人教新课标版数学高二必修5(R-B版)过关测试 第二章 数列

合集下载

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷

高中数学(人教版)必修五第二章数列综合测试卷本试卷满分150分,其中选择题共75分,填空题共25分,解答题共50分。

试卷难度:0.63一.选择题(共15小题,满分75分,每小题5分)1.(5分)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.82.(5分)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏3.(5分)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.1104.(5分)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题5.(5分)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是由关系式a n+1()A.B.C.D.6.(5分)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.7.(5分)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定8.(5分)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.9.(5分)设△A n B n C n的三边长分别是a n,b n,c n,△A n B n C n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列10.(5分)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺11.(5分)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.5412.(5分)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱13.(5分)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣14.(5分)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.915.(5分)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0二.填空题(共5小题,满分25分,每小题5分)16.(5分)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=.17.(5分)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.18.(5分)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n },则此数列的项数为.19.(5分)已知无穷数列{a n },a 1=1,a 2=2,对任意n ∈N *,有a n +2=a n ,数列{b n }满足b n +1﹣b n =a n (n ∈N *),若数列中的任意一项都在该数列中重复出现无数次,则满足要求的b 1的值为.20.(5分)设数列{a n }的通项公式为a n =n 2+bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为.三.解答题(共5小题,满分50分,每小题10分)21.(10分)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.22.(10分)设{a n }和{b n }是两个等差数列,记c n =max {b 1﹣a 1n ,b 2﹣a 2n ,…,b n ﹣a n n }(n=1,2,3,…),其中max {x 1,x 2,…,x s }表示x 1,x 2,…,x s 这s 个数中最大的数.(1)若a n =n ,b n =2n ﹣1,求c 1,c 2,c 3的值,并证明{c n }是等差数列;(2)证明:或者对任意正数M ,存在正整数m ,当n ≥m 时,>M ;或者存在正整数m ,使得c m ,c m +1,c m +2,…是等差数列.23.(10分)已知等差数列{a n }和等比数列{b n }满足a 1=b 1=1,a 2+a 4=10,b 2b 4=a 5. (Ⅰ)求{a n }的通项公式;(Ⅱ)求和:b 1+b 3+b 5+…+b 2n ﹣1.24.(10分)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=﹣6.(1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列.25.(10分)已知{x n }是各项均为正数的等比数列,且x 1+x 2=3,x 3﹣x 2=2. (Ⅰ)求数列{x n }的通项公式;(Ⅱ)如图,在平面直角坐标系xOy 中,依次连接点P 1(x 1,1),P 2(x 2,2)…P n +1(x n +1,n +1)得到折线P 1 P 2…P n +1,求由该折线与直线y=0,x=x 1,x=x n +1所围成的区域的面积T n.高中数学(人教版)必修五第二章数列综合测试卷参考答案与试题解析一.选择题(共15小题,满分75分,每小题5分)1.(5分)(2017•新课标Ⅰ)记S n为等差数列{a n}的前n项和.若a4+a5=24,S6=48,则{a n}的公差为()A.1B.2C.4D.8【考点】85:等差数列的前n项和;84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】利用等差数列通项公式及前n项和公式列出方程组,求出首项和公差,由此能求出{a n}的公差.【解答】解:∵S n为等差数列{a n}的前n项和,a4+a5=24,S6=48,∴,解得a1=﹣2,d=4,∴{a n}的公差为4.故选:C.【点评】本题考查等差数列的面公式的求法及应用,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.2.(5分)(2017•新课标Ⅱ)我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯()A.1盏B.3盏C.5盏D.9盏【考点】89:等比数列的前n项和;88:等比数列的通项公式.【专题】11 :计算题;34 :方程思想;54 :等差数列与等比数列.【分析】设这个塔顶层有a盏灯,由题意和等比数列的定义可得:从塔顶层依次向下每层灯数是等比数列,结合条件和等比数列的前n项公式列出方程,求出a 的值.【解答】解:设这个塔顶层有a盏灯,∵宝塔一共有七层,每层悬挂的红灯数是上一层的2倍,∴从塔顶层依次向下每层灯数是以2为公比、a为首项的等比数列,又总共有灯381盏,∴381==127a,解得a=3,则这个塔顶层有3盏灯,故选B.【点评】本题考查了等比数列的定义,以及等比数列的前n项和公式的实际应用,属于基础题.3.(5分)(2017•新课标Ⅰ)几位大学生响应国家的创业号召,开发了一款应用软件.为激发大家学习数学的兴趣,他们推出了“解数学题获取软件激活码”的活动.这款软件的激活码为下面数学问题的答案:已知数列1,1,2,1,2,4,1,2,4,8,1,2,4,8,16,…,其中第一项是20,接下来的两项是20,21,再接下来的三项是20,21,22,依此类推.求满足如下条件的最小整数N:N>100且该数列的前N项和为2的整数幂.那么该款软件的激活码是()A.440B.330C.220D.110【考点】8E:数列的求和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】方法一:由数列的性质,求得数列{b n}的通项公式及前n项和,可知当N为时(n∈N+),数列{a n}的前N项和为数列{b n}的前n项和,即为2n ﹣n﹣2,容易得到N>100时,n≥14,分别判断,即可求得该款软件的激活码;方法二:由题意求得数列的每一项,及前n项和S n=2n+1﹣2﹣n,及项数,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,分别分别即可求得N的值.【解答】解:设该数列为{a n},设b n=+…+=2n﹣1,(n∈N+),则=a i,由题意可设数列{a n}的前N项和为S N,数列{b n}的前n项和为T n,则T n=21﹣1+22﹣1+…+2n﹣1=2n﹣n﹣2,),数列{a n}的前N项和为数列{b n}的前n项和,可知当N为时(n∈N+即为2n﹣n﹣2,容易得到N>100时,n≥14,A项,由=435,440=435+5,可知S440=T29+b5=230﹣29﹣2+25﹣1=230,故A 项符合题意.B项,仿上可知=325,可知S330=T25+b5=226﹣25﹣2+25﹣1=226+4,显然不为2的整数幂,故B项不符合题意.C项,仿上可知=210,可知S220=T20+b10=221﹣20﹣2+210﹣1=221+210﹣23,显然不为2的整数幂,故C项不符合题意.D项,仿上可知=105,可知S110=T14+b5=215﹣14﹣2+25﹣1=215+15,显然不为2的整数幂,故D项不符合题意.故选A.方法二:由题意可知:,,,…,根据等比数列前n项和公式,求得每项和分别为:21﹣1,22﹣1,23﹣1, (2)﹣1,每项含有的项数为:1,2,3,…,n,总共的项数为N=1+2+3+…+n=,所有项数的和为S n:21﹣1+22﹣1+23﹣1+…+2n﹣1=(21+22+23+…+2n)﹣n=﹣n=2n+1﹣2﹣n,由题意可知:2n+1为2的整数幂.只需将﹣2﹣n消去即可,则①1+2+(﹣2﹣n)=0,解得:n=1,总共有+2=3,不满足N>100,②1+2+4+(﹣2﹣n)=0,解得:n=5,总共有+3=18,不满足N>100,③1+2+4+8+(﹣2﹣n)=0,解得:n=13,总共有+4=95,不满足N>100,④1+2+4+8+16+(﹣2﹣n)=0,解得:n=29,总共有+5=440,满足N >100,∴该款软件的激活码440.故选A.【点评】本题考查数列的应用,等差数列与等比数列的前n项和,考查计算能力,属于难题.4.(5分)(2017•上海模拟)已知数列{a n}、{b n}、{c n},以下两个命题:①若{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,则{a n}、{b n}、{c n}都是递增数列;②若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列;下列判断正确的是()A.①②都是真命题B.①②都是假命题C.①是真命题,②是假命题D.①是假命题,②是真命题【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4O:定义法;5L :简易逻辑.【分析】对于①不妨设a n=2n,b n=3n、c n=sinn,满足{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但是不满足c n=sinn是递增数列,对于②根据等差数列的性质和定义即可判断.【解答】解:对于①不妨设a n=2n,b n=3n、c n=sinn,∴{a n+b n}、{b n+c n}、{a n+c n}都是递增数列,但c n=sinn不是递增数列,故为假命题,对于②{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,不妨设公差为分别为a,b,c,∴a n+b n﹣a n﹣1﹣b n﹣1=a,b n+c n﹣b n﹣1﹣c n﹣1=b,a n+c n﹣a n﹣1﹣c n﹣1=c,设{a n},{b n}、{c n}的公差为x,y,x,∴则x=,y=,z=,故若{a n+b n}、{b n+c n}、{a n+c n}都是等差数列,则{a n}、{b n}、{c n}都是等差数列,故为真命题,故选:D【点评】本题考查了等差数列的性质和定义,以及命题的真假,属于基础题.5.(5分)(2017•徐汇区校级模拟)一给定函数y=f(x)的图象在下列图中,并且对任意a1∈(0,1),由关系式a n+1=f(a n)得到的数列{a n}满足a n+1>a n,n∈N*,则该函数的图象是()A.B.C.D.【考点】81:数列的概念及简单表示法.【专题】31 :数形结合;51 :函数的性质及应用.=f(a n)得到的数列{a n}满足a n+1>a n(n∈N*),根据点与【分析】由关系式a n+1直线之间的位置关系,我们不难得到,f(x)的图象在y=x上方.逐一分析不难得到正确的答案.=f(a n)>a n知:f(x)的图象在y=x上方.【解答】解:由a n+1故选:A.【点评】本题考查了数列与函数的单调性、数形结合思想方法,考查了推理能力与计算能力,属于基础题.6.(5分)(2017•河东区二模)若数列{a n},{b n}的通项公式分别为a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,则实数a的取值范围是()A.B.[﹣1,1)C.[﹣2,1)D.【考点】82:数列的函数特性.【专题】32 :分类讨论;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】由a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,可得:(﹣1)n+2016•a<2+,对n分类讨论即可得出.【解答】解:a n=(﹣1)n+2016•a,b n=2+,且a n<b n,对任意n∈N*恒成立,∴(﹣1)n+2016•a<2+,n为偶数时:化为a<2﹣,则a<.n为奇数时:化为﹣a<2+,则a≥﹣2.则实数a的取值范围是.故选:D【点评】本题考查了数列通项公式、分类讨论方法、数列的单调性,考查了推理能力与计算能力,属于中档题.7.(5分)(2017•宝清县一模)数列{a n}是正项等比数列,{b n}是等差数列,且a6=b7,则有()A.a3+a9≤b4+b10B.a3+a9≥b4+b10C.a3+a9≠b4+b10D.a3+a9与b4+b10大小不确定【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列.【分析】由于{b n}是等差数列,可得b4+b10=2b7.已知a6=b7,于是b4+b10=2a6.由于数列{a n}是正项等比数列,可得a3+a9=≥=2a6.即可得出.【解答】解:∵{b n}是等差数列,∴b4+b10=2b7,∵a6=b7,∴b4+b10=2a6,∵数列{a n}是正项等比数列,∴a3+a9=≥=2a6,∴a3+a9≥b4+b10.【点评】本题考查了等差数列与等比数列的性质、基本不等式的性质,属于中档题.8.(5分)(2017•湖北模拟)已知数列{a n}满足:a1=1,a n+1=(n∈N*)若(n∈N*),b1=﹣λ,且数列{b n}是单调递增数列,则实数λ的取值范围是()A.B.λ<1C.D.【考点】82:数列的函数特性.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】根据数列的递推公式可得数列{+1}是等比数列,首项为+1=2,公=(n﹣2λ)•2n,根据数列的单调性即可求出λ的范围.比为2,再代值得到b n+1【解答】解:∵数列{a n}满足:a1=1,a n+1=(n∈N*),∴=+1,化为+1=+2∴数列{+1}是等比数列,首项为+1=2,公比为2,∴+1=2n,=(n﹣2λ)(+1)=(n﹣2λ)•2n,∴b n+1∵数列{b n}是单调递增数列,>b n,∴b n+1∴(n﹣2λ)•2n>(n﹣1﹣2λ)•2n﹣1,解得λ<1,但是当n=1时,b2>b1,∵b1=﹣λ,∴(1﹣2λ)•2>﹣λ,故选:A.【点评】本题考查了变形利用等比数列的通项公式的方法、单调递增数列,考查了推理能力与计算能力,属于中档题.9.(5分)(2017•海淀区校级模拟)设△A n B n C n的三边长分别是a n,b n,c n,△A nB nC n的面积为S n,n∈N*,若b1>c1,b1+c1=2a1,b n+1=,则()A.{S n}为递减数列B.{S n}为递增数列C.{S2n﹣1}为递增数列,{S2n}为递减数列D.{S2n﹣1}为递减数列,{S2n}为递增数列【考点】82:数列的函数特性.【专题】54 :等差数列与等比数列;58 :解三角形;59 :不等式的解法及应用.【分析】由a n=a n可知△A n B n C n的边B n C n为定值a1,由b n+1+c n+1﹣2a1=(b n+c n+1﹣2a n),b1+c1=2a1得b n+c n=2a1,则在△A n B n C n中边长B n C n=a1为定值,另两边A n C n、A n B n的长度之和b n+c n=2a1为定值,由此可知顶点A n在以B n、C n为焦点的椭圆上,根据b n﹣c n+1=(c n﹣b n),得b n﹣c n=,可知n→+∞时b n→c n,+1据此可判断△A n B n C n的边B n C n的高h n随着n的增大而增大,再由三角形面积公式可得到答案.【解答】解:b1=2a1﹣c1且b1>c1,∴2a1﹣c1>c1,∴a1>c1,∴b1﹣a1=2a1﹣c1﹣a1=a1﹣c1>0,∴b1>a1>c1,又b1﹣c1<a1,∴2a1﹣c1﹣c1<a1,∴2c1>a1,∴c1,+c n+1=+a n,∴b n+1+c n+1﹣2a n=(b n+c n﹣2a n),由题意,b n+1∴b n+c n﹣2a n=0,∴b n+c n=2a n=2a1,∴b n+c n=2a1,﹣c n+1=,又由题意,b n+1∴b n﹣(2a1﹣b n+1)==a1﹣b n,b n+1﹣a1=(a1﹣b n)=(b1 +1﹣a1).∴b n=a1+(b1﹣a1),c n=2a1﹣b n=a1﹣(b1﹣a1),=•=单调递增.可得{S n}单调递增.故选:B.【点评】本题主要考查由数列递推式求数列通项、三角形面积海伦公式,综合考查学生分析解决问题的能力,有较高的思维抽象度,属于难题.10.(5分)(2017•汉中二模)《张丘建算经》是我国南北朝时期的一部重要数学著作,书中系统的介绍了等差数列,同类结果在三百多年后的印度才首次出现.书中有这样一个问题,大意为:某女子善于织布,后一天比前一天织的快,而且每天增加的数量相同,已知第一天织布5尺,一个月(按30天计算)总共织布390尺,问每天增加的数量为多少尺?该问题的答案为()A.尺B.尺C.尺D.尺【考点】84:等差数列的通项公式.【专题】11 :计算题;34 :方程思想;4O:定义法;54 :等差数列与等比数列.【分析】由题意,该女子从第一天起,每天所织的布的长度成等差数列,其公差为d,由等差数列的前n项和公式能求出公差.【解答】解:由题意,该女子从第一天起,每天所织的布的长度成等差数列,记为:a1,a2,a3,…,a n,其公差为d,则a1=5,S30=390,∴=390,∴d=.故选:B.【点评】本题查等差数列的公差的求法,是基础题,解题时要认真审题,注意等差数列的性质的合理运用.11.(5分)(2017•徐水县模拟)已知数列{a n}为等差数列,S n其前n项和,且a2=3a4﹣6,则S9等于()A.25B.27C.50D.54【考点】84:等差数列的通项公式.【专题】11 :计算题.【分析】由题意得a2=3a4﹣6,所以得a5=3.所以由等差数列的性质得S9=9a5=27.【解答】解:设数列{a n}的首项为a1,公差为d,因为a2=3a4﹣6,所以a1+d=3(a1+3d)﹣6,所以a5=3.所以S9=9a5=27.故选B.【点评】解决此类题目的关键是熟悉等差数列的性质并且灵活利用性质解题.12.(5分)(2017•安徽模拟)《九章算术》是我国古代的数字名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各德几何.”其意思为“已知A、B、C、D、E五人分5钱,A、B两人所得与C、D、E三人所得相同,且A、B、C、D、E每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E所得为()A.钱B.钱C.钱D.钱【考点】84:等差数列的通项公式.【专题】11 :计算题;21 :阅读型;33 :函数思想;51 :函数的性质及应用;54 :等差数列与等比数列.【分析】设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,列出方程组,能求出E所得.【解答】解:由题意:设A=a﹣4d,B=a﹣3d,C=a﹣2d,D=a﹣d,E=a,则,解得a=,故E所得为钱.故选:A.【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质、等差数列的性质的合理运用.13.(5分)(2017•南开区模拟)已知等差数列{a n}的前n项和为s n,且S2=10,S5=55,则过点P(n,a n),Q(n+2,a n+2)(n∈N*)的直线的斜率为()A.4B.C.﹣4D.﹣【考点】84:等差数列的通项公式.【专题】54 :等差数列与等比数列.【分析】设出等差数列的首项和公差,由已知列式求得首项和公差,代入两点求直线的斜率公式得答案.【解答】解:设等差数列{a n}的首项为a1,公差为d,由S2=10,S5=55,得,解得:.∴过点P(n,a n),Q(n+2,a n+2)的直线的斜率为k=.故选:A.【点评】本题考查等差数列的通项公式,考查等差数列的前n项和,训练了两点求直线的斜率公式,是基础题.14.(5分)(2017•枣阳市校级模拟)已知等差数列{a n}的前n项和为S n,且S3=9,a2a4=21,数列{b n}满足,若,则n的最小值为()A.6B.7C.8D.9【考点】84:等差数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】设等差数列{a n}的公差为d,由S3=9,a2a4=21,可得3a1+d=9,(a1+d)(a1+3d)=21,可得a n.由数列{b n}满足,利用递推关系可得:=.对n取值即可得出.【解答】解:设等差数列{a n}的公差为d,∵S3=9,a2a4=21,∴3a1+d=9,(a1+d)(a1+3d)=21,联立解得:a1=1,d=2.∴a n=1+2(n﹣1)=2n﹣1.∵数列{b n}满足,∴n=1时,=1﹣,解得b1=.n≥2时,+…+=1﹣,∴=.∴b n=.若,则<.n=7时,>.n=8时,<.因此:,则n的最小值为8.故选:C.【点评】本题考查了等差数列通项公式与求和公式、数列递推关系及其单调性,考查了推理能力与计算能力,属于中档题.15.(5分)(2017•安徽一模)已知函数f(x)的图象关于x=﹣1对称,且f(x)在(﹣1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则{a n}的前100项的和为()A.﹣200B.﹣100C.﹣50D.0【考点】84:等差数列的通项公式.【专题】11 :计算题;35 :转化思想;4O:定义法;54 :等差数列与等比数列.【分析】由函数图象关于x=﹣1对称,由题意可得a50+a51=﹣2,运用等差数列的性质和求和公式,计算即可得到所求和.【解答】解:函数f(x)的图象关于x=﹣1对称,数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),可得a50+a51=﹣2,又{a n}是等差数列,所以a1+a100=a50+a51=﹣2,则{a n}的前100项的和为=﹣100故选:B.【点评】本题考查函数的对称性及应用,考查等差数列的性质,以及求和公式,考查运算能力,属于中档题.二.填空题(共5小题,满分25分,每小题5分)16.(5分)(2017•江苏)等比数列{a n}的各项均为实数,其前n项为S n,已知S3=,S6=,则a8=32.【考点】88:等比数列的通项公式.【专题】34 :方程思想;35 :转化思想;54 :等差数列与等比数列.【分析】设等比数列{a n}的公比为q≠1,S3=,S6=,可得=,=,联立解出即可得出.【解答】解:设等比数列{a n}的公比为q≠1,∵S3=,S6=,∴=,=,解得a1=,q=2.则a8==32.故答案为:32.【点评】本题考查了等比数列的通项公式与求和公式,考查了推理能力与计算能力,属于中档题.17.(5分)(2017•新课标Ⅱ)等差数列{a n}的前n项和为S n,a3=3,S4=10,则=.【考点】8E:数列的求和;85:等差数列的前n项和.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】利用已知条件求出等差数列的前n项和,然后化简所求的表达式,求解即可.【解答】解:等差数列{a n}的前n项和为S n,a3=3,S4=10,S4=2(a2+a3)=10,可得a2=2,数列的首项为1,公差为1,S n=,=,则=2[1﹣++…+]=2(1﹣)=.故答案为:.【点评】本题考查等差数列的求和,裂项消项法求和的应用,考查计算能力.18.(5分)(2017•汕头三模)“中国剩余定理”又称“孙子定理”.1852年英国来华传教伟烈亚利将《孙子算经》中“物不知数”问题的解法传至欧洲1874年,英国数学家马西森指出此法符合1801年由高斯得出的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将2至2017这2016个数中能被3除余1且被5除余1的数按由小到大的顺序排成一列,构成数列{a n},则此数列的项数为134.【考点】81:数列的概念及简单表示法.【专题】11 :计算题;35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】由能被3除余1且被5除余1的数就是能被15整除余1的数,运用等差数列通项公式,以及解不等式即可得到所求项数.【解答】解:由能被3除余1且被5除余1的数就是能被15整除余1的数,故a n=15n﹣14.由a n=15n﹣14≤2017得n≤135,∵当n=1时,符合要求,但是该数列是从2开始的,故此数列的项数为135﹣1=134.故答案为:134【点评】本题考查数列模型在实际问题中的应用,考查等差数列的通项公式的运用,考查运算能力,属于基础题19.(5分)(2017•闵行区一模)已知无穷数列{a n},a1=1,a2=2,对任意n∈N*,=a n,数列{b n}满足b n+1﹣b n=a n(n∈N*),若数列中的任意一项都在有a n+2该数列中重复出现无数次,则满足要求的b1的值为2.【考点】81:数列的概念及简单表示法.【专题】35 :转化思想;48 :分析法;5M :推理和证明.【分析】依题意数列{a n}是周期数咧,则可写出数列{a n}的通项,由数列{b n}满足b n﹣b n=a n(n∈N*),可推出b n+1﹣b n=a n=⇒,,+1,,…要使数列中的任意一项都在该数列中重复出现无数次,则b2=b6=b10=…=b2n﹣1,b4=b8=b12=…=b4n,可得b8=b4=3即可,【解答】解:a1=1,a2=2,对任意n∈N*,有a n+2=a n,∴a3=a1=1,a4=a2=2,a5=a3=a1=1,∴a n=﹣b n=a n=,∴b n+1﹣b2n+1=a2n+1=1,b2n+1﹣b2n=a2n=2,∴b2n+2﹣b2n=3,b2n+1﹣b2n﹣1=3∴b2n+2∴b3﹣b1=b5﹣b3=…=b2n+1﹣b2n﹣1=3,b4﹣b2=b6﹣b4=b8﹣b6=…=b2n﹣b2n﹣2=3,b2﹣b1=1,,,,,,,…,=b4n﹣2∵数列中的任意一项都在该数列中重复出现无数次,∴b2=b6=b10=…=b4n﹣2,b4=b8=b12=…=b4n,解得b8=b4=3,b2=3,∵b2﹣b1=1,∴b1=2,故答案为:2【点评】本题考查了数列的推理与证明,属于难题.20.(5分)(2017•青浦区一模)设数列{a n}的通项公式为a n=n2+bn,若数列{a n}是单调递增数列,则实数b的取值范围为(﹣3,+∞).【考点】82:数列的函数特性.【专题】35 :转化思想;54 :等差数列与等比数列;59 :不等式的解法及应用.【分析】数列{a n}是单调递增数列,可得∀n∈N*,a n+1>a n,化简整理,再利用数列的单调性即可得出.【解答】解:∵数列{a n}是单调递增数列,∴∀n∈N*,a n>a n,+1(n+1)2+b(n+1)>n2+bn,化为:b>﹣(2n+1),∵数列{﹣(2n+1)}是单调递减数列,∴n=1,﹣(2n+1)取得最大值﹣3,∴b>﹣3.即实数b的取值范围为(﹣3,+∞).故答案为:(﹣3,+∞).【点评】本题考查了数列的单调性及其通项公式、不等式的解法,考查了推理能力与计算能力,属于中档题.三.解答题(共5小题,满分50分,每小题10分)21.(10分)(2017•江苏)对于给定的正整数k ,若数列{a n }满足:a n ﹣k +a n ﹣k +1+…+a n ﹣1+a n +1+…+a n +k ﹣1+a n +k =2ka n 对任意正整数n (n >k )总成立,则称数列{a n }是“P (k )数列”.(1)证明:等差数列{a n }是“P (3)数列”;(2)若数列{a n }既是“P (2)数列”,又是“P (3)数列”,证明:{a n }是等差数列.【考点】8B :数列的应用.【专题】23 :新定义;35 :转化思想;4R :转化法;54 :等差数列与等比数列.【分析】(1)由题意可知根据等差数列的性质,a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1)═2×3a n ,根据“P (k )数列”的定义,可得数列{a n }是“P (3)数列”;(2)由已知条件结合(1)中的结论,可得到{a n }从第3项起为等差数列,再通过判断a 2与a 3的关系和a 1与a 2的关系,可知{a n }为等差数列.【解答】解:(1)证明:设等差数列{a n }首项为a 1,公差为d ,则a n =a 1+(n ﹣1)d ,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3,=(a n ﹣3+a n +3)+(a n ﹣2+a n +2)+(a n ﹣1+a n +1),=2a n +2a n +2a n ,=2×3a n ,∴等差数列{a n }是“P (3)数列”;(2)证明:当n ≥4时,因为数列{a n }是P (3)数列,则a n ﹣3+a n ﹣2+a n ﹣1+a n +1+a n +2+a n +3=6a n ,①,因为数列{a n }是“P (2)数列”,所以a n ﹣3+a n ﹣3+a n +a n +1=4a n ﹣1,②,a n ﹣1+a n +a n +2+a n +3=4a n +1,③,②+③﹣①,得2a n =4a n ﹣1+4a n +1﹣6a n ,即2a n =a n ﹣1+a n +1,(n ≥4),因此n ≥4从第3项起为等差数列,设公差为d ,注意到a 2+a 3+a 5+a 6=4a 4, 所以a 2=4a 4﹣a 3﹣a 5﹣a 6=4(a 3+d )﹣a 3﹣(a 3+2d )﹣(a 3+3d )=a 3﹣d ,因为a1+a2+a4+a5=4a3,所以a1=4a3﹣a2﹣a4﹣a5=4(a2+d)﹣a2﹣(a2+2d)﹣(a2+3d)=a2﹣d,也即前3项满足等差数列的通项公式,所以{a n}为等差数列.【点评】本题考查等差数列的性质,考查数列的新定义的性质,考查数列的运算,考查转化思想,属于中档题.22.(10分)(2017•北京)设{a n}和{b n}是两个等差数列,记c n=max{b1﹣a1n,b2﹣a2n,…,b n﹣a n n}(n=1,2,3,…),其中max{x1,x2,…,x s}表示x1,x2,…,x s这s个数中最大的数.(1)若a n=n,b n=2n﹣1,求c1,c2,c3的值,并证明{c n}是等差数列;(2)证明:或者对任意正数M,存在正整数m,当n≥m时,>M;或者存在正整数m,使得c m,c m+1,c m+2,…是等差数列.【考点】8B:数列的应用;8C:等差关系的确定.【专题】32 :分类讨论;4R:转化法;54 :等差数列与等比数列.【分析】(1)分别求得a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,代入即可求得c1,c2,c3;由(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,则c n=b1﹣na1=1﹣c n=﹣1对∀n∈N*均成立;﹣n,c n+1(2)由b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),分类讨论d1=0,d1>0,d1<0三种情况进行讨论根据等差数列的性质,即可求得使得c m,c m+1,c m+2,…是等差数列;设=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,分类讨论,采用放缩法即可求得因此对任意正数M,存在正整数m,使得当n≥m时,>M.【解答】解:(1)a1=1,a2=2,a3=3,b1=1,b2=3,b3=5,当n=1时,c1=max{b1﹣a1}=max{0}=0,当n=2时,c2=max{b1﹣2a1,b2﹣2a2}=max{﹣1,﹣1}=﹣1,当n=3时,c3=max{b1﹣3a1,b2﹣3a2,b3﹣3a3}=max{﹣2,﹣3,﹣4}=﹣2,下面证明:对∀n∈N*,且n≥2,都有c n=b1﹣na1,当n∈N*,且2≤k≤n时,则(b k﹣na k)﹣(b1﹣na1),=[(2k﹣1)﹣nk]﹣1+n,=(2k﹣2)﹣n(k﹣1),=(k﹣1)(2﹣n),由k﹣1>0,且2﹣n≤0,则(b k﹣na k)﹣(b1﹣na1)≤0,则b1﹣na1≥b k﹣na k,因此,对∀n∈N*,且n≥2,c n=b1﹣na1=1﹣n,c n+1﹣c n=﹣1,∴c2﹣c1=﹣1,∴c n﹣c n=﹣1对∀n∈N*均成立,+1∴数列{c n}是等差数列;(2)证明:设数列{a n}和{b n}的公差分别为d1,d2,下面考虑的c n取值,由b1﹣a1n,b2﹣a2n,…,b n﹣a n n,考虑其中任意b i﹣a i n,(i∈N*,且1≤i≤n),则b i﹣a i n=[b1+(i﹣1)d1]﹣[a1+(i﹣1)d2]×n,=(b1﹣a1n)+(i﹣1)(d2﹣d1×n),下面分d1=0,d1>0,d1<0三种情况进行讨论,①若d1=0,则b i﹣a i n═(b1﹣a1n)+(i﹣1)d2,当若d2≤0,则(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)d2≤0,则对于给定的正整数n而言,c n=b1﹣a1n,此时c n+1﹣c n=﹣a1,∴数列{c n}是等差数列;当d2>0,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣n)d2>0,则对于给定的正整数n而言,c n=b n﹣a n n=b n﹣a1n,﹣c n=d2﹣a1,此时c n+1∴数列{c n}是等差数列;此时取m=1,则c1,c2,…,是等差数列,命题成立;②若d1>0,则此时﹣d1n+d2为一个关于n的一次项系数为负数的一次函数,故必存在m∈N*,使得n≥m时,﹣d1n+d2<0,则当n≥m时,(b i﹣a i n)﹣(b1﹣a1n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i≤n),因此当n≥m时,c n=b1﹣a1n,此时c n﹣c n=﹣a1,故数列{c n}从第m项开始为等差数列,命题成立;+1③若d1<0,此时﹣d1n+d2为一个关于n的一次项系数为正数的一次函数,故必存在s∈N*,使得n≥s时,﹣d1n+d2>0,则当n≥s时,(b i﹣a i n)﹣(b n﹣a n n)=(i﹣1)(﹣d1n+d2)≤0,(i∈N*,1≤i ≤n),因此,当n≥s时,c n=b n﹣a n n,此时==﹣a n+,=﹣d2n+(d1﹣a1+d2)+,令﹣d1=A>0,d1﹣a1+d2=B,b1﹣d2=C,下面证明:=An+B+对任意正整数M,存在正整数m,使得n≥m,>M,若C≥0,取m=[+1],[x]表示不大于x的最大整数,当n≥m时,≥An+B≥Am+B=A[+1]+B>A•+B=M,此时命题成立;若C<0,取m=[]+1,当n≥m时,≥An+B+≥Am+B+C>A•+B+C≥M﹣C﹣B+B+C=M,此时命题成立,因此对任意正数M,存在正整数m,使得当n≥m时,>M;综合以上三种情况,命题得证.【点评】本题考查数列的综合应用,等差数列的性质,考查与不等式的综合应用,考查“放缩法”的应用,考查学生分析问题及解决问题的能力,考查分类讨论及转化思想,考查计算能力,属于难题.23.(10分)(2017•北京)已知等差数列{a n}和等比数列{b n}满足a1=b1=1,a2+a4=10,b2b4=a5.(Ⅰ)求{a n}的通项公式;(Ⅱ)求和:b1+b3+b5+…+b2n﹣1.【考点】8E:数列的求和;8M:等差数列与等比数列的综合.【专题】11 :计算题;35 :转化思想;49 :综合法;54 :等差数列与等比数列.【分析】(Ⅰ)利用已知条件求出等差数列的公差,然后求{a n}的通项公式;(Ⅱ)利用已知条件求出公比,然后求解数列的和即可.【解答】解:(Ⅰ)等差数列{a n},a1=1,a2+a4=10,可得:1+d+1+3d=10,解得d=2,所以{a n}的通项公式:a n=1+(n﹣1)×2=2n﹣1.(Ⅱ)由(Ⅰ)可得a5=a1+4d=9,等比数列{b n}满足b1=1,b2b4=9.可得b3=3,或﹣3(舍去)(等比数列奇数项符号相同).∴q2=3,}是等比数列,公比为3,首项为1.{b2n﹣1b1+b3+b5+…+b2n﹣1==.【点评】本题考查等差数列与等比数列的应用,数列求和以及通项公式的求解,考查计算能力.24.(10分)(2017•新课标Ⅰ)记S n为等比数列{a n}的前n项和.已知S2=2,S3=﹣6.(1)求{a n}的通项公式;(2)求S n,并判断S n+1,S n,S n+2是否成等差数列.【考点】8E:数列的求和;89:等比数列的前n项和.【专题】35 :转化思想;4R:转化法;54 :等差数列与等比数列.【分析】(1)由题意可知a3=S3﹣S2=﹣6﹣2=﹣8,a1==,a2==,由a1+a2=2,列方程即可求得q及a1,根据等比数列通项公式,即可求得{a n}的通项公式;(2)由(1)可知.利用等比数列前n项和公式,即可求得S n,分别求得S n+1,S n+2,显然S n+1+S n+2=2S n,则S n+1,S n,S n+2成等差数列.。

