⎨->⎩,∴m<0.故选:C.【点睛】本题考查了关于原点对称的点的坐标,注意掌握:两个点关于原点对称时,它们的坐标符号相反.5.C解析:C【分析】根据轴对称图形与中心对称图形的定义解答即可.【详解】解:线段,既是中心对称图形,又是轴对称图形;等边三角形,不是中心对称图形,是轴对称图形;平行四边形,是中心对称图形,不是轴对称图形;矩形,既是中心对称图形,又是轴对称图形;菱形,既是中心对称图形,又是轴对称图形;正方形,既是中心对称图形,又是轴对称图形;直角梯形,既不是中心对称图形,又不是轴对称图形;所以,既是中心对称图形,又是轴对称图形的有:线段,矩形,菱形,正方形共4个. 故选C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合. 6.C解析:C【分析】计算出前几次跳跃后,点P 1,P 2,P 3,P 4,P 5,P 6,P 7的坐标,可得出规律,继而可求出点P 2013的坐标.【详解】解:∵点1P 与点O 关于点A 成中心对称,∴P 1(2,0),过P 2作P 2D ⊥OB 于点D ,∵2P 与点1P 关于点B 成中心对称,∴P 1B=P 2B ,在△P 1BO 和△P 2BD 中121212PBO P BD POB P DB PB P B ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△P 1BO ≌△P 2BD ,∴P 2D=P 1O=2,BD=BO=1,∴OD=2,∴P 2(-2,2),同理可求:P 3(0,-2),P 4(2,2),P 5(-2,0),P 6(0,0),P 7(2,0),从而可得出6次一个循环,∵20136=335…3,∴点P2013的坐标为(0,-2).故选C.【点睛】本题考查了中心对称,全等三角形的判定与性质,以及点的坐标的规律变换,解答本题的关键是求出前几次跳跃后点的坐标,总结出一般规律.7.D解析:D【解析】解:作AD⊥BC,并作出把Rt△ABC先绕B点顺时针旋转180°后所得△A1BC1,如图所示.∵AC=2,∠ABC=30°,∴BC=4,∴AB=23,∴AD=AB ACBC⋅=232⨯=3,∴BD=2ABBC=2234()=3.∵点B坐标为(1,0),∴A点的坐标为(4,3).∵BD=3,∴BD1=3,∴D1坐标为(﹣2,0),∴A1坐标为(﹣2,﹣3).∵再向下平移2个单位,∴A′的坐标为(﹣2,﹣3﹣2).故选D.点睛:本题主要考查了直角三角形的性质,勾股定理,旋转的性质和平移的性质,作出图形利用旋转的性质和平移的性质是解答此题的关键.8.A解析:A【解析】解:△A′B′C的位置如图.A′(-3,3).故选A .9.A解析:A【分析】如图,利用含30度的直角三角形三边的关系得到1BC =,再利用旋转的性质得到3,1,90OC OC B C BC B C O BCO ====∠''''=='∠︒,然后利用第四象限点的坐标特征写出点B ′的坐标. 【详解】如图,在Rt OCB ∆中,30BOC ∠=︒,333133BC OC ∴===, Rt OCB ∆绕原点顺时针旋转120︒后得到'OC B ∆',3,1,90OC OC B C BC B C O BCO ∴====''''∠'=∠=︒,∴点B ′的坐标为(3,1)-.故选A .本题考查了坐标与图形变化﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30456090180︒︒︒︒︒,,,,. 10.C解析:C【分析】先连接AC ,BD ,根据EF =HG =12AC ,EH =FG =12BD ,可得四边形EFGH 是平行四边形,当AC ⊥BD 时,∠EFG=90°,此时四边形EFGH 是矩形;当AC=BD 时,EF=FG=GH=HE ,此时四边形EFGH是菱形,据此进行判断即可.【详解】连接AC,BD,如图:∵点E、F、G、H分别为四边形ABCD的四边AB、BC、CD、DA的中点,∴EF=HG=12AC,EH=FG=12BD,∴四边形EFGH是平行四边形,故选项A错误;∴四边形EFGH一定是中心对称图形,故选项B错误;当AC⊥BD时,∠EFG=90°,此时四边形EFGH是矩形,当AC=BD时,EF=FG=GH=HE,此时四边形EFGH是菱形,故选项D错误;∴四边形EFGH可能是轴对称图形,∴四边形EFGH是平行四边形,四边形EFGH一定是中心对称图形.故选:C.【点睛】本题主要考查了中点四边形的运用,解题时注意:平行四边形是中心对称图形.解决问题的关键是掌握三角形中位线定理.11.C解析:C【解析】试题分析:根据旋转的性质知,∠EAC=∠BAD=65°,∠C=∠E=70°.如图,设AD⊥BC于点F.则∠AFB=90°,∴在Rt△ABF中,∠B=90°-∠BAD=25°,∴在△ABC中,∠BAC=180°-∠B-∠C=180°-25°-70°=85°,即∠BAC的度数为85°.故选C.考点: 旋转的性质.12.C解析:C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解.【详解】A 、不是轴对称图形,是中心对称图形,故本选项不符合题意;B 、不是轴对称图形,是中心对称图形,故本选项不符合题意;C 、既是轴对称图形,也是中心对称图形,故本选项符合题意;D 、是轴对称图形,不是中心对称图形,故本选项不符合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.二、填空题13.【分析】先根据直角三角形的性质可得再根据平行线的性质可得然后根据直角三角形的性质即可得【详解】由题意得:和都是直角三角形故答案为:【点睛】本题考查了直角三角形的两锐角互余平行线的性质图形的旋转熟练掌 解析:30【分析】先根据直角三角形的性质可得60B ∠=︒,再根据平行线的性质可得AD BC ⊥,然后根据直角三角形的性质即可得.【详解】由题意得:ABC 和ADE 都是直角三角形,30C ∠=︒,9060B C ∴∠=︒-∠=︒,//,BC DE AD DE ⊥,AD BC ∴⊥,9030BAD B ∴∠=︒-∠=︒,故答案为:30.【点睛】本题考查了直角三角形的两锐角互余、平行线的性质、图形的旋转,熟练掌握平行线的性质是解题关键.14.【分析】由旋转角∠BAB′=30°可知∠DAB′=90°﹣30°=60°;构造全等三角形用S 阴影部分=S 正方形﹣S 四边形AB′ED 计算面积即可【详解】如图连接根据旋转角为可知在与中在中故答案为:【点解析:36-【分析】由旋转角∠BAB′=30°,可知∠DAB′=90°﹣30°=60°;构造全等三角形,用S 阴影部分=S 正方形﹣S 四边形AB′ED ,计算面积即可.