等差数列前N项和 教案

合集下载

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计

等差数列前n项和公式教学设计一、引言等差数列是数学中常见的数列类型之一,它的前n项和公式是数学教学中的重要内容。

本文将针对等差数列前n项和公式的教学设计进行讨论,旨在帮助学生理解和应用该公式。

二、教学目标通过本次教学,学生将能够:1. 掌握等差数列的定义和性质;2. 推导等差数列前n项和公式;3. 熟练应用前n项和公式解决实际问题。

三、教学内容1. 等差数列的定义和性质在开始介绍前n项和公式之前,首先向学生介绍等差数列的定义和性质。

教师可以通过提供具体的数列示例,并引导学生观察数列中的规律,以加深他们对等差数列的理解。

2. 推导等差数列前n项和公式为了引导学生主动参与教学过程,并提高他们对公式的理解程度,教师可以采用探究性学习的方法来推导等差数列前n项和公式。

以下是一种教学策略:(1)教师先给出一个等差数列,例如:2, 5, 8, 11, 14, ...(2)教师引导学生观察数列中的规律,如何由前一项得到后一项。

(3)学生通过观察和思考,可以发现每一项与前一项的差是相同的,即公差(d)。

(4)接下来,教师可以引导学生通过等差数列的通项公式(an =a1 + (n-1)d)来表示数列中的各项。

(5)通过代入相应的值,教师指导学生推导出等差数列前n项和的公式(Sn = (n/2)(a1 + an))。

3. 应用前n项和公式解决实际问题为了提高学生的应用能力,教师可以设计一些实际问题,要求学生运用前n项和公式解决。

例如:(1)小明连续10天每天跑步,第一天跑了2公里,每天比前一天多跑3公里,问小明共跑了多少公里?(2)某商店连续7天的销售额分别是100元、110元、120元、...,每天比前一天增加10元,求7天的总销售额。

四、教学步骤1. 引导学生回顾等差数列的定义和性质;2. 通过探究性学习的方法,引导学生推导等差数列前n项和的公式;3. 提供实际问题,要求学生运用前n项和公式进行计算;4. 指导学生总结等差数列前n项和的公式;5. 练习巩固:提供更多练习题,让学生进行接触和熟练应用。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和教案一、教学目标1.理解等差数列的概念及其性质;2.掌握等差数列前n项和的计算方法;3.能够应用等差数列前n项和的公式解决实际问题。

二、教学重点1.等差数列前n项和的计算方法;2.等差数列前n项和的应用。

三、教学难点1.等差数列前n项和的推导过程;2.等差数列前n项和的应用。

四、教学内容1. 等差数列的概念及其性质等差数列是指一个数列中每一项与它的前一项之差相等的数列。

例如,1,3,5,7,9就是一个等差数列,公差为2。

等差数列的性质有:1.公差相等;2.任意两项的和等于它们的中间项的两倍减去首项和末项;3.任意三项的和等于它们的平均数乘以3。

2. 等差数列前n项和的计算方法设等差数列的首项为a1,公差为d,前n项和为S n,则有:S n=n2(a1+a n)其中,a n为等差数列的第n项。

公式的推导过程如下:设等差数列的第n项为a n,则有:a n=a1+(n−1)d将等差数列的第1项和第n项代入上式,得:$$ a_n = a_1 + (n-1)d \\ a_1 = a_n - (n-1)d $$将上式代入等差数列前n项和的公式中,得:$$ S_n = a_1 + (a_1 + d) + (a_1 + 2d) + \cdots + (a_1 + (n-1)d) \\ = na_1 +d(1+2+\cdots+(n-1)) \\ = na_1 + \frac{1}{2}nd(n-1)d \\ = \frac{n}{2}(2a_1 + (n-1)d) \\ = \frac{n}{2}(a_1 + a_n) $$3. 等差数列前n项和的应用等差数列前n项和的公式可以应用于各种实际问题中,例如:1.求和问题:已知等差数列的首项和公差,求前n项的和;2.平均数问题:已知等差数列的首项和公差,求前n项的平均数;3.等差数列中缺失项问题:已知等差数列的首项、公差和部分项,求缺失项。

五、教学方法1.讲授法:通过讲解等差数列前n项和的公式及其推导过程,让学生掌握计算方法;2.例题演练法:通过讲解实例,让学生掌握应用等差数列前n项和的公式解决实际问题的方法。

高中数学第四届全国青年教师优秀课观摩大赛等差数列前n项和教案.docx

高中数学第四届全国青年教师优秀课观摩大赛等差数列前n项和教案.docx

《等差数列前 n 项和》教案一、教材分析● 教学内容《等差数列前n 和》行高中教材第三章第三“等差数列前n 和”的第一,主要内容是等差数列前n 和的推程和用。

● 地位与作用本“等差数列前 n 和”的推,是在学生学了等差数列通公式的基上一步研究等差数列,其学平台是学生已掌握等差数列的性以及高斯求和法等相关知。

本的研究,以后学数列求和提供了一种重要的思想方法——倒序相加求和法,具有承上启下的重要作用。

二、学情分析● 知基:高一年学生已掌握了函数,数列等有关基知,并且在初中已了解特殊的数列求和。

● 知水平与能力:高一学生已初步具有抽象思能力,能在教的引下独立地解决。

● 任教班学生特点:我班学生基知扎、思活,能很好的掌握教材上的内容,能好地用数形合的方法解决,但理抽象的能力有待一步提高。

三、目分析1、教学目依据教学大的教学要求,渗透新理念,并合以上学情分析,我制定了如下教学目:● 知技能(1)掌握等差数列前 n 和公式 ;(2)掌握等差数列前 n 和公式的推程 ;(3)会运用等差数列的前n 和公式。

● 数学思考(1)通等差数列前 n 和公式的推程 , 渗透倒序相加求和的数学方法;(2)通公式的运用体会方程的思想;(3)通运用公式的程,提高学生比化、数形合的能力。

●解决由探索1+2+3+⋯⋯ +100的和,推广到探索一般的等差数列前n和s n a1a2a3......a n的求和公式的情景, 使学生一步体会从特殊到一般的数学研究方法 ,并使学生在反的程中,一步提高解决的能力。

