28.2.1 解直角三角形教案

合集下载

人教版九年级数学下册28.2.1 解直角三角形 教案

人教版九年级数学下册28.2.1 解直角三角形 教案

28.2.1 解直角三角形1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.在上述的Rt △ABC 中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】 利用解直角三角形求边或角已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c,即c =a cos B =3632=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33,∴∠A =30°,∴∠B =60°,∴c =2a =12 2.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题【类型二】 构造直角三角形解决长度问题一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 运用解直角三角形解决面积问题如图,在△ABC 中,已知∠C =90°,sin A =37,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k =6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12AC ·BC =12×410×6=1210.所以△ABC 的面积是1210. 方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】 解直角三角形与等腰三角形的综合 已知等腰三角形的底边长为2,周长为2+2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作AD ⊥BC 于点D ,则BD =22,在Rt △ABD 中,cos ∠ABD =BD AB =22,∴∠ABD =45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】 解直角三角形与圆的综合已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连接AC 交OB 于点P .(1)求证:BP =BC ;(2)若sin ∠P AO =13,且PC =7,求⊙O 的半径. 解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠P AO =13,设OP =x ,AP =3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠P AO =13,∴在Rt △ACE 中CE AE =13,∴AC AE =223,∴3x +742x=223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.。

人教版数学九年级下册28.2.1解直角三角形优秀教学案例

人教版数学九年级下册28.2.1解直角三角形优秀教学案例
人教版数学九年级下册28.2.1解直角三角形优秀教学案例
一、案例背景
本节内容是“人教版数学九年级下册28.2.1解直角三角形”,这是学生在学习了平面几何、三角函数等知识后,进一步深化对直角三角形性质的理解,以及运用勾股定理解决实际问题的能力。在解直角三角形的学习中,学生需要掌握锐角三角函数的概念,并能运用锐角三角函数解决实际问题。
二、教学目标
(一)知识与技能
1.理解直角三角形的性质,掌握锐角三角函数的概念及运用。
2.学会运用勾股定理解决直角三角形的相关问题,提高空间想象能力和逻辑思维能力。
3.能够运用所学知识解决实际生活中的直角三角形问题,提高运用数学知识解决实际问题的能力。
(二)过程与方法
1.通过观察、操作、思考、交流等环节,培养学生主动探索、发现和总结直角三角形性质的能力。
(四)总结归纳
1.学生总结:让学生回顾自己的学习过程,总结直角三角形的性质及其应用。
2.教师归纳:教师对学生的学习成果进行总结,强调直角三角形性质的重要性。
3.课堂小结:对本节课的主要内容进行总结,激发学生课后学习的兴趣。
(五)作业小结
1.作业布置:设计具有针对性的作业,让学生在实践中运用所学知识,提高解题能力。
3.勾股定理的应用:讲解勾股定理的推导过程,让学生学会运用勾股定理解决直角三角形问题。
(三)学生小组讨论
1.问题设置:设计具有启发性的问题,引导学生思考直角三角形的性质及其应用。
2.分组讨论:将学生分为若干小组,让学生在小组内交流讨论,共同解决问题。
3.讨论交流:组织小组间的互动交流,分享学习心得,培养学生团队协作能力和表达能力。
然而,在实际教学中也存在一些不足之处,如部分学生对直角三角形的性质理解不够深入,运用勾股定理解决实际问题的能力有待提高。在今后的教学中,我将针对这些问题,调整教学策略,加强对学生的引导和辅导,提高学生的数学素养。

28.2.1解直角三角形 教案

28.2.1解直角三角形 教案

28.2.1解直角三角形
二、【教学流程】
【问题2】
通过课本引言中“比萨斜塔”倾斜的问题,引出解直角三角形,详见书本P72页.
通过两个问题,让学生了解本节课的学习可以帮助我们解决以上问题
'
28
5
0954
.0
5.
54
2.5
sin



=
=
A
AB
BC
A
利用计算器可得
自主探究【探究1】
问题(1)可以归结为:在
Rt △ABC中,已知∠A=75°,
斜边AB=6,求∠A的对边
BC的长.
问题(2)可以归结为在Rt△ABC
中,已知AC=2.4,斜边AB=6,
当梯子与地面所成的角a为75°
时,梯子顶端与地面的距离是使
用这个梯子所能攀到的最大高
度.
当梯子底端距离墙面2.4m时,求
梯子与地面所成的角a的问题,A
B
α
C
三、【板书设计】
四、【教后反思】。