【详解】如图,连接AE ,根据旋转角为30,可知,30BAB '∠=︒,9060DAB ∴∠=︒-30︒='︒,在Rt ADE △与Rt AB E '中,AD AB AE AE '=⎧⎨=⎩()Rt ADE Rt AB E HL '∴△△≌, 1302EAD B AD DAB '∴∠=∠=∠='︒, ∴在Rt ADE △中,6AD =,23ED =, 112623632ADE AD E S D ⋅∴=⨯=⨯=△, 1223ADEB ADE S S '=∴=△,2636ABCD S ==正方形,36123ADEB ABCD S S S '∴-==阴影正方形-,故答案为:36123-.【点睛】本题考查了正方形的性质及旋转的性质,熟练添加辅助线,证明全等,灵活计算阴影面积是解题关键.15.【分析】根据图形可知:点B 在以O 为圆心以OB 为半径的圆上运动由旋转可知:将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA1B1C1相当于将线段OB 绕点O 逆时针旋转45∘可得对应点B 的坐标根据规解析:(2,0)【分析】根据图形可知:点B 在以O 为圆心,以OB 为半径的圆上运动,由旋转可知:将正方形OABC 绕点O 逆时针旋转45∘后得到正方形OA 1B 1C 1,相当于将线段OB 绕点O 逆时针旋转45∘,可得对应点B 的坐标,根据规律发现是8次一循环,可得结论.【详解】∵四边形OABC是正方形,且OA=1,∴B(1,1),连接OB,由勾股定理得:2,由旋转得:OB=OB1=OB2=OB32,∵将正方形OABC绕点O逆时针旋转45∘后得到正方形OA1B1C1,相当于将线段OB绕点O逆时针旋转45∘,依次得到∠AOB=∠BOB1=∠B1OB2=…=45∘,∴B12),B2(−1,1),B32,…,发现是8次一循环,所以2019÷8=252…3,∴点B2019的坐标为2【点睛】本题考查了旋转的性质,对应点到旋转中心的距离相等;对应点与旋转中心所连接线段的夹角等于旋转角,也考查了坐标与图形的变化、规律型、点的坐标等知识,解题的关键是学会从特殊到一般的探究规律的方法.16.(1﹣2)【分析】根据平面直角坐标系中任意一点P(xy)关于原点的对称点是(﹣x﹣y)可得答案【详解】解:在直角坐标系中点(﹣12)关于原点对称点的坐标是(1﹣2)故答案为(1﹣2)【点睛】本题考查解析:(1,﹣2)【分析】根据平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),可得答案.【详解】解:在直角坐标系中,点(﹣1,2)关于原点对称点的坐标是(1,﹣2),故答案为(1,﹣2).【点睛】本题考查了关于原点对称的点的坐标,关于原点的对称点,横纵坐标都变成相反数.17.-1【分析】根据关于原点对称的点横坐标与纵坐标都互为相反数可得ab再根据负数的奇数次幂是负数可得答案【详解】解:点A(-5b)关于原点对称的点为B(a6)得a=5b=-6(a+b)2019=(-1)解析:-1【分析】根据关于原点对称的点,横坐标与纵坐标都互为相反数,可得a,b,再根据负数的奇数次幂是负数,可得答案.【详解】解:点A (-5,b )关于原点对称的点为B (a ,6),得a=5,b=-6.(a+b )2019=(-1)2019=-1,故答案为:-1.【点睛】本题考查关于原点对称的点的坐标,解题关键是掌握好对称点的坐标规律:关于x 轴对称的点,横坐标相同,纵坐标互为相反数;关于y 轴对称的点,纵坐标相同,横坐标互为相反数;关于原点对称的点,横坐标与纵坐标都互为相反数.18.(12)【分析】根据旋转的概率即可得出每旋转4次一个循环进而得到第2020次旋转得到△OA2020B2020则顶点A 的对应点A2020的坐标与点A4的坐标相同【详解】解:将△OAB 绕点O 顺时针旋转9解析:(1,2)【分析】根据旋转的概率,即可得出每旋转4次一个循环,进而得到第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同.【详解】解:将△OAB 绕点O 顺时针旋转90°得△OA 1B 1;此时,点A 1的坐标为(2,-1); 再将△OA 1B 1绕点O 顺时针旋转90°得△OA 2B 2;此时,点A 2的坐标为(-1,2); 再将△OA 2B 2绕点O 顺时针旋转90°得△OA 3B 3;此时,点A 3的坐标为(-2,1); 再将△OA 3B 3绕点O 顺时针旋转90°得△OA 4B 4;此时,点A 4的坐标为(1,2); ∴每旋转4次一个循环,…依此类推,第2020次旋转得到△OA 2020B 2020,则顶点A 的对应点A 2020的坐标与点A 4的坐标相同,为(1,2);故答案为:(1,2).【点睛】本题考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.19.-12【分析】两个点关于原点对称时它们的横坐标互为相反数纵坐标也互为相反数直接利用关于原点对称点的性质得出mn 的值进而得出答案【详解】∵点B (5)与点A (4)关于原点成中心对称∴∴∴故答案为:【点睛解析:-12【分析】两个点关于原点对称时,它们的横坐标互为相反数,纵坐标也互为相反数,直接利用关于原点对称点的性质得出m ,n 的值,进而得出答案.【详解】∵点B (3n +,5)与点A (4,m )关于原点成中心对称,∴34n +=-,5m =-,∴5m =-,7n =-,∴()5712m n +=-+-=-.故答案为:12-.【点睛】本题主要考查了关于原点对称点的坐标性质,正确记忆关于原点对称点的坐标性质是解题关键.20.3【分析】连接AE 作AH ⊥BE 于H 根据勾股定理求出AC 的值根据旋转的性质可知BE=AB=5DE=AC=3然后根据等面积法求解即可【详解】解:连接AE 作AH ⊥BE 于H ∵在中∴AC=由旋转的性质得BE=解析:3【分析】连接AE ,作AH ⊥BE 于H ,根据勾股定理求出AC 的值,根据旋转的性质可知BE=AB=5,DE=AC=3,然后根据等面积法求解即可.【详解】解:连接AE ,作AH ⊥BE 于H ,∵在Rt ABC 中,5AB =,4BC =,∴AC=2254=3-,由旋转的性质得BE=AB=5,DE=AC=3,∵1122BE AH AB DE ⋅=⋅, ∴5AH=5×3,∴AH=3,故答案为:3.【点睛】本题考查了勾股定理,旋转的性质,等面积法求线段的长,熟练掌握各知识点是解答本题的关键.三、解答题21.(1)见解析;(2)11(13)(14)B C -,,,;(3)1BB =32【分析】(1)根据旋转的性质确定点B 1、C 1的位置,顺次连线即可得到图形;(2)依据(1)即可得到答案;(3)根据勾股定理计算得出答案.【详解】解:(1)如图(2)由(1)可知:11(13)(14)B C -,,,; (3)由勾股定理可得:22133BB=+=32. 