● 情感度合具体模型 , 将教材知和生活系起来 , 使学生感受数学的用性 , 有效激学趣 , 并通等差数列求和史的了解 , 渗透数学史和数学文化。

2、教学重点、点● 重点等差数列前n 和公式的推和用。

● 点等差数列前n 和公式的推程中渗透倒序相加的思想方法。

● 重、点解决的方法策略本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算公式。

3. 能够运用等差数列的前n项和公式解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

三、教学难点1. 等差数列的前n项和的公式的推导过程。

2. 运用等差数列的前n项和公式解决实际问题。

四、教学方法1. 采用问题驱动法,引导学生主动探究等差数列的前n项和的计算方法。

2. 通过实例分析,让学生掌握等差数列的前n项和的应用。

3. 利用数形结合法,帮助学生直观地理解等差数列的前n项和的性质。

五、教学内容1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算公式。

3. 等差数列的前n项和的性质。

4. 运用等差数列的前n项和公式解决实际问题。

第一章:等差数列的概念及其性质1.1 等差数列的定义1.2 等差数列的性质1.3 等差数列的通项公式第二章:等差数列的前n项和的计算公式2.1 等差数列前n项和的定义2.2 等差数列前n项和的计算公式2.3 等差数列前n项和的性质第三章:等差数列的前n项和的性质3.1 等差数列前n项和的单调性3.2 等差数列前n项和的奇偶性3.3 等差数列前n项和的最值问题第四章:运用等差数列的前n项和公式解决实际问题4.1 等差数列前n项和在实际问题中的应用4.2 等差数列前n项和的优化问题4.3 等差数列前n项和与数学竞赛第五章:等差数列的前n项和公式的推导过程5.1 等差数列前n项和公式的推导方法5.2 等差数列前n项和公式的证明5.3 等差数列前n项和公式的拓展与应用六、等差数列的前n项和的图形直观6.1 等差数列前n项和的图形表示6.2 等差数列前n项和的图形性质6.3 等差数列前n项和的图形应用7.1 等差数列前n项和的数值方法7.2 等差数列前n项和的数值例子7.3 等差数列前n项和的数值分析八、等差数列的前n项和的实际应用8.1 等差数列前n项和在经济学中的应用8.2 等差数列前n项在工程学中的应用8.3 等差数列前n项在和生物学中的应用九、等差数列的前n项和的问题拓展9.1 等差数列前n项和的相关问题拓展9.2 等差数列前n项和的问题研究进展9.3 等差数列前n项和的问题解决策略十、等差数列的前n项和的教学设计10.1 等差数列前n项和的教学目标设计10.2 等差数列前n项和的教学方法设计10.3 等差数列前n项和的教学评价设计重点和难点解析一、等差数列的概念及其性质补充和说明:等差数列是一种常见的数列,其特点是相邻两项的差值是常数。

等差数列及其前n项和教案

等差数列及其前n项和教案

等差数列及其前n项和教案一、教学目标:1. 理解等差数列的定义及其性质。

2. 掌握等差数列的前n项和的计算方法。

3. 能够运用等差数列的概念和前n项和公式解决实际问题。

二、教学内容:1. 等差数列的定义与性质等差数列:一般地,如果一个数列从第二项起,每一项与它前一项的差都是一个常数,这个常数叫做等差数列的公差,这个数列叫做等差数列。

等差数列的性质:(1)等差数列的通项公式:an = a1 + (n-1)d(2)等差数列的前n项和公式:Sn = n/2 (a1 + an) 或Sn = n/2 (2a1 + (n-1)d)2. 等差数列的前n项和的计算方法(1)利用通项公式法计算等差数列的前n项和:Sn = n/2 (a1 + an) = n/2 (a1 + a1 + (n-1)d) = n/2 [2a1 + (n-1)d] (2)利用首项和末项法计算等差数列的前n项和:Sn = n/2 (a1 + an) = n/2 (a1 + a1 + (n-1)d) = n/2 [2a1 + (n-1)d] 3. 实际问题中的应用例题:已知等差数列的前5项和为35,公差为3,求首项和末项。

解:设首项为a1,末项为an,则有:S5 = n/2 (a1 + an) = 5/2 (a1 + an) = 35a1 + an = 14an = a1 + (n-1)d = a1 + 43 = a1 + 12将an代入上式得:a1 + (a1 + 12) = 142a1 + 12 = 142a1 = 2a1 = 1an = a1 + 12 = 1 + 12 = 13三、教学重点与难点:重点:等差数列的定义与性质,等差数列的前n项和的计算方法。