新人教版数学九下教案28.2.1 解直角三角形

新人教版数学九下教案28.2.1 解直角三角形

28.2解直角三角形及其应用28.2.1解直角三角形一、教学目标1.使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.2.通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.3.渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重难点重点:解直角三角形.难点:三角函数在解直角三角形中的灵活运用.教学过程(教学案)一、问题引入(教师多媒体演示本章引言中有关比萨斜塔倾斜的问题)教材图28.2-11972年的情形:设塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为点C(如教材图28.2-1).在Rt△ABC中,∠C=90°,BC=5.2m,AB=54.5m,你能求出∠A的度数吗?类似地,可以求出2001年纠偏后塔身中心线与垂直中心线的夹角,你能求出来吗?二、互动新授教师小结:如果将上述实际问题抽象为数学问题,就是已知直角三角形的斜边和一条直角边,求它的锐角的度数.【探究】 (1)在直角三角形中,除直角外的五个元素之间有哪些关系?(2)知道五个元素中的几个,就可以求其余元素?教材图28.2-2学生独自思考后,交流、讨论.师生共同分析:如教材图28.2-2,在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么除直角∠C 外的五个元素之间有如下关系:(1)三边之间的关系 a 2+b 2=c 2(勾股定理); (2)两锐角之间的关系 ∠A +∠B =90°;(3)边角之间的关系 sin A =∠A 的对边斜边=ac,cos A =∠A 的邻边斜边=b c ,tan A =∠A 的对边∠A 的邻边=ab.上述(3)中的A 都可以换成B ,同时把a ,b 互换.注意:利用这些关系,知道其中的两个元素(至少有一个是边),就可以求出其余三个未知元素.教师多媒体出示教材P73例1和例2,师生共同探究解直角三角形有四种基本类型: (1)已知斜边和一直角边;(2)已知两直角边;(3)已知斜边和一锐角;(4)已知一直角边和一锐角.三、精讲例题【例】 在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,按下列条件解直角三角形.(1)已知c =6,∠A =60°,求∠B ,a ,b ; (2)已知a =5,c =10,求b ,∠A ,∠B .【解析】 (1)是已知斜边和一个锐角.(2)是已知斜边和一条直角边,根据勾股定理和三角函数求解即可.【解】 (1)∵在Rt △ABC 中,∠C =90°, ∴∠B =90°-∠A ,∴∠B =30°.∵sin A =a c ,∴a =c ·sin A =6×sin60°=6×32=3 3.∵cos A =b c ,∴b =c ·cos A =6×cos60°=6×12=3.(2)∵sin A =a c =510=12, ∴∠A =30°,∴∠B =90°-∠A =60°, 由勾股定理,得b =c 2-a 2=5 3.四、课堂小结通过本节课的学习,你有什么收获? 五、板书设计28.2.1 解直角三角形 1.三边之间关系:a 2+b 2=c 2.2.两锐角之间的关系:∠A +∠B =90°. 3.边角之间的关系:sin A =∠A 的对边斜边=a c ,cos A =∠A 的邻边斜边=b c ,tan A =∠A 的对边∠A 的邻边=a b.六、教学反思教师在教学中,要通过设置“观察”“思考”“讨论”“探究”“归纳”等环节来扩大学生探究交流的空间,发展学生的思维能力.数形结合是重要的数学思想和数学方法,同时本节内容又是数形结合的理想素材.解直角三角形在实际中有着广泛的作用,教师在将这些实际问题抽象成数学问题,并利用锐角三角函数解直角三角形时,离不开几何图形,这时往往需要根据题意画出几何图形,通过分析几何图形得到边、角之间的关系,再通过计算、推理等使实际问题得到解决.导学方案一、学法点津在学习中时,学生要注意加强数形结合,在引入概念、推理论述、化简计算、解决问题时,都要尽量画图帮助分析,通过图形帮助找到直角三角形的边、角之间的关系,加深对直角三角形本质的理解.二、学点归纳总结 1.知识要点总结(1)直角三角形中,除直角外,共有五个元素,即三条边和两个锐角. (2)五个元素之间的关系:①三边之间的关系:a 2+b 2=c 2(勾股定理); ②两锐角之间的关系:∠A +∠B =90°; ③边角之间的关系:sin A =∠A 的对边斜边=a c ,cos A =∠A 的邻边斜边=b c ,tan A =∠A 的对边∠A 的邻边=a b.利用这些关系,知道其中两个元素(至少有一个是边),就可以求出其余三个未知元素.二、规律方法总结)1.学习时,注意数形结合,自然体现数与形之间的联系. 2.“先求角后求边”和“宁乘不除”是解直角三角形的原则.课时作业设计一、选择题1.在△ABC 中,∠C =90°,a =4,cos B =23,则斜边c 的长为( ).A .6B .4 C.83 D.432.在△ABC 中,∠C =90°,若BC =4,sin A =23,则AC 的长是( ).A .6B .2 5C .3 5D .2133.在△ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,且c =3b ,则sin A 等于( ).A.23 B.223 C.13 D.103二、填空题4.在Rt △ABC 中,∠C =90°,a =1,c =4,则sin A 的值是__________. 5.已知△ABC 中,∠C =90°,tan A ·tan 45°=1,则∠B =__________. 6.在Rt △ABC 中,已知∠C =90°,b -a =8,c =82,则sin A =__________.三、解答题7.在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 的对边分别为a ,b ,c ,根据下列条件解题:(1)已知c =10,a =52,求∠A ; (2)已知a =18,∠B =60°,求c .【参考答案】1.A 2.B 3.B 4.14 5.45° 6.82827.(1)∵c =10,a =52, ∴sin A =a c =5210=22.∴∠A =45°.(2)∵∠B =60°,a =18,cos B =ac ,∴c =a cos B =18cos 60°=36.。

28.2.1解直角三角形优秀教案

28.2.1解直角三角形优秀教案
三案教学设计
课题
§28.2.1 解直角三角形
课时
课型
教学 1.知道直角三角形中五个元素的关系;2.会运用勾股定理、直角三角形的两个锐角互余及锐角三角函 目标 数解直角三角形;3.渗透数形结合的数学思想,培养学生良好的学习习惯.
重点 直角三角形的解法
难点 三角函数在解直角三角形中的灵活运用
媒体 电子白板、PPT
五、合作研讨:
1.在 Rt△ABC 中,∠C=90°, a 6 , b 2 ,解这个直角三角形.

教师引导:(1)明确任务:要求哪些元素?(2)如何求?
二次备课
2.在 Rt△ABC 中,∠C=90°,∠A=30°, a 1 ,解这个直角三角形.
教师引导:(1)明确任务:要求哪些元素?(2)如何求?
教师引导:先求出 CD,然后你有什么发现?
【教师活动】(1)引导:(2)组织学生交流;(3)组织学生展示、点评. 【学生活动】(1)小组交流;(2)展示、点评. 六、跟踪训练:
教 在 Rt△ABC 中,∠C=90°, a 3, c 3 2 ,解这个直角三角形.

【教师活动】(1)组织学生独立完成;(2)组织学生展示、点评.


4.在 Rt△ABC 中,∠C=90°,若 sin A 3 ,则 cos A的值是( ) 5
A. 3 5
B. 4 5
C. 9 25
DD.. 1616 2525
5.在 Rt△ABC 中,∠C=90°,若 a : b 5 :12则 sin A ______.
教 学 反 思
一、温故知新:
1.已知 是锐角,且 sin 1 ,则 ______ . 2
2.已知 是锐角,且 cos 2 ,则 ______ .

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计6

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计6

人教版九年级数学下册: 28.2.1 《解直角三角形》教学设计6一. 教材分析人教版九年级数学下册第28.2.1节《解直角三角形》是整个初中数学的重要内容,主要让学生掌握直角三角形的性质和解法。

通过本节课的学习,学生能够理解和掌握直角三角形的边角关系,会用勾股定理解决实际问题。

本节课的内容为后续学习三角函数、解三角形等知识打下基础。

二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,对三角函数有了初步的了解。

但解直角三角形需要学生灵活运用所学知识,将实际问题转化为数学问题。

因此,在教学过程中,教师需要关注学生的知识掌握情况,引导学生将理论知识应用于实际问题。

三. 教学目标1.让学生掌握直角三角形的性质和解法,能运用勾股定理解决实际问题。

2.培养学生的逻辑思维能力和解决实际问题的能力。

3.激发学生对数学的兴趣,提高学生的数学素养。

四. 教学重难点1.重点:直角三角形的性质和解法。

2.难点:如何将实际问题转化为数学问题,运用勾股定理解决。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形的性质和解法。

2.利用实例分析,让学生体会数学在实际生活中的应用。

3.采用合作学习法,让学生在小组讨论中互相启发,共同解决问题。

4.利用板书,突出重点知识,帮助学生形成知识体系。

六. 教学准备1.准备相关教案和教学课件。

2.准备实际问题案例,用于课堂分析和讨论。

3.准备直角三角形的相关图片和模型,帮助学生直观理解。

七. 教学过程1.导入(5分钟)利用直角三角形的图片和模型,引导学生回顾直角三角形的定义和性质。

提问:你们知道直角三角形有哪些特殊的性质吗?2.呈现(10分钟)展示实际问题案例,让学生尝试解决。

例如:一个直角三角形的两个直角边分别为3cm和4cm,求斜边的长度。

提问:你们能解决这个问题吗?3.操练(10分钟)让学生在小组内讨论,运用所学知识解决实际问题。

鼓励学生互相交流,共同解决问题。

教师巡回指导,解答学生疑问。

28.2.1 解直角三角形教案

28.2.1 解直角三角形教案

28.2.1 解直角三角形本节是在学习锐角三角函数之后,结合已学过的三角形内角和定理和勾股定理,研究解直角三角形的问题,既能加深对锐角三角函数概念的理解,又为后续解决与其相关的实际问题打下基础.解直角三角形是结合三角形内角和定理、勾股定理等知识,利用锐角三角函数对直角三角形的三条边以及两锐角这五个要素进行求解,在解直角三角形时注意借助相应的直角三角形来寻找已知元素与未知元素的关系式.【情景导入】要想使人安全地攀上斜靠在墙面上的梯子的顶端,梯子与地面所成的角α一般要满足50°≤α≤75°(见教材第85页第10题图),现有一架长6 m 的梯子.(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m)?(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角α等于多少(精确到1°)?这时人是否能够安全使用这架梯子?【说明与建议】 说明:用来源于学生身边的问题吸引他们的注意力,激发他们的好奇心,体会解直角三角形来源于生活,并服务于生活,诱发学生对新知识的渴求.建议:教师引导学生思考,为本节课学习解直角三角形做好铺垫. 【归纳导入】在Rt △ABC 中,∠C =90°,∠A =20°,c =10 cm. (1)根据“直角三角形两锐角互余”得∠B =70°. (2)由sinA =ac ,得a =c ·sinA =10sin20°cm.(3)由cosA =bc,得b =c ·cosA =10cos20°cm.通过以上填空,Rt △ABC 的三条边长及三个角全部知道了,这种由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.【说明与建议】 说明:通过解答此题说明已知直角三角形的一个锐角,可以求出另一个锐角,选择恰当的边角关系,还可以求出其他的边长.建议:让学生先自主探究,然后交流解题的方法并比较从中选择最合适的方法.命题角度1 在直角三角形中解直角三角形这类题目一般已知一边一角或两边求其他元素.注意以下知识和技巧的总结及运用: 理论依据:在Rt △ABC 中,∠C =90°,∠A ,∠B ,∠C 所对的边分别为a ,b ,c. (1)三边之间的关系:a 2+b 2=c 2. (2)锐角之间的关系:∠A +∠B =90°.(3)边角之间的关系:sinA =a c =cosB ,cosA =b c =sinB ,tanA =a b =1tanB .(4)面积公式:S △ABC =12ab =12ch(h 为斜边上的高).提示:当所求的元素既可用乘法又可用除法求解时,一般用乘法,不用除法;既可用已知数据又可用中间数据求解时,最好用已知数据.技巧方法:1.(宜昌中考)如图,△ABC 的顶点是正方形网格的格点,则cos ∠ABC 的值为(B) A.23B.22C.43D.2232.(巴中中考)如图,点A ,B ,C 在边长为1的正方形网格格点上,下列结论错误的是(A)A .sinB =13B .sinC =255C .tanB =12D .sin 2B +sin 2C =1命题角度2 构造直角三角形再解直角三角形这类问题一般和三角形或圆的相关知识结合命题,题目没有直接告诉是直角三角形,通过条件或添加辅助线,可以证明或构造直角三角形,再根据解直角三角形的方法解答问题.3.(黑龙江中考)如图,在△ABC 中,sinB =13,tanC =2,AB =3,则AC 的长为(B)A. 2B.52C. 5D .24.如图,点A ,B 是以CD 为直径的⊙O 上的两点,分别在直径的两侧,其中点A 是CDB ︵的中点.若tan ∠ACB =2,AC =5,则BC 的长为(D)A. 5B .2 5C .1D .2命题角度3 分类讨论解不定三角形在解直角三角形问题时,如遇到直角或者某个锐角不确定时,特别是在没有给出图形的情况下,要注意分类讨论,防止漏解.5.(内江中考)已知,在△ABC 中,∠A =45°,AB =42,BC =5,则△ABC 的面积为2或14.双直角三角形所谓“双直角三角形”是指一条直角边重合,另一条直角边共线的两个直角三角形.其位置关系有两种:如图1,公共直角边为AD ,则AD =BC ·tan α·tan βtan β-tan α,我们把它叫做公式1.图1 图2 如图2,公共直角边为AD ,则AD =BC ·tan α·tan βtan β+tan α,我们把它叫做公式2.课题28.2.1 解直角三角形授课人素养目标1.了解解直角三角形的意义和条件.2.帮助学生理解直角三角形中五个元素(直角除外)的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.3.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的策略.教学重点解直角三角形的意义以及一般方法.教学难点选择恰当的边角关系解直角三角形.授课类型新授课课时教学步骤师生活动设计意图回顾如图,在Rt△ABC中,∠C=90°,∠A,∠B,∠C所对的边分别是a,b,c,那么除直角∠C外的两个锐角和三条边之间有如下关系:两锐角之间的关系:∠A+∠B=90°.三边之间的关系:a2+b2=c2.边角之间的关系:sinA=ac,cosA=bc,tanA=ab.回顾以前所学内容,为本节课的教学内容做好准备.活动一:创设情境、导入新课【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为B,塔身中心线与垂直中心线的夹角为∠A,过点B向垂直中心线引垂线,垂足为C,如图.在Rt△ABC中,∠C=90°,BC=5.2 m,AB=54.5 m,求∠A的度数.师生活动:教师呈现问题并引导学生结合图形,观察已知条件和所求角之间的关系,分析得到通过求∠A的正弦来求∠A的度数.通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,并一般化:已知直角三角形斜边和直角边,求它的锐角的度数,通过求解的过程,初步体会解直角三角形的内涵,引入课题.活动二:实践探究、交流新知【探究新知】1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解?师生活动:已知直角三角形的斜边和一条直角边,求它的锐角的度数,利用锐角的正弦(或余弦)的概念直接求解.问题:在活动一所述的Rt△ABC中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中,除直角外,共有五个元素,即三条边和两个锐角.由直角三角形中的已知元素,求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法问题:回想一下,刚才解直角三角形的过程中,用到了哪些知识?你能梳理一下直角三角形各个元素之间的关系吗?师生活动:如图,引导学生结合图形,梳理五个元素(直角除外)之间的关系,学生展示:(1)三边之间的关系:a2+b2=c2(勾股定理).(2)两锐角之间的关系:∠A+∠B=90°.(3)边角之间的关系:sinA=ac,cosA=bc,tanA=ab,sinB=ba,cosB=ac,tanB=ba.问题:从上述问题来看,在直角三角形中,知道斜边和一条直角边这两个元素,可以求出其余的三个元素.一般地,已知五个元素(直角除外)中的任意两个元素,可以求其余元素吗?教师给出结论:在直角三角形中,知道除直角外的五个元素中的两个元素(至1.有条理地梳理直角三角形除直角外的五个元素之间的关系,明确各自的作用,便于应用.2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力.少有一个是边),就可以求出其余三个未知元素.活动三:开放训练、体现应用【典型例题】例1(教材第73页例1)如图,在Rt△ABC中,∠C=90°,AC=2,BC=6,解这个直角三角形.解:AB=22,∠B=30°,∠A=60°.师生活动:学生在教师的引导下,思考如何求出所有未知元素.先让学生找出所有未知元素:∠A,∠B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径.最后给出简洁、规范的解题步骤.例2(教材第73页例2)如图,在Rt△ABC中,∠C=90°,∠B=35°,b=20,解这个直角三角形(结果保留小数点后一位).解:∠A=90°-∠B=90°-35°=55°.∵tanB=ba,∴a=btanB=20tan35°≈28.6.∵sinB=bc,∴c=bsinB=20sin35°≈34.9.师生活动:由学生代表参照例1的解题思路,分析本题的解题思路;然后由学生独立完成,再小组交流;最后由学生代表展示解题步骤.对于求c,如果学生采取不同方法,让他们展示不同方法;如果学生没有采取不同方法,教师注意引导他们思考其他解法.【变式训练】1.如图,在四边形ABCD中,∠B=∠D=90°,AB=3,BC=2,tanA=43,则CD的值为(D)1.通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.2.进一步训练解一般直角三角形的思路和方法,并体会从计算简便的角度选用适当的关系式求解.3.变式训练拓展学生思维,同时增强学生对所学知识的灵活应用能力.A .2 B.45 C.43 D.65提示:延长AD ,BC ,两线交于点O ,得到两个直角三角形,解直角三角形即可. 2.在△ABC 中,若AB =10,AC =15,∠BAC =150°,则△ABC 的面积为(A) A .37.5 B .75 C .100 D .150提示:过点C 作CD ⊥AB ,交BA 的延长线于点D.在Rt △ADC 中利用特殊角求出高CD ,再计算三角形的面积.3.在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,解这个直角三角形.解:如图:∵在Rt △ABC 中,∠C =90°,b =3,S △ABC =923,∴12ab =92 3. ∴a =3 3.∴tanA =a b =333= 3.∴∠A =60°.∴∠B =180°-∠A -∠C =180°-60°-90°=30°. ∴c =2b =6. 活动四:课堂检测【课堂检测】1.如图,在Rt △ABC 中,∠C =90°,AB =4,sinA =12,则BC 的长为(A)A .2B .3 C. 3 D .2 3通过设置课堂检测,进一步巩固所学新知,同时检测学习效果,做到“堂堂清”.2.在Rt △ABC 中,∠C =90°,∠B =40°,BC =3,则AC =(C) A .3sin40° B .3sin50° C .3tan40° D .3tan50°3.在Rt △ABC 中,∠C =90°,斜边中线是3 cm ,sinA =13,则S △ABC =(D)A. 2 cm 2B .2 2 cm 2C .3 2 cm 2D .4 2 cm 2提示:由中线长可以求出斜边,解直角三角形求出两直角边,再计算三角形面积.4.如图,在△ABC 中,BD ⊥AC 于点D ,AB =6,AC =53,∠A =30°.(1)求BD 和AD 的长. (2)求tanC 的值. 解:(1)∵BD ⊥AC , ∴∠ADB =90°.在Rt △ADB 中,AB =6,∠A =30°, ∴BD =12AB =3.∴AD =BDtanA=3BD =3 3. (2)CD =AC -AD =53-33=23, 在Rt △BCD 中,tanC =BD CD =323=32.学生进行当堂检测,完成后,教师进行批阅、点评、讲解. 课堂小结1.课堂总结:(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?教学说明:教师提问并引导学生总结归纳解直角三角形的定义以及直角三角形五元素之间的关系. 2.布置作业:教材第77页习题28.2第1题.引导学生从知识和方法两个方面总结自己的收获,理清解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力.。

(完整版)人教版九年级数学下册28.2.1解直角三角形教案.doc

(完整版)人教版九年级数学下册28.2.1解直角三角形教案.doc

课题教学目标教学重点教学难点授课类型教具教学步骤28.2.1 解直角三角形授课人知识技能使学生理解直角三角形中五个元素( 直角除外 ) 的关系,会运用勾股定理、直角三角形的两个锐角互余及锐角三角函数解直角三角形.数学思考通过实际问题的情境,让学生感受到在生活、学习中解直角三角形知识的实际意义.问题解决通过学习解直角三角形,归纳出解直角三角形的两种类型.发展学生的数学应用意识,提高归纳能力,感受解直角三角形的情感态度策略.解直角三角形的意义以及一般方法.选择恰当的边角关系,解直角三角形.新授课课时多媒体教学活动师生活动设计意图如图 28- 2- 4, Rt△ABC 中的关系式 (∠ C=90° ):两锐角的关系:∠A+∠ B= 90°.三边之间的关系:a2+ b2= c2.a b a边角关系: sinA=c,cosA=c,tanA=b.回顾以前所学内容,回顾为本节课的教学内容做好准备 .图28- 2- 4【课堂引入】意大利比萨斜塔在落成时就已倾斜,其塔顶中心点为 B ,塔身中心线与垂直中活动 心线的夹角为∠ A ,过点 B 向垂直中心线 一: 引垂线, 垂足为 C ,如图 28- 2- 5.在 Rt 创设 △ ABC 中,∠ C = 90°, BC = 5.2 m ,AB情境 = 54.5 m ,求∠ A 的度数 .图 28- 2- 5导入 师生活动: 教师呈现问题并引导学生结合图形, 观察已知和新课所求角之间的关系, 分析得到通过求∠ A 的正弦来求∠ A 的度数 .1.解直角三角形的定义问题:将比萨斜塔问题推广为一般的数学问题该如何求解? 师生活动: 已知直角三角形的斜边和一条直角边, 求它的锐角的度数,利用锐角的正弦 (或余弦 )的概念直接求解 .问题:在活动一所述的 Rt △ ABC 中,你还能求出其他未知的边和角吗?师生活动:学生思考并说明求解思路,教师把问题一般化,给出解直角三角形的内涵:一般地,直角三角形中, 除直角外, 共有五个元素,即三条边和两个锐角. 由直角三角形中的已知元素, 求出其余未知元素的过程,叫做解直角三角形.2.解直角三角形的方法 问题:回想一下, 刚才解直角三角形的过程中,用到了哪些活动知识?你能梳理一下直角三角形各个元素之间的关系吗?二:28- 2- 6,引导学生结合师生活动:如图实践( 直角除外 )之间的关图形,梳理五个元素探究系,学生展示:交流a 2+b 2=c 2(勾股定理 ).(1)三边之间的关系:新知A +∠B = 90° .(2)两锐角之间的关系:∠(3)边角之间的关系:图 28-2- 6a, cosA = b, tanA =a,sinA = c c bsinB = b a b, cosB = , tanB = .c c a问题:从上述问题来看, 在直角三角形中, 知道斜边和一条直角边这两个元素, 可以求出其余的三个元素. 一般地, 已知五个元素 (直角除外 )中的任意两个元素, 可以求其余元素吗?教师给出结论: 在直角三角形中, 知道除直角外的五个元素中的两个元素 (至少有一个是边 ),就可以求出其余三个未知元素 .通过实际问题,激发学生的学习兴趣,把实际问题转化为数学问题,通过求解,初步体会解直角三角形的内涵,引入课题 .1.有条理地梳理直角三角形五个元素之间的关系,明确各自的作用,便于应用 .2.在讨论解直角三角形的方法过程中,明确解直角三角形的条件,培养学生的逻辑思维能力 .活动三:开放训练体现应用【应用举例】例1 教材 P73 例 1 如图 28- 2- 7,在 Rt△ABC 中,∠C= 90°, AC= 2,BC=6,解这个直角三角形 .师生活动:学生在教师的引导下,思考如图 28- 2- 7何求出所有未知元素.先让学生找出所有未知元素:∠A,∠ B和AB,然后让学生逐一说明求每一个未知元素的方法和依据,教师引导学生选择简便的解题途径 .【拓展提升】1.涉“斜”选“弦”的策略当已知和所求涉及直角三角形的斜边时,应选择与斜边相关的已知角的正弦、余弦.我们把它叫做涉“斜”(涉及斜边 ) 选“弦” (选正弦、余弦 )的策略 .例 2 滨州中考在 Rt△ABC 中,∠ C= 90°,AB= 10,sinA=3,5通过解特殊的直角三角形,训练学生解直角三角形的思路和方法,提高学生分析和解决问题的能力.进一步训练学生解一般直角三角形的4, tanA=3,则 BC 的长为 (A) 思路和方法,并学会cosA=5 4A.6 B. 7.5 C. 8 D. 12.5 从计算简便的角度2.无“斜”选“切”的策略活动四:课堂总结反思当已知和所求均未涉及到斜边时,应选择与斜边无关的边角关系式——正切,这种方法称之为无“斜”(斜边 )选“切” (正切 )的策略 .例3 在 Rt△ ABC 中,∠ C= 90°,若∠ A= 60°, AC= 20 m,则BC 大约是 (结果精确到 0.1 m)( B)A.34.64 m B. 34.6 m C. 28.3 m D . 17.3 m【达标测评】1.在 Rt△ ABC 中,∠ C= 90°,∠ B= 40°,BC= 3,则 AC= (C)A.3sin40 °B. 3sin50°C.3tan40°D. 3tan50°32.在 Rt△ABC 中,∠ C= 90°,若 AB = 5, sinA=,则 AC 的长为 (B)A.3 B.4 C. 5D. 63.在△ ABC 中,若∠ C= 90°, sinA=1,AB= 2,则△ ABC 的周2长为 __3+ 3__.4.在 Rt△ ABC 中,∠ C= 90°,有两边长分别为 3 和 4,则 sinA3 34 7的值为__5或4或5或4 __.5.如图28-2- 8,在△ ABC 中, BD⊥ AC,选用适当的关系式求解 .通过设置达标测评,进一步巩固所学新知,同时检测学习效果,做到“ 堂堂清”.第 3页(1)求 BD 和 AD 的长;图 28- 2- 8(2)求 tanC 的值 .引导学生从知识和方法两个1.课堂总结:请同学们回顾以下问题:方面总结自己的收获,理清(1)什么叫解直角三角形?(2)两个直角三角形全等要具备什么条件?为什么在直角三角形中,已知一边和一个锐角或两边就能解直角三角形呢?2.布置作业:教材第 77 页习题 28.2 第 1 题 .【知识网络】解直角三角形的目的、条件、依据、方法,提升综合运用知识的能力 .活动提纲挈领,重点突出. 四:课堂总结反思【教学反思】① [授课流程反思]在创设情境中,由一个实际问题引入,自然过渡到直角三角形.在探究新知中,采用启发法、讨论法等教学方法,学生通过讨论、实践形成理论体系,对知识反思教学过程和教师表现,掌握较为牢固 .② [讲授效果反思]进一步提升操作流程和自身解直角三角形是重点,而选择恰当的边角关系则是难点,为了突破此难点,本节课选择了两个例题让学生素质 .探究、讨论、总结出选择边角关系的策略:涉“斜”选“弦”,无“斜”选“切” ,避“除”就“乘”,能“正”不“余”. 因为有这些例题的引导,所以学生对于解直角三角形的两个类型的掌握,应该没有问题,建议把补充练习也安排给成绩中等及以上的学生.③ [师生互动反思]_____________________________________________ _____________________________________________ ④ [习题反思 ]好题题号错题题号。

人教版数学九年级下册-28.2.1 解直角三角形-教案

人教版数学九年级下册-28.2.1  解直角三角形-教案

28.2.1解直角三角形(第1课时)教学设计一、教材分析本节课内容是新人教版教材九年级下册,第二十八章《锐角三角函数》的第二节《解直角三角形》第一课时,是在学习了勾股定理、锐角三角函数的基础上进行的。

本节课既是前面所学知识的运用,也是高中继续学习三角函数和解斜三角形的重要预备知识。

教材首先从实际生活比萨斜塔入手,创设问题情境,抽象出数学问题,从而引出解直角三角形的概念,归纳解直角三角形的一般方法。

本节课的学习还蕴涵着深刻的数学思想方法:数学建模和转化化归,在本节教学中有针对性的对学生进行这方面的能力培养。

通过本节课的学习,不仅可以巩固勾股定理和锐角三角函数等相关知识,初步获得解直角三角形的方法和经验,而且还让学生进一步体会数学与实际生活的密切联系。

二、教学目标(一)知识与技能1.理解直角三角形中五个元素的关系,什么是解直角三角形;2.运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)过程与方法目标通过探索讨论发现解直角三角形所需的最简条件,了解体会用化归的思想方法将未知问题转化为已知问题去解决,在解决问题的过程中渗透“数学建模”和“转化”思想。

(三)情感、态度和价值观通过学习解直角三角形的应用,认识到数与形相结合的意义和作用,体验到学好知识能应用于社会实践。

并让学生体验到学习是需要付出努力和劳动的。

三、学情分析九年级学生已经牢固掌握了勾股定理,也刚刚学习过锐角三角函数,但锐角三角函数的运用不一定熟练,综合运用所学知识解决问题,将实际问题抽象为数学问题的能力都有待提高,因此要在本节课进行有意识的培养。

四、教学重难点教学重点:正确运用直角三角形中的边角关系解直角三角形教学难点:选择适当的关系式解直角三角形五、教法与学法1、教学方法:利用多媒体辅助教学,通过观察,引导学生思考、讨论,通过归纳、概括等方法启发、诱导,帮助学生理解内容的本质,从而突破教学难点。

2、学习方法:观察、归纳、概括和讨论的学习方法,使他们不仅理解和掌握本节课的内容,而且进一步培养和提高他们各方面的能力,从而逐步由“学会”向“会学”迈进。

九年级数学28.2.1 解直角三角形教案

九年级数学28.2.1  解直角三角形教案

28.2 解直角三角形及其应用28. 解直角三角形01 教学目标1.掌握解直角三角形的根据.2.能由条件解直角三角形.02 预习反应阅读教材P72~73,自学“探究〞、“例1〞与“例2〞,完成以下内容.(1)在直角三角形中,由直角三角形中的元素,求出其余未知元素的过程叫做解直角三角形.(2)如图,在Rt △ABC 中,∠C 为直角,∠A ,∠B ,∠C 所对的边分别为a ,b ,c ,那么除直角外的五个元素之间有如下关系:三边之间的关系a 2+b 2=c 2;两锐角之间的关系∠A +∠B =90°; 边与角之间的关系:sinA =a c ,cosA =b c ,tanA =a b.(3)在Rt △ABC 中,∠C =90°,∠A 与斜边c ,用关系式 ∠A +∠B =90° 求出∠B ,用关系式sinA =ac 求出a.03 名讲坛类型1 两边,解直角三角形例1 (教材例1变式)根据以下条件解直角三角形:(1)在Rt △ABC 中,∠C =90°,BC =3,AB =32; (2)在Rt △ABC 中,∠C =90°,BC =6,AC =2 3. 【解答】 (1)在Rt △ABC 中,∵∠C =90°,BC =3,AB =32, ∴sinA =BC AB =22.∴∠A =45°.∴∠B =90°-∠A =45°. ∴AC =BC =3.(2)在Rt △ABC 中,∵∠C =90°,BC =6,AC =23, ∴tanA =BCAC =3,AB =BC 2+AC 2=4 3.∴∠A =60°. ∴∠B =90°-∠A =30°.【点拨】【跟踪训练1】 如图,在△ABC 中,AB =AC ,AH ⊥BC ,垂足为点H ,如果AH =BC ,那么sin ∠BAC 的值是45.类型2 一边和一锐角,解直角三角形例2 (教材例2变式)在△ABC 中,∠C =90°,AB =10,∠A =45°,解这个直角三角形. 【解答】 在Rt △ABC 中,∠C =90°,∠A =45°, ∴∠B =90°-∠A =45°. 又∵sinA =BCAB,∠A =45°,AB =10,∴BC =5 2.∴AC =BC =5 2.例3 (教材例2变式)在△ABC 中,∠C =90°,AC =10,∠A =30°,解这个直角三角形. 【解答】 ∵∠C =90°,∠A =30°, ∴∠B =90°-30°=60°. ∵cosA =AC AB ,∴AB =AC cosA =1032=2033. 又∵tanA =BCAC,∴BC =AC·tanA =10×tan30°=10×33=1033.【跟踪训练2】 如图,在△ABC 中,∠B =45°,cosC =35,AC =5a ,则△ABC 的面积用含a 的式子表示是14a 2.04 稳固训练1.如图,Rt △ABC 中,∠C =90°,AC =4,tanA =12,则BC 的长是(A)A.2B.8C.2 5D.4 52.如图,小明为了测量其所在位置A 点到河对岸B 点之间的距离,沿着与AB 垂直的方向走了m 米,到达点C ,测得∠ACB =α,那么AB 等于(B)A.m·sin α米B.m·tan α米C.m·cos α米D.mtan α米3.如图,在Rt △ABC 中,斜边BC 上的高AD =3,cos B =45,则AC =154.4.如图,在菱形ABCD 中,DE ⊥AB 于点E ,cosA =35,BE =4,则DE 的值是8.5.如图,在△ABC 中,AC =8,∠CAB =30°,∠CBA =45°,求AB 的长.解:过点C 作CD ⊥AB ,在Rt △ACD 中,CD =AC·sin ∠CAD =8×12=4,AD =AC·cos ∠CAD =8×cos 30°=8×32=4 3. 在Rt △BDC 中,DB =CD·tan ∠BCD =4×1=4, ∴AB =BD +DA =43+4.05 课堂小结本节学习的数学知识:解直角三角形.。

人教版精选九年级数学下册28.2.1 解直角三角形教案

人教版精选九年级数学下册28.2.1 解直角三角形教案

28.2.1 解直角三角形1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.在上述的Rt △ABC 中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】 利用解直角三角形求边或角已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =a c,即c =a cos B =3632=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33,∴∠A =30°,∴∠B =60°,∴c =2a =12 2.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.变式训练:见《学练优》本课时练习“课堂达标训练” 第4题【类型二】 构造直角三角形解决长度问题一副直角三角板如图放置,点C 在FD 的延长线上,AB ∥CF ,∠F =∠ACB =90°,∠E =30°,∠A =45°,AC =122,试求CD 的长.解析:过点B 作BM ⊥FD 于点M ,求出BM 与CM 的长度,然后在△EFD 中可求出∠EDF =60°,利用解直角三角形解答即可.解:过点B 作BM ⊥FD 于点M ,在△ACB 中,∠ACB =90°,∠A =45°,AC =122,∴BC =AC =12 2.∵AB ∥CF ,∴BM =sin45°BC =122×22=12,CM =BM =12.在△EFD 中,∠F =90°,∠E =30°,∴∠EDF =60°,∴MD =BM tan60°=43,∴CD =CM -MD =12-4 3.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.变式训练:见《学练优》本课时练习“课后巩固提升” 第4题【类型三】 运用解直角三角形解决面积问题如图,在△ABC 中,已知∠C =90°,sin A =37,D 为边AC 上一点,∠BDC =45°,DC =6.求△ABC 的面积.解析:首先利用正弦的定义设BC =3k ,AB =7k ,利用BC =CD =3k =6,求得k 值,从而求得AB 的长,然后利用勾股定理求得AC 的长,再进一步求解.解:∵∠C =90°,∴在Rt △ABC 中,sin A =BC AB =37,设BC =3k ,则AB =7k (k >0),在Rt △BCD 中,∵∠BCD =90°,∴∠BDC =45°,∴∠CBD =∠BDC =45°,∴BC =CD =3k =6,∴k =2,∴AB =14.在Rt △ABC 中,AC =AB 2-BC 2=142-62=410,∴S △ABC =12AC ·BC =12×410×6=1210.所以△ABC 的面积是1210. 方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.变式训练:见《学练优》本课时练习“课堂达标训练”第7题探究点二:解直角三角形的综合【类型一】 解直角三角形与等腰三角形的综合已知等腰三角形的底边长为2,周长为2+2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC 中,AB =AC ,BC =2,∵周长为2+2,∴AB =AC =1.过A 作AD ⊥BC 于点D ,则BD =22,在Rt △ABD 中,cos ∠ABD =BD AB =22,∴∠ABD =45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.变式训练:见《学练优》本课时练习“课后巩固提升”第2题【类型二】 解直角三角形与圆的综合已知:如图,Rt △AOB 中,∠O =90°,以OA 为半径作⊙O ,BC 切⊙O 于点C ,连接AC 交OB 于点P .(1)求证:BP =BC ;(2)若sin ∠P AO =13,且PC =7,求⊙O 的半径. 解析:(1)连接OC ,由切线的性质,可得∠OCB =90°,由OA =OC ,得∠OCA =∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠P AO =13,设OP =x ,AP=3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠P AO =13,∴在Rt △ACE 中CE AE =13,∴AC AE =223,∴3x +742x=223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.。

《28.2.1 解直角三角形》教案、导学案

《28.2.1 解直角三角形》教案、导学案

28.2.1 解直角三角形【教学目标】1.理解解直角三角形的意义和条件;(重点)2.根据元素间的关系,选择适当的关系式,求出所有未知元素.(难点)【教学过程】一、情境导入世界遗产意大利比萨斜塔在1350年落成时就已倾斜.设塔顶中心点为B, 塔身中心线与垂直中心线夹角为∠A ,过点B 向垂直中心线引垂线,垂足为点C .在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m ,求∠A 的度数.在上述的Rt △ABC 中,你还能求其他未知的边和角吗?二、合作探究探究点一:解直角三角形【类型一】 利用解直角三角形求边或角已知在Rt △ABC 中,∠C =90°,∠A 、∠B 、∠C 的对边分别为a ,b ,c ,按下列条件解直角三角形.(1)若a =36,∠B =30°,求∠A 的度数和边b 、c 的长;(2)若a =62,b =66,求∠A 、∠B 的度数和边c 的长.解析:(1)已知直角边和一个锐角,解直角三角形;(2)已知两条直角边,解直角三角形.解:(1)在Rt △ABC 中,∵∠B =30°,a =36,∴∠A =90°-∠B =60°,∵cos B =ac ,即c =a cos B =3632=243,∴b =sin B ·c =12×243=123; (2)在Rt △ABC 中,∵a =62,b =66,∴tan A =a b =33,∴∠A =30°,∴∠B =60°,∴c=2a =12 2.方法总结:解直角三角形时应求出所有未知元素,解题时尽可能地选择包含所求元素与两个已知元素的关系式求解.【类型二】构造直角三角形解决长度问题一副直角三角板如图放置,点C在FD的延长线上,AB∥CF,∠F=∠ACB =90°,∠E=30°,∠A=45°,AC=122,试求CD的长.解析:过点B作BM⊥FD于点M,求出BM与CM的长度,然后在△EFD中可求出∠EDF=60°,利用解直角三角形解答即可.解:过点B作BM⊥FD于点M,在△ACB中,∠ACB=90°,∠A=45°,AC=122,∴BC=AC=12 2.∵AB∥CF,∴BM=sin45°BC=122×22=12,CM=BM=12.在△EFD中,∠F=90°,∠E=30°,∴∠EDF=60°,∴MD=BMtan60°=43,∴CD=CM-MD=12-4 3.方法总结:解答此类题目的关键是根据题意构造直角三角形,然后利用所学的三角函数的关系进行解答.【类型三】运用解直角三角形解决面积问题如图,在△ABC中,已知∠C=90°,sin A=37,D为边AC上一点,∠BDC=45°,DC=6.求△ABC的面积.解析:首先利用正弦的定义设BC=3k,AB=7k,利用BC=CD=3k=6,求得k值,从而求得AB的长,然后利用勾股定理求得AC的长,再进一步求解.解:∵∠C=90°,∴在Rt△ABC中,sin A=BCAB=37,设BC=3k,则AB=7k(k>0),在Rt△BCD中,∵∠BCD=90°,∴∠BDC=45°,∴∠CBD=∠BDC=45°,∴BC=CD=3k=6,∴k=2,∴AB=14.在Rt△ABC中,AC=AB2-BC2=142-62=410,∴S△ABC=12AC·BC=12×410×6=1210.所以△ABC的面积是1210.方法总结:若已知条件中有线段的比或可利用的三角函数,可设出一个辅助未知数,列方程解答.探究点二:解直角三角形的综合【类型一】解直角三角形与等腰三角形的综合已知等腰三角形的底边长为2,周长为2+2,求底角的度数.解析:先求腰长,作底边上的高,利用等腰三角形的性质,求得底角的余弦,即可求得底角的度数.解:如图,在△ABC中,AB=AC,BC=2,∵周长为2+2,∴AB=AC=1.过A作AD⊥BC于点D,则BD=22,在Rt△ABD中,cos∠ABD=BDAB=22,∴∠ABD=45°,即等腰三角形的底角为45°.方法总结:求角的度数时,可考虑利用特殊角的三角函数值.【类型二】解直角三角形与圆的综合已知:如图,Rt△AOB中,∠O=90°,以OA为半径作⊙O,BC切⊙O 于点C,连接AC交OB于点P.(1)求证:BP=BC;(2)若sin∠PAO=13,且PC=7,求⊙O的半径.解析:(1)连接OC,由切线的性质,可得∠OCB=90°,由OA=OC,得∠OCA=∠OAC ,再由∠AOB =90°,可得出所要求证的结论;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 和Rt △ACE 中,根据三角函数和勾股定理,列方程解答.解:(1)连接OC ,∵BC 是⊙O 的切线,∴∠OCB =90°,∴∠OCA +∠BCA =90°.∵OA =OC ,∴∠OCA =∠OAC ,∴∠OAC +∠BCA =90°,∵∠BOA =90°,∴∠OAC +∠APO =90°,∵∠APO =∠BPC ,∴∠BPC =∠BCA ,∴BC =BP ;(2)延长AO 交⊙O 于点E ,连接CE ,在Rt △AOP 中,∵sin ∠PAO =13,设OP =x ,AP =3x ,∴AO =22x .∵AO =OE ,∴OE =22x ,∴AE =42x .∵sin ∠PAO =13,∴在Rt △ACE 中CE AE =13,∴AC AE =223,∴3x +742x=223,解得x =3,∴AO =22x =62,即⊙O 的半径为6 2.方法总结:本题考查了切线的性质、三角函数、勾股定理等知识,解决问题的关键是根据三角函数的定义结合勾股定理列出方程.三、板书设计1.解直角三角形的基本类型及其解法;2.解直角三角形的综合.【教学反思】本节课的设计,力求体现新课程理念.给学生自主探索的时间和宽松和谐的氛围,让学生学得更主动、更轻松,力求在探索知识的过程中,培养探索能力、创新精神和合作精神,激发学生学习数学的积极性和主动性.28.2.1 解直角三角形【学习目标】⑴ 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形 ⑵ 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力. ⑶ 渗透数形结合的数学思想,培养学生良好的学习习惯. 【学习重点】直角三角形的解法.【学习难点】三角函数在解直角三角形中的灵活运用【导学过程】一、自学提纲:1.在三角形中共有几个元素?2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系如果用表示直角三角形的一个锐角,那上述式子就可以写成.(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°. a 2 +b 2 =c 2 (勾股定理) 以上三点正是解直角三角形的依据.二、合作交流:要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成的角一般要满足, (如图).现有一个长6m 的梯子,问:(1)使用这个梯子最高可以安全攀上多高的墙(精确到0.1 m) a b A b a A c b A c a A ====cot ;tan ;cos ;sin b a B a b B c a B c b B ====cot ;tan ;cos ;sin α∠的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精确到1o ) 这时人是否能够安全使用这个梯子三、教师点拨: 例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且,,解这个三角形.例2在Rt △ABC 中, ∠B =35o ,b=20,解这个三角形.四、学生展示:完成课本74页练习补充题1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.2、在Rt △ABC 中,a=104.0,b=20.49,解这个三角形.3、 在△ABC 中,∠C 为直角,AC=6,的平分线AD=4,解此直角三角形。

28.2.1解直角三角形(教案)

28.2.1解直角三角形(教案)
-培养学生运用几何知识分析问题、解决问题的能力,增强几何直观。
2.培养学生运用数学知识解决实际问题的能力,提高数学应用意识。
-使学生学会在实际问题中构建直角三角形模型,体会数学与现实生活的紧密联系;
-引导学生运用所学知识解决实际问题,培养数学应用意识和创新意识。
3.培养学生的逻辑思维能力和团队合作精神,提高数学表达与交流能力。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了解直角三角形的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对解直角三角形的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
2.应用直角三角形的解法解决实际问题,如测量距离、高度等。
-理解并掌握实际问题的建模方法,将现实问题转化为直角三角形求解问题;
-学会运用解直角三角形的方法,解决实际问题,提高解决问题的能力。
二、核心素养目标
1.让学生掌握基本的几何知识与技能,培养空间观念和几何直观,提高解决几何问题的能力。
-通过解直角三角形的学习,使学生建立正确的几何图形观念,发展空间想象力;
-能够将实际问题转化为直角三角形求解问题,这是将理论知识应用于实际的桥梁。
举例:在讲解正弦函数时,强调正弦是对边比斜边,通过具体直角三角形的图形展示,加深学生理解;在求解直角三角形的过程中,重点讲解如何根据已知条件选择合适的三角函数进行计算。
2.教学难点

《解直角三角形》教学设计4

《解直角三角形》教学设计4

28.2.1解直角三角形【教学内容】课本72---73页内容。

【教学目标】(一)知识目标使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形.(二)能力训练点通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.(三)情感目标渗透数形结合的数学思想,培养学生良好的学习习惯.二、教学重点、难点和疑点1.重点:直角三角形的解法.2.难点:三角函数在解直角三角形中的灵活运用.3.疑点:学生可能不理解在已知的两个元素中,为什么至少有一个是边.【导学过程】一、情景导入你能解决本章引言所提出的有关比萨斜塔倾斜的问题吗?设塔顶中心点为B ,塔身中心线与垂直中心线的夹角为∠A ,过B 点向垂直中心线引垂线,垂足为点C (如图),在Rt △ABC 中,∠C =90°,BC =5.2m ,AB =54.5m,求∠A 如何做? 0954.05.542.5sin ≈==AB BC A所以 ∠A ≈5°2类似的,可以求出2001年纠偏后塔身中心线与垂直中心线的夹角.想一想: 将上述问题推广为一般的数学问题如何求解?已知直角三角形的斜边和一直角边,求它的锐角的度数。

利用锐角的正弦(或 余弦)的概念直接求解。

在上述Rt △ABC 中,你还能求其他未知的边和角吗?二、新知探究思考1、在直角三角形中,除直角外共有几个元素?Rt △ABC 中除直角之外的五要素:Rt △ABC 中除直角之外的五要素:三条边:AB,AC,BC;两个锐角:∠A ,∠B2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?(1)边角之间关系 a b A b a A c b A c a A ====cot ;tan ;cos ;sinb a B a b Bc a B c b B ====cot ;tan ;cos ;sin如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=cot tan cos sin (2)三边之间关系 a 2 +b 2 =c 2 (勾股定理)(3)锐角之间关系 ∠A+∠B=90°.探究在Rt △ABC 中,∠C 为直角,(1)根据∠A= 30°,斜边AB=12,你能求出这个三角形的其他元素吗?(2)根据AC=3,斜边AB=5,你能求出这个三角形的其他元素吗?(3)根据∠A=60°,∠B=30°,你能求出这个三角形的其他元素吗?定义:由直角三角形中的已知元素,求出所有末知元素的过程叫做解直角三角形. 议一议1、解直角三角形需要什么条件?解直角三角形除直角外,至少要知道两个元素(这两个元素中至少有一条边)2、解直角三角形的条件可分为哪几类?解直角三角形的条件可分为两大类:①、已知一锐角、一边(一锐角、一直角边或一斜边)②、已知两边(一直角边,一斜边或者两条直角边)三、应用新知例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形222306090,60326tan===-=∠=∠∴===AC AB B A AC BC A 解:例2 在Rt△ABC中,∠C为直角,∠B =35o,b=20,解这个三角形.想一想:在Rt△ABC中,∠C=90°,如果∠A=α,AC=x米,你能用α、x分别表示∠B、A B、BC吗?(有斜用弦,无斜用切)四、随堂练习1.已知在Rt△ABC中,∠C= Rt∠,a,b,c分别是∠A ,∠B, ∠C的对边,根据下列条件解直角三角形:(1)c=10, ∠A =30o (2)a=3,b=33(3) a=20,sinA=22归纳:(1)在遇到解直角三形的问题时,最好先画一个直角三角形的草图,按题意标明哪些元素是已知的,哪些元素是未知的,以便于分析解决问题。

28.2.1解直角三角形教学设计(可打印修改) (2)

28.2.1解直角三角形教学设计(可打印修改) (2)

直角三角形中除直角外的已知元素,求出其余未知元素的过程,叫做解直角三角
形。
三、【当堂检测】
1.Rt△ABC 中, C 90 ,若 A 30 ,则 B =

若 A 30 , a =1,则 b =
,c=
2. ABC 中, C 90 , cos B 3 , a 3 ,则 b ________. 2
课题
年级学科
学习 目标
28.2.1 解直角三角形
28.2.1 解直角三角形 课型 新授课
九年级数学 学习要求
积极热情、主动探索、 教者:孙奎 时间 3.25
投入学习
1、理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐
角三角函数解直角三角形.
2、通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐
3.如图所示, CD 是 Rt△ABC 斜边上的高, AC 4 ,
cos BCD 4 ,则 BC 的值是_____
A
5
4.根据下列条件解直角三角形
Rt△ABC 中, C 90 , A, B, C 所对的边分别为 a, b, c ,
C DB
(1) A 30 , b 3 (2) b 2 2 , c 4
解直角三角形:由直角三角形中除直角外的 个已知元素( 至少有一个是边),
求出
的过程,叫做解直角三角形.
A
演练排疑
例 1 如图:在 Rt△ABC 中, C 90 , a 6 , b 2 ,
解这个三角形.
C
B
例 2 如图:在 Rt△ABC 中, C 90 B 35 , b 20 ,解这个三角形.
, AC
, BC
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

28.2.1 解直角三角形
【学习目标】
⑴ 使学生理解直角三角形中五个元素的关系,会运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形
⑵ 通过综合运用勾股定理,直角三角形的两个锐角互余及锐角三角函数解直角三角形,逐步培养学生分析问题、解决问题的能力.
⑶ 渗透数形结合的数学思想,培养学生良好的学习习惯.
【学习重点】
直角三角形的解法.
【学习难点】
三角函数在解直角三角形中的灵活运用
【导学过程】
一、自学提纲:
1.在三角形中共有几个元素?
2.直角三角形ABC 中,∠C=90°,a 、b 、c 、∠A 、∠B 这五个元素间有哪些等量关系呢?
(1)边角之间关系
a b A b a A c b A c a A ====
cot ;tan ;cos ;sin b a B a b B c a B c b B ====cot ;tan ;cos ;sin
如果用α∠表示直角三角形的一个锐角,那上述式子就可以写成. 的对边的邻边;的邻边的对边;斜边的邻边;斜边的对边αααααααααα∠∠=∠∠=∠=∠=
cot tan cos sin
(2)三边之间关系 (3)锐角之间关系∠A+∠B=90°.
a 2 +
b 2 =
c 2 (勾股定理) 以上三点正是解直角三角形的依据.
二、合作交流:
要想使人安全地攀上斜靠在墙面上的梯子的顶端.梯子与地面所成
的角一般要满足, (如图).现有一个长6m 的梯子,问:
(1)使用这个梯子最高可以安全攀上多高的墙(精确到0. 1 m)
(2)当梯子底端距离墙面2.4 m 时,梯子与地面所成的角等于多少(精
确到1o ) 这时人是否能够安全使用这个梯子
三、教师点拨: 例1在△ABC 中,∠C 为直角,∠A 、∠B 、∠C 所对的边分别为a 、b 、c ,且b=2, a=6,解这个三角形.
例2在Rt △ABC 中, ∠B =35o ,b=20,解这个三角形.
四、学生展示:
完成课本74页练习
补充题
1.根据直角三角形的__________元素(至少有一个边),求出________•其它所有元素的过程,即解直角三角形.
2、在Rt△ABC中,a=104.0,b=20.49,解这个三角形.
3、在△ABC中,∠C为直角,AC=6,BAC
的平分线AD=43,解此直角三角形。

4、Rt△ABC中,若sinA=4
5
,AB=10,那么BC=_____,tanB=______.
5、在△ABC中,∠C=90°,AC=6,BC=8,那么sinA=________.
6、在△ABC中,∠C=90°,sinA=3
5
,则cosA的值是()
A.3
5
B.
4
5
C.
916
.
2525
D
五、课堂小结:
小结“已知一边一角,如何解直角三角形?”
六、作业设置:
课本第77页习题28.2复习巩固第1题、第2题.七、自我反思:
本节课我的收获:。

相关文档
最新文档