【点睛】此题考查旋转画图,旋转的性质,根据点在直角坐标系中的位置确定坐标,勾股定理,正确画出旋转图形是解题的关键.22.(1)见解析;(2)见解析【分析】(1)根据题意补全图形,如图所示;(2)由旋转的性质得到∠DCF 为直角,由EF 与CD 平行,得到∠EFC 为直角,利用SAS 得到三角形BDC 与三角形EFC 全等,利用全等三角形的性质即可得证.【详解】解:(1)补全图形,如图所示(2)由旋转的性质得:CD CF =,90DCF ∠=︒,∴90DCE ECF ∠+∠=︒,∵90ACB ∠=︒,∴90DCE BCD ∠+∠=︒,∴BCD ECF ∠=∠,在BDC 和EFC 中=DC FC BCD ECF BC EC =⎧⎪⎨⎪=⎩∠∠,∴()SAS BDC EFC △≌△∴BD EF =.【点睛】此题考查了旋转的性质,以及全等三角形的判定与性质,熟练掌握旋转的性质是解本题的关键.23.(1)90°;(2)【分析】(1)根据旋转的性质和等腰直角三角形的性质即可得∠DCE 的度数;(2)根据勾股定理求出AC 的长,根据CD =3AD ,可得CD 和AD 的长,根据旋转的性质可得AD =EC ,再根据勾股定理即可得DE 的长.【详解】解:(1)∵△ABC 为等腰直角三角形,∴∠BAD =∠BCD =45°,由旋转的性质可知∠BAD =∠BCE =45°,∴∠DCE =∠BCE +∠BCA =45°+45°=90°;(2)∵BA =BC ,∠ABC =90°,∴AC == ∵CD =3AD ,∴AD =DC = 由旋转的性质可知:AD =EC,∴DE ==【点睛】本题考查了旋转的性质、等腰直角三角形,解决本题的关键是掌握旋转的性质. 24.(1)AF =CD ;(2)成立,理由见解析.【分析】(1)根据平行四边形的性质和图形得出AB=DE ,DF=AC ,∠ABC=∠DEF ,根据SAS 证△ABC ≌△DEF ,推出BF=EC 即可;(2)根据全等三角形的性质推出AB=DE ,BC=EF ,∠ABC=∠DEF ,求出∠ABF=∠DEC ,根据SAS 证△ABF ≌△DEC ,即可推出答案.【详解】解:(1)AF=CD ,理由是:∵四边形是平行四边形,∴∠ABC=∠DEF ,BF=EC ,在△ABC 和△DEF 中AB DE ABC DEF BF EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴BF=EC ,∵AB=DE ,∴AF=CD ,故答案为:AF=CD .(2)成立,理由是:∵△ABC ≌△DEF ,∴AB=DE ,BC=EF ,∠ABC=∠DEF ,∴∠ABC-∠FBC=∠DEF-∠FBC ,∴∠ABF=∠DEC ,∵在△ABF 和△DEC 中AB DE ABF DEC BF EC =⎧⎪∠=∠⎨⎪=⎩,∴△ABF ≌△DEC (SAS ),∴AF=CD .【点睛】本题考查了平行四边形的性质,旋转的性质,全等三角形的性质和判定,主要考查学生的推理能力,题目比较好,难度适中.25.(1)见解析;(2【分析】(1)根据旋转的性质即可画出△ABE 绕点A 逆时针旋转90°后的图形以及E 的轨迹; (2)利用勾股定理求出AE ,再利用等腰直角三角形的性质求出EF 即可.【详解】解:(1)旋转后的△ADF 如图所示,点E 的运动路径如图所示:(2)∵四边形ABCD 是正方形,∴AB=BC=2,∠B=90°,∵BE=EC=1,∴AE=22AB BE +=2221+=5,∵△EAF 是等腰直角三角形,∠EAF=90°,AE=AF ,∴EF=2AE=10.【点睛】本题考查作图-旋转变换,正方形的性质,勾股定理等知识,解题的关键是理解题意,灵活运用所学知识解决问题.26.(1)见解析;(2)9【分析】(1)根据旋转的性质即可画出△ABE 绕点A 逆时针旋转90°后的图形(点E 的对应点为F );(2)根据AB=3和旋转的性质可得四边形AECF 的面积即为正方形ABCD 的面积.【详解】(1)如图,△ADF 即为△ABE 绕点A 逆时针旋转90°后的图形;(2)根据旋转可知:四边形AECF 的面积=正方形ABCD 的面积=AB 2=9.故答案为:9.【点睛】本题考查了作图-旋转变换、正方形的性质、旋转的性质,解决本题的关键是掌握旋转的性质.。

育才中学九年级数学上册第二十三章《旋转》经典测试(含解析)

育才中学九年级数学上册第二十三章《旋转》经典测试(含解析)

一、选择题1.下面四个图案是常用的交通标志,其中为中心对称图形的是()A.B.C.D.2.下列图形中,既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.圆D.五角星3.以下四幅图案,其中图案是中心对称图形的是()A.B.C.D.4.如图,△ABC中,AB=6,AC=4,以BC为对角线作正方形BDCF,连接AD,则AD长不可能是()A.2 B.4 C.6 D.85.下列四个图案中,是中心对称图形的是()A.B.C.D.A,O是坐标原点,将线段OA绕点O逆时针旋转90 ,点A旋转后的对6.已知点(2,3)应点1A,则点1A的坐标是()A .(2,3)--B .(2,3)-C .(3,2)-D .(3,2)- 7.如图,四边形ABCD 中,∠DAB =30°,连接AC ,将ABC 绕点B 逆时针旋转60°,点C 与对应点D 重合,得到EBD ,若AB =5,AD =4,则AC 的长度为( )A .5B .6C .26D .41 8.如图,将△ABC 绕顶点C 旋转得到△A B C '', 且点B 刚好落在A B ''上,若∠A =35°,∠BCA '=40°,则∠A BA '等于( )A .45°B .40°C .35°D .30° 9.下列图形中,既是轴对称图形又是中心对称图形的是( ) A .等边三角形B .平行四边形C .正五边形D .菱形 10.既是中心对称图形又是轴对称图形,且只有两条对称轴的四边形是( ) A .正方形 B .矩形 C .菱形 D .矩形或菱形 11.在平面直角坐标系中,点()3,5P --关于原点对称的点的坐标是( )A .()3,5-B .()3,5-C .()3,5D .()3,5-- 12.如图,在Rt △ABC 中,AB=AC ,D ,E 是斜边BC 上两点,且∠DAE=45°,将△ABE 绕点A 顺时针旋转90°后,得到△ACF ,连接DF ,则下列结论中有( )个是正确的. ①∠DAF=45° ②△ABE ≌△ACD ③AD 平分∠EDF ④222BE DC DE +=A .4B .3C .2D .113.如图,以点A 为中心,把△ABC 逆时针旋转120°,得到△AB'C′(点B 、C 的对应点分别为点B′、C′),连接BB',若AC'∥BB',则∠CAB'的度数为( )A .45°B .60°C .70°D .90° 14.