难点:等差数列前n项和的计算方法的灵活运用。

四、教学方法:采用讲解法、例题解析法、练习法相结合的教学方法,通过PPT辅助教学,使学生更好地理解和掌握等差数列及其前n项和的知识。

五、教学准备:1. PPT课件2. 黑板、粉笔3. 教学案例及练习题六、教学过程:1. 导入:通过复习等差数列的定义与性质,引导学生进入本节课的学习。

等差数列及其前n项和教案

等差数列及其前n项和教案

等差数列及其前n项和教案一、教学目标1. 让学生理解等差数列的概念,掌握等差数列的通项公式。

2. 让学生掌握等差数列的前n项和公式,并能灵活运用。

3. 培养学生的逻辑思维能力和解决问题的能力。

二、教学内容1. 等差数列的概念:定义、性质。

2. 等差数列的通项公式:ar + (a1 a)d。

3. 等差数列的前n项和公式:S_n = n/2 (a1 + a_n) 或S_n = n/2 (2a1 + (n 1)d)。

三、教学重点与难点1. 教学重点:等差数列的概念、通项公式、前n项和公式。

2. 教学难点:等差数列前n项和公式的推导及灵活运用。

四、教学方法1. 采用问题驱动法,引导学生主动探索等差数列的性质。

2. 使用数形结合法,帮助学生直观理解等差数列的前n项和公式。

3. 利用实例分析,让学生学会解决实际问题。

五、教学过程1. 引入:通过生活中的实例,如连续的自然数、等间隔的时间等,引导学生思考等差数列的特点。

2. 讲解:讲解等差数列的定义、性质,引导学生推导等差数列的通项公式。

3. 探讨:分组讨论等差数列的前n项和公式,引导学生运用归纳法进行推导。

4. 应用:通过例题,让学生学会运用等差数列的前n项和公式解决实际问题。

教案编辑专员:[[您的名字]]六、教学练习1. 让学生通过练习题加深对等差数列概念、通项公式和前n项和公式的理解。

2. 培养学生运用所学知识解决实际问题的能力。

练习题:(1)判断题:等差数列的任意两项之和等于这两项中间项的两倍。

(对/错)(2)填空题:已知等差数列的首项为3,公差为2,求第10项的值。

(3)计算题:已知等差数列的首项为2,公差为3,求前5项的和。

七、拓展与应用1. 让学生了解等差数列在实际生活中的应用,如等差数列在统计、物理、经济学等领域中的应用。

2. 培养学生将所学知识运用到实际问题中的能力。

案例分析:分析现实生活中等差数列的应用实例,如连续奖金发放、等额本息还款等,引导学生运用等差数列的知识解决实际问题。

等差数列前n项和公式(优质课)教案

等差数列前n项和公式(优质课)教案

等差数列的前n 项和 (优质课)教案教学目标:教学重点: 掌握等差数列前n 项和通项公式及性质,数列最值的求解,与函数的关系 教学难点: 数列最值的求解及与函数的关系教学过程:1. 数列的前n 项和一般地,我们称312...n a a a a ++++为数列{}n a 的前n 项和,用n S 表示;记法:123...n n S a a a a =++++ 显然,当2n ≥时,有1n n n a S S −=− 所以n a 与n S 的关系为n a = ①1S ()1n =②()12n n S S n −−≥2. 等差数列的前n 项和公式()()11122n n n a a n n S na d +−==+ 3. 等差数列前n 项和公式性质(1) 等差数列中,依次()2,k k k N +≥∈项之和仍然是等差数列,即23243,,,,...k k k k k k k S S S S S S S −−− 成等差数列,且公差为2k d(2) n S n ⎧⎫⎨⎬⎩⎭是等差数列 (3) 等差数列{}n a 中,若(),n m a m a n m n ==≠,则0m n a +=;若(),,n m S m S n m n ==≠则()m n S m n +=−+(4) 若{}n a 和{}n b 均为等差数列,前n 项和分别是n S 和n T ,则有2121n n n n a S b T −−=(5) 项数为2n 的等差数列{}n a ,有()1,n n n S n a a +=+有S 偶 -S 奇 =nd ,S S 奇 /偶 =1nn a a + 4. 等差数列前n 项和公式与函数的关系等差数列前n 项和公式()112n n n S na d −=+可以写成2122n d d S n a n ⎛⎫=+− ⎪⎝⎭ 若令1,,22d dA aB =−=类型一: 数列及等差数列的求和公式例1.已知数列{}n a 的前n 项和22,n S n n =+ 求{}n a解析:当1n =时,113a S ==;当2n ≥时,121n n n a S S n −=−=+当1n =时,上式成立所以21n a n =+答案:21n a n =+练习1. 已知数列{}n a 的前n 项和22,n S n n =+求2a 答案:25a =练习2:已知数列{}n a 的前n 项和22,n S n n =+求10a 答案:1021a =例2.已知等差数列{}n a 的前n 项和为n S ,131,,15,22m a d S ==−=−求m 及m a 解析:()131..15222m m m S m −⎛⎫=+−=− ⎪⎝⎭,整理得27600,m m −−= 解得12m =或5m =−(舍去)()12311211522m a a ⎛⎫∴==+−⨯−=− ⎪⎝⎭答案:1212,4m a ==−练习3. 已知等差数列{}n a 的前n 项和为n S ,11,512,1022n n a a S ==−=−,求d答案:171d =−练习4. 已知等差数列{}n a 的前n 项和为n S ,524,S =求24a a + 答案:24485a a +=例3.在等差数列{}n a 中,前n 项和为n S (1) 若81248,168,S S ==求1a 和公差d(2) 若499,6,a a ==−求满足54n S =的所有n 的值解析:(1)由等差数列前n 项和公式有11182848,1266168,8,4a d a d a d +=+=∴=−=(2)由4919,6,18,3a a a d ==−∴==−所以()()11813542n S n n n =+−−=即213360n n −+= 解得4n =或9n = 答案:(1)18,4a d =−= (2)4n =或9n =练习5.设n S 是等差数列{}n a 的前项和,1532,3,a a a ==则9S =___________ 答案:54−练习6.在等差数列{}n a 中,241,5,a a ==则{}n a 的前5项和 5S = ______________ 答案:15类型二: 等差数列前n 项和公式的性质 例4.在等差数列{}n a 中, (1) 若41720a a +=,求20S(2) 若共有n 项,且前四项之和为21,后四项之和为67,前n 项和286n S = ,求n (3) 若10100100,10S S ==求110S解析:(1)由等差数列的性质,知()1204172012020202002a a a a S a a +=+=∴=+= (2)由题意得,知123412321,67,n n n n a a a a a a a a −−−+++=+++= 由等差数列的性质知()121324311488,22n n n n n n a a a a a a a a a a a a −−−+=+=+=+∴+=∴+=又()12n n nS a a =+ ,即 222862n ⨯=26n ∴= (4) 因为数列{}n a 是等差数列,所以10,2010302010090110100,,...,,S S S S S S S S S −−−−成等差数列,首项为10100S =,设其公差为d ,则100S 为该数列的前10项和,()()10010201010090109 (10100102)S S S S S S d ⨯∴=+−++−=⨯+=解得22d =−,又110S 为该数列的前11项和,故()110111011100221102S ⨯=⨯+⨯−=− 答案:(1)20200S = (2)26n = (3)110110S =−练习7.(2014山东淄博一中期中)设n S 是等差数列{}n a 的前n 项和,若4813S S =,则816S S 等于()A.19 B.13 C.310 D.18答案:C练习8.(2014山东青岛期中)已知等差数列{}n a 的公差0d >,()122013...2013t a a a a t N ++++=∈ 则t = ()A.2014B.2013C.1007D.1006 答案:C例5.已知等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且21n n S nT n =+则33a b =() A.32 B.43 C.53 D. 127解析:当n 为奇数时,等差数列{}n a 的前n 项和()1122n n n n a a S na ++== 同理12n n T nb +=令5n =得33533552555513a a Sb b T ⨯====+ 答案:C练习9.已知是{}n a 等差数列,n S 为其前n 项和,n N +∈若32016,20a S ==则10S 的值为______ 答案:110练习10.已知等差数列{}n a 的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为35,则这个数列的项数为______________ 答案:20类型三:等差数列前n 项和公式的最值及与函数的关系 例6.已知数列{}n a 的前项和为2230n S n n =− (1) 这个数列是等差数列吗?求出它的通项公式 (2) 求使得n S 最小的n 值解析:(1)因为()14322n n n a S S n n −=−=−≥当1n =时1123028a S ==−=−也适合上式,所以这个数列的通项公式为432n a n =−又因为()()()1432413242n n a a n n n −−=−−−−=≥⎡⎤⎣⎦ 所以{}n a 是等差数列(2)2215225230222n S n n n ⎛⎫=−=−− ⎪⎝⎭因为n 是正整数,所以当7n =或8时n S 最小,最小值为-112答案:(1)是;432n a n =−(2)当7n =或8时n S 最小,最小值为-112练习11.已知等差数列{}n a 的前n 项和为715,7,75n S S S ==,n T 为数列n S n ⎧⎫⎨⎬⎩⎭的前n 项和,求数列{}n T 的通项公式答案:2944n n T n =− 练习12.等差数列{}n a 中,若61024,120S S ==,求15S =_____________ 答案:15330S =例7.已知等差数列{}n a 中,19120,,a S S <=求使该数列前n 项和n S 取得最小值的n 的值 解析:设等差数列{}n a 的公差为d ,则由题意得111199812121122a d a d +⨯⨯⨯=+⨯⨯⨯ 即21112121330,10,00228n d a d a d a d S n d ⎛⎫=−∴=−<∴>∴=−− ⎪⎝⎭ 0n d S >∴有最小值;又,10n N n +∈∴=或11n =时,n S 取最小值答案:10n =或11n =时,n S 取最小值练习13.