人教新课标版数学高二B版必修5单元检测 第二章 数列

人教新课标版数学高二B版必修5单元检测 第二章 数列

综合检测(二)第二章 数列(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(2013·郑州高二检测)数列-1,43,-95,167,…的一个通项公式是( )A .a n =(-1)n n 22n -1 B .a n =(-1)nn (n +1)2n -1 C .a n =(-1)n n 22n +1 D .a n =(-1)nn 32n -1 【解析】 观察各项知符号可用(-1)n 表示,各项绝对值的分母为1,3,5,7…,故可表示为2n -1,分子为1,4,9,16…可表示为n 2,故a n =(-1)nn 22n -1. 【答案】 A2.(2013·咸阳高二检测)已知等差数列{a n }中,a 5+a 9=2,则S 13=( )A .11B .12C .13D .不确定【解析】 S 13=13(a 1+a 13)2=13(a 5+a 9)2=13. 【答案】 C3.已知等差数列{a n }中,a 7+a 9=16,a 4=1,则a 12的值是( )A .15B .30C .31D .64【解析】 由a 7+a 9=16,得a 8=8,∴d =8-18-4=74,∴a 12=1+8×74=15.【答案】 A4.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A .81B .120C .168D .192 【解析】 ∵a 5=a 2q 3,∴q 3=a 5a 2=2439=27,∴q =3,∴a 1=3,∴S 4=3(1-34)1-3=120. 【答案】 B5.已知等比数列{a n }满足a 1=3,且4a 1,2a 2,a 3成等差数列,则a 3+a 4+a 5等于( )A .33B .84C .72D .189【解析】 设等比数列{a n }的公比为q ,∵4a 1,2a 2,a 3成等差数列,∴4a 2=4a 1+a 3,即4×3q =4×3+3q 2,∴q =2,∴a 3+a 4+a 5=a 1q 2+a 1q 3+a 1q 4=3(22+23+24)=84.【答案】 B6.(2013·合肥高二检测)若数列{a n }的通项公式是a n =(-1)n ·(3n -2),则a 1+a 2+…+a 10=( )A .15B .12C .-12D .-15【解析】 记b n =3n -2,则数列{b n }是以1为首项,3为公差的等差数列,所以a 1+a 2+…+a 9+a 10=(-b 1)+b 2+…+(-b 9)+b 10=(b 2-b 1)+(b 4-b 3)+…+(b 10-b 9)=5×3=15.故选A.【答案】 A7.已知数列{a n }满足a n +1=11-a n ,若a 1=12,则a 2 012等于( ) A.12B .2C .-1D .1【解析】 由a 1=12,a n +1=11-a n 得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…,因此a 2 012=a 3×670+2=a 2=2. 【答案】 B8.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则等于( ) A .1 033B .1 034C .2 057D .2 058【解析】 由已知可得a n =n +1,b n =2n -1,【答案】 A9.(2013·宜昌高二检测)已知数列{a n }中,a 1=1,前n 项和为S n ,且点P (a n ,a n +1)(n ∈N *)在直线x -y +1=0上,则1S 1+1S 2+1S 3+…+1S n等于( ) A.2n n +1 B.2n (n +1)C.n (n +1)2D.n 2(n +1)【解析】 由题意,a n -a n +1+1=0.∴a n +1-a n =1,∴{a n }为等差数列,且a 1=1,d =1,∴a n =1+(n -1)×1=n ,∴S n =n (n +1)2,∴1S n =2n (n +1)=2(1n -1n +1), ∴1S 1+1S 2+…+1S n =2(1-12+12-13+…+1n -1n +1)=2n n +1. 【答案】 A10.在数列{a n }中,若a 1=2,a n +1=a n +ln(1+1n ),则a n 等于( )A .2+ln nB .2+(n -1)ln nC .2+n ln nD .1+n【解析】 依题意可得a 2=a 1+ln(1+11),a 3=a 2+ln(1+12), …a n =a n -1+ln(1+1n -1), 则a n =a 1+ln =2+ln n .【答案】 A二、填空题(本大题共4小题,每小题5分,共20分,将答案填在题中的横线上)11.(2013·烟台高二检测)若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *), 则a 5=________.【解析】 由已知a n +1a n=2,∴{a n }为首项a 1=1,公比q =2的等比数列,∴a 5=a 1q 4=1×24=16.【答案】 1612.(2013·洛阳高二检测)首项为-24的等差数列从第10项起开始为正数,则公差d 的取值范围是________.【解析】 设a 1=-24,公差为d ,∴a 10=-24+9d >0且a 9=-24+8d ≤0,∴83<d ≤3.【答案】 (83,3(1-12)+(12-13)+…+(1n -1n +1)=-2n n +1. 所以数列{1b n }的前n 项和为-2n n +1. 18.(本小题满分14分)(2013·绵阳高二检测)设数列{a n }的前n 项和为S n ,若对于任意的正整数n 都有S n =2a n -3n .(1)设b n =a n +3,求证:数列{b n }是等比数列,并求出{a n }的通项公式;(2)求数列{na n }的前n 项和.【解】 (1)∵S n =2a n -3n 对于任意的正整数都成立,∴S n +1=2a n +1-3(n +1),两式相减,得S n +1-S n =2a n +1-3(n +1)-2a n +3n .∴a n +1=2a n +1-2a n -3,即a n +1=2a n +3,∴a n +1+3=2(a n +3),即b n +1b n =a n +1+3a n +3=2对一切正整数都成立. ∴数列{b n }是等比数列.由已知得S 1=2a 1-3,即a 1=2a 1-3,∴a 1=3,∴首项b 1=a 1+3=6,公比q =2,∴b n =6·2n -1.∴a n =6·2n -1-3=3·2n -3.(2)∵na n =3×n ·2n -3n , ∴S n =3(1·2+2·22+3·23+…+n ·2n )-3(1+2+3+…+n ), 2S n =3(1·22+2·23+3·24+…+n ·2n +1)-6(1+2+3+…+n ), -S n =3(2+22+23+…+2n )-3n ·2n +1+3(1+2+3+…+n )=3·2(2n -1)2-1-6n ·2n +3n (n +1)2, ∴S n =(6n -6)·2n+6-3n (n +1)2.。