若点A (3-m ,n+2)关于原点的对称点B 的坐标是(-3,2),则m ,n 的值为( )A .m=-6,n=-4B .m=O ,n=-4C .m=6,n=4D .m=6,n=-4 15.如图①,正方形A 的一个顶点与正方形B 的对称中心重合,重叠部分面积是正方形A 面积的12,如图②,移动正方形A 的位置,使正方形B 的一个顶点与正方形A 的对称中心重合,则重叠部分面积是正方形B 面积的( )A .12B .14C .16D .18二、填空题16.如图,将AOB 绕点O 按逆时针方向旋转45°后得到COD △,若15AOB ∠=︒,则BOC ∠=______度.17.如图,O 是正方形ABCD 的中心,M 是ABCD 内一点,90DMC ∠=︒,将DMC 绕O 点旋转180°后得到BNA .若3MD =,4CM =,则MN 的长为______.18.如图,正方形AEFG 与正方形ABCD 的边长都为2,正方形AEFG 绕正方形ABCD 的顶点A 旋转一周,在此旋转过程中,线段DF 的长可取的整数值可以为______________.19.如图所示,把一个直角三角尺ACB 绕30角的顶点B 顺时计旋转,使得点A 落在CB 的延长线上的点E 处,则BCD ∠的度数为______.20.如图,△AOB 中,∠B=30°,将△AOB 绕点O 顺时针旋转得到△A′OB′,若∠A′=40°,则∠B′= °,∠AOB= .21.如图,如果正方形ABCD 绕点C 按顺时针方向旋转30°后得到正方形EFCG ,连接DG ,那么∠DGE =________.22.如图,在边长为1的正方形网格中,()1,7A ,()5,5B ,()7,5C ,()5,1D .线段AB 与线段CD 存在一种特殊关系,即其中一条线段绕着某点旋转一个角度可以得到另一条线段,则这个旋转中心的坐标为______.23.如图,在平面直角坐标系中,等腰Rt △OA 1B 1的斜边OA 1=2,且OA 1在x 轴的正半轴上,点B 1落在第一象限内.将Rt △OA 1B 1绕原点O 逆时针旋转45°,得到Rt △OA 2B 2,再将Rt △OA 2B 2绕原点O 逆时针旋转45°,又得到Rt △OA 3B 3,……,依此规律继续旋转,得到Rt △OA 2019B 2019,则点B 2019的坐标为_____.24.如图所示的美丽图案,可以看作是由一个三角形绕旋转中心旋转_____次,每次旋转_____度形成的.25.在平面直角坐标系中,将点P (﹣3,2)绕点Q (﹣1,0)顺时针旋转90°,所得到的对应点P '的坐标为____.26.如图,在△ABC 中,∠C =90°,BC =3,AC =5,点D 为线段AC 上一动点,将线段BD 绕点D 逆时针旋转90°,点B 的对应点为E ,连接AE ,则AE 长的最小值为_____.三、解答题27.如图,点E 是正方形ABCD 的边DC 上一点,把△ADE 绕点A 顺时针旋转到△ABF 的位置,接EF .(1)求证:△AEF 是等腰直角三角形;(2)若四边形AECF 的面积为25,DE=2,求AE 的长.28.在学习利用旋转解决图形问题时,老师提出如下问题:(1)如图1,点Р是正方形ABCD 内一点,1,2,3PA PB PC ===,你能求出APB ∠的度数吗?小明通过观察、分析、思考,形成了如下思路:思路一:将PBC ∆绕点B 逆时针旋转90,得到'P BA ∆,连接'PP ,可求出APB ∠的度数;思路二:将PAB ∆绕点B 顺时针旋转90,得到'P CB ∆,连接'PP ,可求出APB ∠的度数.请参照小明的思路,任选一种写出完整的解答过程.(2)如图2,若点P 是正方形ABCD 外一点,要使45APB ∠=,线段PA ,PB ,PC 应满足怎样的等量关系?请参考小明上述解决问题的方法进行探究,直接写出线段PA ,PB ,PC 满足的等量关系.29.如图,△ABC 三个顶点的坐标分别为A (1,1),B (4,2),C (3,4). (1)请画出△ABC 绕点O 逆时针旋转90°得到的△A 1B 1C 1;(2)请画出△ABC 以点O 为对称中心的中心对称图形△A 2B 2C 2;(3)在x 轴上求作一点P ,使△PAB 的周长最小,请画出△PAB ,并直接写出点P 的坐标.30.如图1,AC⊥CH于点C,点B是射线CH上一动点,将△ABC绕点A逆时针旋转60°得到△ADE(点D对应点C).(1)延长ED交CH于点F,求证:FA平分∠CFE;(2)如图2,当∠CAB>60°时,点M为AB的中点,连接DM,请判断DM与DA、DE的数量关系,并证明.。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

重庆育才中学数学旋转几何综合检测题(Word版含答案)一、初三数学旋转易错题压轴题(难)1.如图,四边形ABCD为正方形,△AEF为等腰直角三角形,∠AEF=90°,连接FC,G 为FC的中点,连接GD,ED.(1)如图①,E在AB上,直接写出ED,GD的数量关系.(2)将图①中的△AEF绕点A逆时针旋转,其它条件不变,如图②,(1)中的结论是否成立?说明理由.(3)若AB=5,AE=1,将图①中的△AEF绕点A逆时针旋转一周,当E,F,C三点共线时,直接写出ED的长.【答案】(1)DE=2DG;(2)成立,理由见解析;(3)DE的长为42或32.【解析】【分析】(1)根据题意结论:DE=2DG,如图1中,连接EG,延长EG交BC的延长线于M,连接DM,证明△CMG≌△FEG(AAS),推出EF=CM,GM=GE,再证明△DCM≌△DAE (SAS)即可解决问题;(2)如图2中,结论成立.连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R,其证明方法类似;(3)由题意分两种情形:①如图3-1中,当E,F,C共线时.②如图3-3中,当E,F,C 共线时,分别求解即可.【详解】解:(1)结论:DE=2DG.理由:如图1中,连接EG,延长EG交BC的延长线于M,连接DM.∵四边形ABCD是正方形,∴AD=CD,∠B=∠ADC=∠DAE=∠DCB=∠DCM=90°,∵∠AEF=∠B=90°,∴EF∥CM,∴∠CMG=∠FEG,∵∠CGM=∠EGF,GC=GF,∴△CMG≌△FEG(AAS),∴EF=CM,GM=GE,∵AE=EF,∴AE=CM,∴△DCM≌△DAE(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∴DG⊥EM,DG=GE=GM,∴△EGD是等腰直角三角形,∴DE=2DG.(2)如图2中,结论成立.理由:连接EG,延长EG到M,使得GM=GE,连接CM,DM,延长EF交CD于R.∵EG=GM,FG=GC,∠EGF=∠CGM,∴△CGM≌△FGE(SAS),∴CM=EF,∠CMG=∠GEF,∴CM∥ER,∴∠DCM=∠ERC,∵∠AER+∠ADR=180°,∴∠EAD+∠ERD=180°,∵∠ERD+∠ERC=180°,∴∠DCM=∠EAD,∵AE=EF,∴AE=CM,∴△DAE≌△DCM(SAS),∴DE=DM,∠ADE=∠CDM,∴∠EDM=∠ADC=90°,∵EG=GM,∴DG=EG=GM,∴△EDG是等腰直角三角形,∴DE =2DG .(3)①如图3﹣1中,当E ,F ,C 共线时,在Rt △ADC 中,AC =22AD CD +=2255+=52,在Rt △AEC 中,EC =22A AE C -=22(52)1-=7,∴CF =CE ﹣EF =6,∴CG =12CF =3, ∵∠DGC =90°, ∴DG =22CD CG -=2253-=4,∴DE =2DG =42.②如图3﹣3中,当E ,F ,C 共线时,同法可得DE =32.综上所述,DE 的长为2或2.【点睛】本题属于四边形综合题,考查正方形的性质,全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题.2.已知如图1,在ABC 中,90ABC ∠=︒,BC AB =,点D 在AC 上,DF AC ⊥交BC 于F ,点E 是AF 的中点.(1)写出线段ED 与线段EB 的关系并证明;(2)如图2,将CDF 绕点C 逆时针旋转()090a α︒<<︒,其它条件不变,线段ED 与线段EB 的关系是否变化,写出你的结论并证明;(3)将CDF 绕点C 逆时针旋转一周,如果6BC =,32CF =,直接写出线段CE 的范围.【答案】(1)ED EB =,DE BE ⊥,证明见解析;(2)结论不变,理由见解析;(3)最大值22=最小值322=. 【解析】【分析】(1)在Rt △ADF 中,可得DE=AE=EF ,在Rt △ABF 中,可得BE=EF=EA ,得证ED=EB ;然后利用等腰三角形的性质以及四边形ADFB 的内角和为180°,可推导得出∠DEB=90°; (2)如下图,先证四边形MFBA 是平行四边形,再证△DCB ≌△DFM ,从而推导出△DMB 是等腰直角三角形,最后得出结论;(3)如下图,当点F 在AC 上时,CE 有最大值;当点F 在AC 延长线上时,CE 有最小值.【详解】(1)∵DF ⊥AC ,点E 是AF 的中点∴DE=AE=EF ,∠EDF=∠DFE∵∠ABC=90°,点E 是AF 的中点∴BE=AE=EF ,∠EFB=∠EBF∴DE=EB∵AB=BC ,∴∠DAB=45°∴在四边形ABFD 中,∠DFB=360°-90°-45°-90°=135°∠DEB=∠DEF+∠FEB=180°-2∠EFD+180°-2∠EFB=360°-2(∠EFD+∠EFB)=360°-2×135°=90°∴DE ⊥EB(2)如下图,延长BE 至点M 处,使得ME=EB ,连接MA 、ME 、MF 、MD 、FB 、DB ,延长MF 交CB 于点H∵ME=EB,点E是AF的中点∴四边形MFBA是平行四边形∴MF∥AB,MF=AB∴∠MHB=180°-∠ABC=90°∵∠DCA=∠FCB=a∴∠DCB=45°+a,∠CFH=90°-a∵∠DCF=45°,∠CDF=90°∴∠DFC=45°,△DCF是等腰直角三角形∴∠DFM=180°-∠DFC-∠CFH=45°+a∴∠DCB=∠DFM∵△ABC和△CDF都是等腰直角三角形∴DC=DF,BC=AB=MF∴△DCB≌△DFM(SAS)∴∠MDF=∠BDC,DB=DM∴∠MDF+∠FDB=∠BDC+∠FDB=90°∴△DMB是等腰直角三角形∵点E是MB的中点∴DE=EB,DE⊥EB(3)当点F在AC上时,CF有最大值,图形如下:∵BC=6,∴在等腰直角△ABC中,AC=62∵CF=32,∴AF=32∴CE=CF+FE=CF+12AF922=当点F在AC延长线上时,CE有最小值,图形如下:同理,CE=EF-CF322 =【点睛】本题考查三角形的旋转变换,用到了等腰直角三角形的性质和平行四边形的性质,解题关键是构造并证明△BDM是等腰直角三角形.3.如图一,矩形ABCD中,AB=m,BC=n,将此矩形绕点B顺时针方向旋转θ(0°<θ<90°)得到矩形A1BC1D1,点A1在边CD上.(1)若m=2,n=1,求在旋转过程中,点D到点D1所经过路径的长度;(2)将矩形A1BC1D1继续绕点B顺时针方向旋转得到矩形A2BC2D2,点D2在BC的延长线上,设边A2B与CD交于点E,若161A EEC=-,求nm的值.(3)如图二,在(2)的条件下,直线AB上有一点P,BP=2,点E是直线DC上一动点,在BE左侧作矩形BEFG且始终保持BE nBG m=,设AB=33,试探究点E移动过程中,PF 是否存在最小值,若存在,求出这个最小值;若不存在,请说明理由.【答案】(1)5π;(2)3;(3)存在,63+【解析】【分析】(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.解直角三角形,求出∠ABA1,得到旋转角即可解决问题;(2)由△BCE∽△BA2D2,推出222A DCE nCB A B m==,可得CE=2nm,由161A EEC=-推出16A CEC=,推出A1C=26nm•,推出BH=A1C=26nm•,然后由勾股定理建立方程,解方程即可解决问题;(3)当A、P、F,D,四点共圆,作PF⊥DF,PF与CD相交于点M,作MN⊥AB,此时PF 的长度为最小值;先证明△FDG∽△FME,得到33FGFFM FED==,再结合已知条件和解直角三角形求出PM和FM的长度,即可得到PF的最小值.【详解】解:(1)作A1H⊥AB于H,连接BD,BD1,则四边形ADA1H是矩形.