已知等差数列{}n a 中,128,4a d =−=则使前n 项和n S 取得最小值的n 值为() A.7 B.8 C.7或8 D.6或7 答案:C练习14.数列{}n a 满足211n a n =−+,则使得其前n 项和取得最大值的n 等于() A.4 B.5 C.6 D.7 答案:B1. 四个数成等差数列,S 4=32,a 2a 3=13,则公差d 等于( )A .8B .16C .4D .0 答案:A2. 设{a n }是等差数列,S n 为其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6与S 7均为S n 的最大值. 答案:C3. 已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,S n 是等差数列{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .18 答案:B4. 已知等差数列{a n }的前n 项和为S n ,a 5=5,S 5=15,则数列{1a n a n +1}的前100项和为( )A.100101B.99101C.99100D.101100 答案:A5. 在等差数列{a n }中,若S 12=8S 4,且d ≠0,则a 1d等于( )A.910B.109 C .2 D.23 答案:A6. 设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5 答案:D7. (2014·福建理,3)等差数列{a n }的前n 项和为S n ,若a 1=2,S 3=12,则a 6等于( ) A .8 B .10 C .12 D .14 答案:C_________________________________________________________________________________ _________________________________________________________________________________基础巩固 1. 等差数列{a n }的前n 项和为S n ,已知a m -1+a m +1-a 2m =0,S 2m -1=38,则m =( ) A .38 B .20 C .10 D .9 答案:C2.数列{a n }是等差数列,a 1+a 2+a 3=-24,a 18+a 19+a 20=78,则此数列的前20项和等于( ) A .160 B .180 C .200 D .220 答案:B3.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数中也为定值的是( )A .S 7B .S 8C .S 13D .S 15 答案:C4. 已知等差数列共有10项,其中奇数项之和为15,偶数项之和为30,则其公差是( ) A .5 B .4 C .3 D .2 答案:C5. 在等差数列{a n }中,a 1>0,d =12,a n =3,S n =152,则a 1=________,n =________.答案:2 ,36. 设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=________.答案:257. 设{a n }是公差为-2的等差数列,若a 1+a 4+a 7+…+a 97=50,则a 3+a 6+a 9+…+a 99的值为________. 答案:-828.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大. 答案:89. 已知等差数列{a n }的前n 项和S n 满足S 3=0,S 5=-5.(1)求{a n }的通项公式;(2)求数列{1a 2n -1a 2n +1}的前n 项和.答案:(1)设{a n }的公差为d ,则S n =na 1+n (n -1)2d .由已知可得⎩⎪⎨⎪⎧3a 1+3d =05a 1+10d =-5,解得a 1=1,d =-1.由{a n }的通项公式为a n =2-n . (2)由(1)知1a 2n -1a 2n +1=1(3-2n )(1-2n )=12(12n -3-12n -1), 从而数列{1a 2n -1a 2n +1}的前n 项和为12(1-1-11+11-13+…+12n -3-12n -1)=n 1-2n. 10. 设{a n }是等差数列,前n 项和记为S n ,已知a 10=30,a 20=50.(1)求通项a n ;(2)若S n =242,求n 的值. 答案:(1)设公差为d ,则a 20-a 10=10d =20, ∴d =2.∴a 10=a 1+9d =a 1+18=30, ∴a 1=12.∴a n =a 1+(n -1)d =12+2(n -1)=2n +10. (2)S n =n (a 1+a n )2=n (2n +22)2=n 2+11n =242, ∴n 2+11n -242=0, ∴n =11.能力提升11. 在等差数列{a n }和{b n }中,a 1=25,b 1=15,a 100+b 100=139,则数列{a n +b n }的前100项的和为( )A .0B .4 475C .8 950D .10 000 答案:C12. 等差数列{a n }中,a 1=-5,它的前11项的平均值是5,若从中抽取1项,余下的10项的平均值为4,则抽取的项是( )A .a 8B .a 9C .a 10D .a 11 答案:D13. 一个凸多边形的内角成等差数列,其中最小的内角为120°,公差为5°,那么这个多边形的边数n 等于( )A .12B .16C .9D .16或9答案:C14. 已知一个等差数列的前四项之和为21,末四项之和为67,前n 项和为286,则项数n 为( ) A .24 B .26 C .27 D .28 答案:B15. 设S n 为等差数列{a n }的前n 项和,S 3=4a 3,a 7=-2,则a 9=( )A .-6B .-4C .-2D .2 答案:A16. 设S n 是等差数列{a n }的前n 项和,若S 3S 6=13,则S 6S 12等于( )A.310B.13C.18D.19 答案:A17. 已知等差数列{a n }的前n 项和为S n ,若OB →=a 1OA →+a 200OC →,且A 、B 、C 三点共线(该直线不过点O ),则S 200=( )A .100B .101C .200D .201 答案:A18. 已知等差数列{a n }的前n 项和为18,若S 3=1,a n +a n -1+a n -2=3,则n =________. 答案:2719. 已知数列{a n }的前n 项和S n =n 2-8,则通项公式a n =________.答案:⎩⎪⎨⎪⎧-7 (n =1)2n -1 (n ≥2)20. 设{a n }是递减的等差数列,前三项的和是15,前三项的积是105,当该数列的前n 项和最大时,n 等于( )A .4B .5C .6D .7 答案: A21. 等差数列{a n }中,d <0,若|a 3|=|a 9|,则数列{a n }的前n 项和取最大值时,n 的值为______________. 答案:5或622. 设等差数列的前n 项和为S n .已知a 3=12,S 12>0,S 13<0.(1)求公差d 的取值范围;(2)指出S 1,S 2,…,S 12中哪一个值最大,并说明理由.答案:(1)依题意⎩⎨⎧S 12=12a 1+12×112d >0S13=13a 1+13×122d <0,即⎩⎪⎨⎪⎧2a 1+11d >0, ①a 1+6d <0. ②由a 3=12,得a 1+2d =12. ③将③分别代入②①,得⎩⎪⎨⎪⎧24+7d >03+d <0,解得-247<d <-3.(2)由d <0可知{a n }是递减数列,因此若在1≤n ≤12中,使a n >0且a n +1<0,则S n 最大. 由于S 12=6(a 6+a 7)>0,S 13=13a 7<0,可得 a 6>0,a 7<0,故在S 1,S 2,…,S 12中S 6的值最大. 23. 已知等差数列{a n }中,a 1=1,a 3=-3.(1)求数列{a n }的通项公式;(2)若数列{a n }的前k 项和S k =-35,求k 的值. 答案:(1)设等差数列{a n }的公差为d ,则a n =a 1+(n -1)d .由a 1=1,a 3=-3可得1+2d =-3.解得d =-2. 从而,a n =1+(n -1)×(-2)=3-2n . (2)由(1)可知a n =3-2n . 所以S n =n [1+(3-2n )]2=2n -n 2.进而由S k =-35,可得2k -k 2=-35. 又k ∈N *,故k =7为所求. 24. 在等差数列{a n }中:(1)已知a 5+a 10=58,a 4+a 9=50,求S 10; (2)已知S 7=42,S n =510,a n -3=45,求n . 答案:(1)解法一:由已知条件得⎩⎪⎨⎪⎧a 5+a 10=2a 1+13d =58a 4+a 9=2a 1+11d =50, 解得⎩⎪⎨⎪⎧a 1=3d =4.∴S 10=10a 1+10×(10-1)2×d =10×3+10×92×4=210. 解法二:由已知条件得⎩⎪⎨⎪⎧a 5+a 10=(a 1+a 10)+4d =58a 4+a 9=(a 1+a 10)+2d =50, ∴a 1+a 10=42,∴S 10=10(a 1+a 10)2=5×42=210. 解法三:由(a 5+a 10)-(a 4+a 9)=2d =58-50,得d =4由a 4+a 9=50,得2a 1+11d =50,∴a 1=3.故S 10=10×3+10×9×42=210. (2)S 7=7(a 1+a 7)2=7a 4=42,∴a 4=6. ∴S n =n (a 1+a n )2=n (a 4+a n -3)2=n (6+45)2=510. ∴n =20.25.已知等差数列{a n }的前n 项和S n =-32n 2+2052n ,求数列{|a n |}的前n 项和T n . 答案:a 1=S 1=101,当n ≥2时,a n =S n -S n -1=(-32n 2+2052n )-[-32(n -1)2+2052(n -1)] =-3n +104.又n =1也适合上式.∴数列通项公式a n =-3n +104.由a n =-3n +104≥0,得n ≤1043, 即当n ≤34时,a n >0;当n ≥35时,a n <0.①当n ≤34时,T n =a 1+a 2+…+a n =S n =-32n 2+2052n . ②当n ≥35时,T n =|a 1|+|a 2|+…+|a 34|+|a 35|+…+|a n | =a 1+a 2+…+a 34-(a 35+a 36+…+a n ) =2(a 1+a 2+…+a 34)-(a 1+a 2+…+a n ) =2S 34-S n=32n 2-2052n +3 502.故T n =⎩⎨⎧ -32n 2+2052n (n ≤34)32n 2-2052n +3 502 (n ≥35).。

