SPSS多因素方差分析报告
spss多因素方差分析报告例子
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model 打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
spss多因素方差分析报告例子
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
SPSS-多因素方差分析
④在Univariate对话框中,单击Options…按钮。在Options对话框中, 把Factor(s) and Factor Interations栏中的变量“保存时间”、 “保存温度”、 和“保存时间*保存温度”放入Display Means for栏;并在Display多选项中,选择Descriptive statistics, Estimates of effect size,Homogeneity tests。单击Model…,选择 默认项,即Full factorial项(全析因模型),单击Continue按钮返 回。
⑤在Univariate对话框,单击OK按钮得到Univariate过程的运行结果。
7
结果
8
均数分布图
9
例2, 用5×2×2析因设计研究5种 类型的军装在两种环境、两种活动状 态下的散热效果,将100名受试者随 机等分20组,观察指标是受试者的主 观热感觉(从“冷”到“热”按等级评 分),结果见下表。试进行方差分析。
多因素方差分析
1
一、析因设计资料的方差分析 两因素两水平 三因素多水平
2
析因设计的特点
必须是: 两个以上(处理)因素(factor)(分 类变量)。 两个以上水平(level)。 两个以上重复(repeat)。 每次试验涉及全部因素,即因素同时 施加观察指标(观测值)为计量资料 (独立、正态、等方差)。
24
25
SPSS重复测量的多因素方差分析报告
1、概述重复测量数据的方差分析是对同一因变量进行重复测量的一种试验设计技术。
在给予一种或多种处理后,分别在不同的时间点上通过重复测量同一个受试对象获得的指标的观察值,或者是通过重复测量同一个个体的不同部位(或组织)获得的指标的观察值。
重复测量数据在科学研究中十分常见。
分析前要对重复测量数据之间是否存在相关性进行球形检验。
如果该检验结果为P﹥0.05,则说明重复测量数据之间不存在相关性,测量数据符合Huynh-Feldt条件,可以用单因素方差分析的方法来处理;如果检验结果P﹤0.05,则说明重复测量数据之间是存在相关性的,所以不能用单因素方差分析的方法处理数据。
在科研实际中的重复测量设计资料后者较多,应该使用重复测量设计的方差分析模型。
球形条件不满足时常有两种方法可供选择:(1)采用MANOVA(多变量方差分析方法);(2)对重复测量ANOVA检验结果中与时间有关的F值的自由度进行调整。
2、问题新生儿胎粪吸入综合征(MAS)是由于胎儿在子宫内或着生产时吸入了混有胎粪的羊水,从而导致呼吸道和肺泡发生机械性阻塞,并伴有肺泡表面活性物质失活,而且肺组织也会发生化学性炎症,胎儿出生后出现的以呼吸窘迫为主,同时伴有其他脏器受损现象的一组综合征。
血管内皮生长因子(vascular endothelial growth factor,VEGF)是一种有丝分裂原,它特异作用于血管内皮细胞时,能够调节血管内皮细胞的增殖和迁移,从而使血管通透性增加。
而本实验旨在通过观察分析给予外源性肺表面活性物质治疗前后胎粪吸入综合征患儿血清中VEGF的含量变化,评价药物治疗的效果。
将收治的诊断胎粪吸入综合症的新生儿共42名。
将患儿随机分为肺表面活性物质治疗组(PS组)和常规治疗组(对照组),每组各21例。
PS组和对照组两组所有患儿均给予除用药外的其他相应的对症治疗。
PS组患儿给予牛肺表面活性剂PS 70mg/kg治疗。
采集PS 组及对照组患儿0小时,治疗后24小时和72小时静脉血2ml,离心并提取上清液后保存备用并记录血清中VEGF的含量变化情况。
SPSS多因素方差分析报告
体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1. 根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2. 因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上, B 因素对因变量的影响不同, 则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视, 则常会掩盖因素的主效应的显著性, 另一方面, 如果对因变量Y, 因素A与B 之间存在交互作用则已说明这两个因素都Y 对有影响, 而不管其主效应是否具有显著性。
在统计模型中考虑交互作用, 是系统论思想在统计方法中的反映。
在大多数场合交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
《2024年使用SPSS软件进行多因素方差分析》范文
《使用SPSS软件进行多因素方差分析》篇一一、引言在社会科学研究中,多因素方差分析是一种常用的统计方法,用于探究多个自变量对一个因变量的影响。
这种分析方法能够帮助研究者理解多个因素如何同时作用于因变量,以及它们之间是否存在交互效应。
本文将详细介绍如何使用SPSS软件进行多因素方差分析,以期为相关领域的研究提供方法和参考。
二、方法2.1 研究设计本部分首先介绍了研究目的、研究问题和研究对象等基本情况。