∴AD=HA1=n=1,在Rt △A 1HB 中,∵BA 1=BA=m=2, ∴BA 1=2HA 1, ∴∠ABA 1=30°,∴旋转角为30°,∵BD=22125+=,∴D 到点D 1所经过路径的长度=3055ππ⋅⋅=; (2)∵△BCE ∽△BA 2D 2, ∴222A D CE n CB A B m==, ∴2n CE m=, ∵161EA EC=-, ∴16A C EC=, ∴A 1C=26n m⋅, ∴BH=A 1C=2226n m n m -=⋅, ∴42226n m n m -=⋅, ∴m 4﹣m 2n 2=6n 4,∴242416n n m m-=•, ∴3n m =(负根已舍去). (3)当A 、P 、F ,D ,四点共圆,作PF ⊥DF ,PF 与CD 相交于点M ,作MN ⊥AB ,此时PF 的长度为最小值;由(2)可知,3BE n BG m ==, ∵四边形BEFG 是矩形,∴FG FE = ∵∠DFG+∠GFM=∠GFM+∠MFE=90°,∴∠DFG=∠MFE ,∵DF ⊥PF ,即∠DFM=90°,∴∠FDM+∠GDM=∠FDM+∠DFM=∠FDM+90°,∴∠FDG=∠FME ,∴△FDG ∽△FME ,∴FG F FM FE D ==,∵∠DFM=90°,tan 3FD FMD FM ∠==, ∴∠FDM=60°,∠FMD=30°,∴FM DM =;在矩形ABCD 中,有AD AB ==3AD =, ∵MN ⊥AB ,∴四边形ANMD 是矩形,∴MN=AD=3,∵∠NPM=∠DMF=30°,∴PM=2MN=6,∴NP=AB =,∴DM=AN=BP=2,∴2FM DM ===∴6PF PM MF =+=+【点睛】本题考查点的运动轨迹,旋转变换、解直角三角形、弧长公式、矩形的性质、相似三角形的判定和性质等知识,解题的关键是理解题意,灵活运用所学知识解决问题,属于压轴题,中考常考题型.正确作出辅助线,正确确定动点的位置,注意利用数形结合的思想进行解题.4.如图,在边长为2的正方形ABCD 中,点P 、Q 分别是边AB 、BC 上的两个动点(与点A 、B 、C 不重合),且始终保持BP BQ =,AQ QE ⊥,QE 交正方形外角平分线CE 于点E ,AE 交CD 于点F ,连结PQ .(1)求证:APQ QCE ∆∆≌;(2)证明:DF BQ QF +=;(3)设BQ x =,当x 为何值时,//QF CE ,并求出此时AQF ∆的面积.【答案】(1)证明见解析;(2)证明见解析;(3)当222x =-+//QF CE ;AQF S ∆442=-+.【解析】【分析】(1)判断出△PBQ 是等腰直角三角形,然后求出∠APQ=∠QCE=135°,再根据同角的余角相等求出∠PAQ=∠CQE ,再求出AP=CQ ,然后利用“角边角”证明即可;(2)根据全等三角形对应边相等可得AQ=EQ ,判断出△AQE 是等腰直角三角形,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,再证明()F AQ FAQ SAS '∆∆≌;(3)连结AC ,设QF CE ,推出QCF ∆是等腰直角三角形°,再证明()ABQ ADF SAS ∆∆≌,根据全等三角形对应边相等可得QF=GF ,AQ AF =,22.5QAB DAF ∠=∠=︒,分别用x 表示出DF 、CF 、QF ,然后列出方程求出x ,再求出△AQF 的面积.【详解】(1)∵四边形ABCD 是正方形,∴AB BC =,90B BCD DCM ∠=∠=∠=︒,∵BP BQ =,∴PBQ ∆是等腰直角三角形,AP QC =,∴45BPQ ∠=︒,∴135APQ ∠=︒∵CE 平分DCM ∠,∴45DCE ECM ∠=∠=︒,∴135QCE ∠=︒,∴135APQ QCE ∠=∠=︒,∵AQ QE ⊥,∴90AQB CQE ∠+∠=︒. ∵90AQB BAQ ∠+∠=︒. ∴BAQ CQE ∠=∠. ∴()APQ QCE ASA ∆≌. (2)由(1)知APQ QCE ∆∆≌. ∴QA QE =. ∵90AQE ∠=︒,∴AQE ∆是等腰直角三角形, ∴45QAE ∠=︒. ∴45DAF QAB ∠+∠=︒,如图4,将ADF ∆绕点A 顺时针旋转90︒得F AB '∆,其中点D 与点B 重合,且点F '在直线BQ 上,则45F AQ '∠=︒,F A FA '=,AQ AQ =, ∴()F AQ FAQ SAS '∆∆≌. ∴QF QF BQ DF '==+.(3)连结AC ,若QF CE ,则45FQC ECM ∠=∠=︒. ∴QCF ∆是等腰直角三角形, ∴2CF CQ x ==-, ∴DF BQ x ==.∵AB AD =,90B D ∠=∠=︒, ∴()ABQ ADF SAS ∆∆≌.∴AQ AF =,22.5QAB DAF ∠=∠=︒, ∴AC 垂直平分QF ,∴22.5QAC FAC QAB FAD ∠=∠=∠=∠=︒,2FQ QN =, ∴22FQ BQ x ==.在Rt QCF ∆中,根据勾股定理,得222(2)(2)(2)x x x -+-=.解这个方程,得1222x =-+, 2222x =--(舍去). 当222x =-+时,QFCE .此时,QCF QEF S S ∆∆=,∴212QCF AQF QEF AQF AQE S S S S S AQ ∆∆∆∆∆+=+==, ∴()2222111222AQF AQE QCF S S S AQ CQ AQ CQ ∆∆∆=-=-=- ()222112(2)4244222x x x x ⎡⎤=+--=⋅==-+⎣⎦ 【点睛】本题考查了正方形的性质,全等三角形的判定与性质,旋转的性质,等腰直角三角形的判定与性质,勾股定理的应用,难点在于(3)作辅助线构造成全等三角形并利用勾股定理列出方程.5.(1)观察猜想如图(1),在△ABC 中,∠BAC=90°,AB=AC,点D 是BC 的中点.以点D 为顶点作正方形DEFG ,使点A ,C 分别在DG 和DE 上,连接AE ,BG ,则线段BG 和AE 的数量关系是_____; (2)拓展探究将正方形DEFG 绕点D 逆时针方向旋转一定角度后(旋转角度大于0°,小于或等于360°),如图2,则(1)中的结论是否仍然成立?如果成立,请予以证明;如果不成立,请说明理由. (3)解决问题若BC=DE=2,在(2)的旋转过程中,当AE 为最大值时,直接写出AF 的值.【答案】(1)BG =AE . (2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.…………………………………………7分(3)由(2)知,BG=AE,故当BG最大时,AE也最大.正方形DEFG绕点D逆时针方向旋转270°时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=【解析】解:(1)BG=AE.(2)成立.如图②,连接AD.∵△ABC是等腰三直角角形,∠BAC=90°,点D是BC的中点.∴∠ADB=90°,且BD=AD.∵∠BDG=∠ADB-∠ADG=90°-∠ADG=∠ADE,DG=DE.∴△BDG≌△ADE,∴BG=AE.(3)由(2)知,BG=AE,故当BG最大时,AE也最大.Z+X+X+K]因为正方形DEFG在绕点D旋转的过程中,G点运动的图形是以点D为圆心,DG为半径的圆,故当正方形DEFG旋转到G点位于BC的延长线上(即正方形DEFG绕点D逆时针方向旋转270°)时,BG最大,如图③.若BC=DE=2,则AD=1,EF=2.在Rt△AEF中,AF2=AE2+EF2=(AD+DE)2+EF2=(1+2)2+22=13.∴AF=.即在正方形DEFG旋转过程中,当AE为最大值时,AF=.6.在△AOB中,C,D分别是OA,OB边上的点,将△OCD绕点O顺时针旋转到△OC′D′.(1)如图1,若∠AOB=90°,OA=OB,C,D分别为OA,OB的中点,证明:①AC′=BD′;②AC′⊥BD′;(2)如图2,若△AOB为任意三角形且∠AOB=θ,CD∥AB,AC′与BD′交于点E,猜想∠AEB=θ是否成立?请说明理由.【答案】(1)证明见解析;(2)成立,理由见解析【解析】试题分析:(1)①由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,证出OC′=OD′,由SAS证明△AOC′≌△BOD′,得出对应边相等即可;②由全等三角形的性质得出∠OAC′=∠OBD′,又由对顶角相等和三角形内角和定理得出∠BEA=90°,即可得出结论;(2)由旋转的性质得出OC=OC′,OD=OD′,∠AOC′=∠BOD′,由平行线得出比例式,得出,证明△AOC′∽△BOD′,得出∠OAC′=∠OBD′再由对顶角相等和三角形内角和定理即可得出∠AEB=θ.试题解析:(1)证明:①∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵OA=OB,C、D为OA、OB的中点,∴OC=OD,∴OC′=OD′,在△AOC′和△BOD′中,,∴△AOC′≌△BOD′(SAS),∴AC′=BD′;②延长AC′交BD′于E,交BO于F,如图1所示:∵△AOC′≌△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∠OAC′+∠AFO=90°,∴∠OBD′+∠BFE=90°,∴∠BEA=90°,∴AC′⊥BD′;(2)解:∠AEB=θ成立,理由如下:如图2所示:∵△OCD旋转到△OC′D′,∴OC=OC′,OD=OD′,∠AOC′=∠BOD′,∵CD∥AB,∴,∴,∴,又∠AOC′=∠BOD′,∴△AOC′∽△BOD′,∴∠OAC′=∠OBD′,又∠AFO=∠BFE,∴∠AEB=∠AOB=θ.考点:相似三角形的判定与性质;全等三角形的判定与性质;旋转的性质.7.如图,△ABC和△DEC都是等腰三角形,点C为它们的公共直角顶点,连接AD、BE,F为线段AD的中点,连接CF.(1)如图1,当D点在BC上时,BE与CF的数量关系是__________;(2)如图2,把△DEC绕C点顺时针旋转90°,其他条件不变,问(1)中的关系是否仍然成立?请说明理由;(3)如图3,把△DEC绕C点顺时针旋转一个钝角,其他条件不变,问(1)中的关系是否仍然成立?如成立,请证明;如果不成立,请写出相应的正确的结论并加以证明.【答案】(1)BE=2CF;(2)(1)中的关系是仍然成立,理由见解析;(3)(1)中的关系是仍然成立,理由见解析.【解析】试题分析:(1)根据“SAS”证明△ACD≌△BCE,可得AD=BE,又因为AD=2CF,从而BE=2CF;(2)由点F是AD中点,可得AD=2DF,从而AC= 2DF+CD,又由△ABC和△CDE是等腰直角三角形,可知BC=2DF+CE,所以BE= 2(DF+CE),CF= DF+CD,从而BE=2CF;(3)延长CF至G使FG=CF,即:CG=2CF,可证△CDF≌△GAF,再证明△BCE≌△ACG,从而BE=CG=2CF成立.解:(1)∵△ABC是等腰直角三角形,∴AC=BC,∵△CDE是等腰直角三角形,∴CD=CE,在△ACD和△BCE中,,∴△ACD≌△BCE,∴AD=BE,在Rt△ACD中,点F是AD中点,∴AD=2CF,∴BE=2CF,故答案为BE=2CF;(2)(1)中的关系是仍然成立,理由:∵点F是AD中点,∴AD=2DF,∴AC=AD+CD=2DF+CD,∵△ABC和△CDE是等腰直角三角形,∴AC=BC,CD=CE,∴BC=2DF+CE,∴BE=BC+CE=2DF+CE+CE=2(DF+CE),∵CF=DF+CD=DF+CD,∴BE=2CF;(3)(1)中的关系是仍然成立,理由:如图3,延长CF至G使FG=CF,即:CG=2CF,∵点F是AD中点,∴AF=DF,在△CDF和△GAF中,,∴△CDF≌△GAF,∴AG=CD=CE,∠CDF=∠GAF,∴∠CAG=∠CAD+∠GAF=∠CAD+∠ADC=180°﹣∠ACD,∵∠ACB=∠DCE=90°,∴∠BCE=360°﹣∠ACB﹣∠DCE﹣∠ACD=180°﹣∠ACD,∴∠CAG=∠BCE,连接BE,在△BCE和△ACG中,,∴△BCE≌△ACG,∴BE=CG=2CF,即:BE=2CF.点睛:本题主要考查了等腰直角三角形的性质、全等三角形的判定与性质和旋转的性质,考查了学生综合运用知识的能力,熟练掌握旋转的性质、全等三角形的判定与性质是解答本题的关键.8.在平面直角坐标系中,O为原点,点A(8,0),点B(0,6),把△ABO绕点B逆时针旋转得△A′B′O′,点A、O旋转后的对应点为A′、O′,记旋转角为α.(1)如图1,若α=90°,则AB= ,并求AA′的长;(2)如图2,若α=120°,求点O′的坐标;(3)在(2)的条件下,边OA上的一点P旋转后的对应点为P′,当O′P+BP′取得最小值时,直接写出点P′的坐标.【答案】(1)10,102;(2)(33,9);(3)123545(,)【解析】试题分析:(1)、如图①,先利用勾股定理计算出AB=5,再根据旋转的性质得BA=BA′,∠ABA′=90°,则可判定△ABA′为等腰直角三角形,然后根据等腰直角三角形的性质求AA′的长;(2)、作O′H⊥y轴于H,如图②,利用旋转的性质得BO=BO′=3,∠OBO′=120°,则∠HBO′=60°,再在Rt△BHO′中利用含30度的直角三角形三边的关系可计算出BH和O′H的长,然后利用坐标的表示方法写出O′点的坐标;(3)、由旋转的性质得BP=BP′,则O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,易得O′P+BP=O′C,利用两点之间线段最短可判断此时O′P+BP的值最小,接着利用待定系数法求出直线O′C的解析式为y=x﹣3,从而得到P(,0),则O′P′=OP=,作P′D⊥O′H于D,然后确定∠DP′O′=30°后利用含30度的直角三角形三边的关系可计算出P′D 和DO′的长,从而可得到P′点的坐标.试题解析:(1)、如图①,∵点A(4,0),点B(0,3),∴OA=4,OB=3,∴AB==5,∵△ABO绕点B逆时针旋转90°,得△A′BO′,∴BA=BA′,∠ABA′=90°,∴△ABA′为等腰直角三角形,∴AA′=BA=5;(2)、作O′H⊥y轴于H,如图②,∵△ABO绕点B逆时针旋转120°,得△A′BO′,∴BO=BO′=3,∠OBO′=120°,∴∠HBO′=60°,在Rt△BHO′中,∵∠BO′H=90°﹣∠HBO′=30°,∴BH=BO′=,O′H=BH=,∴OH=OB+BH=3+,∴O′点的坐标为();(3)∵△ABO绕点B逆时针旋转120°,得△A′BO′,点P的对应点为P′,∴BP=BP′,∴O′P+BP′=O′P+BP,作B点关于x轴的对称点C,连结O′C交x轴于P点,如图②,则O′P+BP=O′P+PC=O′C,此时O′P+BP的值最小,∵点C与点B关于x轴对称,∴C(0,﹣3),设直线O′C的解析式为y=kx+b,把O′(),C(0,﹣3)代入得,解得,∴直线O′C的解析式为y=x﹣3,当y=0时,x﹣3=0,解得x=,则P(,0),∴OP=,∴O′P′=OP=,作P′D⊥O′H于D,∵∠BO′A=∠BOA=90°,∠BO′H=30°,∴∠DP′O′=30°,∴O′D=O′P′=,P′D=,∴DH=O′H﹣O′,∴P′点的坐标为(,).考点:几何变换综合题9.已知:△ABC和△ADE均为等边三角形,连接BE,CD,点F,G,H分别为DE,BE,CD 中点.(1)当△ADE绕点A旋转时,如图1,则△FGH的形状为,说明理由;(2)在△ADE旋转的过程中,当B,D,E三点共线时,如图2,若AB=3,AD=2,求线段FH的长;(3)在△ADE旋转的过程中,若AB=a,AD=b(a>b>0),则△FGH的周长是否存在最大值和最小值,若存在,直接写出最大值和最小值;若不存在,说明理由.【答案】(1)△FGH是等边三角形;(2)612;(3)△FGH的周长最大值为32(a+b),最小值为32(a﹣b).【解析】试题分析:(1)结论:△FGH是等边三角形.理由如下:根据三角形中位线定理证明FG=FH,再想办法证明∠GFH=60°即可解决问题;、(2)如图2中,连接AF、EC.在Rt△AFE和Rt△AFB中,解直角三角形即可;(3)首先证明△GFH的周长=3GF=32BD,求出BD的最大值和最小值即可解决问题;试题解析:解:(1)结论:△FGH是等边三角形.理由如下:如图1中,连接BD、CE,延长BD交CE于M,设BM交FH于点O.∵△ABC和△ADE均为等边三角形,∴AB=AC,AD=AE,∠BAC=∠DAE,∴∠BAD=∠CAE,∴△BAD≌△CAE,∴BD=CE,∠ADB=∠AEC,∵EG=GB,EF=FD,∴FG=12BD,GF∥BD,∵DF=EF,DH=HC,∴FH=12EC,FH∥EC,∴FG=FH,∵∠ADB+∠ADM=180°,∴∠AEC+∠ADM=180°,∴∠DMC+∠DAE=180°,∴∠DME=120°,∴∠BMC=60°∴∠GFH=∠BOH=∠BMC=60°,∴△GHF是等边三角形,故答案为:等边三角形.(2)如图2中,连接AF、EC.易知AF⊥DE,在Rt△AEF中,AE=2,EF=DF=1,∴AF=2221-=3,在Rt△ABF中,BF=22AB AF- =6,∴BD=CE=BF﹣DF=61-,∴FH=12EC=612-.(3)存在.理由如下.由(1)可知,△GFH是等边三角形,GF=12BD,∴△GFH的周长=3GF=32BD,在△ABD中,AB=a,AD=b,∴BD的最小值为a﹣b,最大值为a+b,∴△FGH的周长最大值为3 2(a+b),最小值为32(a﹣b).点睛:本题考查等边三角形的性质.全等三角形的判定和性质、解直角三角形、三角形的三边关系、三角形的中位线的宽等知识,解题的关键是学会添加常用辅助线,正确寻找全等三角形解决问题,学会利用三角形的三边关系解决最值问题,属于中考压轴题.10.(问题提出)如图①,已知△ABC是等边三角形,点E在线段AB上,点D在直线BC上,且ED=EC,将△BCE绕点C顺时针旋转60°至△ACF连接EF试证明:AB=DB+AF(类比探究)(1)如图②,如果点E在线段AB的延长线上,其他条件不变,线段AB,DB,AF之间又有怎样的数量关系?请说明理由(2)如果点E在线段BA的延长线上,其他条件不变,请在图③的基础上将图形补充完整,并写出AB,DB,AF之间的数量关系,不必说明理由.【答案】证明见解析;(1)AB=BD﹣AF;(2)AF=AB+BD.【解析】【分析】(1)根据旋转的性质得出△EDB与FEA全等的条件BE=AF,再结合已知条件和旋转的性质推出∠D=∠AEF,∠EBD=∠EAF=120°,得出△EDB≌FEA,所以BD=AF,等量代换即可得出结论.(2)先画出图形证明∴△DEB≌△EFA,方法类似于(1);(3)画出图形根据图形直接写出结论即可.【详解】(1)证明:DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠CAF=∠BAC=60°,∴∠EAF=∠BAC+∠CAF=120°,∵∠DBE=120°,∴∠EAF=∠DBE,又∵A,E,C,F四点共圆,∴∠AEF=∠ACF,又∵ED=DC,∴∠D=∠BCE,∠BCE=∠ACF,∴∠D=∠AEF,∴△EDB≌FEA,∴BD=AF,AB=AE+BF,∴AB=BD+AF.类比探究(1)DE=CE=CF,△BCE由旋转60°得△ACF,∴∠ECF=60°,BE=AF,CE=CF,∴△CEF是等边三角形,∴EF=CE,∴DE=EF,∠EFC=∠BAC=60°,∠EFC=∠FGC+∠FCG,∠BAC=∠FGC+∠FEA,∴∠FCG=∠FEA,又∠FCG=∠EAD∠D=∠EAD,∴∠D=∠FEA,由旋转知∠CBE=∠CAF=120°,∴∠DBE=∠FAE=60°∴△DEB≌△EFA,∴BD=AE, EB=AF,∴BD=FA+AB.即AB=BD-AF.(2)AF=BD+AB(或AB=AF-BD)如图③,,ED=EC=CF,∵△BCE绕点C顺时针旋转60°至△ACF,∴∠ECF=60°,BE=AF,EC=CF,BC=AC,∴△CEF是等边三角形,∴EF=EC,又∵ED=EC,∴ED=EF,∵AB=AC,BC=AC,∴△ABC是等边三角形,∴∠ABC=60°,又∵∠CBE=∠CAF,∴∠CAF=60°,∴∠EAF=180°-∠CAF-∠BAC=180°-60°-60°=60°∴∠DBE=∠EAF;∵ED=EC,∴∠ECD=∠EDC,∴∠BDE=∠ECD+∠DEC=∠EDC+∠DEC,又∵∠EDC=∠EBC+∠BED,∴∠BDE=∠EBC+∠BED+∠DEC=60°+∠BEC,∵∠AEF=∠CEF+∠BEC=60°+∠BEC,∴∠BDE=∠AEF,在△EDB 和△FEA 中,DBE EAF BDE AEF ED EF ∠∠⎧⎪∠∠⎨⎪⎩=== ∴△EDB ≌△FEA (AAS ),∴BD=AE ,EB=AF ,∵BE=AB+AE ,∴AF=AB+BD ,即AB ,DB ,AF 之间的数量关系是: AF=AB+BD .考点:旋转变化,等边三角形,三角形全等,。

相关文档
最新文档