等差数列前n项和教案

等差数列前n项和教案

等差数列前n项和优秀教案一、教学目标知识与技能:1. 理解等差数列的定义及其性质;2. 掌握等差数列前n项和的公式;3. 会运用等差数列前n项和公式解决实际问题。

过程与方法:1. 通过探究等差数列的性质,引导学生发现等差数列前n项和的规律;2. 利用公式法、图象法、列举法等多种方法求解等差数列前n项和;3. 培养学生的数学思维能力和解决问题的能力。

情感态度与价值观:1. 培养学生对数学的兴趣和自信心;2. 培养学生勇于探索、积极思考的精神;3. 培养学生运用数学知识解决实际问题的能力。

二、教学重点与难点重点:1. 等差数列前n项和的公式;2. 运用等差数列前n项和公式解决实际问题。

难点:1. 等差数列前n项和的公式的推导;2. 灵活运用等差数列前n项和公式解决复杂问题。

三、教学准备教师准备:1. 等差数列的相关知识;2. 等差数列前n项和的公式;3. 教学案例和练习题。

学生准备:1. 掌握等差数列的基本知识;2. 具备一定的数学思维能力;3. 准备笔记本,做好笔记。

四、教学过程1. 导入:通过复习等差数列的基本知识,引导学生回忆等差数列的性质,为新课的学习做好铺垫。

2. 探究等差数列前n项和的公式:引导学生发现等差数列前n项和的规律,引导学生利用已知的等差数列性质推导出前n项和的公式。

3. 讲解等差数列前n项和的公式:讲解公式的含义、推导过程及其应用,让学生理解并掌握公式的运用。

4. 运用公式法、图象法、列举法等多种方法求解等差数列前n项和:通过具体案例,让学生学会运用不同的方法求解等差数列前n项和,培养学生的数学思维能力和解决问题的能力。

5. 练习与巩固:布置一些练习题,让学生运用所学知识解决问题,巩固所学内容。

五、课后反思教师在课后要对教案进行反思,分析教学过程中的优点与不足,针对性地调整教学方法,以提高教学效果。

关注学生的学习情况,了解学生在学习等差数列前n项和过程中遇到的问题,及时给予解答和指导。

(完整word版)《等差数列前n项和》教案

(完整word版)《等差数列前n项和》教案

《等差数列前n项和》教案(高一年级第一册·第三章第三节)一、教材分析●教学内容《等差数列前n项和》人教版高中教材第三章第三节“等差数列前n项和"的第一课时,主要内容是等差数列前n项和的推导过程和简单应用●地位与作用高中数列研究的主要对象是等差、等比两个基本数列。

本节课的教学内容是等差数列前n 项和公式的推导及其简单应用。

在推导等差数列前n项和公式的过程中,采用了:1。

从特殊到一般的研究方法;2。

逆序相加求和。

不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。

等差数列前n项和是学习极限、微积分的基础,与数学课程的其它内容(函数、三角、不等式等)有着密切的联系.二、学情分析●知识基础:高一年级学生已掌握了函数,数列等有关基础知识,并且在初中已了解特殊的数列求和.●认知水平与能力:高一学生已初步具有抽象逻辑思维能力,能在教师的引导下独立地解决问题。

●任教班级学生特点:我所任教的班级是普通班级,学生基础知识不是很扎实,处理抽象问题的能力还有待进一步提高.三、目标分析1、教学目标依据教学大纲的教学要求,渗透新课标理念,并结合以上学情分析,我制定了如下教学目标.●知识与技能目标掌握等差数列前n项和公式,能较熟练应用等差数列前n项和公式求和.●过程与方法目标经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思。

●情感、态度与价值观目标获得发现的成就感,逐步养成科学严谨的学习态度,提高代数推理的能力。

2、教学重点、难点根据教学内容和本校学生特点,我确定本节课的教学重点为:●重点等差数列前n项和公式的推导和应用。

●难点等差数列前n项和公式的推导过程中渗透倒序相加的思想方法。

●重、难点解决的方法策略本课在设计上采用了由特殊到一般、从具体到抽象的教学策略.利用数形结合、类比归纳的思想,层层深入,通过学生自主探究,分析、整理出推导公式的不同思路,同时,借助多媒体的直观演示,帮助学生理解,并通过范例后的变式训练和教师的点拨引导,师生互动、讲练结合,从而突出重点、突破教学难点.四、过程设计结合教材知识内容和教学目标,本课的教学环节及时间分配如下:五、教学过程教学环节活动说明创设情境:首先让学生欣赏一幅美丽的图片-—泰姬陵。

等差数列前n项求和公式教案

等差数列前n项求和公式教案

2.2.2等差数列的前n 项和(一)教学设计:学习目标 :1、掌握等差数列前n 项和公式及其推导过程和思想方法。

2、能够利用等差数列的前n 项和公式进行有关计算。

3、理解n a 与n s 的关系,会利用这种关系解决有关的问题。

学习重点:等差数列前 项和公式的推导及简单应用; 学习难点:等差数列前 项和公式的推导思路的获得。

评价设计:(1)通过观察阅读教材和讲义上的引例独立思考等差数列求和公式证明的思路,准确记忆等差数列的前n 项和求和公式。

(2) 运用教师提供的选择性评价,请同伴评价自己的学习效果,并进行自我评价,从而调整自己的学习进程。

1、对于目标1,通过课堂提问,要求学生叙述的关键词准确。

达标率100%2、对于目标2,通过课堂提问,要求学生表达的数学式子完整准确。

达标率100%3、对于目标3,通过学生练习(注意学生的递推过程及演算步骤,能否由特殊过渡到一般)。

达标率80% 学习过程 一、知识准备若n a n =,则数列n a 是否为等差数列呢?若是,首项是什么?公差是多少? 它们与n a 的关系式又是什么?n a n =与那个函数相似呢?20111a a +的值?20101a a +的值?二、新课导学创设情景:自主探究(一):特殊的等差数列前n 项和公式1、思考问题1:你能快速地计算出下面式子的值吗?1009998321s n +++++=问题2:如图堆放着一堆钢管,最上层放了4根,下面每一层比上一层多放一根,共7层, 这堆钢管共有多少根?新知:数列{}n a 的前n 项和:一般地,称 为数列{}n a 的前n 项的和,用n s 表示,即=n s公式记忆同学们,等差数列{}n a 的前n 项和公式和我们学过去的哪个图形的面积公式相似呢? 你能用语言来描述等差数列的前n 项和公式吗?公式应用根据下列各题中的条件,求相应的等差数列{}n a 的 n s : (1)8,16,21===n a a n(2)10,3,61=-==n d a合作探究(二):一般的等差数列前n 项和公式如何求首项为1a ,公差为d 的等差数列{}n a 的前n 项的和?小结: 1. 用1()2n n n a a S +=,必须具备三个条件: .2. 用1(1)2n n n dS na -=+,必须已知三个条件: . 完成目标1及目标2 ※ 典型例题例1: 等差数列{}n a 的公差为2,第20项29=n a ,求前20项的和20s练:1:等差数列{}n a 的首项为1a ,公差为d ,项数为n ,第n 项为n a ,前n 项和为n s ,请填写下表:这个表格中共有几个量?已知几个量才能进行运算?例2:已知数列{}n a 的前n 项和公式为n 30n 2s 2n-=,这个数列是等差数列吗?求出它的通项公式;(小组合作讨论2分钟)探究:等差数列{}n a 中n a 与n s 的关系:练习2:已知数列{}n a 的前n 项和公式为13022+-=n n s n 这个数列是等差数吗?求出他的通项公式。

等差数列前n项和公式教案

等差数列前n项和公式教案

《等差数列前n 项和公式》教学案例一、教材分析“等差数列前n 项和公式”这节课是人教版高中数学(必修)第一册(上)中的第三章第三节第一课时的内容,是上一节“等差数列”的后继内容。

主要内容:等差数列前n 项和公式的推导及运用。

(一)地位及作用数列是高中代数的主要内容,它与数学课程的其它内容(函数、三角、不等式等)有着密切的联系,又是今后学习高等数学的基础,所以在高考中占有重要地位。

数列是培养学生数学能力的良好题材。

学习数列,要经常观察、分析、归纳、猜想,还要综合运用前面的知识解决数列中的一些问题,这些都有助于学生数学能力的提高。

(二)教学目标根据“等差数列前n 项和公式”这一节的教学大纲及它在高中数学中的地位和作用,项和公式”这一节的教学大纲及它在高中数学中的地位和作用,确定了确定了如下教学目标:1、知识与技能:① 掌握等差数列前n 项和公式的推导方法和公式的简单运用。

② 通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

2、过程与方法:经历公式的推导过程,体会数形结合的数学思想,体验从特殊到一般的研究方法,学会观察、归纳、反思,进一步培养学生灵活运用公式的能力。

3、情感、态度价值观:① 公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

② 通过生动具体的现实问题,令人着迷的历史素材和数学史,激发学生探究的兴趣和欲望,树立学生求真的勇气和自信心,增强学生学好数学的心理体验,产生热爱数学的情感。

(三)教学重点与难点:重点:等差数列前n 项和的公式;依据:公式是解题的工具。

公式是解题的工具。

难点:获得推导等差数列前n 项和公式的思路及公式的灵活运用。

项和公式的思路及公式的灵活运用。

依据:公式探究过程中蕴含着重要的数学思想方法,由于学生认识水平的限制,第一次接触到这些公式,往往意识不到其作用,即使教师给予揭示,学生也多半拿着公式而无用武之地,因此我把它作为这一节的难点。

《等差数列的前n项和》教学设计

《等差数列的前n项和》教学设计

《等差数列的前n项和》教学设计【篇一】教学准备教学目标掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学重难点掌握等差数列与等比数列的性质,并能灵活应用等差(比)数列的性质解决有关等差(比)数列的综合性问题.教学过程【示范举例】基准1:数列就是首项为23,公差为整数,且前6项为正,从第7项开始为负的等差数列(1)谋此数列的公差d;(2)设前n项和为sn,求sn的值;(3)当sn为正数时,谋n的值.【篇二】教学准备工作教学目标数列议和的综合应用领域教学重难点数列议和的综合应用领域教学过程典例分析3.数列{an}的前n项和sn=n2-7n-8,(1)谋{an}的通项公式(2)求{|an|}的前n项和tn4.等差数列{an}的公差为,s=,则a1+a3+a5+…+a99=5.已知方程(x2-2x+m)(x2-2x+n)=0的四个根组成一个首项为的等差数列,则|m-n|=6.数列{an}就是等差数列,且a1=2,a1+a2+a3=12(1)求{an}的通项公式(2)令bn=anxn,谋数列{bn}前n项和公式7.四数中前三个数成等比数列,后三个数成等差数列,首末两项之和为21,中间两项之和为18,求此四个数8.在等差数列{an}中,a1=20,前n项和为sn,且s10=s15,求当n为何值时,sn有值,并算出它的值.已知数列{an},an∈n,sn=(an+2)2(1)澄清{an}就是等差数列(2)若bn=an-30,求数列{bn}前n项的最小值0.未知f(x)=x2-2(n+1)x+n2+5n-7(n∈n)(1)设f(x)的图象的顶点的横坐标构成数列{an},求证数列{an}是等差数列(2设f(x)的图象的顶点至x轴的距离形成数列{dn},谋数列{dn}的前n项和sn.11.购买一件售价为元的商品,采用分期付款的办法,每期付款数相同,购买后1个月第1次付款,再过1个月第2次付款,如此下去,共付款5次后还清,如果按月利率0.8%,每月利息按复利计算(上月利息要计入下月本金),那么每期应付款多少?(精确到1元)12.某商品在最近天内的价格f(t)与时间t的函数关系式是f(t)=销售量g(t)与时间t的函数关系就是g(t)=-t/3+/3(0≤t≤)谋这种商品的日销售额的值注:对于分段函数型的应用题,应注意对变量x的取值区间的讨论;求函数的值,应分别求出函数在各段中的值,通过比较,确定值。

等差数列前n项和优秀教案

等差数列前n项和优秀教案

等差数列前n项和优秀教案一、教学目标:1. 知识与技能:使学生理解等差数列前n项和的定义,掌握等差数列前n项和的计算公式,能够运用等差数列前n项和的知识解决实际问题。

2. 过程与方法:通过探究等差数列前n项和的规律,培养学生逻辑思维能力和归纳总结能力。

3. 情感态度价值观:激发学生对数学知识的兴趣,培养学生的团队合作精神。

二、教学重点与难点:重点:等差数列前n项和的定义,计算公式。

难点:等差数列前n项和的灵活运用。

三、教学过程:1. 导入新课:回顾等差数列的基本概念,引导学生思考等差数列前n 项和的意义。

2. 探究等差数列前n项和的规律:引导学生分组讨论,总结等差数列前n项和的计算公式。

3. 讲解等差数列前n项和的计算公式:详细讲解等差数列前n项和的计算公式,并通过例题演示应用过程。

4. 练习与拓展:布置适量练习题,巩固等差数列前n项和的计算方法,并引导学生运用所学知识解决实际问题。

四、教学方法:1. 采用问题驱动法,引导学生主动探究等差数列前n项和的规律。

2. 利用多媒体辅助教学,生动展示等差数列前n项和的应用过程。

3. 采用分组讨论法,培养学生的团队合作精神和沟通能力。

4. 运用实例分析法,使学生更好地理解等差数列前n项和的实际意义。

五、教学评价:1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 练习完成情况:检查学生练习题的完成质量,评估学生对等差数列前n项和的掌握程度。

3. 小组讨论:评价学生在分组讨论中的表现,包括逻辑思维、沟通能力等。

4. 课后反馈:收集学生对课堂内容的反馈意见,为后续教学提供改进方向。

六、教学内容与课时安排:第六章:等差数列前n项和的性质与应用课时安排:2课时本章主要内容有:1. 等差数列前n项和的性质;2. 等差数列前n项和在实际问题中的应用。

七、教学内容与课时安排:第七章:等差数列前n项和的计算公式推导课时安排:2课时本章主要内容有:1. 等差数列前n项和的计算公式的推导过程;2. 等差数列前n项和的计算公式的应用。

等差数列前n项和的公式教案

等差数列前n项和的公式教案

等差数列前n项和的公式教案A、知识目标:掌握等差数列前n项和公式的推导方法;掌握公式的运用。

B、能力目标:(1)通过公式的探索、发现,在知识发生、发展以及形成过程中培养学生观察、联想、归纳、分析、综合和逻辑推理的能力。

(2)利用以退求进的思维策略,遵循从特殊到一般的认知规律,让学生在实践中通过观察、尝试、分析、类比的方法导出等差数列的求和公式,培养学生类比思维能力。

(3)通过对公式从不同角度、不同侧面的剖析,培养学生思维的灵活性,提高学生分析问题和解决问题的能力。

教学重点:等差数列前n项和的公式。

教学难点:等差数列前n项和的公式的灵活运用。

教学方法:启发、讨论、引导式。

教学过程一、复习提问:1等差数列的定义2等差数列的通项公式3等差中项4由等差中项得到的等差数列的性质二、创设情景,导入新课。

先给学生讲一下高斯的故事,1+2+3+…+100=?这是200多年前高斯的老师给他们出的题目,高斯是怎样做出来的呢?他用了什么高明的方法.(学生说出做法)得到1+100=2+99=3+98=......=50+51=101,有50个101,所以得1+2+3+......+100=50×101=5050。

他用了等差数列的什么性质?:数列{a n}是等差数列,若m+n=p+q,则am+an=a p+a q. (学生回答)三、教授新课(尝试推导)11+2+3+…+n-1+nn+n-1+n-2+…+2+1(n+1)+ (n+1)+(n+1)+ …+ (n+1)+ (n+1)代入等差数列的通项公式an=a1+(n-1)d 得到(可让学生推导)学生思考:比较这两个公式,能说说它们分别从哪些角度反映了等差数列的性质.(1)、等差数列的任意第k 项与倒数第k 项等于首末两项的和等差数列的前n 项和与他的首项、公差之间的关系,而且是关于n 的“二次函数”。

根据下列条件,求出相应的等差数列{an}的前n 项和Sn.1) a1=5,an=95,n=10 .(S10=500)2). a1=100,d=-2,n=50 (S50=2550)3).a1=14.5,d=0.7,an=32 (S26=604.5)三、例题讲解例1、2000年11月14日教育部下发了《关于在中小学实施“校校通”工程的通知》某市据此提出了实施“校校通”工程的总目标:从2001年起用10年的时间,在全市中小学建成不同标准的校园网,据测算,2001年该市用于“校校通”工程的经费为500万元,为了保证工程的顺利实施,计划每年投入的资金都比上一年增加50万元。

等差数列的前n项和教案

等差数列的前n项和教案

等差数列的前n项和教案一、教学目标1. 理解等差数列的概念及其性质。

2. 掌握等差数列的前n项和的计算方法。

3. 能够运用等差数列的前n项和解决实际问题。

二、教学重点1. 等差数列的概念及其性质。

2. 等差数列的前n项和的计算方法。

三、教学难点1. 等差数列的性质的理解与应用。

2. 等差数列的前n项和的计算方法的推导与理解。

四、教学准备1. 教师准备PPT或黑板,展示等差数列的定义、性质和前n项和的计算方法。

2. 教师准备一些实际问题,用于引导学生运用等差数列的前n项和解决实际问题。

五、教学过程1. 引入:教师通过PPT或黑板,展示一些数列的例子,引导学生思考数列的规律。

2. 讲解:教师讲解等差数列的定义、性质和前n项和的计算方法,通过示例进行解释和说明。

3. 练习:教师给出一些等差数列的问题,让学生独立解决,并给出答案和解析。

4. 应用:教师给出一些实际问题,引导学生运用等差数列的前n项和解决实际问题,并提供解答和解析。

5. 总结:教师对本节课的内容进行总结,强调等差数列的概念、性质和前n项和的计算方法的重要性和应用价值。

六、教学拓展1. 引导学生思考等差数列的前n项和的性质,如奇数项和偶数项的和是否相等。

2. 引导学生探索等差数列的前n项和的公式推导过程。

七、课堂小结1. 回顾本节课学习的等差数列的概念、性质和前n项和的计算方法。

2. 强调等差数列的前n项和在实际问题中的应用价值。

八、作业布置1. 完成教材或练习册上的相关习题,巩固等差数列的概念、性质和前n项和的计算方法。

2. 选取一道实际问题,运用等差数列的前n项和解决,并将解题过程和答案写下来。

九、课后反思1. 教师对本节课的教学效果进行反思,观察学生对等差数列的概念、性质和前n 项和的计算方法的掌握程度。

2. 针对学生的掌握情况,调整教学方法和解题策略,为下一节课的教学做好准备。

十、教学评价1. 学生完成作业的情况,判断学生对等差数列的概念、性质和前n项和的计算方法的掌握程度。

等差数列及其前n项和教案

等差数列及其前n项和教案

等差数列及其前n项和教案一、教学目标:1. 理解等差数列的概念,能够识别等差数列的通项公式。

2. 掌握等差数列的前n项和的计算方法。

3. 能够运用等差数列的性质解决实际问题。

二、教学内容:1. 等差数列的概念:定义、通项公式。

2. 等差数列的前n项和的计算方法:公式、性质。

3. 等差数列的应用:解决实际问题。

三、教学重点与难点:1. 重点:等差数列的概念、通项公式;等差数列的前n项和的计算方法。

2. 难点:等差数列的应用。

四、教学方法:1. 讲授法:讲解等差数列的概念、通项公式、前n项和的计算方法。

2. 案例分析法:分析实际问题,引导学生运用等差数列的知识解决问题。

3. 互动教学法:提问、讨论,激发学生的学习兴趣和积极性。

五、教学过程:1. 引入:通过生活中的实例,引导学生思考等差数列的概念。

2. 讲解:讲解等差数列的概念、通项公式,引导学生理解等差数列的性质。

3. 练习:让学生自主完成等差数列的前n项和的计算,巩固所学知识。

4. 应用:分析实际问题,引导学生运用等差数列的知识解决问题。

5. 总结:对本节课的内容进行总结,强调等差数列的概念、通项公式和前n项和的计算方法。

6. 作业布置:布置相关练习题,巩固所学知识。

六、教学反思:在课后对教学效果进行反思,了解学生的掌握情况,对教学方法进行调整,以提高教学效果。

六、教学评价:1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。

2. 作业评价:检查学生作业的完成情况,评估学生对等差数列概念和前n项和计算方法的掌握程度。

3. 测验评价:进行等差数列相关知识的测验,评估学生的学习效果。

七、教学拓展:1. 等差数列的进一步研究:引导学生探讨等差数列的性质,如项数与项的关系、项的取值范围等。

2. 等差数列与其他数列的关系:介绍等差数列与等比数列等其他数列的联系和区别。

3. 等差数列在实际问题中的应用:举例说明等差数列在生活中的应用,如统计数据处理、财务计算等。

《等差数列的前 n 项和》 教学设计

《等差数列的前 n 项和》 教学设计

《等差数列的前 n 项和》教学设计一、教学目标1、知识与技能目标(1)学生能够理解等差数列前 n 项和公式的推导过程。

(2)熟练掌握等差数列前 n 项和公式,并能运用公式解决相关问题。

2、过程与方法目标(1)通过对等差数列前 n 项和公式的推导,培养学生的逻辑推理能力和创新思维能力。

(2)在运用公式解决问题的过程中,提高学生的数学运算能力和分析问题、解决问题的能力。

3、情感态度与价值观目标(1)让学生在自主探索和合作交流中,感受数学的魅力,激发学生学习数学的兴趣。

(2)通过数学史的介绍,培养学生的数学文化素养和民族自豪感。

二、教学重难点1、教学重点等差数列前 n 项和公式的推导和应用。

2、教学难点等差数列前 n 项和公式的推导过程中数学思想方法的渗透。

三、教学方法讲授法、讨论法、探究法相结合四、教学过程1、导入新课(1)复习等差数列的通项公式:\(a_n = a_1 +(n 1)d\)(2)提出问题:如何求等差数列\(\{a_n\}\)的前 n 项和\(S_n = a_1 + a_2 + a_3 +\cdots + a_n\)?2、公式推导方法一:倒序相加法设等差数列\(\{a_n\}\)的首项为\(a_1\),公差为\(d\),前\(n\)项和为\(S_n\)。

\(S_n = a_1 + a_2 + a_3 +\cdots + a_n\)①\(S_n = a_n + a_{n 1} + a_{n 2} +\cdots + a_1\)②①+②得:\\begin{align}2S_n&=(a_1 + a_n) +(a_2 + a_{n 1})+(a_3 + a_{n 2})+\cdots +(a_n + a_1)\\&=n(a_1 + a_n)\end{align}\所以\(S_n =\frac{n(a_1 + a_n)}{2}\)又因为\(a_n = a_1 +(n 1)d\),所以\(S_n =\frac{n(a_1 +a_1 +(n 1)d)}{2} =\frac{n(2a_1 +(n 1)d)}{2}\)方法二:通项公式法\(S_n = a_1 +(a_1 + d) +(a_1 + 2d) +\cdots + a_1 +(n 1)d\)\\begin{align}S_n&=na_1 + d(1 + 2 + 3 +\cdots +(n 1))\\&=na_1 +\frac{n(n 1)d}{2}\\&=\frac{n(2a_1 +(n 1)d)}{2}\end{align}3、公式理解(1)分析公式\(S_n =\frac{n(a_1 + a_n)}{2}\)中各项的意义,强调\(a_1\)为首项,\(a_n\)为第\(n\)项。

等差数列的前n项和公式教案

等差数列的前n项和公式教案

等差数列的前n项和公式(教案)一.教学目标:1.知识与技能目标:掌握等差数列前n项和公式,并且能能够灵活运用其求和。

2.过程与方法目标:让学生经历公式的推导过程,体会数形结合的思想,体验从特特殊到一般的研究方法。

3.情感态度与价值观目标:使学生获得发现的成就感,优化思维品质,提高代数的推导能力。

二.教学重难点:1.重点:等差数列前n项和公式的推导,掌握及灵活运用。

2.难点:诱导学生用“倒序相加法”求等差数列前n项和。

三.教法与学法分析:1.教法分析:采用“诱导启发,自主探究式”学法为主,讲练结合为辅的教学方法。

2.学法分析:采用“自主探究式学习法”和“主动学习法”。

四.课时安排:1个课时五.教学过程导入:我们已经学过等差数列的定义an+1-an=d(n属于正整数),等差数列的通项公式an=a1+(n-1)d,等差数列的等差中项2an=an-1+an+1,若m+n=p+q,则am+an=ap+aq.我们应该怎样求a1+a2+……..+an,其中{an}为等差数列,记sn=a1+a2+…….an我们知道200多年前高斯的老师给他们出了一道目,让他们计算1+2+……+100=?当时10岁的高斯花了大概10s钟的时间就算出来了。

高斯是怎样做出来的呢?他使用了什么高明的方法?1+2+……..+100=(1+100)+(2+99)+……(50+51)=50*101,所以1+2+….+100=5050,这就是著名的高斯算法,到后来,人们就从高斯算法中得到启发,求出了等差数列1+2+…….+n的前n项和的算法(二)探究新知,发现规律从高斯算法中,人们怎样求出等差数列1,2,3,…….,,n的前n项和的首先 sn=1+ 2+ ….+n (1)Sn=n+ (n-1)+……+ 1 (2)2sn=(n+1)+(n+1)…….+(n+1) (n个(n+1))所以sn=n*(n+1)/2 即为sn的前n项和我们把上面的方法称为“倒序相加法”,也就是说高斯当时用的就是“倒序相加法”算出了1+2+…….+100的和然而这个方法可以推广到等差数列的前n项和(1)定义:一般说来,我们把a1+a2+……+an叫做等差数列的前n 项和,用Sn表示即Sn=a1+a2+…..+an从高斯算法中得到的启示,对于一般的等差数列我们可以用两种方法来表示,其中a1是首项,d是公差1.Sn=a1+ a2+…..+ an= a1+(a1+d)+......+a1+[a1+(n-1)d]Sn=an+ an-1+......+ a1= an+ [a1-(n-1)d]+......+a1两式相加得2 Sn=(a1+an)+(a1+an)+......+(a1+an) 有n个(a1+an)所以Sn=n(a1+an)/22. Sn=a1+ a2+…..+ an= a1+(a1+d)+......+a1+[a1+(n-1)d]=na1+[1+2+.....+(n-1)d]=na1+n(n-1)d/2然而1和2是可以相互转化将an=a1+(n-1)d带入Sn=n(a1+an)/2中即可得到Sn=na1+n(n-1)d/2这两个方法的区别:第一个公式反映了等差数列的首项与末项之和跟第k项与倒数第k项之和是相等的;第二个公式反映了等差数列的前n项和公式与它首项与公差d之间的关系,而且是关于n的“二次函数”,可以与二次函数作比较。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 等差数列前n项和(第一课时)
人教版普通高中课程标准实验教科书数学必修五
授课人:XXX
【教学内容分析】
《等差数列前n项和》选自人教版A版高中数学必修5§2.3章节的内容。

是在学习了等差数列的概念和性质的基础上,使学生掌握等差数列求和公式及其简单应用。

推导等差数列前n项和公式是一种从特殊到一般的研究方法,在此过程中,还提出了一种崭新的数学方法——倒序相加法。

不仅得出了等差数列前n项和公式,而且对以后推导等比数列前n项和公式有一定的启发,也是一种常用的数学思想方法。

【教学对象分析】
教学对象是已经掌握一定知识基础的高二学生,虽然具有一定的分析问题和解决问题的能力,逻辑思维能力也初步形成,但由于实践和练习的机会较少,思维尽管活跃,敏捷,却缺乏冷静、深刻,易片面、不严谨。

合作交流的意识也尚有待加强。

【教学目标】
根据教材特点及教学大纲要求,我认为学生通过本节内容的学习要达到以下目标:
1、知识目标
掌握等差数列前n项和公式及其应用,会用等差数列前n项和公式解决一些相应问题。

2、能力目标
通过公式的推导和公式的应用,使学生体会数形结合的数学思想,领会从特
殊到一般,再从一般到特殊的思维规律。

培养学生观察、归纳、反思的能力,形成认识问题,解决问题的一般思路和方法。

3、情感目标
公式的发现反映了普遍性寓于特殊性之中,从而使学生受到辩证唯物主义思想的熏陶。

通过实际生活中的案例使学生感受到数学源于生活又服务于生活,激发学习数学的兴趣,增强学好数学的情感。

【教学重点和难点】
教学重点:等差数列前n项和公式的推导、掌握及其实际应用。

教学难点:通过“倒序相加法”思路推导等差数列前n项和公式。

【教学方法】
1、教法分析
运用“引导探索发现法”,通过“情景引入——自主探究——成果交流——变式应用——反思回授”等5个环节,引导学生动手动脑去观察、分析、探索、归纳获得解决问题的方法,启发学生自主性学习,有效地渗透数学思想方法,提高学生素质。

2、学法指导
教给学生方法比教给学生知识更重要,注重调动学生积极思考、主动探究,尽可能增加学生参与教学活动的时间和空间,培养他们的学习习惯并学会善于用数学思维去分析问题和解决问题。

利用简单的数学问题联系到等差数列前n项和的求解方法。

引导学生通过推导出,及公式的基本应用。

3、教学手段
在教学中,使用多媒体辅助教学,充分发挥其快捷、清晰、形象的特点。

【教学过程设计】
新课讲授1.推导等差数列前n项和公式
根据性质我们知道若p+q=m+n,则a p+a q=a m+a n,利用倒序相加法,
我们能轻易求得S=S1+S2=
那么,等差数列{an}是否也可以通过这个办法求前n项和呢?试一下:
由于等差数列的通项公式an=a1+(n-1)d,对于公差为d的等差数列,让
学生自己尝试代入上面得到的式子,即
2.公式应用
根据下列各题中的条件,求相应的等差数列{an}的前n项和Sn
1)a1=-4,a8=-18,n=8
2)a1=14.5,d=0.7,an=32
3){an}是等差数列,若a1+a2+a3=12,a8+a9+a10=75,且Sn=145,
求a1,d,n.
变式练习
1)已知数列{an}的前n项和为,求这个数列的通项公式,
这个数列是等差数列吗?如果是,它的首项,公差分别是什么?
2)已知数列{an}的前n项和为,求这个数列的通项公
式.
展示探究
成果,让
学生体会
公式的推
导过程,
并引导学
生思考能
否用首
项、公差
及项数来
表示,推
导出另一
个公式。

培养学生
的创造性
思维。

通过练习
熟悉等差
数列前n
项和公式
及简单变
形,引导
学生用基
本量总结
“知三求
二”的公
式特征。

使学生对
公式形成
较深的印
象。

【板书设计】
【归纳总结】
数列是高中数学的一个重要内容,等差数列是数列的重要分支。

本节课是在学生已有知识的基础上学习的,在教学中突出公式推导的过程,通过自主探究、合作交流,充分调动学生的积极性与主动性,通过案例的引入,大胆假设小心求证,培养学生的理性思维。

本节课作为章节的第一课时,能让学生充分理解并熟练运用公式,为第二课时公式的应用及其拓展作良好的铺垫。

相关文档
最新文档