针对特定问题,研究者应事先进行适当的文献回顾,以便更好地理解和把握所研究问题的现状。
接着确定了使用多因素方差分析作为主要的统计分析方法,因为它能够探究多个因素同时作用于因变量的影响及其之间的交互效应。
2.2 数据收集在数据收集阶段,应遵循科学的研究设计和样本选择原则,确保数据的可靠性和有效性。
收集的数据应包括自变量和因变量的观测值,以及可能影响分析结果的协变量。
此外,还需要收集有关样本特征的信息,如性别、年龄、教育背景等。
2.3 SPSS软件操作(1)数据录入:将收集到的数据录入SPSS软件中,确保数据格式正确、无缺失值和异常值。
(2)定义变量:在SPSS中定义自变量、因变量和协变量,为后续分析做好准备。
(3)多因素方差分析:选择“分析”菜单中的“一般线性模型”选项,进行多因素方差分析。
在分析过程中,需要设置好因素、水平、因变量和协变量等参数。
(4)结果解读:根据SPSS输出的结果,解读各因素对因变量的影响程度、交互效应以及统计显著性等信息。
三、结果与分析3.1 描述性统计首先对数据进行描述性统计分析,包括计算各变量的均值、标准差、最大值、最小值等统计量,以便初步了解数据的分布特征和变化规律。
3.2 多因素方差分析结果通过SPSS软件进行多因素方差分析后,得到以下结果:(1)各因素对因变量的影响:从输出结果中可以看出,哪些因素对因变量的影响显著,哪些因素的影响不显著。
这有助于研究者了解各因素对因变量的独立作用。
spass方差分析实验报告
页脚内容1页脚内容2页脚内容3页脚内容4页脚内容5页脚内容6页脚内容7(6)分析:根据方差分析的多重比较结果,分别进行了两两比较,以A2品种与A1、A3、A4的比较为例。
A2品种与A1、A3、A4种的均值相差分别为-31.70000、-7.02500、-16.82500,而且所有的相伴概率sig=0.000<0.05,这说明了A2种与其他三种饲料均具有显著性差异,而且从产量均值的差异上看Mean Difference (I-J)均低于其他3种品种,说明A2种的效果没有其他品种的效果好。
第二题:某公司希望检测四种类型的轮胎A,B,C,D的寿命(由行驶的里程数决定),见表6.18(单位:千英里)(数据文件为data6-5.sav),其中每种轮胎应用在随机选择的6辆汽车上。
在显著性水平0.05下判断不同类型轮胎的寿命间是否存在显著性差异?(数据来源:《统计学(第三版)》,M.R.斯皮格尔,科学出版社)表6.18 四种轮胎的寿命数据页脚内容8页脚内容9页脚内容10Sum of Squares dfMeanSquare F Sig.Between Groups 77.500325.8332.388.099WithinGroups216.3332010.817 Total293.83323(3)均值折线图页脚内容11页脚内容12页脚内容13页脚内容143A344A44土地1B142B243B344B44(2)多因素方差分析及交互检验结果表Tests of Between-Subjects Effects Dependent Variable:产量SourceType IIISum of Squares dfMeanSquare F Sig.CorrectedModel1571.938a15104.796..页脚内容15页脚内容16(4)分析:有最终的交互影响折线图来看,A2品种在B1土地上种植最终的产量最高。
使用SPSS软件进行多因素方差分析
使用SPSS软件进行多因素方差分析使用SPSS软件进行多因素方差分析一、引言多因素方差分析(ANOVA)是一种统计方法,用于比较两个或更多个因素对于某个连续型变量的影响是否显著不同。
通常,研究者需要了解不同因素对于结果值的影响,并确定是否存在交互作用。
SPSS(统计软件包for社会科学)是一款常用的统计软件,它提供了丰富的功能和工具,可用于数据分析和建模。
本文将介绍如何使用SPSS软件进行多因素方差分析。
二、数据准备在进行多因素方差分析之前,需要先进行数据准备。
假设我们有一个研究目的是了解不同教育水平和不同工作经验对个人收入的影响。
我们收集了400位参与者的数据,包括个人收入(连续型变量),教育水平(分类变量:小学、初中、高中、本科、硕士、博士)和工作经验(分类变量:1-5年、6-10年、11-15年、16年及以上)。
三、数据导入首先,将数据导入SPSS软件。
打开SPSS软件后,选择“文件”-“读取数据”-“输入数据”。
在弹出的对话框中选择数据文件,并将其导入到SPSS软件中。
四、数据探索在进行多因素方差分析之前,我们首先需要对数据进行探索,查看教育水平、工作经验和收入之间的关系。
选择“描述统计”-“交叉表”菜单,将教育水平和工作经验作为行变量,将收入作为列变量。
点击“确定”按钮后,SPSS将生成一个交叉表,显示不同教育水平和工作经验对于收入的平均值和标准差等统计信息。
五、多因素方差分析在导入数据并进行数据探索后,我们可以开始进行多因素方差分析。
选择“分析”-“一般线性模型”-“多因素”菜单。
在弹出的对话框中,将个人收入作为因变量,将教育水平和工作经验作为因子变量。
点击“因子”按钮,将教育水平和工作经验拖动到因子变量框中。
然后,点击“选项”按钮,对方差分析的设置进行调整,如是否显示交互作用。
点击“确定”按钮,SPSS将自动生成多因素方差分析的结果报告。
在报告中,我们可以看到各个因素的显著性检验结果,以及不同因素对于个人收入的影响情况。
spss实验报告---方差分析
实验报告——(方差分析)一、实验目的熟练使用SPSS软件进行方差分析。
学会通过方差分析分析不同水平的控制变量是否对结果产生显著影响。
二、实验内容1、某职业病防治院对31名石棉矿工中的石棉肺患者、可疑患者及非患者进行了用力肺活量(L)测定,问三组石棉矿工的用力肺活量有无差别?(自建数据集)石棉肺患者可疑患者非患者1.82.3 2.91.42.13.21.52.1 2.72.1 2.1 2.81.92.6 2.71.72.53.01.82.33.41.92.43.01.82.43.41.8 3.32.03.5SPSS计算结果:在建立数据集时定义group1为石棉肺患者,group2为可疑患者,group3为非患者。
零假设:各水平下总体方差没有显著差异。
相伴概率为0.075,大于0.05,可以认为各个组的方差是相等的,可以进行方差检验。
从上表可以看出3个组之间的相伴概率都小于显著性水平0.05,拒绝零假设,说明3个组之间都存在显著差别。
2、某汽车经销商在不同城市进行调查汽车的销售量数据分析工作,每个城市分别处于不同的区域:东部、西部和中部,而且汽车经销商在不同城市投放不同类型的广告,调查数据放置于附件中数据文件“汽车销量调查.sav”。
(1)试分析不同区域与不同广告类型是否对汽车的销量产生显著性的影响?(2)如果考虑到不同城市人均收入具有差异度时,再思考不同区域和不同广告类型对汽车销量产生的影响差异是否改变,这说明什么问题?SPSS计算结果:(1)此为多因素方差分析相伴概率为0.054大于0.05,可以认为各个组总体方差相等可以进行方差检验。
不同地区贡献的离差平方和为7149.781,均方为3574.891;不同广告贡献的离差平方和为7625.708,均方为3812.854。
说明不同广告和不同地区对汽车销量都有显著性影响。
广告对于销量的影响略大于地区对销量的影响。
从地区这个变量比较:第一组和第三组的相伴概率为0.000,低于显著性水平,一、三组均值差异显著;第二组和第三组的相伴概率为0.028,低于显著性水平,二、三组均值差异显著。
SPSS实验多因素方差分析8
29.211a
1.597
24.778
33.644
a. Based on modified population marginal mean.
Multiple Comparisons
Dependent Variable:语言能力测试得分(X3)
(I)阶层(X1)
2.两个因素即年龄和阶层对语言表达能力的影响都不显著,而且两个变量各自对语言表达能力的影响都是不显著的。
3.由于本数据中的方差齐性检验结果是具有方差齐性的,所以应就LSD的输出结果进行分析,有以上数据分析的结果表中比较相应两组均值的P值与显著性水平为0.05下可知阶层两两之间没有显著性可言,也就进一步说明了阶层对语言能力的影响不是显著性的。
Intercept
23859.980
1
23859.980
336.849
.000
阶层(X1)
300.323
2
150.162
2.120
.236
年龄(月)X2
1226.352
22
55.743
.787
.689
阶层(X1)*年龄(月)X2
24.807
1
24.807
.350
.586
Error
283.332
4
70.833
F
df1
df2
Sig.
1.328
25
4
.434
Tests the null hypothesis that the error variance of the dependent variable is equal across groups.
spss相关分析案例多因素方差分析
本次实验采用2005年东部、中部和西部各地区省份城镇居民月平均消费类型划分的数据(课本139页),将东部、中部和西部看作三个不同总体,31个数据分别来自于这三个总体。
本人对这三个不同地区的城镇居民月平均消费水平进行比较,并选取人均粮食支出、副食支出、烟酒及饮料支出、其他副食支出、衣着支出、日用杂品支出、水电燃料支出和其他非商品支出八个指标来衡量城镇居民月平均消费情况。
在进行比较分析之前,首先对个数据是否服从多元正态分布进行检验,输出结果为:表一如表一,因为该例中样本数n=31<2000,所以此处选用Shapiro-Wilk统计量。
由正态性检验结果的sig.值可以看到,人均粮食支出、烟酒及饮料支出、其他副食支出、水电燃料支出和其他非商品支出均明显不遵从正态分布(Sig.值小于,拒绝服从正态分布的原假设),因此,在下面分析中,只对人均副食支出、衣着支出和日用杂品支出三项指标进行比较,并认为这三个变量组成的向量都遵从正态分布,并对城镇居民月平均消费状况做出近似的度量。
另外,正态性的检验还可以通过Q-Q图来实现,此时应判别数据点是否与已知直线拟合得好。
如果数据点均落在直线附近,说明拟合得好,服从正态分布,反之,不服从。
具体情况这里不再赘述。
下面进行多因素方差分析:一、多变量检验表二由地区一栏的(即第二栏)所列几个统计量的Sig.值可以看到,无论从那个统计量来看,三个地区的城镇居民月平均消费水平都是有显著差别的(Sig.值小于,拒绝地区取值不同,对Y,即城镇居民月平均消费水平的取值没有显著影响的原假设)。
二、主体间效应检验表三如表三,可以看到三个指标地区一栏的(即第三栏)Sig.值分别为、、,说明三个地区在人均衣着支出指标上没有明显的差别(Sig.值大于,不拒绝地区取值不同,对指标的取值没有显著影响的原假设),反之,而在人均副食支出和日用杂品支出指标上有显著差别。
三、多重比较表四Contrast Results (K Matrix)地区 Simple Contrast aDependent Variable 人均副食支出(元/人)人均日用杂品支出(元/人)人均衣着支出(元/人)Level 1 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..001.036.51795% Confidence Interval for DifferenceLower Bound.173Upper BoundLevel 2 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..668.343.63895% Confidence Interval for DifferenceLower BoundUpper Bound表四Contrast Results (K Matrix)地区 Simple Contrast aDependent Variable 人均副食支出(元/人)人均日用杂品支出(元/人)人均衣着支出(元/人)Level 1 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..001.036.51795% Confidence Interval for DifferenceLower Bound.173Upper BoundLevel 2 vs. Level 3 Contrast EstimateHypothesized Value0 0 0 Difference (Estimate - Hypothesized) Std. Error Sig..668.343.63895% Confidence Interval for DifferenceLower BoundUpper Bounda. Reference category = 3如表四,在显著水平下,东部和西部的人均副食支出(Sig.值为)和日用杂品支出(Sig.值为)指标有明显差别(小于,拒绝原假设),而在人均衣着支出(Sig.值为)指标上没有明显的差别。
SPSS学习笔记之重复测量的多因素方差分析报告
SPSS学习笔记之重复测量的多因素方差分析报告学习笔记之重复测量的多因素方差分析报告SPSS(Statistical Package for the Social Sciences,社会科学统计软件包)是一款功能强大的数据分析工具,广泛应用于各个领域的研究。
在SPSS中,重复测量的多因素方差分析被视为一项重要的统计方法,用于研究相同参与者在不同条件下的测试结果。
本篇学习笔记以重复测量的多因素方差分析为主题,将介绍如何使用SPSS进行该项分析,并给出详细的分析报告。
1. 研究目的和问题描述2. 数据采集和处理3. 研究设计和假设4. 数据分析5. 结果解释与讨论1. 研究目的和问题描述本次研究的目的是考察不同刺激条件对参与者注意力的影响。
具体而言,我们想了解参与者在三种刺激条件下的注意力水平是否存在显著差异。
2. 数据采集和处理我们招募了40位参与者,并随机将其分为三组。
每组参与者分别接受三次测试,每次测试采用不同的刺激条件。
我们记录了每位参与者的测试结果,并进行数据整理和清洗。
3. 研究设计和假设本研究采用的是重复测量的多因素方差分析设计。
考察因素为刺激条件,对应的水平为A、B和C。
我们的研究假设如下:- H0(零假设):不同刺激条件下的注意力水平无显著差异。
- H1(备择假设):不同刺激条件下的注意力水平存在显著差异。
4. 数据分析为了进行重复测量的多因素方差分析,我们打开SPSS软件,并导入数据集。
接下来,我们按照以下步骤进行分析:步骤一:打开SPSS软件,点击“打开”按钮,导入数据集。
步骤二:选择“分析”菜单,然后选择“一般线性模型”和“重复测量”。
步骤三:将待分析的因子变量(刺激条件)拖动到“因子”框中,并设置不同刺激条件的水平。
步骤四:选择适当的因变量(注意力水平),并将其拖动到“依赖变量”框中。
步骤五:点击“选项”按钮,可以对分析进行更多设置,比如是否计算偏斜度和峰度等。
步骤六:点击“确定”按钮,SPSS将自动进行重复测量的多因素方差分析,并生成分析结果。
SPSS重复测量地多因素方差分析报告
SPSS重复测量地多因素方差分析报告
一、实验结果的总体分析
1、总体数据及描述性统计
首先我们来分析实验的总体数据,主要包括对被试者的一般信息及参
与实验的各个变量的描述统计及分布情况。
基本信息:本次实验共有30名参与者,其平均年龄为31岁。
其中男
性占比为53.3,女性占比为46.7%。
变量的描述性统计:检测变量的标准差为0.614,最小值为1.4,最
大值为3.0,平均值为2.2,中位数为2.2,偏度为0.00,峰度为0.61变量的分布情况:根据变量分布图可以看出,变量的分布情况接近正
态分布。
2、数据检验
完成数据收集后需要对数据进行检验,以确保数据的准确性和可靠性。
检验的方法包括残差检验、异方差分析以及 Shapiro-Wilk 检验等。
经过
检验后,发现所有数据满足检验条件,可以用于进一步的分析。
二、多因素重复测量方差分析
本次实验使用多因素重复测量方差分析,用来检验被试者对不同环境
条件下的反应差异。
由于本次实验中因素为环境条件A、B、C,为三因素
实验,所以本次实验的实验设计为3X3实验设计。
1、方差分析表
计算完毕后,计算结果如下所示:。
SPSS多因素方差分析
SPSS多因素方差分析一、问题对小白鼠喂以三种不同的营养素,目的是了解不同营养素增重的效果。
采用随机区组设计方法,以窝别作为划分区组的特征,以消除遗传因素对体重增长的影响。
现将同品系同体重的24只小白鼠分为8个区组,每个区组3只小白鼠。
三周后体重增量结果(克)列于下表,问小白鼠经三种不同营养素喂养后所增体重有无差别?SPSS软件版本:18.0中文版。
二、统计操作:1、建立数据文件变量视图:建立3个变量,如下图数据视图:如下图:区组号用1-8表示,营养素号用1-3表示。
数据文件见“小白鼠喂3种不同的营养素增重数量.sav”,可以直接使用。
2、统计分析菜单选择:分析-> 一般线性模型-> 单变量点击进入“单变量”对话框将“体重”选入“因变量”框,“区组”、“营养素”选入固定因子框点击右边“模型”按钮,进入“单变量:模型对话框”点击“设定”单选按钮,在“构建项”下拉菜单中选择“主效应”把左边的因子与协变量框中区组和营养素均选入右边的模型框中其余选项取默认值就行,点击“继续”按钮,回到“单变量”界面点击“两两比较”按钮,进入下面对话框将左边框中“区组”、“营养素”均选入右边框中再选择两两比较的方法,LSD、S-N-K,Duncan为常用的三种方法,点击“继续”按钮回到“单变量”主界面。
点击“选项”按钮勾选“统计描述”及“方差齐性检验”,设置显著性水平,点击“继续”按钮,回到“单变量”主界面点击下方“确定”按钮,开始分析。
3、结果解读这是一个所分析因素的取值情况列表。
变量的描述性分析这是一个典型的方差分析表,有2个因素“营养素”和“区组”,首先是所用方差分析模型的检验,F值为11.517,P小于0.05,因此所用的模型有统计学意义,即认为至少有一个因素对体重增长有显著影响,可以用它来判断模型中系数有无统计学意义;第二行是截距,它在我们的分析中没有实际意义,忽略即可;第三行是变量是区组,P<0.001,可见有统计学意义(即认为区组对体重增长有显著影响),不过通常我们关心的也不是他;第四行是我们真正要分析的营养素,非常遗憾,它的P值为0.084,没有统计学意义(即认为营养素对体重增长没有显著影响)。
spss多因素方差分析报告报告材料例子
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
SPSS操作多因素方差分析
SPSS操作多因素方差分析实验题目:多因素方差分析实验类型:基本操作实验目的:掌握方差分析的基本原理及方法实验内容:某种果汁在不同地区的销售数据,调查人员统计了易拉罐包装和玻璃包装的饮料在三个地区的销售金额,利用多因素方差分析,分析销售地区和包装方式对销售金额的影响。
(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。
(2)对数据进行多因素方差分析,分析不同包装的和地区下的效果是否相同,及交互作用的效应是否显著。
实验步骤:步骤一:打开数据集,选择“分析”—“一般线性模型”—“单变量”,将操作框打开;步骤二:将“销售额”选为“因变量”,“包装形式”和“购物地区”选为“固定因子”,然后选择“选项”,将“描述统计”和“方差齐性检验”勾选。
得到描述性统计量和Levene检验,和主体间效应的结果。
实验结果:(1)试计算因变量在各个因素下的描述性统计量及在各个因素水平下的误差方差的Levene检验。
描述性统计量因变量:销售额包装形式购物地区均值标准偏差Ndime nsion1 易拉罐dimensio n2地区A 413.0657 90.86574 35地区B 440.9647 98.23860 120地区C 407.7747 69.33334 30总计430.3043 93.47877 185 玻璃瓶dimensio n2地区A 343.9763 100.47207 35地区B 361.7205 90.46076 102地区C 405.7269 80.57058 29总计365.6671 92.64058 166 总计dimensio n2地区A 378.5210 101.25839 70地区B 404.5552 102.48440 222地区C 406.7681 74.42114 59总计399.7352 98.40821 351描述性统计量的分析结果:在只考虑包装形式的情况下:易拉罐:均值=430.3043 ,标准偏差=93.47877玻璃瓶:均值=365.6671,标准偏差=92.64058在只考虑地区差异的情况下:地区A:均值=378.5210,标准偏差=101.25839地区B:均值=404.5552,标准偏差=102.4844地区C:均值=406.7681,标准偏差=74.42114由结果可知,在只考虑包装形式的情况下,采用易拉罐的形式进行销售额会有明显较高的销售额,且两种形式之间的偏差值相差不大,即采用易拉罐的形式进行销售会更有利于销售;在只考虑地区差异的情况下,三个地区之间在地区B 和地区C进行销售的销售额很接近,但是地区C的标准偏差明显比另外两个地区要小,所以建议应该在地区C加大销售力度。
SPSS数据分析—单因素及多因素方差分析
SPSS数据分析—单因素及多因素方差分
析
T检验可以用于解决单个样本或两个样本的均值比较问题。
但是,当涉及到两个以上的样本时,就不能使用T检验,而
需要使用方差分析。
方差分析是基于变异分解的思想,利用F
分布进行比较。
在算法方面,由于线性模型的引入,在SPSS中,方差分
析可以在比较均值和一般线性模型菜单中完成。
在适用条件方面,方差分析和两个独立样本的T检验一样,也需要满足独立性、正态性和方差齐性。
方差分析的原假设是n个样本的均值相同或n个样本来自同一个总体,或自变量对因变量没有影响。
由于涉及到两组以上的样本进行分析,因此除了需要说明多个样本均值是否有差异之外,还需要进一步说明哪些样本存在差异,因此需要进行多重比较。
在SPSS中,可以通过分析-比较均值-单因素ANOVA或
分析-一般线性模型-单变量来进行方差分析。
在一般线性模型
菜单中,方差分析更加具体细致,可以根据线性模型的思想进行分析。
SPSS多因素重复测量资料的方差分析
中 低 PH=8 高 中
试剂浓度 0.1 0.2 0.3
中,蛋白质的提取量和温度
(高,中,低),试剂浓度 (0.1,0.2,0.3)及PH值 (6,8,12)的有关 三因素的各个水平相结合,
低
PH=12 高 中 低
共形成3×3×3=27种处理组
2019/1/30
Page14
析因设计资料的方差分析
练习2
为探讨甲乙两药是否有降低胆固醇的作用及两药在降血脂
时是否存在交互作用?现对12名高胆固醇血症患者采用以 下方案治疗,胆固醇降低值(mg%)见下表
表 四种不同处理下胆固醇降低值(mg%) 用甲药 不用甲药 用乙药 不用乙药 用乙药 不用乙药 64 78 80 56 44 42 28 31 23 16 25 18
2019/1/30
Page15
SPSS统计软件操作
析因设计资料的方差分析
2019/1/30
Page16
SPSS统计软件操作
析因设计资料的方差分析
练习1
研究者预研究煤焦油(因素A)以及作用时间(因素B)
对细胞毒性的作用,煤焦油的含量分别为3ug/ml和75ug/ml 两个水平,作用时间分别为6小时和8小时。将统一制备的 16盒已培养好的细胞随机分为四组,分别接受A、B不同 组合情况下的四种不同处理,测得处理液吸光光度的值,
现对12名高胆固醇血症患者采用以下方案治疗胆固醇降低值mg见下表不用乙药645628167844312580422318thankyouwwwhuaweicomspss统计软件操作page212020910析因设计资料的方差分析为探讨白血病患儿在不同缓解程度不同化疗期淋巴细胞转化率是否相同以及两者间有无交互作用32名白血病患儿的数据如下表所示四种不同处理下淋巴细胞转化率完全缓解未缓解化疗期化疗间期化疗期化疗间期4656395351362858414626663247335145633157525635644154374534395045thankyouwwwhuaweicomspss统计软件操作page222020910交叉设计资料的方差分析交叉设计thankyouwwwhuaweicomspss统计软件操作page232020910交叉设计资料的方差分析某医师研究ab两种药物对失眠患者改善睡眠的效果将12名患者按交叉设计方案随机分为两组观察两种药物两个阶段睡眠时间增加量小时每个阶段两周间隔两周
spss 方差分析(多因素方差分析)实验报告
大学经济管理学院学生实验报告实验课程名称:统计软件及应用专业工商管理班级学号姓名成绩实验地点实验性质:演示性 验证性综合性设计性实验项目名称方差分析(多因素方差分析)指导教师一、实验目的掌握利用SPSS 进行单因素方差分析、多因素方差分析的基本方法,并能够解释软件运行结果。
二、实验内容及步骤(包括实验案例及基本操作步骤)实验案例:为研究某商品在不同地区和不同日期的销售差异性,调查收集了以下日平均销售量数据。
销售量日期周一至周三周四至周五周末地区一5000 6000 4000 6000 8000 3000 4000 7000 5000地区二700080008000500050006000500060004000地区三300020004000600060005000800090006000(1)选择恰当的数据组织方式建立关于上述数据的SPSS数据文件。
在SPSS输入数据。
(2)利用多因素方差分析法,分析不同地区和不同日期对该商品的销售是否产生了显著影响。
1. 选择菜单Analyze,General Linear Model,Univariate;2. 指定观测变量销售额到Dependant Variable框中;3. 指定固定效应的控制变量到Fixed Factors框中,4. OK,得到分析结果。
(3)地区和日期是否对该商品的销售产生了交互影响?若没有显著的交互影响,则试建立非饱和模型进行分析,并与饱和模型进行对比。
三、实验结论(包括SPSS输出结果及分析解释)SPSS输出的多因素方差分析的饱和模型分析:表的第一列是对观测变量总变差分解的说明;第二列是观测变量变差分解的结果;第三列是自由度;第四列是方差;第五列是F检验统计量的观测值;第六列是检验统计量的概率P-值。
F日期,,F地区,F日期*地区概率P-值分别为0.254,0.313,0.000。
如果显著性水平α为0.05,由于F日期、,F地区大于显著性水平α,所以不应拒绝原假设,不同地区和不同日期对该商品没有显著性影响。
spss多因素方差分析报告例子
作业8:多因素方差分析1,data0806-height是从三个样方中测量的八种草的高度,问高度在三个取样地点,以及八种草之间有无差异?具体怎么差异的?打开spss软件,打开data0806-height数据,点击Analyze->General Linear Model->Univariate打开:把plot和species送入Fixed Factor(s),把height送入Dependent Variable,点击Model打开:选择Full factorial,Type III Sum of squares,Include intercept in model(即全部默认选项),点击Continue回到Univariate主对话框,对其他选项卡不做任何选择,结果输出:因无法计算MM M rror,即无法分开MM intercept 和MM error,无法检测interaction 的影响,无法进行方差分析,重新Analyze->General Linear Model->Univariate打开:选择好Dependent Variable和Fixed Factor(s),点击Model打开:点击Custom,把主效应变量species和plot送入Model框,点击Continue回到Univariate 主对话框,点击Plots:把date送入Horizontal Axis,把depth送入Separate Lines,点击Add,点击Continue 回到Univariate对话框,点击Options:把OVERALL,species, plot送入Display Means for框,选择Compare main effects,Bonferroni,点击Continue回到Univariate对话框,输出结果:可以看到:SS species=33.165,df species=7,MS species=4.738;SS plot=33.165,df plot=7,MS plot=4.738;SS error=21.472,df error=14,MS error=1.534;Fspecies=3.089,p=0.034<0.05;Fplot=12.130,p=0.005<0.01;所以故认为在5%的置信水平上,不同样地,不同物种之间的草高度是存在差异的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
体育统计与SPSS读书笔记(八)—多因素方差分析(1)具有两个或两个以上因素的方差分析称为多因素方差分析。
多因素是我们在试验中会经常遇到的,比如我们前面说的单因素方差分析的时候,如果做试验的不是一个年级,而是多个年纪,那就成了双因素了:不同教学方法的班级,不同年级。
如果再加上性别上的因素,那就成了三因素了。
如果我们把实验前和试验后的数据用一个时间的变量来表示,那又多了一个时间的因素。
如果每个年级都是不同的老师来上,那又多了一个老师的因素,等等等等,所以我们在设计试验的时候都要进行充分考虑,并确定自己只研究哪些因素。
下面用例子的形式来说说多因素方差分析的运用。
还是用前面说单因素的例子,前面的例子说了只在五年级抽三个班进行不同教学方法的试验,现在我们还要在初二和高二各抽三个班进行不同教学方法的试验。
形成年级和不同教学法班级双因素。
分析:1.根据实验方案我们划出双因素分析的表格,可以看出每个单元格都是有重复数据(也就是不只一个数据),年级不同教学方法的班级定性班定量班定性定量班五年级(班级每个人)(班级每个人)(班级每个人)初中二年级(班级每个人)(班级每个人)(班级每个人)高中二年级(班级每个人)(班级每个人)(班级每个人)2.因为有重复数据,所以存在在数据交互效应的可能。
我们来看看交效应的含义:如果在A因素的不同水平上,B因素对因变量的影响不同,则说明A、B两因素间存在交互作用。
交互作用是多因素实验分析的一个非常重要的内容。
如因素间存在交互作用而又被忽视,则常会掩盖因素的主效应的显著性,另一方面,如果对因变量Y,因素A与B之间存在交互作用,则已说明这两个因素都Y对有影响,而不管其主效应是否具有显著性。
在统计模型中考虑交互作用,是系统论思想在统计方法中的反映。
在大多数场合,交互作用的信息比主效应的信息更为有用。
根据上面的判断。
根据上面的说法,我也无法判断是否有交互作用,不像身高和体重那么直接。
这里假设他们之间有交互作用。
根据上面的分析,可以把实验当成3*3的析因实验设计模式。
下面是SPSS的分析步骤。
SPSS步骤:1.输入数据。
2.先对前测数据进行检验。
执行“分析——〉一般线形模型——〉一元多因素方差分析”,弹出对话框。
因变量:为我们要分析的变量:选择“前测平均”;固定因子和随机因子:这是因子的两个分类。
固定因素指的是该因素在样本中所有可能的水平都出现了,换言之,该因素所有可能的水平就这几种。
随机因素是指该样本所有可能的取值没有都出现或不可能都出现。
根据上面的理解,不同教学方法的班级应该放在固定因子,而年级应该放在随机因子(因为我是要分析不同年级,而不是只针对五年级、初二和高二,所以年级在这里具有随机性)。
协方差:用于选择协变量,如果在一个实验中,因变量是Y,存在另一连续变量X, X不能被实验者控制,但可以随着一起被观察到,X对Y有影响,而且其关系是线性的,则称为协变量。
关于协方差分析后面将会讲。
WLS加权:用于选入加权最小二乘法的权重系数。
(我也不理解,反正也用不到,可以不用去理解)这个窗口我们了解后,点“模型”按钮,弹出对话框:模型我们选择“自定义”,选中后就会发现中间的“建立条件”变为可选,”I NTERACTION”为交互效应,只有选择这个选项才可以产生交互效应因子。
“M AIN EFFECTS”主效应。
如果选择这个,那么模型里就只能选择“班级”和“年级”这两个主效应。
A LL 2-WAY,A LL 3-WAY等,二阶效应、三阶效应。
平方和也有几个选项,只要默认的TYPE III就可以了。
这里的操作是:由于我们是检验期初是否有差异,看是否实验前所有样本的条件都相同,还没进行实验,所以我们不用检查交互,只需要检验主效应就行。
在“建立条件”里选择”M AIN EFFECTS”,然后选中左边的“班级”和“年级”变量。
至于“对比”对话框,目前我们不会怎么去用他,可以不必去理解。
这里什么都不选。
下面看“画图”对话框,见下面的图。
对于这个划图有没有用我也不太清楚,不过看学生们在用那就拿出来讲讲。
左上的窗口为“因子”,水平坐标轴选择“年级”变量,分隔线选择“班级”表示按不同水平的班级分层做出均数直线。
选择好后在下面点“增加”按钮。
“两两比较”对话框,这个我们做单因素的时候也做过了。
就是在检验出现显著差异的时候,就需要进行两两比较,这里就是选择用什么样的方法进行两两比较。
一般用LSD法(可以理解为每个实验对象都与对照对象进行检验)或S-N-K法(两两互相比较)。
根据自己的喜欢看的结果来选择。
这里我们先不做两两比较。
“保存”对话框,就是将模型拟合时产生的中间结果或参数保存为新变量供继续分析时用。
我们估计也用不到这么高深的东西,所以这里也不详细介绍。
只把汉化的窗口显示出来给大家看看。
“选项”对话框,主要用于一些附件的选项,这里我们也没什么要选的,对话框见下图:SPSS中多因素方差分析一、概念多因素方差分析是用来研究两个及两个以上的控制变量是否对观察变量产生显著影响的分析方法。
多因素方差分析不仅能分析多个因素对观测变量的影响,而且能分析多个控制因素的交互作用是否会对观测变量的分布产生影响,进而最终找到利于观测变量的最优组合。
多因素方差分析的基本原理就是通过检验两个或多个样本均值间是否存在显著差异来得出结论。
在SPPSS中,多因素方差分析是利用“一般线性模型”模块的“单变量”过程来完成的。
二、实例下面来详细说说单变量多因素方差分析在具体问题的运用:研究目的:超市中某商品的销量与摆放位置和超市规模关系研究方法:按照超市规模选择大、中、小三家超市,在每家超市中随机选A货架1(货架阳面第一位)、B端架、C堆头、D货架2(货架阳面第二位)各两个位置,记录其统一周期商品的销售量,然后对其做单变量多因素方差分析。
调研数据:超市规模摆放位置A B C D大型70 78 75 82 82 89 71 75 中型57 65 69 78 73 80 60 57 小型45 50 56 63 65 71 48 53 在SPPS下的操作步骤如下:1. 建立数据文件2. 选入变量及参数设置依次单击菜单“分析→一般线性模型→单变量”命令,打开“单变量方差分析”如图:将左侧变量列表框中“销售量”选入“因变量”列表框,“超市规模”和“摆放位置”选入“固定因子”列表框如图:单击“模型”按钮,打开“单变量:模型”对话框,“指定模型”选项组选择“设定”,将“因子与协变量”列表框中的变量选入到“模型”列表框中,“平方和”选项组选择“类型Ⅲ”,“构建项”类型选择“主效应”。
如图:单击“对比”按钮,打开“单变量:对比”对话框,对比的方法都改成简单,如图:单击“绘制”按钮,打开“单变量:轮廓图”对话框,将“因子”列表框的两个变量分别移动到“水平轴”窗口,单击“添加”按钮,将其选入到“图”列表框,如图:单击“两两比较”按钮,打开“单变量:观测均值的两两比较”对话框,将“因子”列表框中的变量选入到“两两比较检验”列表框;“假定方差齐性”选项组选择“S-N-K”,如图:单击“选项按钮”打开“单变量:选项”对话框,在输出选项组选择“方差齐性检验”,如图:到这里就设置完毕,单击确定按钮,执行单变量方差分析,结果如下:主体间因子N超市规模大型8 小型8 中型8摆放位置A 6B 6C 6D 6变量“超市规模”有三个水平,即大型、中型和小型,每个水平有8个个案;变量“摆放位置”有4个水平,即A、B、C和D,每个水平有6个个案。
主体间效应的检验因变量:销售量源III 型平方和DF均方 F S IG.校正模型2930.417A 5 586.083 30.409 .000截距108272.667 1 108272.6675617.799 .000超市规模1828.083 2 914.042 47.426 .000摆放位置1102.333 3 367.444 19.065 .000误差346.917 18 19.273总计111550.0024校正的总计3277.333 23A.R 方=.894(调整R 方=.865)从表中可以看出,同种商品不同规模和不同摆放位置的“销售量”的检验统计量F的观测值为30.409,检验的概率值为0,小于0.05,拒绝零假设,可以认为同种商品在不同规模超市和不同摆放位置的情况下,销售量存在显著差异。
销售量S TUDENT-N EWMAN-K EULSA,,B超市规模N子集1 2 3小型8 56.38中型8 67.38大型8 77.75S IG. 1.000 1.000 1.000已显示同类子集中的组均值。
基于观测到的均值。
误差项为均值方(错误)=19.273。
A. 使用调和均值样本大小=8.000。
B.A LPHA =.05。
从表中可以看出,超市规模越大,相应的销量也就越高。
销售量S TUDENT-N EWMAN-K EULSA,,B摆放位置N子集1 2 3D 6 60.67A 6 60.83B 6 70.50C 6 76.67S IG. .948 1.000 1.000已显示同类子集中的组均值。
基于观测到的均值。
误差项为均值方(错误)=19.273。
A. 使用调和均值样本大小=6.000。
B.A LPHA =.05。
从上面表中可以看出C位置销量>B位置销量>A位置销量>B位置销量,也就是说堆头位置销量>端架位置销量>货架阳面第一位>货架阳面第二位,这也就是为什么超市里的堆头、端架向来都是各供应商争抢阵地。
总结:同种商品在不同规模超市和不同摆放位置的情况下,销售量存在显著差异,并且堆头位置销量>端架位置销量>货架阳面第一位>货架阳面第二位。