人教课标版高中数学必修5第二章《数列》章末综合测试B卷

人教课标版高中数学必修5第二章《数列》章末综合测试B卷

第二章《数列》章末综合测试B 卷(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差d 为( )A .-2B .-3C .-4D .-52.若等比数列{a n }满足a n a n +1=16n ,则公比为( )A .2B .4C .8D .163.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20等于( )A .-1B .1C .3D .74.在等差数列{a n }中,前n 项和为S n ,S 10=90,a 5=8,则a 4=( )A .16B .12C .8D .65.在等比数列{a n }中,若a n >0,且a 2=1-a 1,a 4=9-a 3,则a 4+a 5的值为( )A .16B .81C .36D .276.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( )A .55 986只B .46 656只C .216只D .36只7.等差数列{a n }的首项为a 1,公差为d ,S n 为前n 项和,则数列{S n n}是( ) A .首项为a 1,公差为d 的等差数列B .首项为a 1,公比为d 的等比数列C .首项为a 1,公差为d 2的等差数列 D .首项为a 1,公比为d 2的等比数列 8.已知S n =1-2+3-4+…+(-1)n -1n ,则S 17+S 33+S 50等于( )A .0B .1C .-1D .29.已知{a n }为等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使得S n 达到最大值的n 是( )A .21B .20C .19D .1810.数列{a n }的通项公式a n =n cos n π2,其前n 项和为S n ,则S 2 012等于( ) A .1 006 B .2 012C .503D .0二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上) 11.2-1与2+1的等比中项是________.12.等比数列{a n }的前n 项和为S n ,已知S 1,2S 2,3S 3成等差数列,则数列{a n }的公比为________.13.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且a 4与2a 7的等差中项为54,则S 5等于________. 14.在数列{a n }和{b n }中,b n 是a n 和a n +1的等差中项,a 1=2且对任意n ∈N *都有3a n +1-a n =0,则数列{b n }的通项b n =________.15.某房地产开发商在销售一幢23层的商品楼之前按下列方法确定房价:由于首层与顶层均为复式结构,因此首层价格为a 1元/m 2,顶层由于景观好价格为a 2元/m 2,第二层价格为a 元/m 2,从第三层开始每层在前一层价格上加价a 100元/m 2,则该商品房各层的平均价格为________元/m 2.三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)数列{a n }的前n 项和记为S n ,点(n ,S n )在曲线f (x )=x 2-4x (x ∈N *)上.求数列{a n }的通项公式.17.(本小题满分10分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1.18.(本小题满分10分))等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求数列{a n }的公比q ;(2)若a 1-a 3=3,求S n .19.(本小题满分10分)已知数列{a n }的前n 项和为S n ,且a 1=1,a n +1=12S n (n =1,2,3,…). (1)求数列{a n }的通项公式;(2)当b n =log 32(3a n +1)时,求证:数列⎩⎨⎧⎭⎬⎫1b n b n +1的前n 项和T n =n 1+n .20.(本小题满分10分)甲、乙两超市同时开业,第一年的全年销售额为a 万元,由于经营方式不同,甲超市前n 年的总销售额为a 2(n 2-n +2)万元,乙超市第n 年的销售额比前一年销售额多a ⎝⎛⎭⎫23n -1万元.(1)求甲、乙两超市第n 年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?参考答案一、选择题1.解析:选C.设通项公式为a n =23+(n -1)d ,由题意列不等式组⎩⎪⎨⎪⎧23+(6-1)d >0,23+(7-1)d <0,解得-235<d <-236.∵d 是整数,∴d =-4. 2.解析:选B.由a n a n +1=16n ,知a 1a 2=16,a 2a 3=162,后式除以前式得q 2=16,∴q =±4.∵a 1a 2=a 21q =16>0,∴q >0,∴q =4.3.解析:选B.∵a 1+a 3+a 5=3a 3=105,∴a 3=35,∴a 2+a 4+a 6=3a 4=99,∴a 4=33,∴d =a 4-a 3=33-35=-2,∴a 20=a 3+17d =35+17×(-2)=1.4.解析:选D.设等差数列{a n }的首项为a 1,公差为d ,则⎩⎪⎨⎪⎧10a 1+10×92d =90,a 1+4d =8,解得⎩⎪⎨⎪⎧a 1=0,d =2. ∴a 4=a 1+3d =0+3×2=6.5.解析:选D.设等比数列{a n }的公比为q 且q >0,由已知得⎩⎪⎨⎪⎧a 1+a 1q =1a 1q 2+a 1q 3=9⇒q 2=9⇒q =3, 所以a 1=14, 所以a 4+a 5=14×33+14×34=33(3+1)4=27. 6.解析:选B.设第n 天所有的蜜蜂都归巢后共有a n 只蜜蜂,则有a n +1=ba n ,a 1=6,则{a n }是公比为6的等比数列,则a 6=a 1q 5=6×65=46 656.7.解析:选C.∵S n =na 1+n (n -1)2d , ∴S n n =a 1+(n -1)·d 2, ∴{S n n }是以a 1为首项,d 2为公差的等差数列. 8.解析:选B.S 17=1-2+3-4+…+17=-8+17=9,S 33=1-2+3-4+…+33=-16+33=17,S 50=1-2+3-4+…-50=-25,∴S 17+S 33+S 50=9+17-25=1.9.解析:选B.设等差数列{a n }的公差为d ,由a 1+a 3+a 5=105,a 2+a 4+a 6=99得,3d =-6,∴d =-2,∴3a 1+6d =105,∴a 1=39,∴a n =39+(n -1)×(-2)=41-2n .又∵a 20>0,a 21<0且d =-2<0,∴当n =20时,S n 最大.10.解析:选A.由题意知,a 1+a 2+a 3+a 4=2,a 5+a 6+a 7+a 8=2,…,a 4k +1+a 4k +2+a 4k +3+a 4k +4=2,k ∈N ,故S 2 012=503×2=1 006.二、填空题11.解析:设2-1与2+1的等比中项为G ,则G 2=(2-1)(2+1)=1,∴G =±1.答案:±112.解析:由题意,知4S 2=S 1+3S 3.①当q =1时,4×2a 1=a 1+3×3a 1.即8a 1=10a 1,a 1=0不符合题意,∴q ≠1;②当q ≠1时,应有4×a 1(1-q 2)1-q =a 1(1-q )1-q +3×a 1(1-q 3)1-q,化简得3q 2=q ,得q =13或q =0(舍去). 答案:1313.解析:设数列{a n }的公比为q ,则a 2·a 3=a 21·q 3=a 1·a 4=2a 1⇒a 4=2, a 4+2a 7=a 4+2a 4q 3=2+4q 3=2×54⇒q =12. 故a 1=a 4q 3=16,S 5=a 1(1-q 5)1-q=31. 答案:3114.解析:∵由3a n +1-a n =0可得a n +1a n =13(n ∈N *), ∴数列{a n }是公比为13的等比数列. 因此a n =2·⎝⎛⎭⎫13n -1.故b n =12(a n +a n +1) =12⎣⎡⎦⎤2·⎝⎛⎭⎫13n -1+2·⎝⎛⎭⎫13n=43⎝⎛⎭⎫13n -1=4·⎝⎛⎭⎫13n . 答案:4·⎝⎛⎭⎫13n15.解析:设第二层到第22层的价格构成数列{b n },则{b n }是等差数列,b 1=a ,公差d =a 100,共21项, 所以其和为S 21=21a +21×202·a 100=23.1a , 故平均价格为123(a 1+a 2+23.1a )元/m 2.答案:123(a 1+a 2+23.1a )三、解答题16.解:由点(n ,S n )在曲线f (x )=x 2-4x (x ∈N *)上知,S n =n 2-4n ,当n ≥2时a n =S n -S n -1=n 2-4n -[(n -1)2-4(n -1)]=2n -5;当n =1时,a 1=S 1=-3,满足上式;∴数列{a n }的通项公式为a n =2n -5.17.解:(1)设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明:因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =1-12n <1. 18.解:(1)依题意有2S 3=S 1+S 2;即a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0.又q ≠0.从而q =-12. (2)由(1)及已知可得a 1-a 1·(-12)2=3,得a 1=4, 从而S n =4[1-(-12)n ]1-(-12)=83[1-(-12)n ]. 19.解:(1)由已知⎩⎨⎧a n +1=12S n ,a n =12S n -1,(n ≥2), 得a n +1=32a n (n ≥2). ∴数列{a n }是以a 2为首项,以32为公比的等比数列. 又a 2=12S 1=12a 1=12, ∴a n =a 2×⎝⎛⎭⎫32n -2(n ≥2).∴a n =⎩⎪⎨⎪⎧1,n =1,12×⎝⎛⎭⎫32n -2,n ≥2. (2)证明:b n =log 32(3a n +1)=log 32⎣⎡⎦⎤32×⎝⎛⎭⎫32n -1=n . ∴1b n b n +1=1n (1+n )=1n -11+n , ∴T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=⎝⎛⎭⎫11-12+⎝⎛⎭⎫12-13+⎝⎛⎭⎫13-14+…+⎝⎛⎭⎫1n -11+n =1-11+n =n 1+n. 20.解:(1)设甲、乙两超市第n 年的销售额分别为a n ,b n .则有a 1=a ,当n ≥2时,a n =a 2(n 2-n +2)-a 2[(n -1)2-(n -1)+2] =(n -1)a ,∴a n =⎩⎪⎨⎪⎧a , n =1,(n -1)a , n ≥2. b n =b 1+(b 2-b 1)+(b 3-b 2)+…+(b n -b n -1)=⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a (n ∈N *). (2)易知b n <3a ,所以乙超市将被甲超市收购,由b n <12a n 得:⎣⎡⎦⎤3-2⎝⎛⎭⎫23n -1a <12(n -1)a . ∴n +4⎝⎛⎭⎫23n -1>7,∴n ≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.。

高中数学必修5(人教B版)第二章数列2.1知识点总结含同步练习题及答案

高中数学必修5(人教B版)第二章数列2.1知识点总结含同步练习题及答案

an+2 = an + an+2 + an+3 ,
an+2 = an + an+2 + an+3 ,
所以 an+3 = −an . (3)由(2)结论可知,an+6 = −an+3 = an ,即 an+6 = an ,所以数列{an }为以 6 为周期的 数列. 又a1 = a,a2 = b,a3 = b − a,a4 = −a,a5 = −b,a6 = a − b,所以 S6 = 0. 故S2010 = S335×6 = 0.
1

n2 n2 + 1
=
[(n
+
2n + 1 1)2 + 1](n2
+ 1)
>
0,
所以
an+1 > an (n ∈ N+ ),
因此数列{an }是递增数列.
在数列{an }中,an
=
(n
+ 1)(
10 11
n
)
(n

N+ ):
()
(1)求证:数列{an }先递增,后递减;
(2)求数列{an }的最大项. 证明:(1)因为 an = (n + 1)(
(2)a3 = a2 + a1 = 2 + 1 = 3,a4 = a3 + a2 = 3 + 2 = 5,a5 = a4 + a3 = 5 + 3 = 8,所以
该数列的前 5 项分别为 1, 2, 3, 5, 8.
2.观察法
描述: 观察法 观察法就是写出数列前面若干项进行观察,横向看各项之间的关系,纵向看各项与序数的联系, 寻找共同的构成规律,找出各项与项的序号 n 的函数关系,从而归纳出数列的通项公式的方 法,这样得到的数列的通项公式严格上来说需要进行证明.

(新课标)高中数学 第2章 数列基本知能检测 新人教B版必修5(2021年最新整理)

(新课标)高中数学 第2章 数列基本知能检测 新人教B版必修5(2021年最新整理)

(新课标)2017春高中数学第2章数列基本知能检测新人教B版必修5 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((新课标)2017春高中数学第2章数列基本知能检测新人教B版必修5)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(新课标)2017春高中数学第2章数列基本知能检测新人教B版必修5的全部内容。

2017春高中数学第2章数列基本知能检测新人教B版必修5(时间:120分钟满分150分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等差数列{a n}中,a3=-6,a7=a5+4,则a1等于错误!( A )A.-10 B.-2C.2 D.10[解析]设公差为d,∴a7-a5=2d=4,∴d=2,又a3=a1+2d,∴-6=a1+4,∴a1=-10。

2.在等比数列{a n}中,a4、a12是方程x2+3x+1=0的两根,则a8等于错误!( B )A.1 B.-1C.±1D.不能确定[解析]由题意得,a4+a12=-3<0,a·a12=1>0,∴a4〈0,a12<0。

4∴a8<0,又∵a错误!=a4·a12=1,∴a8=-1。

3.如果-4,a,b,c,-16成等比数列,那么导学号 27542545( B )A.b=8,ac=64 B.b=-8,ac=64C.b=8,ac=64 D.b=-8,ac=-64[解析]∵b2=(-4)×(-16)=64,b与首项-4同号,∴b=-8.4.已知等差数列{a n}的前n项和为S n,若S17=170,则a7+a9+a11的值为错误!( D ) A.10 B.20C.25 D.30[解析]∵S17=17a9=170,∴a9=10,∴a7+a9+a11=3a9=30.5.在等比数列{a n}中,a n<a n+1,且a2a11=6,a4+a9=5,则错误!等于错误!( B )A.6 B.错误!C.错误!D.错误![解析]∵a4·a9=a2a11=6,又∵a4+a9=5,且a n<a n+1,∴a4=2,a9=3,∴q5=错误!=错误!,又错误!=错误!=错误!。

人教新课标版数学高二-人教B版必修5学案 第二章 数列

人教新课标版数学高二-人教B版必修5学案 第二章 数列

1.数列的概念及表示方法(1)定义:按照一定顺序排列着的一列数.(2)表示方法:列表法、图象法、通项公式法和递推公式法.(3)分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为递增数列、递减数列、摆动数列和常数列. 2.求数列的通项(1)数列前n 项和S n 与通项a n 的关系:a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.(2)当已知数列{a n }中,满足a n +1-a n =f (n ),且f (1)+f (2)+…+f (n )可求,则可用累加法求数列的通项a n ,常利用恒等式a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1). (3)当已知数列{a n }中,满足a n +1a n=f (n ),且f (1)·f (2)·…·f (n )可求,则可用累积法求数列的通项a n ,常利用恒等式a n =a 1·a 2a 1·a 3a 2·…·a na n -1.(4)构造新数列法:对由递推公式给出的数列,经过变形后化归成等差数列或等比数列来求通项.(5)归纳、猜想、证明法.3.等差数列、等比数列的判断方法(1)定义法:a n +1-a n =d (常数)⇔{a n }是等差数列;a n +1a n =q (q 为常数,q ≠0)⇔{a n }是等比数列.(2)中项公式法:2a n +1=a n +a n +2⇔{a n }是等差数列;a 2n +1=a n ·a n +2(a n ≠0)⇔{a n }是等比数列. (3)通项公式法:a n =an +b (a ,b 是常数)⇔{a n }是等差数列;a n =c ·q n (c ,q 为非零常数)⇔{a n }是等比数列.(4)前n 项和公式法:S n =an 2+bn (a ,b 为常数,n ∈N +)⇔{a n }是等差数列;S n =aq n -a (a ,q 为常数,且a ≠0,q ≠0,q ≠1,n ∈N +)⇔{a n }是等比数列. 4.求数列的前n 项和的基本方法(1)公式法:利用等差数列或等比数列前n 项和S n 公式; (2)分组求和:把一个数列分成几个可以直接求和的数列.(3)裂项相消法:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(4)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和. (5)倒序相加:例如,等差数列前n 项和公式的推导.题型一 方程的思想解数列问题在等差数列和等比数列中,通项公式a n 和前n 项和公式S n 共涉及五个量:a 1,a n ,n ,d (或q ),S n ,其中首项a 1和公差d (或公比q )为基本量,“知三求二”是指将已知条件转换成关于a 1,a n ,n ,d (或q ),S n 的方程组,通过方程的思想解出需要的量.例1 设{a n }为等差数列,S n 为数列{a n }的前n 项和,已知S 7=21,S 15=-75,T n 为数列{S n n }的前n 项和,求T n 的最大值. 解 设等差数列{a n }的公差为d ,则 S n =na 1+12n (n -1)d .∵S 7=21,S 15=-75,∴⎩⎪⎨⎪⎧ 7a 1+21d =21,15a 1+105d =-75,即⎩⎪⎨⎪⎧a 1+3d =3,a 1+7d =-5,解得a 1=9,d =-2.∴S n =na 1+n (n -1)2d =9n -(n 2-n )=10n -n 2.则S nn =10-n .∵S n +1n +1-S n n=-1, ∴数列{S nn }是以9为首项,公差为-1的等差数列.则T n =n ·[9+(10-n )]2=-12n 2+192n=12(n -192)2+3618. ∵n ∈N +,∴当n =9,或n =10时,T n 有最大值45.跟踪演练1 记等差数列{a n }的前n 项和为S n ,设S 3=12,且2a 1,a 2,a 3+1成等比数列,求S n .解 设数列{a n }的公差为d ,依题设有⎩⎪⎨⎪⎧2a 1(a 3+1)=a 22,a 1+a 2+a 3=12,即⎩⎪⎨⎪⎧ a 21+2a 1d -d 2+2a 1=0,a 1+d =4.解得⎩⎪⎨⎪⎧a 1=1,d =3或⎩⎪⎨⎪⎧a 1=8,d =-4.因此S n =12n (3n -1)或S n =2n (5-n ).题型二 转化与化归思想求数列通项由递推公式求通项公式,要求掌握的方法有两种,一种求法是先找出数列的前几项,通过观察、归纳猜想出通项,然后证明;另一种是通过变形转化为等差数列或等比数列,再采用公式求出.例2 在数列{a n }中,a 1=5且a n =2a n -1+2n -1 (n ≥2且n ∈N +). (1)求a 2,a 3的值;(2)是否存在实数λ,使得数列⎩⎨⎧⎭⎬⎫a n +λ2n 为等差数列?若存在,求出λ的值;若不存在,请说明理由.(3)求通项公式a n .解 (1)∵a 1=5,∴a 2=2a 1+22-1=13,a 3=2a 2+23-1=33.(2)假设存在实数λ,使得数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫a n +λ2n 为等差数列.设b n =a n +λ2n ,由{b n }为等差数列,则有2b 2=b 1+b 3.∴2×a 2+λ22=a 1+λ2+a 3+λ23,13+λ2=5+λ2+33+λ8.解得λ=-1.此时,b n +1-b n =a n +1-12n +1-a n -12n=12n +1=12n +1=1. 又b 1=a 1+λ2=2.综上可知,存在实数λ=-1,使得数列{a n +λ2n }为首项是2、公差是1的等差数列.(3)由(2)知,数列{a n -12n }为首项是2,公差为1的等差数列.∴a n -12n =2+(n -1)×1=n +1,∴a n =(n +1)2n +1.跟踪演练2 设数列{a n }的前n 项和为S n ,已知a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N+).(1)求a 2,a 3的值;(2)求证:数列{S n +2}是等比数列.(1)解 ∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N +),∴当n =1时,a 1=2×1=2; 当n =2时,a 1+2a 2=(a 1+a 2)+4,∴a 2=4; 当n =3时,a 1+2a 2+3a 3=2(a 1+a 2+a 3)+6,∴a 3=8. (2)证明 ∵a 1+2a 2+3a 3+…+na n =(n -1)S n +2n (n ∈N +),①∴当n ≥2时,a 1+2a 2+3a 3+…+(n -1)a n -1 =(n -2)S n -1+2(n -1).②①-②得na n =(n -1)S n -(n -2)S n -1+2=n (S n -S n -1)-S n +2S n -1+2=na n -S n +2S n -1+2. ∴-S n +2S n -1+2=0,即S n =2S n -1+2, ∴S n +2=2(S n -1+2).∵S 1+2=4≠0,∴S n -1+2≠0,∴S n +2S n -1+2=2,故{S n +2}是以4为首项,2为公比的等比数列. 题型三 函数思想求解数列问题数列是一种特殊的函数,在求解数列问题时,若涉及参数取值范围,最值问题或单调性时,均可考虑采用函数的思想指导解题.值得注意的是数列定义域是正整数集或其真子集,这一特殊性对问题结果可能造成影响.例3 已知等差数列{a n }的首项a 1=1,公差d >0,且第二项、第五项、第十四项分别是一个等比数列的第二项、第三项、第四项. (1)求数列{a n }的通项公式;(2)设b n =1n (a n +3) (n ∈N +),S n =b 1+b 2+…+b n ,是否存在t ,使得对任意的n 均有S n >t 36总成立?若存在,求出最大的整数t ;若不存在,请说明理由.解 (1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2,整理得2a 1d =d 2.∵d >0,a 1=1,∴d =2. ∴a n =2n -1(n ∈N +).(2)b n =1n (a n +3)=12n (n +1)=12(1n -1n +1),∴S n =b 1+b 2+…+b n =12=12(1-1n +1)=n2(n +1).假设存在整数t 满足S n >t 36总成立,又S n +1-S n =n +12(n +2)-n 2(n +1)=12(n +2)(n +1)>0,∴数列{S n }是单调递增的.∴S 1=14为S n 的最小值,故t 36<14,即t <9.又∵t ∈Z ,∴适合条件的t 的最大值为8. 跟踪演练3 已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f (1a n),n ∈N +, (1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n . 解 (1)∵a n +1=f (1a n )=2a n +33a n =2+3a n 3=a n +23,∴{a n }是以23为公差的等差数列.又a 1=1,∴a n =23n +13.(2)T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1 =a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1) =-43(a 2+a 4+…+a 2n )=-43·n (53+4n 3+13)2=-49(2n 2+3n ).题型四 数列的交汇问题数列是高中代数的重点内容之一,它始终处在知识的交汇点上,如数列与函数、方程、不等式等其他知识有较多交汇处.它包涵知识点多、思想丰富、综合性强,已成为近年高考的一大亮点.例4 已知单调递增的等比数列{a n }满足a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项. (1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.解 (1)设等比数列{a n }的首项为a 1,公比为q .依题意,有2(a 3+2)=a 2+a 4,代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20,∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8,解得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n ,① ∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1, ②①-②,得S n =2+22+23+…+2n -n ×2n +1 =2(1-2n )1-2-n ×2n +1=2n +1-n ×2n +1-2.由S n +(n +m )a n +1<0,得2n +1-n ×2n +1-2+n ×2n +1+m ×2n +1<0对任意正整数n 恒成立, ∴m ·2n +1<2-2n +1,即m <12n -1对任意正整数n 恒成立.∵12n -1>-1,∴m ≤-1,即m 的取值范围是(-∞,-14n -13+n (n +1)2=-12(3n 2+n -4)≤0. ∴不等式S n +1≤4S n 对任意n ∈N +皆成立.1.等差数列与等比数列是高中阶段学习的两种最基本的数列,也是高考中经常考查并且重点考查的内容之一,这类问题多从数列的本质入手,考查这两种基本数列的概念、基本性质、简单运算、通项公式、求和公式等问题.2.数列求和的方法:一般的数列求和,应从通项入手,若无通项,先求通项,然后通过对通项变形,转化为与特殊数列有关或具备某种方法适用特点的形式,从而选择合适的方法求和.。

人教B版高中数学必修五第二章数列().docx

人教B版高中数学必修五第二章数列().docx

第二章 数 列 同步练测(人教B 版必修5)建议用时 实际用时满分 实际得分90分钟150分一、选择题(每小题5分,共50分)1.数列{}n a 是首项1a =1,公差为d =3的等差数列,如果n a =2 005,则序号n 等于( ) A .667 B .668 C .669 D .670 2.在各项都为正数的等比数列{}n a 中,首项1a =3,前三项和为21,则3a +45a a +=( ) A .33B .72C .84D .1893.如果1a ,2a ,…,8a 为各项都大于零的等差数列,公差d ≠0,则( ) A .1a 8a >4a 5aB .1a 8a <4a 5a C .1a +8a <4a +5a D .1a 8a =4a 5a4.设{}n a 是公差为正数的等差数列,若12315a a a ++=,12380a a a =,则111213a a a ++= ( )A.120B.105C.90D.755.在等比数列{}n a 中,2a =9,5a =243,则{}n a 的前4项和为( )A .81B .120C .168D .192 6.等差数列{}n a 的前n 项和为,n S 若31710a a +=,则19S 的值是( )A.55B.95C.100D.不确定7.已知等差数列{}n a 的公差为2,若1a ,34,a a 成等比数列,则2a =( ) A .-4 B .-6C.-8D .-108.设n S 是等差数列{}n a 的前n 项和,若35a a =95,则59S S =( ) A .1B .-1C .2D .21 9.已知数列-1,12,a a ,-4成等差数列,-1,123,,b b b ,-4成等比数列,则212b a a -的值是( ) A .21B .-21C .-21或21 D .4110.在等差数列{}n a 中,n a ≠0,1n a --2n a +1n a +=0(n ≥2),若21n S -=38,则n =( )A .38B .20C .10D .9二、填空题(每小题5分,共30分) 11.设()f x =221+x,利用课本中推导等差数列前n 项和公式的方法,可求得f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)的值为 .12.已知在等比数列{}n a 中,(1)若345a a a ⋅⋅=8,则23456a a a a a ⋅⋅⋅⋅= . (2)若12a a +=324,34a a +=36,则56a a += .(3)若4S =2,8S =6,则4S = .13.在38和227之间插入三个数,使这五个数成等比数列,则插入的三个数的乘积为 .14.在等差数列{}n a 中,3(35a a +)+2(71013a a a ++)=24,则此数列前13项之和为 .15.在等差数列{}n a 中,5a =3,6a =-2,则4a +5a +…+10a = .16.设平面内有n 条直线(n ≥3),其中有且仅有两条直线互相平行,任意三条直线不过同一点.若用()f n 表示这n 条直线交点的个数,则f (4)= ;当n >4时,()f n = . 三、解答题(共70分)17.(11分)(1)已知数列{}n a 的前n 项和n S =32n -2n ,求证:数列{}n a 是等差数列. (2)已知a 1,b 1,c 1成等差数列,求证:a c b +,ba c +,cba +也成等差数列.18.(11分)设{}n a 是公比为q 的等比数列,且132,,a a a 成等差数列.(1)求q 的值;(2)设{}n b 是以2为首项,q 为公差的等差数列,其前n 项和为n S ,当n ≥2时,比较n S 与n b 的大小,并说明理由.19.(12分)数列{}n a 的前n 项和记为n S ,已知1a =1,1n a +=nn 2+n S (n =1,2,3,…). 求证:数列n S n ⎧⎫⎨⎬⎩⎭是等比数列.20.(12分)已知数列{}n a 是等差数列,25618a a =,=;数列{}n b 的前n 项和是n T ,且n T +12n b =1.(1)求数列{}n a 的通项公式;(2)求证:数列{}n b 是等比数列.21.(12分)假设某市2007年新建住房400万平方米,其中有250万平方米是中低价房.预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,该市历年所建中低价房的累计面积(以2007年为累计的第一年)等于4 750万平方米?22.(12分)设1a=1,2a=53,2na+=531na+-23 na*()n∈N.(1)令1n n nb a a+=-*()n∈N,求数列{}n b的通项公式;(2)求数列{}nna的前n项和nS.第二章数列同步练测(人教B版必修5)答题纸得分:一、选择题题号 1 2 3 4 5 6 7 8 9 10 答案二、填空题11. 12. 13. 14. 15. 16.三、解答题17.18.19.20.21.22.第二章 数 列同步练测(人教B 版必修5)答案一、选择题1.C 解析:由题意知2 005=1+3(n -1),∴ n =699.2.C 解析:设等比数列{}n a 的公比为q (q >0), 由题意得1a +23a a +=21,即1a (1+2q q +)=21.又1a =3,∴ 1+2q q +=7.解得q =2或q =-3(不合题意,舍去), ∴ 345a a a ++=a 1q 2(1+2q q +)=3×22×7=84. 3.B 解析:由1a +845a a a =+,∴ 排除C . 又1a ·8a =1a (1a +7d )=21a +71a d ,∴ 45a a ⋅=(1a 3d +)(1a 4d +)=21a +71a d +122d >1a ·8a .4.B 解析:{}n a 是公差为正数的等差数列,若12315a a a ++=,即32a =15,则2a =5.又123a a a =80,∴ 13a a =(5)(5)d d -+=16,∴ d =3. ∵ 1221035a a d =+=,∴ 111213123105a a a a ++==.5.B 解析:∵ 2a =9,5a =243,25a a =3q =9243=27, ∴ q =3. 又1a q =9,∴ 1a =3, ∴ S 4=3-13-35=2240=120.6.B 解析:∵ 317119a a a a +=+,∴ 1191919()2a a S +==192×10=95. 7.B 解析:∵ {}n a 是等差数列,∴ 31a a =+4,41a a =+6. 又∵ 134,,a a a 成等比数列,∴ (1a +4)2=1a (1a +6),解得1a =-8, ∴ 2a =-8+2=-6.8.A 解析:∵ 59S S =2)(52)(95191a a a a ++=3559a a ⋅⋅=59×95=1,∴ 选A .9.A 解析:设d 和q 分别为公差和公比,则-4=-1+3d 且-4=(-1)4q ,∴ d =-1,2q =2,∴212b a a -=2q d -=21. 10.C 解析:∵ {}n a 为等差数列,∴ n a 2=11n n a a -++,∴ 2n a =2n a .又n a ≠0,∴ n a =2,∴ {}n a 为常数数列.而n a =1212--n S n ,即2n -1=238=19,∴ n =10. 二、填空题11.23 解析:∵ ()f x =221+x ,∴ (1)f x -=2211+-x =x x 2222⋅+=x x22221+⋅, ∴ ()f x +(1)f x -=x 221++x x 22221+⋅=x x 222211+⋅+=xx 22)22(21++=22. 设S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6), 则S =f (6)+f (5)+…+f (0)+…+f (-4)+f (-5),∴ 2S =[f (6)+f (-5)]+[f (5)+f (-4)]+…+[f (-5)+f (6)]=62, ∴ S =f (-5)+f (-4)+…+f (0)+…+f (5)+f (6)=32.12.(1)32 (2)4 (3)32 解析:(1)由35a a ⋅=24a ,得4a =2,∴ 23456a a a a a ⋅⋅⋅⋅=54a =32.(2)9136)(324222121=⇒⎩⎨⎧=+=+q q a a a a ,,∴ 56a a +=(12a a +)4q =4. (3)2=6+=+++=2=+++=4444821843214q q S S a a a S a a a a S ⇒⎩⎨⎧=⋅⋅⋅,, ∴ 17181920a a a a +++=164S q =32.13.216 解析:本题考查等比数列的性质及计算,由于插入三个数后成等比数列,因而中间数必与38,227同号,由等比中项知中间数为22738⨯=6,所以插入的三个数之积为38×227×6=216. 14.26 解析:∵ 35a a +=24a ,713a a +=210a , ∴ 6(410a a +)=24,∴ 410a a +=4, ∴ 13S =2+13131)(a a =2+13104)(a a =2413⨯=26. 15.-49 解析:∵ 65d a a =-=-5, ∴ 45a a ++…+10a =2+7104)(a a =25++-755)(d a d a =7(a 5+2d )=-49. 16.5,21(n +1)( n -2) 解析:同一平面内两条直线若不平行则一定相交,故每增加一条直线一定与前面已有的每条直线都相交,∴ ()f k =(1)f k -+1k -. 由f (3)=2,f (4)=f (3)+3=2+3=5, f (5)=f (4)+4=2+3+4=9, …,()f n =(1)f n -+1n -,相加得()f n =2+3+4+…+(1n -)=21(1n +)(2n -). 三、解答题17.分析:判定给定数列是否为等差数列关键看是否满足从第2项开始每项与其前一项差为常数. 证明:(1)n =1时,11a S ==3-2=1;当n ≥2时,1n n n a S S -=-=322n n --[3(n -1)2-2(n -1)]=6n -5.n =1时,亦满足,∴ n a =6n -5(n ∈N*).首项1a =1,n a -1n a -=6n -5-[6(n -1)-5]=6(常数), ∴ 数列{}n a 是等差数列且1a =1,公差为6.(2)∵a 1,b 1,c 1成等差数列, ∴ b 2=a 1+c 1,化简得2ac =()b a c +.∴ a c b ++c b a +=ac ab a c bc +++22=ac c a c a b 22+++)(=ac c a 2+)(=2++2)()(c a b c a =2·b c a +,∴ a c b +,b a c +,c b a +也成等差数列.18.解:(1)由题设2312a a a =+,即221a q =1a +1a q . ∵ 1a ≠0,∴ 221q q --=0,∴ q =1或q =-21. (2)若q =1,则2n S n =+21-)(n n =23+2nn .当n ≥2时,1n n n S b S --==22+1-))((n n >0,故n S >n b .若q =-21,则2n S n =+21-)(n n ⨯ (-21)=49+-2n n .当n ≥2时,1n n n S b S --==4-11-)0)((n n .故对于n ∈N*,当2≤n ≤9时,n S >n b ;当n =10时,n S =n b ;当n ≥11时,n S <n b . 19.证明:∵ 11n n n a S S ++=-,1n a +=nn 2+n S , ∴ (n +2)n S =n (1n S +-n S ),整理得n 1n S +=2(n +1)n S ,所以1+1+n S n =nSn 2.故n S n ⎧⎫⎨⎬⎩⎭是以2为公比的等比数列. 20.(1) 解:设{}n a 的公差为d ,则116,418.a d a d +=⎧⎨+=⎩解得12,4.a d =⎧⎨=⎩ ∴ 24(1)42n a n n =+-=-.(2)证明:当n =1时,11b T =,由11112T b +=,得123b =.当n ≥2时,∵ 112n n T b =-,11112n n T b --=-,,∴ 111()2n n n n T T b b ---=-.∴ 11()2n n n b b b -=-.∴ 113n n b b -=..∴ {}n b 是以23为首项,13为公比的等比数列.21.解:设n 年后该市每年所建中低价房的面积为n a . 由题意可知{}n a 是等差数列,其中1a =250,d =50,则2(1)25050252252n n n S n n n -⨯=+=+. 令225225 4 750n n +=,即291900n n +-=,解得n =-19或n =10. 又n 是正整数,∴ n =10.故到2016年底,该市历年所建中低价房的累计面积等于4 750万平方米.21.解:(1)因为1211115222()3333n n n n n n n n n b a a a a a a a b ++++++=-=--=-=,所以数列{}n b 是首项为12123b a a =-=,公比为23的等比数列,所以2(1,2)3nn b n ⎛⎫⎪⎝⎭==,. (2)由123nn n n b a a +⎛⎫=-= ⎪⎝⎭,得11111212222()()()213333n n n n n n n n a a a a a a a a -++-⎡⎤⎛⎫⎛⎫⎛⎫-=-+-++-=+++=-⎢⎥ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 因为11a =,所以12323nn a +⎛⎫=- ⎪⎝⎭.所以123(1,2,)3nn n a n -=-=.设数列1123n n n --⎧⎫⋅⎨⎬⎩⎭的前n 项和为n T ,则21222123333n n T n -⎛⎫⎛⎫=+⨯+⨯++ ⎪ ⎪⎝⎭⎝⎭,①则23222222333333nn T n ⎛⎫⎛⎫⎛⎫=+⨯+⨯++ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭.② ①-②,得2112222221313333333n nn n n T n n -⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-=--⎢⎥ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎢⎥⎣⎦. 所以122(3)29139333n nn n n n T n -⎡⎤+⎛⎫⎛⎫=--=-⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦. 所以11213(3)223(123(1)1823n n n n n n S a a na n T n n +-+=+++=++++=++-)-2.。

人教B版高中数学必修五高中第二章数列2.2等差数列同步测试含答案

人教B版高中数学必修五高中第二章数列2.2等差数列同步测试含答案

高中数学学习材料 (灿若寒星 精心整理制作)必修五 第二章 数列 2.2 等差数列 同步测试一、选择题1.等差数列34,37,40中的第一个负数项是 ( ) A.第13项 B.第14项 C.第15项 D.第16项 2.等差数列}{n a 中,153,334515==a a ,则217是这个数列的 ( ) A.第59项 B.第60项 C.第61项 D.第62项3.已知等差数列}{n a 的项数为n ,前4项和为21,后4项和为67,所有项的和为220,则n 的值为 ( ) A.20 B.18 C.22 D.214.等差数列}{n a 中,40,19552==+S a a ,则10a 为 ( ) A.27 B.28 C.29 D.305.数列}{n a 是等差数列的一个充要条件是 ( ) A.c bn an S n ++=2 B.bn an S n +=2 C.)0(2≠++=a c bn an S n D.)0(2≠+=a bn an S n6.等差数列}{n a 的公差为d ,则前20项的和20S 等于 ( ) A.2020a B.d a 102010+ C.d a 380201+ D.d a 3801+ 二、填空题7.在1-与7之间顺次插入三个数,使这五个数成等差数列,则此数列为 .8.在等差数列}{n a 的公差为1,前100项的和为150100=S ,则=++++99531a a a a .9.已知等差数列}{n a 满足:4,126473-=+-=a a a a ,则通项公式=n a . 10.已知数列n 2,,4,3,2,1 ,则其和为 ,奇数项的和为 . 11.在数列}{n a 中,122,211=--=+n n a a a ,则=51a .12.一个项数为偶数的等差数列,奇数项的和为24,偶数项的和为30,且末项比首项大5.10,则该数列的项数为 . 三、解答题13.已知222,,c b a 成等差数列,求证:ba a c cb +++1,1,1也成等差数列.14.已知等差数列}{n a 的首项为60,公差为3-,试求数列}{n a 前30项的和.15.设n S 是等差数列}{n a 的前n 项的和,已知331S 与441S 的等比中项为551S ,331S 与441S 的等差中项为1,求等差数列}{n a 的通项公式.16.设等差数列}{n a 的前n 项和是n S ,已知0,0,1213123<>=S S a , (1)求公差d 的取值范围;(2)指出1221,,,S S S 中那一个值最大,并说明理由.17.设}{n a 是等差数列,nan b ⎪⎭⎫⎝⎛=21,已知:81,821321321==++b b b b b b ,求等差数列的通项n a .*18.设}{n a 是公差为d 等差数列,}{n b 满足n n a n nb b b b )321(32321++++=++++)(N n ∈,求证:}{n b 是等差数列,并求公差.答案1.C ;2.C ;3.A ;4.C ;5.B ;6.B ;7.7,5,3,1,1-;8.50;9.122-=n a n 或82+-=n a n ;10.2),12(n n n +;11.23;12.8项;13.略;14.765;15.1=n a 或)(532512N n n a n ∈+-=;16.(1)3724-<<-d ;(2)6S 最大;17.32-=n a n 或n a n 25-=;18.公差为d 23.。

人教新课标版数学高二必修五练习单元质量评估 第二章 数列(含答案解析)

人教新课标版数学高二必修五练习单元质量评估 第二章 数列(含答案解析)

单元质量评估(二)第二章 数列 (120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的) 1. 2011是等差数列:1,4,7,10,…的第几项( ) (A )669 (B )670 (C )671 (D )6722.数列{a n }满足a n =4a n-1+3,a 1=0,则此数列的第5项是( ) (A )15 (B )255 (C )20 (D )83.等比数列{a n }中,如果a 6=6,a 9=9,那么a 3为( ) (A )4 (B )23 (C )916(D )2 4.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,则a 20=( ) (A )-1 (B )1 (C )3 (D )75.在等差数列{a n }中,已知a 1=2,a 2+a 3=13,则a 4+a 5+a 6=( ) (A )40 (B )42 (C )43 (D )456.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d=( )(A)2 (B)3 (C)6 (D)77.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )(A )90 (B )100 (C )145 (D )190 8.在数列{a n }中,a 1=2,2a n+1-2a n =1,则a 101的值为( ) (A )49 (B )50 (C )51 (D )529.计算机是将信息转化成二进制数进行处理的,二进制即“逢二进一”,如(1101)2表示二进制的数,将它转化成十进制的形式是1×23+1×22+0×21+1×20=13,那么将二进制数16111 位转换成十进制数的形式是( )(A )217-2 (B )216-1 (C )216-2 (D )215-110.在等差数列{a n }中,若a 1+a 2+a 3=32,a 11+a 12+a 13=118,则a 4+a 10=( ) (A )45 (B )50 (C )75 (D )6011.(2011·江西高考)已知数列{a n }的前n 项和S n 满足:S n +S m =S n+m ,且a 1=1,那么a 10=( )(A )1 (B )9 (C )10 (D )5512.等比数列{a n }满足a n >0,n=1,2,…,且a 5·a 2n-5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n-1=( ) (A )n(2n-1) (B )(n+1)2 (C )n 2 (D )(n-1)2二、填空题(本大题共4小题,每小题5分,共20分,请把正确的答案填在题中的横线上)13.等差数列{a n }前m 项的和为30,前2m 项的和为100,则它的前3m项的和 为______.14.(2011·广东高考)已知{a n }是递增等比数列,a 2=2,a 4-a 3=4,则此数列的公比q=______. 15.两个等差数列{a n }, {b n },12n 12n a a a 7n 2b b b n 3++⋯++=++⋯++,则55a b =______.16.设数列{a n }中,a 1=2,a n+1=a n +n+1,则通项a n =_____.三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知数列{a n }是等差数列,a 2=3,a 5=6,求数列{a n }的通项公式与前n 项的和M n .18.(12分)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. (1)求{a n }的公比q ; (2)若a 1-a 3=3,求S n .19.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n-1(n ≥2),若a n +S n =n ,c n =a n -1. (1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.20.(12分)如果有穷数列a 1,a 2,a 3,…,a m (m 为正整数)满足条件a 1=a m , a 2=a m-1,…,a m =a 1,即a i =a m-i+1(i=1,2,…,m),我们称其为“对称数列”.例如,数列1,2,5,2,1与数列8,4,2,2,4,8都是“对称数列”.(1)设{b n }是7项的“对称数列”,其中b 1,b 2,b 3,b 4是等差数列,且b 1=2,b 4=11.依次写出{b n }的每一项;(2)设{c n }是49项的“对称数列”,其中c 25,c 26,…,c 49是首项为1,公比为2的等比数列,求{c n }各项的和S.[] 21.(12分)已知数列{a n }的前n 项和为()nn n 1S ,S 312=-(*n N ∈),等差数列{b n }中,b n >0(*n N ∈),且b 1+b 2+b 3=15,又a 1+b 1,a 2+b 2,a 3+b 3成等比数列.(1)求数列{a n },{b n }的通项公式; (2)求数列{a n +b n }的前n 项和T n .22.(12分)某商店为了促进商品销售,特定优惠方式,即购买某种家用电器有两种付款方式可供顾客选择,家用电器价格为2 150元.第一种付款方式:购买当天先付150元,以后每月这一天都交付200元,并加付欠款利息,每月利息按复利计算,月利率为1%;第二种付款方式:购买当天先付150元,以后每个月付款一次,10个月付清,每月付款金额相同,每月利息按复利计算,月利率1%.试比较两种付款方法,计算每月所付金额及购买这件家用电器总共所付金额.答案解析1.【解析】选C.∵2011=1+(n-1)×(4-1),∴n=671.2.【解析】选B.由a n =4a n-1+3,a 1=0,依次求得a 2=3,a 3=15,a 4=63,a 5=255.3.【解析】选A.等比数列{a n }中,a 3,a 6,a 9也成等比数列,∴a 62=a 3a 9,∴a 3=4.4.【解析】选B.a 1+a 3+a 5=105,∴a 3=35,同理a 4=33, ∴d=-2,a 1=39,∴a 20=a 1+19d=1.5.【解析】选B.设公差为d,由a 1=2,a 2+a 3=13,得d=3,则a 4+a 5+a 6= (a 1+3d)+(a 2+3d)+(a 3+3d) =(a 1+a 2+a 3)+9d=15+27=42.6.【解析】选B.S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d=16-4=12,∴d=3.7.【解析】选B.设公差为d,∴(1+d)2=1×(1+4d), ∵d ≠0,∴d=2,从而S 10=100.[] 8.【解题提示】利用等差数列的定义. 【解析】选D.∵2a n+1-2a n =1,∴n 1n 1a a 2+-=, ∴数列{a n }是首项a 1=2,公差1d 2=的等差数列, ∴()1011a 21011522=+-=.9.【解析】选B.形式为:1×215+1×214+1×213+…+1×21+1×20=216-1.10.【解析】选B.由已知a 1+a 2+a 3+a 11+a 12+a 13=150,∴3(a 1+a 13)=150,∴a 1+a 13=50,∴a 4+a 10=a 1+a 13=50.11.【解题提示】结合S n +S m =S n+m ,对m,n 赋值,令n=9,m=1,即得S 9+S 1=S 10,即得a 10=1.【解析】选A.∵S n +S m =S n+m ,∴令n=9,m=1,即得S 9+S 1=S 10,即S 1=S 10-S 9=a 10, 又∵S 1=a 1,∴a 10=1.12.【解题提示】由已知可先求得通项公式,再由对数的性质进行运算.【解析】选C.a 5·a 2n-5=22n (n ≥3), ∴a n 2=22n ,a n >0,∴a n =2n ,log 2a 1+log 2a 3+…+log 2a 2n-1 =1+3+…+(2n-1)=n 2.13.【解题提示】利用等差数列前n 项和的性质【解析】由题意可知S m ,S 2m -S m ,S 3m -S 2m 成等差数列,2(S 2m -S m )=S m +S 3m -S 2m∴S 3m =3(S 2m -S m )=3×(100-30)=210. 答案:21014.【解题提示】由等比数列的通项公式,可得关于公比q 的方程,从而求出q.【解析】由a 4-a 3=4得a 2q 2-a 2q=4,即2q 2-2q=4,解得q=2或q=-1(由数列是递增数列,舍去). 答案:215.【解题提示】利用等差数列的前n 项和的有关性质进行运算. 【解析】设两个等差数列{a n },{b n }的前n 项和分别为A n ,B n .则()()195919599a a a A 7926529b b b B 93122+⨯+====++.答案:651216.【解析】∵a 1=2,a n+1=a n +(n+1), ∴a n =a n-1+n,a n-1=a n-2+(n-1),a n-2=a n-3+(n-2),…,a 3=a 2+3,a 2=a 1+2,a 1=2=1+1将以上各式相加得:()()2n n n 1n na [n n 121]111222+=+-+⋯+++=+=++. 答案:2n n122++17.【解析】设{a n }的公差为d, ∵a 2=3,a 5=6,∴11a d 3a 4d 6+=⎧⎨+=⎩,∴a 1=2,d=1, ∴a n =2+(n-1)=n+1.()2n 1n n 1n 3nM na d .22-+=+=18.【解析】(1)依题意有a 1+(a 1+a 1q)=2(a 1+a 1q+a 1q 2)由于a 1≠0,故2q 2+q=0,又q ≠0,从而1q 2=-.(2)由已知得a 1-a 1(12-)2=3,故a 1=4从而n n n 141()812S 113212--==----[][()](). 19.【解析】(1)∵a 1=S 1,a n +S n =n,① ∴a 1+S 1=1,得11a 2=.又a n+1+S n+1=n+1 ②①②两式相减得2(a n+1-1)=a n -1, 即n 1n a 11a 12+-=-,也即n 1n c 1c 2+=, 故数列{c n }是等比数列. (2)∵111c a 12=-=-, ∴n n n n n11c ,a c 1122=-=+=-, n 1n 11a 12--=-.故当n ≥2时,n n n 1n 1n n111b a a 222--=-=-=. 又111b a 2==,即n n 1b 2=. 20.【解题提示】利用等比数列的前n 项和公式进行计算.【解析】(1)设数列{b n }的公差为d ,则b 4=b 1+3d=2+3d=11,解得d=3,∴数列{b n }为2,5,8,11,8,5,2. (2)S=c 1+c 2+…+c 49 =2(c 25+c 26+…+c 49)-c 25 =2(1+2+22+…+224)-1 =2(225-1)-1=226-3.21.【解析】(1)a 1=1,a n =S n -S n-1=3n-1,n>1,∴a n =3n-1(*n N ∈),∴数列{a n }是以1为首项,3为公比的等比数列, ∴a 1=1,a 2=3,a 3=9,在等差数列{b n }中, ∵b 1+b 2+b 3=15,∴b 2=5.又因a 1+b 1,a 2+b 2,a 3+b 3成等比数列,设等差数列{b n }的公差为d,∴(1+5-d )(9+5+d)=64,解得d=-10或d=2, ∵b n >0(*n N ∈),∴舍去d=-10,取d=2,∴b 1=3. ∴b n =2n+1(*n N ∈). (2)由(1)知∴T n =a 1+b 1+a 2+b 2+…+a n +b n =(a 1+a 2+…+a n )+(b 1+b 2+…+b n )()n n 32n 113132++-=+- n 231n 2n 22=++-. 22.【解题提示】第一种付款方式是等差数列模型,第二种付款方式是等比数列模型,分别计算出实际共付金额,再比较得出结论. 【解析】第一种方式:购买时先付150元,欠2 000元,按要求知10次付清,则第1次付款金额为a 1=200+2 000×0.01=220(元); 第2次付款金额为a 2=200+(2 000-200)×0.01=218(元) ……第n 次付款金额为a n =200+[2 000-(n-1)×200]×0.01=220-(n-1)×2(元).不难看出每次所付款金额顺次构成以220为首项,-2为公差的等差数列,所以10次付款总金额为()10109S 102202 2 1102⨯=⨯+⨯-= (元),实际共付2 260元.第二种方式:购买时先付150元,欠2 000元,则10个月后增值为2000×(1+0.01)10=2 000×(1.01)10(元).设每月付款x 元,则各月所付的款额连同最后一次付款时生成的利息之和分别是(1.01)9x,(1.01)8x,…,x,其构成等比数列,和为()101011.01S x 11.01-=-·. 应有()1010S 2 0001.01=⨯,所以x ≈211.2,每月应付211.2元,10次付款总金额为2 112元,实际共付2 262元,所以第一种方式更省钱. 【方法技巧】分清类型解数列应用题解数列应用题要明确问题是属于哪一种类型,即明确是等差数列问题还是等比数列问题,是求a n 还是求S n ,特别要弄清项数为多少,试题中常见的数列类型有:(1)构造等差、等比数列模型,然后再应用数列的通项公式及求和公式求解;(2)先求出连续的几项,再归纳出a n ,然后用数列知识求解.。

人教版数学高二B版必修5章末测试第二章数列

人教版数学高二B版必修5章末测试第二章数列

第二章测评(时间:90分钟,满分:100分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.在等比数列{a n }中,如果a 6=6,a 9=9,那么a 3为( )A .4B .32C .169D .2 2.下列可作为数列{a n }:1,2,1,2,1,2,…的通项公式的是( )A .a n =1B .a n =(-1)n +12C .a n =2-⎪⎪⎪⎪sin n π2D .a n =(-1)n -1+323.数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N +).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .114.已知在等比数列{a n }中,a n >0,a 1,a 99是方程x 2-10x +16=0的两根,则a 20a 50a 80的值为( )A .32B .64C .256D .±645.等差数列{a n }的前n 项和为S n ,若S 2=2,S 4=10,则S 6等于( )A .12B .18C .24D .426.已知数列{a n }的通项公式为a n =3n -17,则其前n 项和S n 在n 为________时取得最小值( )A .4B .5C .6D .77.计算机的成本不断降低,若每隔5年计算机价格降低13,现在的价格是8 100元,则15年后,价格降低为( )A .2 200元B .900元C .2 400元D .3 600元8.在数列{a n }中,对任意自然数n ,a 1+a 2+…+a n =2n -1,则a 21+a 22+…+a 2n 等于( ) A .(2n -1)2 B .13(2n -1)2 C .4n -1 D .13(4n -1) 9.已知在数列{a n }中,a 1=1,a 2=3,a n =a n -1+1a n -2(n ≥3),则a 5的值为( ) A .5512 B .133C .4D .5 10.设{a n }是公差不为0的等差数列,a 1=2,且a 1,a 3,a 6成等比数列,则{a n }的前n 项和S n 等于( )A .n 24+7n 4B .n 23+5n 3C .n 22+3n 4D .n 2+n二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.已知数列{a n }的通项a n =-5n +2,则其前n 项和S n =________.12.若等比数列{a n }的前n 项和为S n ,a 2=6,S 3=21,则公比q =__________.13.已知等差数列{a n }的前n 项和为S n ,若S 12=21,则a 2+a 5+a 8+a 11=________.14.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共3升,下面3节的容积共4升,则第5节的容积为__________升.15.将全体正整数排成一个三角形数阵:根据以上排列规律,数阵中第n (n ≥3)行的第3个数(从左向右数)是__________.三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.(本小题满分10分)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列.(1)求{a n }的公比q ;(2)若a 1-a 3=3,求S n .17.(本小题满分15分)(2013·陕西高考,文17)设S n 表示数列{a n }的前n 项和.(1)若{a n }是等差数列,推导S n 的计算公式;(2)若a 1=1,q ≠0,且对所有正整数n ,有S n =1-q n1-q.判断{a n }是否为等比数列,并证明你的结论.参考答案一、选择题1.解析:在等比数列{a n }中,a 3,a 6,a 9成等比数列,a 26 = a 3 ·a 9 ,∴a 3=4. 答案:A2.解析:由a n =2-⎪⎪⎪⎪sin n π2可得a 1=1,a 2=2,a 3=1,a 4=2,…. 答案:C3.解析:由{b n }为等差数列,设其公差为d ,则d =b 10-b 310-3=12-(-2)7=2. 故b n =b 3+(n -3)×2=-2+2n -6=2n -8.又b n =a n +1-a n ,∴a n +1-a n =2n -8.∴a 2-a 1=-6,a 3-a 2=-4,…a 8-a 7=2×7-8=6,∴a 8-a 1=-6+(-4)+…+6=(-6+6)×72=0. ∴a 8=a 1=3.答案:B4.解析:由韦达定理,得a 1·a 99=16.而a 1·a 99=a 20·a 80=a 250=16,且a n >0,∴a 50=4,a 20·a 80=16.∴a 20·a 50·a 80=4×16=64.答案:B5.解析:∵等差数列{a n }的前n 项和为S n ,∴S 2,S 4-S 2,S 6-S 4成等差数列,∴2(S 4-S 2)=S 2+(S 6-S 4),整理得S 6=3S 4-3S 2=3×10-3×2=24.答案:C6.解析:由通项公式a n =3n -17可知{a n }是以3为公差,-14为首项的等差数列,则S n =-14n +n (n -1)2×3=32n 2-312n , 所以当n =5时,S n 取得最小值.答案:B7.解析:15年后价格降低了3次,则8 100×⎝⎛⎭⎫1-133=2 400. 答案:C8.解析:当n ≥2时,a 1+a 2+…+a n =2n -1①,a 1+a 2+…+a n -1=2n -1-1②,①-②得a n =2n -1.当n =1时,a 1=1.∴a n =2n -1(n ∈N +).∴a 2n=(2n -1)2 = 4n -1, 即{ a 2n } 是以a 21 = 1为首项,4为公比的等比数列. ∴S n =1-4n 1-4=13(4n -1). 答案:D9.解析:由题意,得a 3=a 2+1a 1=4,a 4=a 3+1a 2=4+13=133,a 5=a 4+1a 3=133+14=5512. 答案:A10.解析:设其公差为d (d ≠0),∵a 1,a 3,a 6成等比数列,∴a 23=a 1·a 6,即(a 1+2d )2=a 1(a 1+5d ). 又∵d ≠0,∴d =12.∴S n =na 1+n (n -1)d 2=2n +n (n -1)2·12=n 24+7n 4. 答案:A二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.解析:∵a n =-5n +2,∴{a n }为等差数列,且公差d =-5,首项a 1=-3,∴S n =n (-3-5n +2)2=-n (5n +1)2. 答案:-n (5n +1)212.解析:本题是等比数列问题,常用方法是以a 1和q 为未知数建立方程组,解出a 1和q ,由题意得,⎩⎪⎨⎪⎧a 1q =6,a 1+a 1q 2=15,解得q =2或12. 答案:2或1213.解析:∵S 12=21,∴12(a 1+a 12)2=21,解得a 1+a 12=72, ∴a 2+a 5+a 8+a 11=2(a 1+a 12)=2×72=7. 答案:714.解析:设最上面一节的容积为a 1,容积依次增大d ,由题意,知4a 1+6d =3和3a 1+21d=4,可求得a 1=1322,d =766,故a 5=6766. 答案:676615.解析:该数阵的第1行有1个数,第2行有2个数,…,第n 行有n 个数,则第n -1(n ≥3)行的最后一个数为(n -1)(1+n -1)2=n 22-n 2,则第n 行的第3个数为n 22-n 2+3(n ≥3). 答案:n 22-n 2+3(n ≥3) 三、解答题(本大题共2小题,共25分.解答时应写出文字说明、证明过程或演算步骤)16.分析:将S n 表示成a 1和q 的表达式,从而求解.解:(1)依题意,有a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2),由于a 1≠0,故2q 2+q =0.又q ≠0,从而q =-12. (2)由(1)可得a 1-a 1⎝⎛⎭⎫-122=3,故a 1=4. 从而S n =4⎣⎡⎦⎤1-⎝⎛⎭⎫-12n 1-⎝⎛⎭⎫-12=83⎣⎡⎦⎤1-⎝⎛⎭⎫-12n . 17.解:(1)解法一:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ],又S n =a n +(a n -d )+…+[a n -(n -1)d ],∴2S n =n (a 1+a n ),∴S n =n (a 1+a n )2. 解法二:设{a n }的公差为d ,则S n =a 1+a 2+…+a n =a 1+(a 1+d )+…+[a 1+(n -1)d ],又S n =a n +a n -1+…+a 1=[a 1+(n -1)d ]+[a 1+(n -2)d ]+…+a 1,∴2S n =[2a 1+(n -1)d ]+[2a 1+(n -1)d ]+…+[2a 1+(n -1)d ]=2na 1+n (n -1)d ,∴S n =na 1+n (n -1)2d . (2){a n }是等比数列,证明如下:∵S n =1-q n1-q, ∴a n +1=S n +1-S n =1-q n +11-q -1-q n 1-q =q n (1-q )1-q =q n .∵a 1=1,q ≠0,∴当n ≥1时,有a n +1a n =q nq n -1=q , 因此,{a n }是首项为1且公比为q 的等比数列.。

最新人教版高中数学必修5第二章数列测评(a卷)(附答案)

最新人教版高中数学必修5第二章数列测评(a卷)(附答案)

第二章 数列测评(A 卷)(总分:120分 时间:90分钟)第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分) 1.等差数列-2,0,2,…的第15项为A .11 2B .12 2C .13 2D .142 答案:C ∵a 1=-2,d =2,∴a n =-2+(n -1)×2=2n -2 2. ∴a 15=152-22=13 2.2.等比数列{a n }的首项a 1=1002,公比q =12,记p n =a 1·a 2·a 3·…·a n ,则p n 达到最大值时,n 的值为A .8B .9C .10D .11答案:C a n =1002×(12)n -1<1⇒n>10,即等比数列{a n }前10项大于1,从第11项起小于1,故p 10最大.3.已知等比数列{a n }满足a 1+a 2=3,a 2+a 3=6,则a 7等于 A .64 B .81 C .128 D .243答案:A 公比q =a 2+a 3a 1+a 2=63=2.由a 1+a 2=a 1+2a 1=3a 1=3,得a 1=1,a 7=26=64.4.设{a n }是等差数列,a 1+a 3+a 5=9,a 6=9,则这个数列的前6项和等于 A .12 B .24 C .36 D .48答案:B {a n }是等差数列,a 1+a 3+a 5=3a 3=9,a 3=3,a 6=9.∴d =2,a 1=-1,则这个数列的前6项和等于6(a 1+a 6)2=24.5.数列{a n }的通项公式为a n =(-1)n -1(4n -3),则它的前100项之和S 100等于 A .200 B .-200 C .400 D .-400答案:B 设数列可记为1,-5,9,-13,…,393,-397.其奇数项与偶数项分别是公差为8,-8的等差数列.于是,S 100=(1+9+13+…+393)-(5+13+…+397)=50×(1+393)2-50×(5+397)2=-200.6.各项都是正数的等比数列{a n }的公比q ≠1,且2a 2,a 3,a 1成等差数列,则a 5+a 6a 3+a 4的值为A .1+32B .1-32 C.1-52 D.5+12答案:A 由2a 2,a 3,a 1成等差数列得2a 3=2a 2+a 1,∴2a 1q 2=2a 1q +a 1,整理得2q 2-2q -1=0,解得q =1+32或q =1-32<0(因等比数列各项都是正数,故舍去).∴a 5+a 6a 3+a 4=a 3q 2+a 4q 2a 3+a 4=q 2=(1+32)2=1+32.7.(2009广东高考,理4)已知等比数列{a n }满足a n >0,n =1,2,…,且a 5·a 2n -5=22n (n ≥3),则当n ≥1时,log 2a 1+log 2a 3+…+log 2a 2n -1等于A .n(2n -1)B .(n +1)2C .n 2D .(n -1)2 答案:C 由{a n }为等比数列,则a 5·a 2n -5=a 1·a 2n -1=22n , 则(a 1·a 3·a 5·…·a 2n -1)2=(22n )n ⇒a 1·a 3·…·a 2n -1=2n 2, 故log 2a 1+log 2a 3+…+log 2a 2n -1=log 2(a 1·a 3·…·a 2n -1)=n 2.8.在各项均不为零的等差数列{a n }中,若a n +1-a n 2+a n -1=0(n ≥2),则S 2n -1-4n 等于 A .-2 B .0 C .1 D .2 答案:A 由a n +1-a n 2+a n -1=0(n ≥2),2a n =a n +1+a n -1,得a n 2=2a n ,即a n =2或a n =0(舍去),所以S 2n -1-4n =(2n -1)×2-4n =-2.9.一个算法的程序框图如下图所示,若该程序输出的结果为56,则判断框中应填入的条件是A .i<4?B .i<5?C .i ≥5?D .i<6? 答案:D 该程序的功能是求和∑i =1n1i(i +1),由输出结果56=11×2+12×3+…+1n ×(n +1)=1-12+12-13+…+1n -1n +1=1-1n +1=nn +1,得n =5. 10.(2009山东潍坊高三第二次质检,11)已知函数f(x)=log 2x 的反函数为f -1(x),等比数列{a n }的公比为2,若f -1(a 2)·f -1(a 4)=210,则2f(a 1)+f(a 2)+…+f(a 2009)等于A .21004×2008B .21005×2009C .21005×2008D .21004×2009答案:D 由题意,得f -1(x)=2x ,故f -1(a 2)·f -1(a 4)=4222aa ⋅=210, ∴a 2+a 4=10,即2a 1+8a 1=10. ∴a 1=1.则f(a 1)+f(a 2)+…+f(a 2009)=log 2(a 1·a 2·…·a 2009)=log 220+1+2+…+2008=1+20082×2008=1004×2009.第Ⅱ卷(非选择题 共70分)二、填空题(本大题共4小题,每小题4分,共16分.答案需填在题中横线上) 11.若等差数列{a n }中,a 1+4a 7+a 13=96,则2a 2+a 17的值是__________. 答案:48 ∵a 1+4a 7+a 13=96,a 1+a 13=2a 7, ∴a 7=16.∴2a 2+a 17=a 1+a 3+a 17=a 7+a 11+a 3=a 7+2a 7=3a 7=48.12.在数列{a n }中,n ∈N *,若a n +2-a n +1a n +1-a n=k(k 为常数),则称{a n }为“等差比数列”.下列是对“等差比数列”的判断:①k 不可能为0;②等差数列一定是等差比数列;③等比数列一定是等差比数列;④等差比数列中可以有无数项为0,其中正确判断的序号是__________.答案:①④ 从定义可知,数列{a n }若构成“等差比数列”,则相邻两项不可能相等,所以①正确;而等差数列与等比数列均可能为常数列,就有可能不能构成“等差比数列”,所以②③错误;如数列为{2,0,2,0,2,0,…},则能构成“等差比数列”,所以④正确.综上所述,正确的判断是①④.13.在等比数列{a n }中,若a 5+a 6=a(a ≠0),a 15+a 16=b ,则a 25+a 26等于__________.答案:b 2a 由a 15+a 16a 5+a 6=(a 5+a 6)q 10a 5+a 6=b a ,则q 10=ba ,则a 25+a 26=a 5q 20+a 6q 20=(a 5+a 6)(q 10)2=a ×(b a )2=b 2a.14.对于一切实数x ,令[x]为不大于x 的最大整数,则函数f(x)=[x]称为高斯函数或取整函数.若a n =f(n3),n ∈N *,S n 为数列{a n }的前n 项和,则S 3n =__________.答案:3n 2-n 2 ∵f(x)=[x],∴a n =f(n 3)=[n3],n ∈N *.于是,S 3n =(a 1+a 2+a 3)+(a 4+a 5+a 6)+…+(a 3n -2+a 3n -1+a 3n ) =(0+0+1)+(1+1+2)+…+[(n -1)+(n -1)+n]=1+4+…+(3n -2)=n[1+(3n -2)]2=3n 2-n 2.三、解答题(本大题共5小题,共54分.解答应写出必要的文字说明、解题步骤或证明过程)15.(本小题满分10分)(2009福建高考,文17)等比数列{a n }中,已知a 1=2,a 4=16. (1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .答案:解:(1)设{a n }的公比为q. 由已知得16=2q 3,解得q =2,∴a n =a 1q n -1=2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧ b 1+2d =8,b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从而b n =-16+12(n -1)=12n -28. ∴数列{b n }的前n 项和S n =n(-16+12n -28)2=6n 2-22n.16.(本小题满分10分)已知数列{a n }的前n 项和S n =n(2n -1)(n ∈N *). (1)证明数列{a n }为等差数列;(2)设数列{b n }满足b n =S 1+S 22+S 33+…+S nn(n ∈N *),试判定:是否存在自然数n ,使得b n =900,若存在,求出n 的值;若不存在,请说明理由.答案:(1)证明:当n ≥2时,a n =S n -S n -1=n(2n -1)-(n -1)(2n -3)=4n -3, 当n =1时,a 1=S 1=1,适合. ∴a n =4n -3.∵a n -a n -1=4(n ≥2),∴{a n }为等差数列.(2)解:由(1)知,S n =2n 2-n ,∴S nn=2n -1.∴b n =S 1+S 22+S 33+…+S nn=1+3+5+7+…+(2n -1)=n 2.由n 2=900,得n =30,即存在满足条件的自然数,且n =30.17.(本小题满分10分)在数列{a n }中,a 1=2,a n +1=4a n -3n +1,n ∈N *. (1)证明数列{a n -n}是等比数列;(2)求数列{a n }的前n 项和S n .答案:(1)证明:由题设a n +1=4a n -3n +1,得a n +1-(n +1)=4(a n -n),n ∈N *. 又a 1-1=1,所以数列{a n -n}是首项为1,且公比为4的等比数列.(2)解:由(1)可知a n -n =4n -1,于是数列{a n }的通项公式为a n =4n -1+n ,所以数列{a n }的前n 项和S n =(1+4+…+4n -1)+(1+2+…+n)=4n -13+n(n +1)2.18.(本小题满分12分)等差数列{a n }的各项均为正数,a 1=3,前n 项和为S n ,{b n }为等比数列,b 1=1,且b 2S 2=64,b 3S 3=960.(1)求a n 与b n ;(2)求和:1S 1+1S 2+…+1S n.答案:解:(1)设{a n }的公差为d ,{b n }的公比为q ,则d 为正数,a n =3+(n -1)d ,b n =q n -1.依题意有⎩⎪⎨⎪⎧S 3b 3=(9+3d)q 2=960,S 2b 2=(6+d)q =64.解得⎩⎪⎨⎪⎧d =2,q =8或⎩⎨⎧d =-65,q =403(舍去).故a n =3+2(n -1)=2n +1,b n =8n -1. (2)S n =3+5+…+(2n +1)=n(n +2), ∴1S 1+1S 2+…+1S n =11×3+12×4+13×5+…+1n(n +2) =12(1-13+12-14+13-15+…+1n -1n +2) =12(1+12-1n +1-1n +2) =34-2n +32(n +1)(n +2). 19.(本小题满分12分)在数列{a n }中,a 1=2,a 4=8,且满足a n +2=2a n +1-a n (n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =2n -1·a n ,求数列{b n }的前n 项和S n .答案:解:(1)∵a n +2=2a n +1-a n (n ∈N *), ∴a n +2-a n +1=a n +1-a n . ∴{a n }为等差数列.设公差为d ,则由题意,得8=2+3d ,∴d =2. ∴a n =2+2(n -1)=2n.(2)∵b n =2n -1·2n =n·2n ,∴S n =b 1+b 2+b 3+…+b n =1×21+2×22+3×23+…+n ×2n .①∴2S n =1×22+2×23+…+(n -1)×2n +n ×2n +1.②①-②,得-S n =21+22+23+…+2n -n ×2n +1=2×(1-2n )1-2-n ×2n +1=2n +1-2-n ×2n +1=(1-n)×2n +1-2.∴S n =(n -1)·2n +1+2.。

人教新课标版数学高二必修5作业设计第二章 数 列

人教新课标版数学高二必修5作业设计第二章 数 列

第二章 数 列 §2.1 数 列 2.1.1 数 列课时目标 1.理解数列、数列的通项公式等有关概念.2.对于比较简单的数列,会根据其前n 项写出它的通项公式.3.了解数列和函数之间的关系,能用函数的观点研究数列.1.按照一定顺序排列的一列数叫做______,数列中的每一个数叫做这个数列的______.数列中的每一项都和它的序号有关,排在第一位的数称为这个数列的第1项(通常也叫做____项),排在第二位的数称为这个数列的第2项,…,排在第n 位的数称为这个数列的第____项.2.数列可以看作是一个定义域为__________(或它的有限子集{1,2,3,…,n})的函数,即当自变量按照从小到大的顺序依次取值时,对应的一列________.3.如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表示,那么这个式子叫做这个数列的______公式.一、选择题1.数列2,3,4,5,…的一个通项公式为( )A .a n =nB .a n =n +1C .a n =n +2D .a n =2n2.已知数列{a n }的通项公式为a n =1+-1n +12,则该数列的前4项依次为( )A .1,0,1,0B .0,1,0,1C .12,0,12,0 D .2,0,2,0 3.若数列的前4项为1,0,1,0,则这个数列的通项公式不可能是( )A .a n =12B .a n =12C .a n =sin 2(n·90°)D .a n =(n -1)(n -2)+124.已知数列{a n }的通项公式为a n =n 2-n -50,则-8是该数列的( ) A .第5项 B .第6项C .第7项D .非任何一项 5.数列1,3,6,10,…的一个通项公式是( )A .a n =n 2-n +1B .a n =n n -12C .a n =n n +12D .a n =n 2+16.已知a n =n -98n -99,则这个数列的前30项中最大项和最小项分别是( )A .a 1,a 30B .a 1,a 9C .a 10,a 9D .a 10,a 30二、填空题7.已知数列{a n }的通项公式为a n =1nn +2(n ∈N +),那么1120是这个数列的第______项.8.数列a ,b ,a ,b ,…的一个通项公式是______________. 9.用火柴棒按下图的方法搭三角形:按图示的规律搭下去,则所用火柴棒数a n 与所搭三角形的个数n 之间的关系式可以是______________.10.传说古希腊毕达哥拉斯(Pythagoras ,约公元前570年—公元前500年)学派的数学家经常在沙滩上研究数学问题,他们在沙滩上画点或用小石子来表示数.比如,他们将石子摆成如图所示的三角形状,就将其所对应石子个数称为三角形数,则第10个三角形数是______.三、解答题11.根据数列的前几项,写出下列各数列的一个通项公式: (1)-1,7,-13,19,… (2)0.8,0.88,0.888,… (3)12,14,-58,1316,-2932,6164,… (4)32,1,710,917,… (5)0,1,0,1,…12.已知数列⎩⎨⎧⎭⎬⎫9n 2-9n +29n 2-1; (1)求这个数列的第10项; (2)98101是不是该数列中的项,为什么? (3)求证:数列中的各项都在区间(0,1)内;(4)在区间⎝⎛⎭⎫13,23内有、无数列中的项?若有,有几项?若没有,说明理由.能力提升13.根据下列5个图形及相应点的个数的变化规律,试猜测第n 个图中有多少个点.14.已知a n =9nn +110n(n ∈N +),试问数列{a n }中有没有最大项?如果有,求出这个最大项;如果没有,说明理由.1.一个数列的通项公式不唯一,可以有不同的表现形式,如a n =(-1)n可以写成a n =(-1)n +2,还可以写成a n =⎩⎪⎨⎪⎧-1, n 为奇数1, n 为偶数,这些通项公式虽然形式上不同,但都表示同一数列.2.数列是一种特殊的函数,因此在解决数列问题时,要善于利用函数的知识、函数的观点、函数的思想方法来解题.§2.1 数 列 2.1.1 数 列答案知识梳理1.数列 项 首 n 2.正整数集N + 函数值 3.通项 作业设计 1.B 2.A 3.D 4.C 5.C 6.C 7.10解析 ∵1n n +2=1120,∴n (n +2)=10×12,∴n =10.8.a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2解析 a =a +b 2+a -b 2,b =a +b 2-a -b2,故a n =a +b 2+(-1)n +1⎝⎛⎭⎫a -b 2.9.a n =2n +1解析 a 1=3,a 2=3+2=5,a 3=3+2+2=7,a 4=3+2+2+2=9,…,∴a n =2n +1. 10.55解析 三角形数依次为:1,3,6,10,15,…,第10个三角形数为:1+2+3+4+…+10=55.11.解 (1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5)(n ∈N +).(2)数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝⎛⎭⎫1-110n (n ∈N +). (3)各项的分母分别为21,22,23,24,…易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,因此原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n -32n (n ∈N +).(4)将数列统一为32,55,710,917,…对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…联想到数列1,4,9,16…即数列{n 2},可得分母的通项公式为c n =n 2+1,∴可得它的一个通项公式为a n =2n +1n 2+1(n ∈N +).(5)a n =⎩⎪⎨⎪⎧0 n 为奇数1 n 为偶数或a n =1+-1n2(n ∈N +)或a n =1+cos n π2(n ∈N +).12.(1)解 设f (n )=9n 2-9n +29n 2-1=3n -13n -23n -13n +1=3n -23n +1.令n =10,得第10项a 10=f (10)=2831.(2)解 令3n -23n +1=98101,得9n =300.此方程无正整数解,所以98101不是该数列中的项.(3)证明 ∵a n =3n -23n +1=3n +1-33n +1=1-33n +1,又n ∈N +,∴0<33n +1<1,∴0<a n <1. ∴数列中的各项都在区间(0,1)内.(4)解 令13<a n =3n -23n +1<23,则⎩⎪⎨⎪⎧3n +1<9n -69n -6<6n +2,即⎩⎨⎧n >76n <83.∴76<n <83. 又∵n ∈N +,∴当且仅当n =2时,上式成立,故区间⎝⎛⎭⎫13,23上有数列中的项,且只有一项为a 2=47.13.解 图(1)只有1个点,无分支;图(2)除中间1个点外,有两个分支,每个分支有1个点;图(3)除中间1个点外,有三个分支,每个分支有2个点;图(4)除中间1个点外,有四个分支,每个分支有3个点;…;猜测第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点,故第n 个图中点的个数为1+n (n -1)=n 2-n +1.14.解 因为a n +1-a n =⎝⎛⎭⎫910n +1·(n +2)-⎝⎛⎭⎫910n ·(n +1) =⎝⎛⎭⎫910n +1·⎣⎡⎦⎤n +2-109n +1=⎝⎛⎭⎫910n +1·8-n9,则 当n ≤7时,⎝⎛⎭⎫910n +1·8-n9>0, 当n =8时,⎝⎛⎭⎫910n +1·8-n 9=0, 当n ≥9时,⎝⎛⎭⎫910n +1·8-n 9<0,所以a 1<a 2<a 3<…<a 7<a 8=a 9>a 10>a 11>a 12>…,故数列{a n }存在最大项,最大项为a 8=a 9=99108.。

人教版数学高二B版必修5练习 第二章 数列 章末检测试卷(二)

人教版数学高二B版必修5练习 第二章 数列 章末检测试卷(二)

章末检测试卷(二)(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.等比数列{a n }的公比q =-14,a 1=2,则数列{a n }是( ) A.递增数列B.递减数列C.常数列D.摆动数列答案 D解析 因为等比数列{a n }的公比为q =-14,a 1=2,故a 2<0,a 3>0,…,所以数列{a n }是摆动数列.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A.1B.2C.3D.4答案 B解析 ∵a 1+a 5=2a 3=10,∴a 3=5,∴d =a 4-a 3=7-5=2.3.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( )A.1B.2C.4D.8答案 A解析 ∵a 3·a 11=a 27=16,∴a 7=4,∴a 5=a 7q 2=422=1. 4.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是( )A.S 7B.S 8C.S 13D.S 15答案 C解析 ∵a 2+a 8+a 11=(a 1+d )+(a 1+7d )+(a 1+10d )=3a 1+18d =3(a 1+6d )为常数, ∴a 1+6d 为常数.∴S 13=13a 1+13×122d =13(a 1+6d )也为常数.5.若互不相等的实数a ,b ,c 成等差数列,a 是b ,c 的等比中项,且a +3b +c =10,则a 的值是( )A.1B.-1C.-3D.-4答案 D解析 由题意,得⎩⎪⎨⎪⎧ 2b =a +c ,a 2=bc ,a +3b +c =10,解得a =-4或a =2(舍去),b =2,c =8.6.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A.81B.120C.168D.192答案 B解析 由a 5=a 2q 3,得q =3.∴a 1=a 2q =3,S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.7.数列{(-1)n ·n }的前2017项的和S 2017为( )A.-2015B.-1009C.2015D.1009答案 B解析 S 2017=-1+2-3+4-5+…+2016-2017=(-1)+(2-3)+(4-5)+…+(2016-2017)=(-1)+(-1)×1008=-1009.8.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( )A.1或2B.1或-2C.-1或2D.-1或-2答案 C解析 依题意,有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0,∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2.9.一个首项为23,公差为整数的等差数列,从第7项开始为负数,则它的公差是() A.-2 B.-3C.-4D.-6答案 C解析 由题意,知a 6≥0,a 7<0.∴⎩⎪⎨⎪⎧ a 1+5d =23+5d ≥0,a 1+6d =23+6d <0,∴-235≤d <-236.∵d ∈Z ,∴d =-4.10.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是() A.d <0 B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值答案 C解析 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7,即a 7=0,所以d <0.由S 7>S 8,即a 8<0,因此S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0,即S 9<S 5.11.在等比数列{a n }中,a 1=1,9S 3=S 6,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( )A.158和5B.3116和5C.3116D.158答案 C解析 若q =1,则9S 3=27a 1,S 6=6a 1,∵a 1≠0,∴9S 3≠S 6,矛盾,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q ,解得q =2,故a n =a 1q n -1=2n -1.∴1a n =⎝⎛⎭⎫12n -1.∴⎩⎨⎧⎭⎬⎫1a n 的前5项和S 5=1-⎝⎛⎭⎫1251-12=3116. 12.已知数列{a n }满足a 1=1,a n +1=⎩⎪⎨⎪⎧2a n ,n 为正奇数,a n +1,n 为正偶数,则254是该数列的( ) A.第8项B.第10项C.第12项D.第14项答案 D 解析 当n 为正奇数时,a n +1=2a n ,则a 2=2a 1=2,当n 为正偶数时,a n +1=a n +1,得a 3=3,依次类推得a 4=6,a 5=7,a 6=14,a 7=15,…,归纳可得数列{a n }的通项公式a n =⎩⎪⎨⎪⎧ /-1,n 为正奇数,/-2,n 为正偶数, 则令12n n +-1=254,则n 不为正奇数; 令122n +-2=254,得n =14,故选D.二、填空题(本大题共4小题,每小题5分,共20分)13.若{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是.答案 2解析 设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.14.已知等比数列{a n }是递增数列,S n 是等比数列{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63.15.如果数列{a n }的前n 项和S n =2a n -1,n ∈N +,则此数列的通项公式a n =.答案 2n -1解析 当n =1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1),∴a n =2a n -1,∴{a n }是等比数列,∴a n =2n -1,n ≥2,经检验n =1也符合.∴a n =2n -1,n ∈N +.16.在等比数列{a n }中,若1,a 2,a 3-1成等差数列,则a 3+a 4a 5+a 6=. 答案 14解析 设等比数列的公比为q ,依题意,可得2a 1q =1+a 1q 2-1,又a 1≠0,整理得q 2-2q =0,所以q =2或q =0(舍去),所以a 3+a 4a 5+a 6=1q 2=14. 三、解答题(本大题共6小题,共70分)17.(10分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n . 解 设{a n }的公差为d ,则⎩⎪⎨⎪⎧(a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0,即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d . 解得⎩⎪⎨⎪⎧ a 1=-8,d =2或⎩⎪⎨⎪⎧a 1=8,d =-2.因此S n =-8n +n (n -1)=n (n -9),n ∈N +,或S n =8n -n (n -1)=-n (n -9),n ∈N +.18.(12分)已知等差数列{a n }的前n 项和为S n ,n ∈N +,a 3=5,S 10=100.(1)求数列{a n }的通项公式;(2)设b n =2n a+2n ,求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d , 由题意,得⎩⎪⎨⎪⎧ a 1+2d =5,10a 1+10×92d =100, 解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =2n -1,n ∈N +. (2)因为b n =2n a +2n =12×4n +2n , 所以T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23×4n +n 2+n -23. 19.(12分)已知等比数列{a n }的前n 项和为S n ,a 1=1,a n <a n +1,且S 3=2S 2+1.(1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =(2n -1)a n (n ∈N +),求数列{b n }的前n 项和T n .解 (1)设等比数列{a n }的公比为q ,由a n <a n +1,得q >1,又a 1=1,则a 2=q ,a 3=q 2, 因为S 3=2S 2+1,所以a 1+a 2+a 3=2(a 1+a 2)+1,则1+q +q 2=2(1+q )+1,即q 2-q -2=0,解得q =2或q =-1(舍去),所以数列{a n }的通项公式为a n =2n -1(n ∈N +).(2)由(1)知,b n =(2n -1)a n =(2n -1)·2n -1(n ∈N +),则T n =1×20+3×21+5×22+…+(2n -1)×2n -1,2T n =1×21+3×22+5×23+…+(2n -3)×2n -1+(2n -1)×2n ,两式相减,得-T n =1+2×21+2×22+…+2×2n -1-(2n -1)×2n ,即-T n =1+22+23+24+…+2n -(2n -1)×2n ,化简得T n =(2n -3)×2n +3.20.(12分)已知数列{log 2(a n -1)}(n ∈N +)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n<1. (1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.又log 2(a 1-1)=log 22=1,所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1,n ∈N +.(2)证明 因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n =121+122+123+…+12n =12-12n ×121-12=1-12n <1. 21.(12分)在数列{a n }中,a 1=1,a n +1=2a n +2n ,n ∈N +.(1)设b n =a n 2n -1,证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .(1)证明 由已知a n +1=2a n +2n,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n 2n -1=b n =n . ∴a n =n ·2n -1.∴S n =1+2·21+3·22+…+n ·2n -1,两边同时乘以2得2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n ,两式相减得-S n =1+21+22+…+2n -1-n ·2n =2n -1-n ·2n =(1-n )2n -1,∴S n =(n -1)·2n +1.22.(12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m≥1?若存在,求出m 的最小值;若不存在,请说明理由.解 (1)设等比数列{a n }的公比为q ,则由已知,可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10, 解得⎩⎪⎨⎪⎧ a 1=53,q =3或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1或a n =-5·(-1)n -1,n ∈N +. (2)设S m =1a 1+1a 2+…+1a m, 若a n =53·3n -1,则1a n =35·⎝⎛⎭⎫13n -1, 则数列⎩⎨⎧⎭⎬⎫1a n 是首项为35,公比为13的等比数列. 从而S m =35⎣⎡⎦⎤1-⎝⎛⎭⎫13m 1-13=910·⎣⎡⎦⎤1-⎝⎛⎭⎫13m <910<1. 若a n =-5·(-1)n -1,则1a n =-15·(-1)n -1, 故数列⎩⎨⎧⎭⎬⎫1a n 是首项为-15,公比为-1的等比数列, 从而S m =⎩⎪⎨⎪⎧-15,m =2k -1(k ∈N +),0,m =2k (k ∈N +),故S m <1.综上,对任何正整数m ,总有S m <1.1a1+1a2+…+1a m≥1成立.故不存在正整数m,使得。

人教版数学高二B版必修5本章整合第二章数列

人教版数学高二B版必修5本章整合第二章数列

本章整合知识网络专题探究专题一 求数列的通项公式数列的通项是数列的重要内容之一,只要有数列的通项公式,许多问题就可迎刃而解.如果一个数列是等差数列或等比数列,则可直接写出其通项公式,而对于非等差、等比数列的通项公式可通过适当的变形、构造等使之成为等差或等比数列来求解.因此数列通项公式的求解问题往往是解决数列难题的关键,现根据数列的结构特征把常见求解方法和技巧总结如下.(一)观察法【应用1】 已知数列12,14,-58,1316,-2932,6164,…,则此数列的一个通项公式是________. 提示:已知数列的前若干项,求该数列的通项公式时,一般先对所给的项观察分析,寻找规律,从而根据规律写出此数列的一个通项公式.解析:观察数列每项的绝对值,分母为2,4,8,16,32,…,是2n 的形式,而分子,从第二项起满足“分子-分母=-3”,因此改写第一项为--12,这样,数列中每一项的绝对值都满足“分子-分母=-3”这一规律,且数列中每一项的符号为“-”“+”交替出现,故a n =(-1)n2n -32n .答案:a n =(-1)n2n -32n (二)定义法【应用2】 等差数列{a n }是递增数列,前n 项和为S n ,且a 1,a 3,a 9成等比数列,S 5=a 25.求数列{a n }的通项公式.提示:本题已知{a n }是等差数列,可建立首项和公差的方程,通过解方程来求得首项和公差,再代入通项公式得其解.解:设数列{a n }的公差为d (d >0).∵a 1,a 3,a 9成等比数列,∴23a =a 1a 9,即(a 1+2d )2=a 1(a 1+8d ),得d 2=a 1d .∵d >0,∴a 1=d .①∵S 5=25a ,∴5a 1+5×42d =(a 1+4d )2.② 由①②,得a 1=35,d =35. ∴a n =35+(n -1)×35=35n . (三)S n 法【应用3】 设数列{a n }的前n 项和为S n =2n 2,{b n }为等比数列,且a 1=b 1,b 2(a 2-a 1)=b 1.求数列{a n }和{b n }的通项公式.提示:本题已知S n 的表达式,自然想到使用公式a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2求解. 解:当n =1时,a 1=S 1=2;当n ≥2时,a n =S n -S n -1=2n 2-2(n -1)2=4n -2,当n =1时也适用,故{a n }的通项公式为a n =4n -2.设{b n }的公比为q ,则b 2(a 2-a 1)=b 1qd =b 1,又d =4,∴q =14. 又a 1=b 1=2,故b n =b 1q n -1=2×14n -1, 即{b n }的通项公式为b n =24n -1.(四)累加法【应用4】 已知在数列{a n }中,a 1=1,且a n +1-a n =3n -n ,求数列{a n }的通项公式. 提示:由于本题给出了数列{a n }中连续两项的差,故可考虑用累加法求解.解:由a n +1-a n =3n -n ,得a n -a n -1=3n -1-(n -1),a n -1-a n -2=3n -2-(n -2),…a 3-a 2=32-2,a 2-a 1=3-1.当n ≥2时,以上n -1个等式两端分别相加,得(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)=3n -1+3n -2+…+3-[(n -1)+(n -2)+…+1],即a n -a 1=3(1-3n -1)1-3-n (n -1)2. 又∵a 1=1,∴a n =12×3n -n (n -1)2-12. 显然a 1=1也适合上式,∴{a n }的通项公式为a n =12×3n -n (n -1)2-12. (五)迭乘法【应用5】 已知在数列{a n }中,a 1=13,前n 项和S n 与a n 的关系是S n =n (2n -1)a n ,求a n .提示:此题已知S n 与a n 的关系,应想到使用S n 法,然后得到相邻两项比的等式满足a n =a n -1f (n )这种模型,因此使用迭乘法求解.解:当n ≥2时,由S n =n (2n -1)a n ,得S n -1=(n -1)(2n -3)·a n -1,两式相减,得(2n +1)a n =(2n -3)a n -1,∴a n a n -1=2n -32n +1. ∴a n -1a n -2=2n -52n -1,…,a 2a 1=15. 将上面n -1个等式相乘,得a n a 1=(2n -3)(2n -5)(2n -7)…·3·1(2n +1)(2n -1)(2n -3)…·7·5=3(2n +1)(2n -1), ∴当n ≥2时,a n =1(2n +1)(2n -1).当n =1时,a 1=13满足上式, 故对n ∈N +,有a n =1(2n +1)(2n -1). (六)辅助数列法【应用6】 在数列{a n }中,a 1=1,a n +1=12a n +1,求数列{a n }的通项公式. 提示:对于a n +1=pa n +q 这一类型的递推关系式,常用配常数法求通项公式.设a n +1+k =p (a n +k ),对比递推关系式,可得k =q p -1,构造出等比数列{a n +k }. 解:令a n +1+k =12(a n +k ), ∵a n +1=12a n +1,对比可得k =-2, ∴a n +1-2=12(a n -2). ∴{a n -2}是首项为a 1-2=-1,公比为12的等比数列. ∴a n -2=-1·⎝⎛⎭⎫12n -1=-⎝⎛⎭⎫12n -1. ∴a n =-⎝⎛⎭⎫12n -1+2.专题二 数列的求和问题我们已学习了等差数列和等比数列,并熟悉了有关等差数列和等比数列的求和公式,然而有些数列既不是等差数列,又不是等比数列,像这样的数列如何求和呢?数列的求和常涉及分类讨论、转化化归等思想方法.在求数列的前n 项和S n 时,要掌握以下几种常用的方法:(一)并项转化求和法【应用1】 求和:S n =12-22+32-42+52-62+…+992-1002.提示:根据条件可知:前后两项相互结合,利用公式化简求值得出和.解:由平方差公式,得S n =(1-2)(1+2)+(3-4)(3+4)+(5-6)(5+6)+…+(99-100)(99+100)=-[(1+2)+(3+4)+(5+6)+…+(99+100)]=-(1+2+3+4+ (100)=-100×(1+100)2=-5 050.(二)倒序相加法【应用2】 在等差数列{a n }中,前4项的和为16,后4项的和为80,所有项之和为240,求这个数列的项数.提示:从题意可知前4项和与后4项和,又此数列是等差数列,具有与首尾“等距”的两项之和相等的特点,因此采用倒序相加法.解:设此数列{a n }共有n 项,则a 1+a 2+a 3+a 4=16,①a n +a n -1+a n -2+a n -3=80.②以上两式相加,得4(a 1+a n )=16+80,解得a 1+a n =24.又S n =n (a 1+a n )2=240,即n ×242=240,解得n =20. 所以数列的项数为20.(三)拆项分组求和法【应用3】 求数列1+1,1a +4,1a 2+7,1a 3+10, (1)n -1+(3n -2),…的前n 项和. 提示:本题通项公式为a n =1a n -1+(3n -2),是一个指数式和一个一次式的和组成的,可以选择拆项分组求和法.解:设数列的通项为a n ,前n 项和为S n ,则 a n =1an -1+(3n -2), ∴S n =⎝⎛⎭⎫1+1a +1a 2+…+1a n -1+[1+4+7+…+(3n -2)]. 当a =1时,S n =n +(1+3n -2)n 2=3n 2+n 2. 当a ≠1时,S n =1-1a n 1-1a+(1+3n -2)n 2=a n -1a n -a n -1+(3n -1)n 2. (四)错位相减法【应用4】 已知等差数列{a n }满足a 2=0,a 6+a 8=-10.(1)求数列{a n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和. 提示:(1)中利用基本量法列出关于a 1与d 的方程组即可求出a n ;(2)利用错位相减法.解:(1)设等差数列{a n }的公差为d .由已知条件可得⎩⎪⎨⎪⎧ a 1+d =0,2a 1+12d =-10.解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n .(2)设数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和为S n ,即S n =a 1+a 22+…+a n 2n -1,故S 1=1, S n 2=a 12+a 24+…+a n 2n . 所以,当n >1时,S n 2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-⎝⎛⎭⎫12+14+…+12n -1-2-n 2n =1-⎝⎛⎭⎫1-12n -1-2-n 2n =n 2n . 所以S n =n 2n -1. 综上,数列⎩⎨⎧⎭⎬⎫a n 2n -1的前n 项和S n =n 2n -1. (五)裂项相消求和法【应用5】 求数列112+2,122+4,132+6,142+8,…的前n 项和. 提示:先找出数列的通项公式a n =1n 2+2n ,结合其结构形式将1n 2+2n 化为1n (n +2)即可进行裂项相消求和.解:因为通项a n =1n 2+2n =12⎝⎛⎭⎫1n -1n +2,所以此数列的前n 项和S n =12⎣⎡⎦⎤⎝⎛⎭⎫1-13+⎝⎛⎭⎫12-14+⎝⎛⎭⎫13-15+…+⎝⎛⎭⎫1n -1-1n +1+⎝⎛⎭⎫1n -1n +2 =12⎝⎛⎭⎫1+12-1n +1-1n +2=34-2n +32(n +1)(n +2).专题三 数列与数学思想数学思想方法对认知结构起着重要作用,是重要的基础知识,是知识转化为能力的桥梁.求解数列问题常用的数学思想有函数思想、方程思想、整体思想、分类讨论思想、转化思想等.(一)函数思想【应用1】 等差数列{a n }的首项为a 1=14,前n 项和为S n ,若S 3=S 5,则当n =__________时,S n 最大.提示:本题利用了等差数列前n 项和具有的二次函数性质,等差数列前n 项和的最值问题经常借助求解二次函数最值的方法来解决.解析:∵数列{a n }为等差数列,a 1=14,S 3=S 5,得3a 1+3×22d =5a 1+5×42d . ∴d =-27a 1=-4. ∴S n =na 1+n (n -1)2d =14n +n (n -1)2·(-4) =-2n 2+16n .注意到函数y =-2x 2+16x 的对称轴是x =-162×(-2)=4. 又∵n ∈N +,∴n =4时,S n 最大.答案:4(二)方程思想【应用2】 已知在等差数列{a n }中,a 1+a 5=26,a 1+a 5-S 3=5,求a 20及S 20. 提示:等差(比)数列的有关问题大都可以建立关于a 1,d (q )的方程组求解.解:⎩⎪⎨⎪⎧ a 1+a 5=26a 1+a 5-S 3=5⇒⎩⎪⎨⎪⎧ a 1+a 5=26,S 3=21,∴⎩⎪⎨⎪⎧ a 1+a 1+4d =26,3a 1+3d =21.解得⎩⎪⎨⎪⎧a 1=1,d =6. ∴a 20=a 1+19d =1+19×6=115,S 20=a 1+a 202×20=1 160. (三)整体思想【应用3】 某等差数列前4项之和为-4,最后4项之和为36,且所有项的和为36,则此数列共有______项.提示:解题时,分析已知条件与所求问题的联系,把a 1+a 2+a 3+a 4以及a n +a n -1+a n -2+a n -3看成一个整体,灵活运用整体思想.解析:由题意可得⎩⎪⎨⎪⎧a 1+a 2+a 3+a 4=-4a n +a n -1+a n -2+a n -3=36 ⇒4(a 1+a n )=32,∴a 1+a n =8.又∵S n =n (a 1+a n )2=36,∴4n =36. ∴n =9,即该数列共有9项.答案:9(四)分类讨论思想【应用4】 已知等比数列{a n }是一个公比为q 的递增数列,且a 5=a ,a 9=a 81,则该数列的首项a 1______0.(选填“>”或“<”)提示:当一个问题因为某种量的情况不同而有可能引起问题的结果不同时,需要对这个量的各种情况进行分类讨论.在本题中,由于等比数列的增减性与a 1,q 相关,所以应对q 的取值进行讨论.解析:∵a n =a m q n -m ,∴q n -m =a n a m ,q 4=a 9a 5=181, ∴q 2=19.∴q =±13. 当q =-13时,显然数列为摆动数列,不合题意,舍去. 当q =13时,a n =a 1⎝⎛⎭⎫13n -1. ∵y =⎝⎛⎭⎫13x 为减函数,∴当a 1<0时,a n 单调递增.答案:<。

高中数学人教B版必修5习题 第2章 数列 基本知能检测(含答案)

高中数学人教B版必修5习题 第2章 数列 基本知能检测(含答案)

第二章基本知能检测(时间:120分钟 满分:150分)一、选择题(本大题共12个小题,每小题5分,共60分,每小题有4个选项,其中有且仅有一个是正确的,把正确的选项填在答题卡中)1.在等差数列{a n }中,a 3=-6,a 7=a 5+4,则a 1等于( ) A .-10 B .-2 C .2 D .10[答案] A[解析] 设公差为d ,∴a 7-a 5=2d =4, ∴d =2,又a 3=a 1+2d , ∴-6=a 1+4,∴a 1=-10.2.在等比数列{a n }中,a 4、a 12是方程x 2+3x +1=0的两根,则a 8等于( ) A .1 B .-1 C .±1 D .不能确定[答案] B[解析] 由题意得,a 4+a 12=-3<0, a 4·a 12=1>0,∴a 4<0,a 12<0. ∴a 8<0,又∵a 28=a 4·a 12=1, ∴a 8=-1.3.已知数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧3n +1(n 为奇数)2n -2(n 为偶数),则a 2a 3等于( )A .70B .28C .20D .8[答案] C[解析] 由通项公式可得a 2=2,a 3=10,∴a 2a 3=20.4.已知0<a <b <c ,且a ,b ,c 为成等比数列的整数,n 为大于1的整数,则log a n ,log b n ,log c n 成( )A .等差数列B .等比数列C .各项倒数成等差数列D .以上都不对[答案] C[解析] ∵a ,b ,c 成等比数列,∴b 2=ac . 又∵1log a n +1log c n =log n a +log n c =log n (ac )=2log n b =2log b n ,∴1log a n +1log c n =2log b n. 5.在等比数列{a n }中,a n <a n +1,且a 2a 11=6,a 4+a 9=5,则a 6a 11等于( )A .6B .23C .16D .32[答案] B[解析] ∵a 4·a 9=a 2a 11=6, 又∵a 4+a 9=5,且a n <a n +1, ∴a 4=2,a 9=3, ∴q 5=a 9a 4=32,又a 6a 11=1q 5=23. 6.在等比数列{a n }中,a 1=1,则其前3项的和S 3的取值范围是( ) A .(-∞,-1] B .(-∞,0)∪(1,+∞) C .[34,+∞)D .[3,+∞)[答案] C[解析] 设等比数列的公比为q ,则S 3=1+q +q 2=(q +12)2+34.∴S 3的取值范围是[34,+∞).7.正项等比数列{a n }满足a 2a 4=1,S 3=13,b n =log 3a n ,则数列{b n }的前10项和是( ) A .65 B .-65 C .25 D .-25[答案] D[解析] ∵{a n }为正项等比数列,a 2a 4=1, ∴a 3=1,又∵S 3=13,∴公比 q ≠1. 又∵S 3=a 1(1-q 3)1-q=13,a 3=a 1q 2,解得q =13.∴a n =a 3q n -3=(13)n -3=33-n ,∴b n =log 3a n =3-n . ∴b 1=2,b 10=-7.∴S 10=10(b 1+b 10)2=10×(-5)2=-25.8.等差数列{a n }中,若3a 8=5a 13,且a 1>0,S n 为前n 项和,则S n 中最大的是( ) A .S 21 B .S 20 C .S 11 D .S 10[答案] B[解析] 设数列{a n }的公差为d ,因为3a 8=5a 13,所以2a 1+39d =0,即a 1+a 40=0, 所以a 20+a 21=0,又a 1>0,d <0,故a 20>0,a 21<0,所以S n 中最大的是S 20. 9.已知等比数列{a n }的前n 项和为S n ,S n =x ·3n -1-16,则x 的值为( )A .13B .-13C .12D .-12[答案] C[解析] a 1=S 1=x -16,a 2=S 2-S 1=3x -16-x +16=2x ,a 3=S 3-S 2=9x -16-3x +16=6x ,∵{a n }为等比数列,∴a 22=a 1a 3,∴4x 2=6x ⎝⎛⎭⎫x -16, 解得x =12.10.等差数列{a n }中,S n 是{a n }前n 项和,已知S 6=2,S 9=5,则S 15=( ) A .15 B .30 C .45 D .60[答案] A[解析] 解法一:由等差数列的求和公式及⎩⎪⎨⎪⎧S 6=2S 9=5知,⎩⎨⎧6a 1+6×52d =29a 1+9×82d =5,∴⎩⎨⎧a 1=-127d =427,∴S 15=15a 1+15×142d =15.解法二:由等差数列性质知,{S n n }成等差数列,设其公差为D ,则S 99-S 66=3D =59-26=29,∴D =227,∴S 1515=S 99+6D =59+6×227=1,∴S 15=15. 11.一个卷筒纸,其内圆直径为4 cm ,外圆直径为12 cm ,一共卷60层,若把各层都视为一个同心圆,π=3.14,则这个卷筒纸的长度为(精确到个位)( )A .14 mB .15 mC .16 mD .17 m[答案] B[解析] 纸的厚度相同,且各层同心圆直径成等差数列,则l =πd 1+πd 2+…+πd 60=60π×4+122=480×3.14=1507.2(cm)≈15 m ,故选B .12.数列{a n }的首项为3,{b n }为等差数列且b n =a n +1-a n (n ∈N +).若b 3=-2,b 10=12,则a 8=( )A .0B .3C .8D .11 [答案] B[解析] 本题主要考查等差数列的性质及累加法求通项,由b 3=-2,b 10=12,∴d =2, b 1=-6,∴b n =2n -8,∵b n =a n +1-a n .∴a 8=(a 8-a 7)+(a 7-a 6)+(a 6-a 5)+(a 5-a 4)+(a 4-a 3)+(a 3-a 2)+(a 2-a 1)+a 1 =b 7+b 6+b 5+b 4+b 3+b 2+b 1+a 1 =7(-6+2×7-8)2+3=3.二、填空题(本大题共4个小题,每空4分,共16分,把正确答案填在题中横线上)13.已知S n 是等比数列{a n }的前n 项和,a 5=-2,a 8=16,则S 6等于________. [答案]218[解析] ∵{a n }为等比数列,∴a 8=a 5q 3,∴q 3=16-2=-8,∴q =-2.又a 5=a 1q 4,∴a 1=-216=-18, ∴S 6=a 1(1-q 6)1-q =-18[1-(-2)6]1+2=218.14.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=24,则a 9=__________. [答案] 15[解析] 设等差数列公差为d ,则 S 3=3a 1+3×22×d =3a 1+3d =3,a 1+d =1,①又S 6=6a 1+6×52×d =6a 1+15d =24,即2a 1+5d =8.② 联立①②两式得a 1=-1,d =2, 故a 9=a 1+8d =-1+8×2=15.15.在等差数列{a n }中,S n 为它的前n 项和,若a 1>0,S 16>0,S 17<0, 则当n =________时,S n 最大.[答案] 8[解析] ∵⎩⎪⎨⎪⎧S16=16(a 1+a 16)2=8(a 8+a 9)>0S17=17(a 1+a 17)2=17a 9<0,∴a 8>0而a 1>0,∴数列{a n }是一个前8项均为正,从第9项起为负值的等差数列,从而n =8时,S n 最大.16.数列{x n }满足lg x n +1=1+lg x n (x ∈N *),且x 1+x 2+…+x 100=100,则lg(x 101+x 102+…+x 200)=________.[答案] 102[解析] 由题意得x n +1=10x n ,即数列{x n }是公比为10的等比数列,所以x 101+x 102+…+x 200=(x 1+x 2+…+x 100)·10100=10102,故lg(x 101+x 102+…+x 200)=102.三、解答题(本大题共6个小题,共74分,解答应写出文字说明、证明过程或演算步骤) 17.(本题满分12分)已知数列{a n } 是首项为1的等差数列,且公差不为零.而等比数列{b n }的前三项分别是a 1,a 2,a 6.(1)求数列{a n }的通项公式a n ;(2)若b 1+b 2+…+b k =85,求正整数k 的值. [解析] (1)设数列{a n }的公差为d , ∵a 1,a 2,a 6成等比数列,∴a 22=a 1·a 6, ∴(1+d )2=1×(1+5d ),∴d 2=3d ,∵d ≠0,∴d =3,∴a n =1+(n -1)×3=3n -2. (2)数列{b n }的首项为1,公比为q =a 2a 1=4.∵b 1+b 2+…+b k =1-4k 1-4=4k -13,∴4k -13=85,∴4k =256,∴k =4,∴正整数k 的值为4.18.(本题满分12分)(2015·福建文,17)等差数列{a n }中,a 2=4,a 4+a 7=15. (1)求数列{a n }的通项公式;(2)设b n =2a n -2+n ,求b 1+b 2+b 3+…+b 10的值. [解析] (1)设等差数列{a n }的公差为d .由已知得⎩⎪⎨⎪⎧a 1+d =4(a 1+3d )+(a 1+6d )=15,解得⎩⎪⎨⎪⎧a 1=3d =1.所以a n =a 1+(n -1)d =n +2. (2)由(1)可得b n =2n +n .所以b 1+b 2+b 3+…+b 10=(2+1)+(22+2)+(23+3)+…+(210+10)=(2+22+23+…+210)+(1+2+3+…+10)=2(1-210)1-2+(1+10)×102=(211-2)+55=211+53=2 101.19.(本题满分12分)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足:a 3·a 4=117,a 2+a 5=22.(1)求数列{a n }的通项公式a n ;(2)若数列{b n }是等差数列,且b n =S nn +c ,求非零常数c .[解析] (1){a n }为等差数列, ∵a 3+a 4=a 2+a 5=22, 又a 3·a 4=117,∴a 3,a 4是方程x 2-22x +117=0的两个根. 又公差d >0,∴a 3<a 4, ∴a 3=9,a 4=13.∴⎩⎪⎨⎪⎧ a 1+2d =9a 1+3d =13,∴⎩⎪⎨⎪⎧a 1=1d =4, ∴a n =4n -3.(2)由(1)知,S n =n ·1+n (n -1)2·4=2n 2-n ,∴b n =S nn +c =2n 2-n n +c,∴b 1=11+c ,b 2=62+c ,b 3=153+c ,∵{b n }是等差数列,∴2b 2=b 1+b 3, ∴2c 2+c =0,∴c =-12(c =0舍去).20.(本题满分12分)数列{a n }的前n 项和为S n ,且a 1=1,a n +1=13S n ,n ≥1,n ∈N +.求:(1)数列{a n }的通项公式; (2)a 2+a 4+a 6+…+a 2n 的值. [解析] (1)∵a n +1=13S n (n ∈N +),∴a n =13S n -1(n ≥2,n ∈N +),∴两式相减,得a n +1-a n =13a n .即a n +1a n =43(n ≥2).a 2=13S 1=13a 1=13,a 2a 1=13≠43. ∴数列{a n }是从第2项起公比为43的等比数列,∴a n =⎩⎪⎨⎪⎧1 (n =1)13·(43)n -2(n ≥2).(2)由(1)知,数列a 2,a 4,a 6,…,a 2n 是首项为13,公比为169的等比数列,∴a 2+a 4+…+a 2n =13[1-(169)n ]1-169=37[(169)n -1].21.(本题满分12分)(2015·天津文,18)已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5-3b 2=7.(1)求{a n }和{b n }的通项公式;(2)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和. [解析] (1)设{a n }的公比为q ,{b n }的公差为d .由题意q >0,由已知,有⎩⎪⎨⎪⎧2q 2-3d =2q 4-3d =10,消去d ,得q 4-2q 2-8=0. 又因为q >0,解得q =2,d =2.所以{a n }的通项公式为a n =2n -1,n ∈N *, {b n }的通项公式为b n =2n -1,n ∈N *. (2)由(1)有c n =(2n -1)2n -1, 设{c n }的前n 项和为S n ,则S n =1×20+3×21+5×22+…+(2n -1)×2n -1, 2S n =1×21+3×22+5×23+…+(2n -1)×2n ,两式相减,得-S n =1+22+23+…+2n -(2n -1)×2n =-(2n -3)×2n -3. 所以S n =(2n -3)2n +3,n ∈N *.22.(本题满分14分)如图所示,某市2009年新建住房400万平方米,其中250万平方米是中低价房,预计今年后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积比上一年增加50万平方米,那么到哪一年底,(1)该市历年所建中低价房的累计面积(以2009年累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?[解析] (1)设中低价房面积构成数列{a n },由题意知:{a n }是等差数列,其中a 1=250,d =50,∴S n =250n +n (n -1)2×50=25n 2+225n ,令25n 2+225n ≥4 750, 即n 2+9n -190≥0, 解得n ≤-19或n ≥10, ∴n ≥10.故到2018年底,该市历年所建中低价房累计面积首次不少于4 750万m 2. (2)设新建住房面积构成等比数列{b n }. 由题意知{b n }为等比数列,b 1=400,q =1.08. ∴b n =400×(1.08)n -1, 令a n >0.85b n ,即250+(n -1)×50>400×(1.08)n -1×0.85,∴满足不等式的最小正整数n=6.故到2014年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%.。

人教新课标版数学高二B版必修5规范训练 第二章 数列 质量评估

人教新课标版数学高二B版必修5规范训练 第二章 数列 质量评估

章末质量评估(二)(时间:90分钟 满分:120分)一、选择题(每小题5分,共60分)1.等差数列{a n }的公差不为零,且前20项的和为S 20=10N ,则N 可以是 ( ). A .a 2+a 15 B .a 12+10a 10 C .a 2+a 3D .a 9+a 12解析 S 20=a 1+a 202·20=10(a 9+a 12),故选D.答案 D2.设S n 为数列{a n }的前n 项和且S n =n n +1,则1a 5=( ).A.56 B.65 C.130D .30解析 因为a 5=S 5-S 4=130,所以1a 5=30,故选D.答案 D3.公差不为零的等差数列{a n }的第2,3,7项恰为等比数列{b n }的连续三项,则{b n }的公比为( ).A .1B .2C .3D .4解析 设公差为d ,d ≠0,则由题意:(a 1+d )(a 1+6d )=(a 1+2d )2,∴3a 1d +2d 2=0,∵d ≠0,∴d =-32a 1,∴a 2=a 1+d =-12a 1,a 3=a 1+2d =-2a 1,∴公比q =a 3a 2=4.答案:D4.已知数列{a n }对任意的p 、q ∈N *满足a p +q =a p +a q ,且a 2=-6,那么a 10等于( ). A .-165 B .-33 C .-30D .-21解析 令q =2,则a p +2-a p =a 2, ∵a 2=-6,∴数列{a n }的所有偶数项、所有奇数项分别成等差数列, ∴a 10=a 2+4×(-6)=-30,故选C. 答案 C5.在等比数列{a n }中,a 2a 6=16,a 4+a 8=8,则a 20a 10=( ).A .1B .-3C .1或-3D .-1或3解析 由a 2a 6=16,得a 42=16⇒a 4=±4, 又a 4+a 8=8,可得a 4(1+q 4)=8. ∵q 4>0,∴a 4=4,∴q 2=1. ∴a 20a 10=q 10=1. 答案 A6.等比数列{a n }中,a 2,a 6是方程x 2-34x +64=0的两根,则a 4等于( ). A .8 B .-8 C .±8D .以上都不对解析 a 2+a 6=34,a 2·a 6=64, ∴a 42=64,∵a 2>0,a 6>0,∴a 4=a 2q 2>0,∴a 4=8. 答案 A7.已知等比数列{a n }中,有a 3a 11=4a 7,数列{b n }是等差数列,且b 7=a 7,则b 5+b 9等于( ).A .2B .4C .8D .16解析 ∵a 3a 11=a 72=4a 7, ∵a 7≠0,∴a 7=4,∴b 7=4, ∵{b n }为等差数列, ∴b 5+b 9=2b 7=8,故选C. 答案 C8.已知数列{a n }前n 项和为S n =1-5+9-13+17-21+…+(-1)n -1(4n -3),则S 15+S 22-S 31的值是( ).A .13B .-76C .46D .76解析 S 15=-4×7+a 15=-28+57=29, S 22=-4×11=-44, S 31=-4×15+a 31 =-4×15+121=61,∴S 15+S 22-S 31=29-44-61=-76.故选B.答案 B9.已知数列{a n },如果a 1,a 2-a 1,a 3-a 2,…,a n -a n -1,…是首项为1,公比为13的等比数列,那么a n 等于( ).A.32⎝⎛⎭⎫1-13n B.32⎝⎛⎭⎫1-13n -1 C.23⎝⎛⎭⎫1-13n D.23⎝⎛⎭⎫1-13n -1 解析 a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =1-⎝⎛⎭⎫13n1-13=32⎝⎛⎭⎫1-13n . 答案:A10.如果数列{a n }满足a 1= 2,a 2=1,且a n -1-a n a n -1=a n -a n +1a n +1(n ≥2),则这个数列的第10项等于( ).A.1210 B.129 C.110D.15解析 ∵1-a n a n -1=a na n +1-1,∴a n a n -1+a n a n +1=2, ∴2a n =1a n -1+1a n +1, ∴{1a n }是首项为12,公差为12的等差数列, ∴1a n =12n , ∴a 10=15,故选D.答案 D11.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( ).A .5 B.72 C.92D.132解析 由a 1=12-a 2=12-2,a 2=2,a 3=12-2,a 4=2,…,知a 2n =2,a 2n -1=12-2,∴S 21=10×12+a 1=5+12-2=72,故选B.答案 B12.已知等比数列{a n }的各项均为正数,数列{b n }满足b n =ln a n ,b 3=18,b 6=12,则数列{b n }前n 项和的最大值等于( ).A .126B .130C .132D .134解析 ∵{a n }是各项不为0的正项等比数列, ∴b n =ln a n 是等差数列.又∵b 3=18,b 6=12,∴b 1=22,d =-2, ∴S n =22n +n (n -1)2×(-2)=-n 2+23n ,∴(S n )max =-112+23×11=132. 答案 C二、填空题(每小题5分,共20分)13.设S n 是等差数列{a n }(n ∈N *)的前n 项和,且a 1=1,a 4=7,则S 5=______. 解析 令{a n }的公差为d ,∵a 4=a 1+3d 且a 1=1,a 4=7,∴d =2. ∴S 5=5a 1+5×42d =5+5×4=25.答案 2514.已知数列{a n }、{b n }都是等差数列,S n 、T n 分别是它们的前n 项和,并且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=________. 解析a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=2a 12+2a 112b 12+2b 11=a 11+a 12b 11+b 12=S 22T 22=15525=315.答案31515.已知数列{a n }是等差数列,若它的前n 项和S n 有最小值,且a 11a 10<-1,则使S n >0成立的最小自然数n 的值为________.解析 由已知得,a 1<0,d >0,a 10<0,a 11>0,a 1+a 19<0,a 10+a 11>0,∴a 1+a 20>0,∴S 19<0,S 20>0,故n =20.答案 2016.数列{a n }的前n 项之和为S n ,S n =1-23a n ,则a n =________.解析 n =1时,a 1=S 1=1-23a 1,得a 1=35,n ≥2时,S n =1-23a n ,S n -1=1-23a n -1.两式相减得a n =23a n -1-23a n ,即53a n =23a n -1,a n a n -1=25. 所以{a n }是等比数列,首项为a 1=35,公比为25,所以a n =35·(25)n -1.答案 35·(25)n -1三、解答题(每小题10分,共40分)17.等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 32=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列{1b n}的前n 项和.解 (1)设数列{a n }的公比为q .由a 32=9a 2a 6得a 32=9a 42,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.故1b n =-2n (n +1)=-2(1n -1n +1), 1b 1+1b 2+…+1b n =-2=-2n n +1. 所以数列{1b n }的前n 项和为-2n n +1.18.已知数列{2n a n }的前n 项和S n =9-6n . (1)求数列{a n }的通项公式;(2)设b n =n (2-log 2|a n |3),求数列{1b n }的前n 项和T n .解 (1)当n =1时,2a 1=S 1=3,∴a 1=32;当n ≥2时,2n a n =S n -S n -1=-6,∴a n =-62n .又∵32≠-62,∴通项公式a n=⎩⎨⎧32 (n =1),-62n(n ≥2).(2)当n =1时,b 1=2-log 212=3,∴T 1=1b 1=13;当n ≥2时,b n =n (2-log 263·2n )=n (n +1),∴1b n =1n (n +1), ∴T n =1b 1+1b 2+…+1b n =13+12×3+13×4+…+1n (n +1)=56-1n +1,∴T n =56-1n +1.19.已知等差数列{a n }满足a 2=0,a 6+a 8=-10. (1)求数列{a n }的通项公式; (2)求数列{a n2n -1}的前n 项和.解 (1)设等差数列{a n }的公差为d ,由已知条件可得⎩⎪⎨⎪⎧a 1+d =0,2a 1+12d =-10,解得⎩⎪⎨⎪⎧a 1=1,d =-1. 故数列{a n }的通项公式为a n =2-n . (2)设数列{a n2n -1}的前n 项和为S n ,即S n =a 1+a 22+…+a n 2n -1,故S 1=1,S n 2=a 12+a 24+…+a n2n ,所以当n >1时,S n2=a 1+a 2-a 12+…+a n -a n -12n -1-a n 2n =1-(12+14+…+12n -1)-2-n 2n=1-(1-12n -1)-2-n 2n =n 2n ,所以S n =n2n -1.综上,数列{a n 2n -1}的前n 项和S n =n2n -1.20.数列{a n },a 1=2,a n =2a n -1+2n (n ≥2), (1)求证数列{a n2n }是等差数列;(2)求数列{a n }的前n 项和S n ;(3)若b n =2n -1a n ,求证数列{b n }为递减数列.(1)证明 ∵a n =2a n -1+2n (n ≥2), ∴a n 2n =2a n -12n +1⇒a n 2n -a n -12n -1=1. ∴{a n 2n }为等差数列,首项为a 121=1,公差d =1. (2)解 由(1)知a n2n =n ,∴a n =n ·2n .∴S n =1×21+2×22+3×23+…+(n -1)·2n -1+n ·2n , 2S n =1×22+2×23+…+(n -1)·2n +n ·2n +1, 两式相减,得-S n =21+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1,∴S n =2-2n +1+n ·2n +1=(n -1)·2n +1+2. (3)证明 ∵b n =2n -1a n =2n -1n ·2n >0,∴b n +1=2n +1(n +1)·2n +1,∴b n +1b n =(2n +1)·n (2n -1)·(n +1)·2=2n 2+n2(2n 2+n -1). 又∵2(2n 2+n -1)-(2n 2+n )=2n 2+n -2,当n ≥1时,2n 2+n -2>0,∴2(2n 2+n -1)>2n 2+n >0, ∴b n +1b n<1即b n +1<b n ,∴{b n }为递减数列.。

高中数学 第二章 数列过关测试卷 新人教B版必修5

高中数学 第二章 数列过关测试卷 新人教B版必修5

2014-2015学年高中数学 第二章 数列过关测试卷 新人教B 版必修5(100分,45分钟)一、选择题(每题6分,共48分)1.等差数列a 1,a 2,a 3,…,a n 的公差为d ,则数列ca 1,ca 2,…,ca n (c 为常数,且c ≠0)是( )A.公差为d 的等差数列B.公差为cd 的等差数列C.非等差数列D.以上都不对2.已知等比数列{a n }的前三项依次为a -1,a +1,a +4,则a n 等于( )A.4·23n ⎛⎫ ⎪⎝⎭B.4·32n ⎛⎫⎪⎝⎭C.4·123n -⎛⎫ ⎪⎝⎭ D.4·132n -⎛⎫⎪⎝⎭3.等比数列{a n }的前4项和为240,第2项与第4项的和为180,则数列{a n }的首项为( ) A.2 B.4 C.6 D.84.〈济南外国语学校考试〉已知等比数列{a n }满足a 1=3,且4a 1,2a 2,a 3成等差数列,则数列{a n }的公比等于( )A.1B.-1C.-2D.2 5.〈江西吉安高三模拟〉若{a n }为等差数列,S n 是其前n 项和,且S 13=263π,则tan a 7的值为( )6.〈郑州模拟〉已知各项均不为0的等差数列{a n }满足2a 3-27a +2a 11=0,数列{b n }为等比数列,且b 7=a 7,则b 6b 8等于( )A.2B.4C.8D.167.〈全国Ⅰ理〉设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0, S m +1=3,则m 等于( )A.3B.4C.5D.68.各项都是实数的等比数列{a n }的前n 项和记为S n ,若S 10=10,S 30=70,则S 40等于( ) A.150 B.-200 C.150或-200 D.400或-50 二、填空题(每题5分,共15分)9.等比数列{a n }的前n 项和为S n ,且4a 1,2a 2,a 3成等差数列.若a 1=1,则S 4= . 10.已知等差数列{a n }的前n 项和为S n ,若a 2=1,S 5=10,则S 7= . 11.〈新定义题〉若数列{a n }满足211n n n na a a a +++-=k (k 为常数),则称{a n }为等比差数列,k 叫做公比差.已知{a n }是以2为公比差的等比差数列,其中a 1=1,a 2=2,则a 5= . 三、解答题(14题13分,其余每题12分,共37分)12.〈全国大纲理〉等差数列{a n }的前n 项和为S n ,已知S 3=22a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.13.〈辽宁五校协作体高二上学期期中考试〉数列{a n }的前n 项和为S n ,a 1=1,1n a + =2S n +1(n ∈N +),等差数列{b n }满足b 3=3,b 5=9.(1)分别求数列{a n },{b n }的通项公式; (2)设c n =22n n b a ++ (n ∈N +),求证c n +1<c n ≤13.14.〈河南师大附中高二上学期期中考试〉已知数列{a n }的前n 项和为S n ,且a n =12(3n +S n )对一切正整数n 均成立.(1)求出数列{a n }的通项公式; (2)设b n =3na n ,求数列{b n }的前n 项和B n .参考答案及点拨一、1.B 点拨:∵a n -a n -1=d ,c ≠0,(n ≥2,n ∈N +)∴ca n -ca n -1=c (a n -a n -1)=cd (常数),∴数列{ca n }是公差为cd 的等差数列.2.D 点拨:由等比数列的性质可得(a +1)2=(a -1)(a +4),解得a =5.∴a 1=5-1=4,公比q =513=42+,∴a n =4·132n -⎛⎫⎪⎝⎭.3.C 点拨:由S 4-(a 2+a 4)=60,得a 1+a 3=60,∴q =2413a a a a ++=3,又a 1+a 3=a 1+a 1·q 2=60,∴a 1=6.4.D 点拨:设等比数列{a n }的公比为q (q ≠0),因为4a 1,2a 2,a 3成等差数列,所以4a 1+a 1q 2=4a 1q .因为a 1≠0,所以q 2-4q +4=0,解得q =2.5.B 点拨:由题意,得S 13=13a 7=263π,则a 7=23π,从而tan a 7=tan 23π6.D 点拨:因为{a n }是等差数列,所以a 3+a 11=2a 7,所以已知等式可化为4a 7-27a =0,解得a 7=4或a 7=0(舍去),又{b n }为等比数列,所以b 6b 8=27b =27a =16.7.C 点拨:∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴公差d =a m +1-a m =1.又S m =11()(2)22m m a a m a ++==0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5. 8.A 点拨:方法一:由S m +n =S m +q mS n ,得S 30=S 20+q 20S 10=S 10+q 10S 10+q 20S 10,从而有q 20+q 10-6=0,∴q 10=2(q 10=-3舍去).∴S 40=S 30+q 30S 10=70+23×10=150.故选A.方法二:由S 40= S 30+q 30 S 10, S 30>0,q 30>0, S 10>0,知S 40>0,从而排除B 、C 、D,故选A.二、9.15 点拨:设{a n }的公比为q (q ≠0).∵4a 1,2a 2,a 3成等差数列,∴4a 1+a 3=4a 2,即4a 1+a 1q 2=4a 1q ,∴q 2-4q +4=0,解得q =2,∴S 4=4112⨯-(1-2)=15.10.21 点拨:设{a n }的公差为d ,由题意知1111,1,5(51)0.510,2a d d a a d +=⎧=⎧⎪⎨⎨⨯-=+=⎩⎪⎩解得故S 7=7a 1+72d ⨯(7-1)=21. 11.384 点拨:由32212a a a a -=得,a 3=8,由34322aa a a -=得,a 4=48,由54432a a a a -=得,a 5=384. 三、12.解:设{a n }的公差为d . 由S 3=22a ,得3a 2=22a ,故a 2=0或a 2=3.因为S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , S 1, S 2, S 4成等比数列, 所以(2a 2-d )2=(a 2-d )(4a 2+2d ).若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不符合题意,舍去;若a 2=3,则(6-d )2=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.13.(1)解:由1n a +=2S n +1①,得a n =2S n -1+1(n ≥2,n ∈N +)②, ①-②,得a n +1-a n =2(S n -S n -1),∴a n +1=3a n ,∴a n =3n -1;设{b n }的公差为d ,∵b 5-b 3=2d =6,∴d =3.∴b n =3n -6. (2)证明:∵a n +2=3n +1,b n +2=3n ,∴c n =133n n +=3nn , ