数字信号处理复习题带答案
数字信号处理复习题及参考答案
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
数字信号处理试卷及答案
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,—2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 . 6.设LTI 系统输入为x (n ) ,系统单位序列响应为h (n ),则系统零状态输出y(n )= 。
7.因果序列x (n ),在Z →∞时,X (Z )= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C 。
2πδ(ω) D 。
2π 2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B 。
4 C 。
6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n —2),输出为 ( ) A 。
y (n-2) B.3y (n-2) C.3y (n) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列 C 。
时域为离散无限长序列,频域为连续周期信号 D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A 。
理想低通滤波器 B 。
理想高通滤波器 C 。
理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统( )A 。
y(n)=x (n+2) B 。
y (n )= cos (n+1)x (n ) C. y (n)=x (2n) D.y (n)=x (— n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点 C 。
数字信号处理复习资料(答案)
一、 填空题1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 离散 信号,再进行幅度量化后就是 数字 信号。
2、若线性时不变系统是有因果性,则该系统的单位取样响应序列h(n)应满足的充分必要条件是 当n<0时,h(n)=0 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 单位圆 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L ≥8 时,二者的循环卷积等于线性卷积。
5、已知系统的单位抽样响应为h(n),则系统稳定的充要条件是()n h n ∞=-∞<∞∑6、巴特沃思低通滤波器的幅频特性与阶次N 有关,当N 越大时,通带内越_平坦______,过渡带越_窄___。
7、用来计算N =16点DFT ,直接计算需要__(N 2)16*16=256_ __次复乘法,采用基2FFT 算法,需要__(N/2 )×log 2N =8×4=32_____ 次复乘法。
8、无限长单位冲激响应(IIR )滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,_级联型____和 _并联型__四种。
9、IIR 系统的系统函数为)(z H ,分别用直接型,级联型,并联型结构实现,其中 并联型 的运算速度最高。
10、数字信号处理的三种基本运算是: 延时、乘法、加法11、两个有限长序列和长度分别是和,在做线性卷积后结果长度是__N 1+N 2-1_____。
12、N=2M 点基2FFT ,共有__ M 列蝶形,每列有__ N/2 个蝶形。
13、线性相位FIR 滤波器的零点分布特点是 互为倒数的共轭对14、数字信号处理的三种基本运算是: 延时、乘法、加法15、在利用窗函数法设计FIR 滤波器时,窗函数的窗谱性能指标中最重要的是___过渡带宽___与__阻带最小衰减__。
16、_脉冲响应不变法_设计IIR 滤波器不会产生畸变。
17、用窗口法设计FIR 滤波器时影响滤波器幅频特性质量的主要原因是主瓣使数字滤波器存在过渡带,旁瓣使数字滤波器存在波动,减少阻带衰减。
数字信号处理试题和答案
一. 填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率fmax 关系为: fs>=2fmax。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是 (N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用xm (n)表示,其数学表达式为xm(n)=x((n-m))N RN (n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
16.无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,串联型和并联型四种。
数字信号处理试卷及答案
数字信号处理试卷及答案1一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n )=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n ) ,系统单位序列响应为h(n ),则系统零状态输出y (n )= 。
7.因果序列x (n),在Z →∞时,X (Z )= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B 。
δ(ω) C 。
2πδ(ω) D 。
2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C 。
6 D 。
73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B 。
3y (n-2) C.3y(n) D.y (n)4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D 。
理想带阻滤波器6.下列哪一个系统是因果系统( )A.y (n)=x (n+2) B 。
y(n)= cos (n+1)x (n ) C 。
y (n)=x (2n) D.y (n)=x (— n )7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B 。
数字信号处理试题及答案
数字信号处理试题及答案一、选择题1. 数字信号处理中的离散傅里叶变换(DFT)是傅里叶变换的______。
A. 连续形式B. 离散形式C. 快速算法D. 近似计算答案:B2. 在数字信号处理中,若信号是周期的,则其傅里叶变换是______。
A. 周期的B. 非周期的C. 连续的D. 离散的答案:A二、填空题1. 数字信号处理中,______是将模拟信号转换为数字信号的过程。
答案:采样2. 快速傅里叶变换(FFT)是一种高效的______算法。
答案:DFT三、简答题1. 简述数字滤波器的基本原理。
答案:数字滤波器的基本原理是根据信号的频率特性,通过数学运算对信号进行滤波处理。
它通常包括低通滤波器、高通滤波器、带通滤波器和带阻滤波器等类型,用于选择性地保留或抑制信号中的某些频率成分。
2. 解释什么是窗函数,并说明其在信号处理中的作用。
答案:窗函数是一种数学函数,用于对信号进行加权,以减少信号在离散化过程中的不连续性带来的影响。
在信号处理中,窗函数用于平滑信号的开始和结束部分,减少频谱泄露效应,提高频谱分析的准确性。
四、计算题1. 给定一个信号 x[n] = {1, 2, 3, 4},计算其 DFT X[k]。
答案:首先,根据 DFT 的定义,计算 X[k] 的每个分量:X[0] = 1 + 2 + 3 + 4 = 10X[1] = 1 - 2 + 3 - 4 = -2X[2] = 1 + 2 - 3 - 4 = -4X[3] = 1 - 2 - 3 + 4 = 0因此,X[k] = {10, -2, -4, 0}。
2. 已知一个低通滤波器的截止频率为0.3π rad/sample,设计一个简单的理想低通滤波器。
答案:理想低通滤波器的频率响应为:H(ω) = { 1, |ω| ≤ 0.3π{ 0, |ω| > 0.3π }五、论述题1. 论述数字信号处理在现代通信系统中的应用及其重要性。
答案:数字信号处理在现代通信系统中扮演着至关重要的角色。
数字信号处理试题及答案
数字信号处理试题及答案1. 试题1.1 选择题1. 设x(n)为长度为N的实序列,其中0≤n≤N-1。
要将其进行离散傅立叶变换(DFT),DFT的结果为X(k),其中0≤k≤N-1。
以下哪个式子为正确的傅立叶变换公式?A. X(k) = ∑[x(n) * exp(-j2πkn/N)],0≤k≤N-1B. X(k) = ∑[x(n) * exp(-j2πnk/N)],0≤k≤N-1C. X(k) = ∑[x(n) * exp(-jπkn/N)],0≤k≤N-1D. X(k) = ∑[x(n) * exp(-jπnk/N)],0≤k≤N-12. 在基于FFT算法的离散傅立叶变换中,当序列长度N为2的整数幂时,计算复杂度为:A. O(N^2)B. O(NlogN)C. O(logN)D. O(N)3. 对于一个由N个采样值组成的序列,它的z变换被定义为下式:X(z) = ∑[x(n) * z^(-n)],其中n取0至N-1以下哪个选项正确表示该序列的z变换?A. X(z) = X(z)e^(-i2π/N)B. X(z) = X(z)e^(-iπ/N)C. X(z) = X(z^-1)e^(-i2π/N)D. X(z) = X(z^-1)e^(-iπ/N)1.2 简答题1. 请简要说明数字信号处理(DSP)的基本概念和应用领域。
2. 解释频率抽样定理(Nyquist定理)。
3. 在数字滤波器设计中,有两种常见的滤波器类型:FIR和IIR滤波器。
请解释它们的区别,并举例说明各自应用的情况。
2. 答案1.1 选择题答案1. B2. B3. D1.2 简答题答案1. 数字信号处理(DSP)是一种利用数字计算机或数字信号处理器对信号进行采样、量化、处理和重建的技术。
它可以应用于音频处理、图像处理、通信系统、雷达系统等领域。
DSP可以实现信号的滤波、变换、编码、解码、增强等功能。
2. 频率抽样定理(Nyquist定理)指出,为了正确地恢复一个连续时间信号,我们需要对其进行采样,并且采样频率要大于信号中最高频率的两倍。
数字信号处理试卷及答案
数字信号处理试卷及答案一、选择题(共20题,每题2分,共40分)1.在数字信号处理中,什么是采样定理?–[ ] A. 信号需要经过采样才能进行数字化处理。
–[ ] B. 采样频率必须是信号最高频率的两倍。
–[ ] C. 采样频率必须是信号最高频率的四倍。
–[ ] D. 采样频率必须大于信号最高频率的两倍。
2.在数字信号处理中,离散傅立叶变换(DFT)和离散时间傅立叶变换(DTFT)之间有什么区别?–[ ] A. DFT和DTFT在计算方法上有所不同。
–[ ] B. DFT是有限长度序列的傅立叶变换,而DTFT是无限长度序列的傅立叶变换。
–[ ] C. DFT只能用于实数信号的频谱分析,而DTFT可以用于复数信号的频谱分析。
–[ ] D. DFT和DTFT是完全相同的。
3.在数字滤波器设计中,零相移滤波器主要解决什么问题?–[ ] A. 相位失真–[ ] B. 幅度失真–[ ] C. 时域响应不稳定–[ ] D. 频域响应不稳定4.数字信号处理中的抽样定理是什么?–[ ] A. 抽样频率必须大于信号最高频率的两倍。
–[ ] B. 抽样频率必须是信号最高频率的两倍。
–[ ] C. 抽样频率必须是信号最高频率的四倍。
–[ ] D. 信号频率必须是抽样频率的两倍。
5.在数字信号处理中,巴特沃斯滤波器的特点是什么?–[ ] A. 频率响应为低通滤波器。
–[ ] B. 具有无限阶。
–[ ] C. 比其他类型的滤波器更加陡峭。
–[ ] D. 在通带和阻带之间有一个平坦的过渡区域。
…二、填空题(共5题,每题4分,共20分)1.离散傅立叶变换(DFT)的公式是:DFT(X[k]) = Σx[n] * exp(-j * 2π * k * n / N),其中X[k]表示频域上第k个频率的幅度,N表示序列的长度。
2.信号的采样频率为fs,信号的最高频率为f,根据采样定理,信号的最小采样周期T应满足:T ≤ 1 / (2* f)3.时域上的离散信号可以通过使用巴特沃斯滤波器进行时域滤波。
(完整word版)数字信号处理复习题带答案
1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。
A 、理想低通滤波器B 、理想高通滤波器C 、理想带通滤波器D 、理想带阻滤波器 2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__?A 、.h(n)=δ(n)+δ(n -10)B 、h(n)=u(n)C 、h(n)=u(n)-u(n-1)D 、 h(n)=u(n)-u(n+1)3.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是_____A_____。
A.N≥MB.N≤MC.N≤2MD.N≥2M 4.以下对双线性变换的描述中不正确的是__D_________。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对 5、信号3(n)Acos(n )78x ππ=-是否为周期信号,若是周期信号,周期为多少? A 、周期N=37πB 、无法判断C 、非周期信号D 、周期N=146、用窗函数设计FIR 滤波器时,下列说法正确的是___a____。
A 、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。
B 、加大窗函数的长度可以增加主瓣与旁瓣的比例。
C 、加大窗函数的长度可以减少主瓣与旁瓣的比例 。
D 、以上说法都不对。
7.令||()n x n a =,01,a n <<-∞≤≤∞,()[()]X Z Z x n =,则()X Z 的收敛域为 __________。
A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。
8.N 点FFT 所需乘法(复数乘法)次数为____D___。
A 、2N log NB 、NC 、2ND 、2log 2NN9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。
数字信号处理试题库答案
数字信号处理试题库答案TTA standardization office【TTA 5AB- TTAK 08- TTA 2C】一.填空题1、一线性时不变系统,输入为 x(n)时,输出为y(n);则输入为2x(n)时,输出为 2y(n) ;输入为x(n-3)时,输出为 y(n-3) 。
2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs与信号最高频率f max关系为: fs>=2f max。
3、已知一个长度为N的序列x(n),它的离散时间傅立叶变换为X(e jw),它的N点离散傅立叶变换X(K)是关于X(e jw)的 N 点等间隔采样。
4、有限长序列x(n)的8点DFT为X(K),则X(K)= 。
5、用脉冲响应不变法进行IIR数字滤波器的设计,它的主要缺点是频谱的交叠所产生的混叠现象。
6.若数字滤波器的单位脉冲响应h(n)是奇对称的,长度为N,则它的对称中心是(N-1)/2 。
7、用窗函数法设计FIR数字滤波器时,加矩形窗比加三角窗时,所设计出的滤波器的过渡带比较窄,阻带衰减比较小。
8、无限长单位冲激响应(IIR)滤波器的结构上有反馈环路,因此是递归型结构。
9、若正弦序列x(n)=sin(30nπ/120)是周期的,则周期是N= 8 。
10、用窗函数法设计FIR数字滤波器时,过渡带的宽度不但与窗的类型有关,还与窗的采样点数有关11.DFT与DFS有密切关系,因为有限长序列可以看成周期序列的主值区间截断,而周期序列可以看成有限长序列的周期延拓。
12.对长度为N的序列x(n)圆周移位m位得到的序列用x m(n)表示,其数学表达式为x m(n)= x((n-m))N R N(n)。
13.对按时间抽取的基2-FFT流图进行转置,并将输入变输出,输出变输入即可得到按频率抽取的基2-FFT流图。
14.线性移不变系统的性质有交换率、结合率和分配律。
15.用DFT近似分析模拟信号的频谱时,可能出现的问题有混叠失真、泄漏、栅栏效应和频率分辨率。
数字信号处理复习2(含答案)
一、 填空题 1、判断序列13()sins()72x n A n ππ=+是否为周期序列(周期序列),假如)(n x 为周期序列,周期为多少?(14) 2、设)(n x 和)(n y 分别表示系统的输入和输出,请判断系统3()[()]y n x n =是线性系统?(非线性) ,是移不变系统?(移不变)3、设系统的单位抽样响应1()()h n u n n=,则该系统是因果系统(因果),是稳定系统?(不稳定)4、一个线性移不变系统,其系统函数的极点位置与该系统的稳定性和因果性的关系是 (极点在单位圆内,则该系统是因果稳定系统。
)5、快速傅立叶变换FFT 能提高离散傅立叶变换DFT 的计算速度的原因是:(1) 将长序列的DFT 转变为短序列的DFT , (2)利用W N 的特性合并计算减少乘法次数。
6、()(2)()nx n u n =-,则()X z =(2z z +或112z -+,2z >)7、用10000Hz 的采样频率对()a x t 进行采用,则采样后序列()x n 的最高频率可能(5000)Hz ,对应的数字频率为(π)8、系统的频率响应与系统函数的关系是在(系统函数在单位圆上的取值就是系统的频率响应)的值。
9、圆周卷积与线性卷积之间的关系是(L 点圆周卷积是线性卷积以L 为周期的周期延拓序列的主值序列,或,当圆周卷积的长度大于等于。
)10、长度为M 的有限长序列,对其频率响应进行频域抽样,抽样点数为N ,则频域抽样不失真的条件是:(N≥M )11、利用DFT 计算连续时间信号的频谱时,会产生的问题有: (混叠失真、频谱泄漏、栅栏效应)12、设有一谱分析用的信号处理器,抽样点数必须为2的整数次幂,假定没有采用任何特殊数据处理措施,要求频率分辨力≤10Hz ,如果采用的抽样时间间隔为0.1ms ,试确定最小记录长度为(0.1s );所允许处理的信号的最高频率为(5kHz );在一个记录中的最少点数(1024)13、 一个序列10),(-≤≤N n n x ,其DFT 的复数乘法运算量与(N 2)成正比.14、 已知一个线性相位FIR 数字滤波器的一个零点为:i --1,则该系统的其它零点为(1,0.50.5,0.50.5i i i -+-+--) 15、 采用窗函数设计FIR 数字滤波器,其阻带最小衰减与(窗函数的形状有关,过渡带宽与(窗函数的长度或宽度)有关。
《数字信号处理》复习题及答案
《数字信号处理》复习题一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在题干的括号内。
每小题2分)1.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( D)。
A. ΩsB. ΩcC. Ωc/2D. Ωs/22. 若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( C)。
A. R3(n)B. R2(n)C. R3(n)+R3(n-1)D. R2(n)+R2(n-1)3. 一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包含( A)。
A. 单位圆B. 原点C. 实轴D. 虚轴4. 已知x(n)=δ(n),N点的DFT[x(n)]=X(k),则X(5)=( B)。
A. NB. 1C. 0D. - N5. 如图所示的运算流图符号是( D)基2 FFT算法的蝶形运算流图符号。
A. 按频率抽取B. 按时间抽取C. 两者都是D. 两者都不是6. 直接计算N点DFT所需的复数乘法次数与( B)成正比。
A. NB. N2C. N3D. Nlog2N7. 下列各种滤波器的结构中哪种不是I I R滤波器的基本结构( D)。
A. 直接型B. 级联型C. 并联型D. 频率抽样型8. 以下对双线性变换的描述中正确的是( B)。
A. 双线性变换是一种线性变换B. 双线性变换可以用来进行数字频率与模拟频率间的变换C. 双线性变换是一种分段线性变换D. 以上说法都不对9. 已知序列Z变换的收敛域为|z|>1,则该序列为( B)。
A. 有限长序列B. 右边序列C. 左边序列D. 双边序列10. 序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( D)。
A. 2B. 3C. 4D. 511. 下列关于FFT的说法中错误的是( A)。
A. FFT是一种新的变换B. FFT是DFT的快速算法C. FFT基本上可以分成时间抽取法和频率抽取法两类D. 基2 FFT要求序列的点数为2L(其中L为整数)12. 下列结构中不属于FIR滤波器基本结构的是( C)。
数字信号处理》总复习题答案
一、填空题
1、一个线性时不变离散时间系统可以用三种方式表示: (1)差分方程;(2)单位抽样响应;(3)系统函数 。
2、说明序列Z变换与下列变换的关系: (1)LT:z esT LT;
(2)DTFT:z e jw(单位圆上的ZT ) DTFT;
(3)DFT:z
e
j
2 N
9、要获得线性相位的FIR DR,其h(n)必须满足: (1)h(n)是 实数; (2)h(n) h(N 1 n) h(n)以n (N 1) / 2为中
心的偶对称或奇对称 。
10、序列CZT用来计算沿z平面一条螺旋线等分角的采样值。
11、周期序列不能进行ZT的原因是: | x(n)zn | n N 1
2、已知系统差分方程 y(n) x(n) x(n 4)。 (1)求系统函数H (z);
(2)求幅频特性,并画幅频曲线;
(3)若用该系统阻止直流、50Hz及2、3、4等高次谐波,则系
统的抽样频率取多少?
解:(1) y(n) x(n) x(n 4) Y (z) X (z) z4 X (z)
3、用脉冲响应不变法设计一个低通滤波器,已知归一化
模拟低通滤波器Ha (s)
s2
2 3s
2,模拟截止频率fc
1kHz,采样频率fs 4kHz。试求数字滤波器H (z),并画
出其并联结构图。若保持H (z)不变,采样频率提高4倍,
则低通滤波器的截止频率有什么变化?
解:c
2fc
2000
(2) (n)在n 0处值为1 (n)可实现, (t)在t 0处为
(完整版)数字信号处理复习题-答案
7.对正弦信号进行采样得到的正弦序列一定是周期序列。 ( × ) 8.数字信号处理仅仅指的是数字处理器。 ( × )
9.信号处理的两种基本方法:一是放大信号,二是变换信号。 ( × ) 10.在时域对连续信号进行抽样,在频域中,所得频 谱是原信号频谱的周期延拓。( × ) 四、简答题
1.用DFT 对连续信号进行谱分析的误差问题有哪些?
答:混叠失真;截断效应(频谱泄漏);栅栏效应
2.画出模拟信号数字化处理框图,并简要说明框图中每一部分的功能作用。 答
第1部分:滤除模拟信号高频部分;第2部分:模拟信号经抽样变为离散信号;第3部分:按照预制要求对数字信号处理加工; 第4部分:数字信号变为模拟信号;第5部分:滤除高频部分,平滑模拟信号。
4.设线性时不变系统的单位脉冲响应h(n)和输入序列x(n),如下图所示,要求分别用图解法和列表法求输出y(n),并画出波形 一、填空题: 1、一线性时不变系统,输入为 x (n )时,输出为y (n ) ;则输入为2x (n )时,输出为 2y(n) ;输入为x (n-3)时,输出为 y(n-3) 。 2、从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率f 与信号最高频率fs 关系为: f ≥2fs 。 3、已知一个长度为N 的序列x(n),它的傅立叶变换为X (e jw ),它的N 点离散傅立叶变换X (K )是关于X (e jw )的 N 点等间隔 抽样 。 4、3()5cos()78x n n π π=-的周期为 14 。 5、2()5cos()78 xnnπ π=-的周期为 7 。 6、若正弦序列x(n)=sin(30n π/120)是周期的,则周期是N= 8 。 7、序列()8 ()n jxne π-=是否为周期序列 否 。 8、无限长单位冲激响应滤波器的基本结构有直接Ⅰ 型,直接Ⅱ 型,_级联型_和_并联型_四种。 9、DFT 与DFS 有密切关系,因为有限长序列可以看成周期序列的___主值序列__,而周期序列可以看成有限长序列的_周期 序列 __。 10、对长度为N 的序列x(n)圆周移位m 位得到的序列用x m (n)表示,其数学表达式为x m (n)=__ x((n+m))N R N (n)___。 二、选择填空题 1、δ(n)的z 变换是( A ) A. 1 B.δ(w) C. 2πδ(w) D. 2π 2、序列x 1(n)的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是(), 5点圆周卷积的长度是( B )。 A. 5, 5 B. 6, 5 C. 6, 6 D. 7, 5 3、在N=32的时间抽取法FFT 运算流图中,从x(n)到X(k)需( B )级蝶形运算
数字信号处理考试试题及答案
8、线性相位FIR 数字滤波器的单位脉冲响应h(n ) 应满足条件h(n)= 士h(N -n - 1)。
9. IIR 数字滤波器的基本结构中,直接型运算累积误差较大;级联型运算累积误差较小;并联型运算误差最小且运算速度最高。
10. 数字滤波器按功能分包括低通、高通、带通、带阻滤波器。
11. 若滤波器通带内群延迟响应 = 常数,则为线性相位滤波器12. x(n)= A cos(| 3n)|的周期为 14\ 7 )13. 求 z 反变换通常有围线积分法 (留数法)、部分分式法、长除法等。
第 1 页共 7 页A. 零点为z= ,极点为 z=0B. 零点为z=0,极点为z=C. 零点为z= ,极点为 z=1D. 零点为z= ,极点为z=24.下列各种滤波器的结构中哪种不是IIR 滤波器的基本结构? (CA.直接型B.级联型C.频率抽样型D.并联型5.以下关于用双线性变换法设计IIR 滤波器的论述中正确的是( B )。
A.数字频率与模拟频率之间呈线性关系B.总是将稳定的模拟滤波器映射为一个稳定的数字滤波器C.使用的变换是s 平面到 z 平面的多值映射D.不宜用来设计高通和带阻滤波器6.对连续信号均匀采样时,采样角频率为Ωs,信号最高截止频率为Ωc,折叠频率为( D )。
A. ΩsB. ΩcC. Ωc/2D. Ωs/2 7.下列对 IIR 滤波器特点的论述中错误的是( C )。
A.系统的单位冲激响应h(n)是无限长的 B.结构必是递归型的C.肯定是稳定的D.系统函数H(z)在有限 z 平面 (0<|z|<∞ )上有极点第 2 页共 7 页8. δ (n)的 z 变换是 ( A )。
A. 1B. δ (w)C. 2 πδ (w)D. 2 π9.设x(n) , y(n) 的傅里叶变换分别是X(e j O ), Y(e j O ),则x(n) . y(n) 的傅里叶变换为 ( D ) .A. X(e j O ) *Y(e j O )B. X(ej O ) .Y(e j O )C.X(e j O ) . Y(e j O )D.X(e j O )*Y(e j O )10.一个线性移不变系统稳定的充分必要条件是其系统函数的收敛域包括( A )。
数字信号处理习题及答案完整版
数字信号处理习题及答案HEN system office room 【HEN16H-HENS2AHENS8Q8-HENH1688】==============================绪论============================== 1. A/D 8bit 5V 00000000 0V 00000001 20mV 00000010 40mV 00011101 29mV==================第一章 时域离散时间信号与系统================== 1.①写出图示序列的表达式答:3)1.5δ(n 2)2δ(n 1)δ(n 2δ(n)1)δ(n x(n)-+---+++= ②用(n) 表示y (n )={2,7,19,28,29,15} 2. ①求下列周期②判断下面的序列是否是周期的; 若是周期的, 确定其周期。
(1)A是常数 8ππn 73Acos x(n)⎪⎪⎭⎫ ⎝⎛-= (2))81(j e )(π-=n n x 解: (1) 因为ω=73π, 所以314π2=ω, 这是有理数, 因此是周期序列, 周期T =14。
(2) 因为ω=81, 所以ωπ2=16π, 这是无理数, 因此是非周期序列。
③序列)Acos(nw x(n)0ϕ+=是周期序列的条件是是有理数2π/w 0。
3.加法乘法序列{2,3,2,1}与序列{2,3,5,2,1}相加为__{4,6,7,3,1}__,相乘为___{4,9,10,2} 。
移位翻转:①已知x(n)波形,画出x(-n)的波形图。
②尺度变换:已知x(n)波形,画出x(2n)及x(n/2)波形图。
卷积和:①h(n)*求x(n),其他2n 0n 3,h(n)其他3n 0n/2设x(n) 例、⎩⎨⎧≤≤-=⎩⎨⎧≤≤=②已知x (n )={1,2,4,3},h (n )={2,3,5}, 求y (n )=x (n )*h (n )x (m )={1,2,4,3},h (m )={2,3,5},则h (-m )={5,3,2}(Step1:翻转)解得y (n )={2,7,19,28,29,15} ③(n)x *(n)x 3),求x(n)u(n u(n)x 2),2δ(n 1)3δ(n δ(n)2、已知x 2121=--=-+-+=4. 如果输入信号为,求下述系统的输出信号。
数字信号处理题库附答案
数字信号处理复习题一、选择题1、某系统)(),()()(n g n x n g n y =有界,则该系统( A ).A.因果稳定B.非因果稳定C.因果不稳定D. 非因果不稳定2、一个离散系统( D ).A.若因果必稳定B.若稳定必因果C.因果与稳定有关D.因果与稳定无关3、某系统),()(n nx n y =则该系统( A ).A.线性时变B. 线性非时变C. 非线性非时变D. 非线性时变4.因果稳定系统(de)系统函数)(z H (de)收敛域是( D ). A.9.0<z B. 1.1<z C. 1.1>z D. 9.0>z5.)5.0sin(3)(1n n x π=(de)周期( A ).6.某系统(de)单位脉冲响应),()21()(n u n h n =则该系统( C ).A.因果不稳定B.非因果稳定C.因果稳定D.非因果不稳定7.某系统5)()(+=n x n y ,则该系统( B ).A.因果稳定B.非因果稳定C.因果不稳定D.非因果不稳定8.序列),1()(---=n u a n x n 在)(z X (de)收敛域为( A ). A.a z < B. a z ≤ C. a z > D. a z ≥9.序列),1()21()()31()(---=n u n u n x n n 则)(z X (de)收敛域为( D ). A.21<z B. 31>z C. 21>z D. 2131<<z 10.关于序列)(n x (de)DTFT )(ωj e X ,下列说法正确(de)是( C ).A.非周期连续函数B.非周期离散函数C.周期连续函数,周期为π2D.周期离散函数,周期为π211.以下序列中( D )(de)周期为5. A.)853cos()(π+=n n x B. )853sin()(π+=n n x C.)852()(π+=n j e n x D. )852()(ππ+=n j e n x 12.)63()(π-=nj e n x ,该序列是( A ).A.非周期序列B.周期6π=N C.周期π6=N D.周期π2=N以上为离散时间信号与系统部分(de)习题13.________))4((4=.( A )14.________02=W .( B )C.1-15.________)]([=n DFT δ.( B )D.1-16.DFT N 点的1024=,需要复数相乘次数约( D ).17. ________))2((4=-.( C )18.________12=W .( C )C.1-19. ________)]1([=-n DFT δ.( B )B.kN W C.1 D. kN W -20. IDFT N 点的1024=,需要复数相乘次数约( D ).21.________))202((8=-.( C )22.________18=W .( A ) A.)1(22j - B.)1(22j + C.)1(22j -- D.)1(22j +- 23. ________)]([0=-n n DFT δ.( A )A. k n N W 0B.k N WC. k n N W 0- D. k N W - 24.重叠保留法输入段(de)长度为121-+=N N N ,))((1N n h 长为,每一输出段(de)前( B )点就是要去掉(de)部分,把各相邻段流下来(de)点衔接起来,就构成了最终(de)输出.A.1-NB. 11-NC. 12-ND.121-+N N以上为DFT 部分(de)习题25.利用模拟滤波器设计IIR 数字滤波器时,为了使数字滤波器(de)频响能模仿模拟滤波器(de)频响,在将)(s H a 转化为)(z H 时应使s 平面(de)虚轴映射到z 平面(de)( C ).A.单位圆内B.单位圆外C.单位圆上D.单位圆与实轴(de)交点26.( B )方法设计(de)IIR 数字滤波器会造成频率(de)非线性)(的关系与ωΩ.A.脉冲响应不变法B.双线性变换法C.窗函数法D.频率采样法27.用( A )方法设计(de)IIR 数字滤波器会造成频率混叠现象.A.脉冲响应不变法B.双线性变换法C.窗函数法D.频率采样法28.在IIR 滤波器设计法中,如果数字低通转化为数字低通(de)变换关系为)(11--=z G u ,则数字低通转化为数字高通只要将( B )替换z .A.1-zB.z -C.1--zD.*z29.在IIR 滤波器设计方法中,主要讨论模拟低通滤波器而不是其他类型模拟滤波器,主要是因为( C ).A.只有通过模拟低通滤波器才可以设计数字滤波器B.模拟低通滤波器设计简单,有快速算法C.模拟低通滤波器可以通过适当(de)变换转换成其他类型(de)滤波器D.采用模拟低通滤波器才能恢复经过采样后离散信号所代表(de)原始信号30.采用从模拟滤波器低通原型到带通滤波器(de)频率变换中,模拟频率为Ω,数字频率为ω,数字带通滤波器(de)中心频率为0ω.应该将0=Ω映射到数字域(de)( C ).A. 0ωB. 0ω-C. 0ω±D.π31.设计IIR 滤波器(de)性能指标一般不包括( D ).A.滤除(de)频率分量B.保留(de)频率分量C.保留(de)部分允许(de)幅频或相位失真D.滤波器(de)脉冲响应32.对于IIR 滤波器,其系统函数(de)有理分式为∑∑=-=--=Ni ii M i i iz b z a z H 101)(.当N M >时,)(z H 可看成是( B ).A.一个N 阶IIR 子系统和一个(M-N )阶(de)FIR 子系统(de)并联B. 一个N 阶IIR 子系统和一个(M-N )阶(de)FIR 子系统(de)级联C. 一个N 阶IIR 子系统和一个M 阶(de)FIR 子系统(de)级联D. 一个N 阶IIR 子系统和一个M 阶(de)FIR 子系统(de)并联33.阶数位N(de)Butterworth 滤波器(de)特点之一是( C ).A.具有阻带内最大平坦(de)幅频特性B.具有通带内线性(de)相位特性C.过度带具有频响趋于斜率为倍频程/6N -(de)渐近线D.过度带具有频响趋于斜率为倍频程/3N -(de)渐近线34.不是阶数为N(de)Chebyshev 滤波器(de)特点之一是( D ).A.逼近误差值在阻带内等幅地在极大值和极小值之间摆动B.具有阻带内等波纹(de)幅频特性C.具有通带内等波纹(de)幅频特性D.过渡带具有频响趋于斜率为倍频程/3N -(de)渐近线35.将模拟低通滤波器至高通滤波器(de)变换就是s 变量(de)( B ).A.双线性变换B.倒量变换C.负量变换D.反射变换36.从低通数字滤波器到各种数字滤波器(de)频率变换要求对变换函数)(11--=z G u 在单位圆上是( C ).A.归一化函数B.反归一化函数C.全通函数D.线性函数 以上为IIR 数字滤波器设计部分(de)习题37.线性相位FIR 滤波器(de)单位函数响应偶对称表达式为( A ).A.)1()(n N h n h --=B.)1()(-=N h n hC.)()(n N h n h -=D.)()(N n h n h -=38.线性相位FIR 滤波器(de)单位函数响应奇对称表达式为( A ).A.)1()(n N h n h ---=B.)1()(--=N h n hC.)()(n N h n h --=D.)()(N n h n h --=滤波器(de)线性相位特性是指( B ).A.相位特性是常数B.相位特性是频率(de)一次函数C. 相位特性是频率(de)二次函数D. 相位特性不是频率(de)函数 滤波器(de)幅度函数( C ).A.就是幅频特性B.函数值总是大于0C.函数值可正可负D.函数值是常数,与频率无关41.线性相位FIR 滤波器与相同阶数(de)IIR 滤波器相比,可以节省一半左右(de)( B ).A.加法器B.乘法器C.乘法器和加法器D.延迟器42.线性相位FIR 滤波器系统函数(de)零点( D ).A.单个出现 个一组同时出现 个一组同时出现 个一组同时出现43.窗函数(de)主瓣宽度越小,用其设计(de)线性相位FIR 滤波器(de)( A ).A.过渡带越窄B. 过渡带越宽C. 过渡带内外波动越大D. 过渡带内外波动越小44.用频率采样法设计线性相位FIR 滤波器,线性相位FIR 滤波器在采样点上(de)幅频特性与理想滤波器在采样点上(de)幅频特性(de)关系( A ).A .相等 B.不相等 C.大于 D.小于45. 用窗函数法设计(de)线性相位FIR 滤波器过渡带越窄越好,过渡带内、外波动越小越好,要求窗函数频谱( A ).A.主瓣宽度小,旁瓣面积小B.主瓣宽度小,旁瓣面积大C. 主瓣宽度大,旁瓣面积小D. 主瓣宽度大,旁瓣面积大46.在线性相位FIR 滤波器(de)窗函数设计法中,当窗型不变而点数增加时,FIR 滤波器幅频特性(de)( A ).A.过渡带变窄,带内外波动振幅不变B. 过渡带变宽,带内外波动振幅变大C. 过渡带变窄,带内外波动振幅变小D. 过渡带变宽,带内外波动振幅变小47.用频率采样法设计线性相位FIR 滤波器时,增加过渡带点(de)目(de)是( D ).A.增加采样点数B.增加过渡带宽C.修改滤波器(de)相频特性D.增大阻带最小衰减48.线性相位FIR 滤波器(de)单位函数响应0)21(=-N h (de)充分条件是( A ).A.单位函数响应奇对称,N 为奇数B. 单位函数响应偶对称,N 为奇数C. 单位函数响应奇对称,N 为偶数D.单位函数响应偶对称,N 为偶数 以上为FIR 数字滤波器设计部分(de)习题49.在不考虑( A ),同一种数字滤波器(de)不同结构是等效(de).A.拓扑结构B.量化效应C.粗心大意D.经济效益50.研究数字滤波器实现(de)方法用( A )最为直接.A.微分方程B.差分方程C.系统函数D.信号流图51.下面(de)几种网络结构中,( A )不是IIR 滤波器(de)基本网络结构.A.频率采样型B.用(de)延迟单元较少C.适用于实现低阶系统D.参数i a 、i b 对滤波器性能(de)控制作用直接52.( D )不是直接型结构实现IIR 数字滤波器(de)优点.A.简单直观B. 用(de)延迟单元较少C. 适用于实现低阶系统D. 参数i a 、i b 对滤波器性能(de)控制作用直接53.( D )不是级联型实现IIR 滤波器(de)优点.A.可单调滤波器(de)极点和零点B.每个基本节有相同(de)结构C.可灵活地进行零极点配对和交换级联次序D.误差不会逐级积累54.( A )不是并联型实现IIR 滤波器(de)优点.A. 零极点调整容易B.运算速度快C.各级(de)误差互不影响D.总误差低于级联型(de)总误差55.在级联型和并联型实现IIR 滤波器中,一般以一阶和二阶节作为子系统,且子系统采用( A ).A.直接型B.级联型C.并联型D.线性相位型56.任意(de)离散电路可以看成是( C ).滤波器 滤波器滤波器和FIR 滤波器(de)级联组成 D.非递归结构57.在MATLAB 中,用( B )函数实现IIR 数字滤波器(de)级联型结构.采用( B )总线结构.C.哈弗D.局部59.在以下(de)窗中,( A )(de)过渡带最窄.A.矩形窗B.汉宁窗C.哈明窗D.布莱克曼窗60.频率采样型结构适用于( B )滤波器(de)情况.A.宽带(de)情况B.窄带C.各种D.特殊以上为离散系统网络结构实现部分(de)习题二、判断题1.离散时间系统(de)数学模型是差分方程.( Y )2.已知某信号频谱(de)最高频率为100Hz,能够恢复出原始信号(de)最低采样频率为200Hz.( Y )3.某系统)()(2n ax n y =,则该系统是线性系统.(N )4.线性时不变系统(de)数学模型是线性常系数差分方程.( Y )5.对模拟信号(一维信号,时间(de)函数)进行采样后并对幅度进行量化后就是数字信号.( Y )6.稳定(de)离散时间系统,其所有极点都位于Z 平面(de)单位圆外部.( N )7.正弦序列都是周期序列.( N )8.若线性时不变系统是有因果性,则该系统(de)单位采样响应序列)(n h 应满足(de)充分必要条件是0)(=n h ,0<n .( Y )9.序列)()(n n x δ=(de)DTFT 是1.( Y )10.已知⎪⎩⎪⎨⎧≤<<=πωππωω2022)(j e X , )(ωj e X (de)反变换n n n x ππ)2sin(2)(=.( Y )11.采样序列单位圆上(de)Z 变换等于该采样序列(de)DTFT.( N )12.对信号)(t x 进行等间隔采样,采样周期ms T 5=,则折叠频率为200Hz.( N )以上为离散时间信号与系统部分(de)习题13.周期序列(de)第一周期称为“主值区间”.( Y )可以看成DFS(de)一个周期.( Y )15.周期序列不能进行Z 变化.( Y )是离散序列(de)傅立叶变换.( N )具有选频特性.( Y )18.)(k X 是)(z X 在单位圆上等间距采样值.( Y )19.周期卷积是线性卷积(de)周期延拓.( Y )隐含周期性.( Y )21.重叠保留法和重叠相加法(de)计算量差不多.( Y )22.频率抽取法输出是自然顺序,输入是按照反转(de)规律重排.(N )23.按频率抽取法与按时间抽取法是两种等价(de)FFT 运算.( Y )24.变动DFT(de)点数,使谱线变密,增加频域采样点数,原来漏掉(de)某些频谱就可能被检测出来.( Y )以上为DFT 部分(de)习题滤波器一般用递归(de)网络结构实现,一般不包括反馈支路.( N )26.具有相同(de)幅频特性,采用IIR滤波器比采用FIR滤波器要经济.( Y )滤波器总是不稳定(de),而FIR滤波器总是稳定(de).( N )28.数字滤波器在πω2=(de)频响表示低频频响.( Y )29.数字滤波器在πω=(de)频响表示高频频响.( Y )滤波器一般具有线性相频特性.( N )滤波器只能根据模拟滤波器来设计.( N )32.双线性变换法适用于所有类型(低通、高通、带通、带阻)(de)滤波器设计.( Y )33.全通网络总是一阶(de).( N )34.三种模拟低通滤波器若过渡带特性相同,选用椭圆滤波器(de)阶数最高.(N )35.脉冲响应不变法适用于所有类型(低通、高通、带通、带阻)(de)滤波器设计.( N )36.双线性变换法产生(de)频率失真无法克服.( N )37.全通函数在单位圆上(de)幅度恒等于1.( Y )38.最小相位数字滤波器在零点在单位圆上.( N )滤波器(de)优化设计方法需要通过设计模拟滤波器实现.( N )40.脉冲响应不变法不一定将最小相位模拟滤波器映射为最小相位(de)数字滤波器.( Y )以上为IIR数字滤波器设计部分(de)习题滤波器总是具有线性相位(de)特性.( N )滤波器(de)单位函数响应关于原点对称.( N )43.线性相位FIR滤波器(de)窗函数设计法所用(de)窗函数总是偶对称(de).( Y )44.线性相位FIR滤波器(de)结构中存在反馈.( N )滤波器只有零点,除原点外,在Z平面上没有极点.( Y )46.在理论上,FIR总是稳定(de).( Y )47.单位函数响应偶对称N为奇数(de)FIR滤波器,不宜作为低通滤波器.( N )48.单位函数响应偶对称N为偶数(de)FIR滤波器,不宜作为低通滤波器.( N )49.单位函数响应奇对称N为奇数(de)FIR滤波器,不宜作为高通滤波器.( Y )50.单位函数响应奇对称N为偶数(de)FIR滤波器,不宜作为高通滤波器.( N )51.窗函数(de)主瓣宽度越小,用其设计(de)线性相位(de)过渡带越窄.( Y )52.窗函数(de)旁瓣面积应该尽可能地小,以增大线性相位FIR滤波器过渡带内、外波动(de)最大振幅.( N )53.用窗函数设计(de)线性相位FIR滤波器(de)过渡带越窄,表明窗函数(de)主瓣宽带越大.( N )54. 用窗函数设计(de)线性相位FIR滤波器过渡带内、外波动(de)最大振幅越大,表明窗函数(de)旁瓣面积越小.( N )以上为FIR数字滤波器设计部分(de)习题55.子系统是线性(de),子系统级联次序仍会影响总系统(de)传递函数.( N )56.对于单输入、但输出(de)系统,通过反转网络中(de)全部支路(de)方向,并且将其输入输出互换,得出(de)信号流图传递函数是原始流图传递函数(de)倒数.( N )57.数字滤波器由加法器、乘法器和延迟器组成.( Y )58.滤波器共有三种因量化而引起(de)误差因素:(1)DA/转换(de)量化效应;(2)系数(de)量化效应;(3)数字运算过程中(de)有限字长效应.( Y )59.不同(de)排列方案在相同(de)运算精度下,其产生(de)误差是不同(de).( Y )系统与模拟信号处理系统在功能上有许多相似之处,因此在处理技术上也相似.( N )滤波器实现类型中横截型又称卷积型.( Y )滤波器级联型结构中,每个二阶节控制一个零点.( N )63.可以用FIR滤波器实现振动器.( N )滤波器只能用非递归结构实现.( N )65.线性相位型FIR滤波器(de)计算量约为横截型(de)一半.( Y )级联型结构所需要(de)系数比直接型多.(Y )67.线性相位型(de)信号流图与N为偶数或奇数无关.( N )68.在FIR级联型网络结构中,每一个一阶网络决定一个实数极点,每一个二阶网络决定一对共轭极点.(N )以上为离散系统网络结构实现部分(de)习题三、计算与设计题1.设)()(n u n h =,)1()()(--=n n n x δδ,求)(*)()(n h n x n y =.2.设系统(de)单位脉冲响应)()(n u a n h n =,10<<a ,输入序列为)2(2)()(-+=n n n x δδ,求出系统输出序列)(n y .3.已知21211)(----=z z z X ,21<<z ,求)(n x . 4.求序列)()21()(n u n n +δ(de)Z 变换,并指出其零、极点和收敛域. 5. 已知)2()1()(2--=z z z z X ,讨论对应)(z X (de)所有可能(de)序列表达式. 6.已知)1(75.0)()1(75.0)(-+++=n n n n x δδδ(1)计算)]([)(n x DTFT e X j =ω;(2)在角频率π2~0上对)(ωj e X 作8=N 点等距离采样,得到)(k X ,写出)(k X 与)(n x (de)对应关系.以上为离散时间信号与系统部分(de)习题7.已知有限长序列)(n x 如下式:}1,1{)(=n x ,2=N ,计算)]([)(n x DFT k X =.8.已知)()(2n R n x =,)()(2n R n y =,用DFT 计算)()()(n y n x n f ⊗=.9.已知有限长序列)(n x 如下式:}0,0,1,1{)(=n x ,4=N ,计算)]([)(n x DFT k X =.10. 已知)()(n R n x N =,)()(n R n y N =,用DFT 计算)()()(n y n x n f ⊗=.11.已知)2()1()()(-+-+=n n n n x δδδ,对于8=N ,计算)(k X .12.已知)()82cos()(8n R n x π=,)()82sin()(8n R n y π=.用DFT 计算)()()(n y n x n f ⊗=,并画出)()()(n y n x n f ⊗=(de)波形.以上为DFT 部分(de)习题13.一个Butterworth 模拟低通滤波器,通带截至频率s rad c /2.0π=Ω上(de)衰减不小于1dB,阻带截至频率s rad c /3.0π=Ω上(de)衰减不小于15dB,求阶数N 和3dB 截至频率.14.采用脉冲响应不变法,采样频率为1000Hz,则将模拟频率π/1000=f Hz 转换为多少15. 采用双线性变换法,采样频率为1000πHz,则将模拟频率1000=f Hz 转换为多少16.设计Chebyshev 滤波器,要求在通带内(de)纹波起伏不大于2dB,求纹波系数.17. 设计一个Chebyshev 滤波器,要求在通带内(de)纹波起伏不大于2dB,截至频率为s rad /40,阻带s rad /52处(de)衰减大于20dB.18. 设计一个Butterworth 滤波器,要求在s rad /20处(de)幅频响应衰减不大于2dB,在 s rad /30处(de)衰减大于10dB.以上为IIR 数字滤波器设计部分(de)习题19.已知线性相位FIR 滤波器(de)单位函数响应)(n h 偶对称,6=N ,1)0(=h ,2)1(=h ,3)2(=h ,求)(n h .20. 已知线性相位FIR 滤波器(de)单位函数响应奇对称,6=N ,1)0(=h ,2)1(=h ,3)2(=h ,求系统函数)(z H .21.试用窗函数设计一个线性相位FIR 滤波器,并满足以下技术指标:在低通边界频率s rad c /40=Ω处衰减不大于3dB,在阻带边界频率s rad s /46=Ω处衰减不小于40dB,对模拟信号(de)采样周期s T 01.0=.22.设计一个低通数字滤波器)(ωj e H ,其理想频率特性为矩形.⎩⎨⎧≤≤=其他001)(cj d e H ωωω并已知πω5.0=c ,采样点数为奇数,33=N,要求滤波器具有线性相位.23.用频率采样法设计一个线性相位低通滤波器.线性相位低通滤波器(de)理想特性为:15=N,通带边界频率为090,通带外侧边沿上设一点过渡带,其模值为4.0.过度点加在第几点24. 用频率采样法设计一个线性相位高通滤波器.线性相位低通滤波器(de)理想特性为:15=N,通带边界频率为090,通带外侧边沿上设一点过渡带,其模值为4.0.过度点加在第几点以上为FIR数字滤波器设计部分(de)习题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数字信号处理复习题带答案1.若一模拟信号为带限信号,且对其抽样满足奈奎斯特条件,则只要将抽样信号通过_____A____即可完全不失真恢复原信号。
A、理想低通滤波器B、理想高通滤波器C、理想带通滤波器D、理想带阻滤波器2.下列哪一个单位抽样响应所表示的系统不是因果系统___D__?A、.h(n)=δ(n)+δ(n-10)B、h(n)=u(n)C、h(n)=u(n)-u(n-1)D、h(n)=u(n)-u(n+1)3.若序列的长度为M,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N需满足的条件是_____A_____。
A.N≥MB.N≤MC.N≤2MD.N≥2M4.以下对双线性变换的描述中不正确的是__D_________。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s平面的左半平面单值映射到z平面的单位圆内D.以上说法都不对5、信号3(n)Acos(n)78xππ=-是否为周期信号,若是周期信号,周期为多少?A、周期N=37πB、无法判断C、非周期信号D、周期N=146、用窗函数设计FIR滤波器时,下列说法正确的是___a____。
A 、加大窗函数的长度不能改变主瓣与旁瓣的相对比例。
B 、加大窗函数的长度可以增加主瓣与旁瓣的比例。
C 、加大窗函数的长度可以减少主瓣与旁瓣的比例 。
D 、以上说法都不对。
7.令||()n x n a =,01,a n <<-∞≤≤∞,()[()]X Z Z x n =,则()X Z 的收敛域为 __________。
A 、1||a z a -<<B 、1||a z a -<<C 、||a z <D 、1||z a -< 。
8.N 点FFT 所需乘法(复数乘法)次数为____D___。
A 、2N log NB 、NC 、2ND 、2log 2NN9、δ(n)的z 变换是AA. 1B.δ(w)C. 2πδ(w)D. 2π 10、下列系统(其中y(n)是输出序列,x(n)是输入序列)中__ C___属于线性系统。
A.y(n)=x 2(n) B.y(n)=4x(n)+6 C.y(n)=x(n-n 0)D.y(n)=e x(n)11、在应用截止频率为Ωc 的归一化模拟滤波器的表格时,当实际Ωc ≠1时,代替表中的复变量s 的应为___B________。
A 、Ωc /sB 、s/ΩcC 、-Ωc /sD 、s/c Ω12、用窗函数法设计FIR 数字滤波器时,在阶数相同的情况下,加矩形窗时所设计出的滤波器,其过渡带比加三角窗时 A ,阻带衰减比加三角窗时。
A. 窄,小B. 宽,小C. 宽,大D. 窄,大13、用双线性变换法进行IIR数字滤波器的设计,从s平面向z平面转换的关系为s=___C。
A.1111zz--+-B.1111zz---+C.1111zcz---+D.1111zcz--+-14、序列x(n)=R8(n),其16点DFT记为X(k),k=0,1,…,15则X(0)为___D___。
A.2B.3C.4D.815、下面描述中最适合DFS的是___D___。
A.时域为离散序列,频域也为离散序列B.时域为离散有限长序列,频域也为离散有限长序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散周期序列,频域也为离散周期序列16、利用矩形窗函数法设计FIR滤波器时,在理想特性的不连续点附近形成的过滤带的宽度近似等于( A )。
A.窗函数幅度函数的主瓣宽度B.窗函数幅度函数的主瓣宽度的一半C.窗函数幅度函数的第一个旁瓣宽度D.窗函数幅度函数的第一个旁瓣宽度的一半17、下列系统哪个属于全通系统_____A_____。
A. 1113()3zH z z ---=- B. 11113()3z H z z ---=-C. AB 都是D. AB 都不是 填空:1、已知一离散系统的输入输出关系为2()(1)y n n x n =-,(其中y(n)为输出,x(n)为输入),试判断该系统的特性D (线性、时不变和因果)A 线性 时变 非因果B 线性,非时变,因果C 非线性,时变,因果D 线性,时变,因果2、已知x(n)={1,2,3,2,1;n=0,1,2,3,4},h(n)={1,0,1,-1,0;n=0,1,2,3,4},则x(n)和h(n)的5点循环卷积为 {0,1,3,3,2;n=0,1,2,3,4}B 。
A{0,1,3,3,3;n= 0, 1 ,2 ,3,4 }B{0,1,3,3,2;n= 0, 1 ,2 ,3,4 }C{0,1,4,3,2;n= 0, 1 ,2 ,3,4 }D{1,1,3,3,2;n= 0, 1 ,2 ,3,4 } 3、已知一IIR 数字滤波器的系统函数为11()10.9H z z-=+,试判断滤波器的类型(低通、高通、带通、带阻)为高通4、已知4阶线性相位FIR 系统函数()H z 的一个零点为1+j,则系统的其他零点为1-j , (1-j)/2 , (1+j)/2 。
5、已知序列()cos(0.15)2sin(0.25)x n n n ππ=+,则信号的周期为40 。
6、无限长单位冲激响应滤波器的基本结构有直接Ⅰ型,直接Ⅱ型,__ 级联____ 和__ 并联____四种。
7、用脉冲响应不变法进行IIR 数字滤波器的设计,它的主要缺点是频谱混叠现像8、因果系统的单位冲激响应h(n)应满足的条件是:当n<0时,h (n )=0______________。
9、如果用采样频率f s = 1000 Hz 对模拟信号x a (t) 进行采样,那么相应的折叠频率应为 ________Hz ㈤,奈奎斯特率(Nyquist )为___1000_Hz10、系统2()()y n x n =是___因果系统___。
11、时域抽样的信号重建的抽样内插公式中的内插函数为12、频域抽样中用N 个频率抽样H(k)来恢复X(z)中的插值函数13、若序列的长度为N ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数M 需满足的条件是N ≧M14、单位抽样响应为()()N h n R n =的系统为__FIR 系统15、系统()()y n nx n =是非稳定系统__16、一个连续时间信号经过理想抽样后,其频谱将以_抽样频率为间隔而重复,即频谱产生周期延拓17、序列()(1)n x n b u n =---的z 变换和收敛域为18、实序列的离散时间傅里叶变换具有___共轭对称_。
简答及计算、证明题:1、求离散信号)2()31()(-=n u n n x n 的Z 变换;2.已知 111()11(1)(1)42X Z z z --=--,Roc :12z >,采用围线积分法求出它的Z 的反变换()x n 。
解:3、序列x(n)=δ(n)+2δ(n-2)+δ(n-3)+3δ(n-4),求x(n)*x(n)和x(n)⑤x(n)。
x(n)*x(n)={1 4 6 10 13 6 9;n=0 1 2 3 4 5 6} x(n)⑤x(n)={7 13 6 10 13;n=0 1 2 3 4}。
4、 线性非时变系统函数为:112()512z H z z z ---=-+,2z >,求出相应的单位抽样响应 答案如下:5、 写出下列系统的差分方程,画出直接型结构,级联型和并联型结构实现。
1231125.2 1.58 1.41 1.6()(10.5z )(10.90.8)z z z H z z z ------++-=-++6、 连续信号:()sin(2*10*/6)f t A t ππ=+用采样频率100s f Hz =采样,写出所得到的信号序列表达式,指出该序列的周期,并说明理论上根据采样定理最小的采样频率为多少赫兹。
7、 一个线性相位的FIR 滤波器阶数为7,前4个单位样值响应的取值分别为0.0192, -0.0788,-0.2341,0.3751,判断线性相位滤波器的类型,并画出其线性相位滤波器结构。
图省略8、求Z 变换的反变换9、设有限长序列x(n)的长度为200,若用时域抽取法基2FFT 计算x(n)的DFT ,问:(1)有几级蝶形运算?(2)每级有几个蝶形?(3)第6级的蝶形的碟距是多少?(4)共有多少次复数乘法?10、序列x(n)的z 变换为23452()13z z z X z z z ----++=-+,若收敛域包含单位圆,求x(n)在ωπ=处的DTFT 。
11、对周期连续时间信号()cos(200)cos(500)a x t A t B t ππ=+以采样频率1s f kHz=对其进行采样,计算采样信号()()()a a t nT x n x t x nT ===%的DFS 系数。
12、具有单位抽样响应()()ny n b u n =的系统,其中b 是一个实数,且1b <,则此系统的频率响应为13、圆周卷积代替线性卷积的条件_(其中N,M 分别的含义)、、14.单位抽样响应为()()N h n R n =的FIR 系统的频率响应是什么?幅频响应和相频响应分别为什么?15、给出一个周期序列,求它的离散傅里叶级数。
比如说()(20)l x n x n l ∞=-∞=-∑%,其中5()()x n R n =16、给出一个因果线性移不变系统的可用差分方程比如11()(1)(2)()(1)66y n y n y n x n x n =-+-+--17、假如快速傅氏变换(FFT )处理器的频率分辨能力为0.2F ≤Hz ,所能允许通过信号的最高频率为500h f ≤Hz ,并要求采样点数为2的整数幂。
而且未采用其他任何数据处理措施,求:(1)最小记录长度p T ;(2)采样点的最大时间间隔T ;(3)、在一个记录中的最少点数N 。
18、(10分)假设线性非时变系统的单位脉冲响应()h n 和输入信号()x n 分别用下式表示:88()(),()()nh n R n x n a R n ==,其中0a <<∞, 计算系统的输出信号()y n19、判断正弦序列f (k ) = sin(βk )是否为周期信号,若是,确定其周期。
20、判断下列序列是否为周期信号,若是,确定(1)f1(k) = sin(3πk/4) + cos(0.5πk)(2)f2(k) = sin(2k)21、22、求单边指数序列)10(0,00,)(1<<⎩⎨⎧<≥=a k k a k f k 的DTFT 。
23、求图所示周期脉冲序列的离散傅里叶级数展开式f24、求下列矩形脉冲序列的离散傅里叶变换⎩⎨⎧-⋯===其他k N k k R k f N ,01,1,0,1)()(25、写出一个极点为j a re θ=,其中01,30r θ<=的二阶全通系统的系统函数,并画出二阶全通系统的零点极点图。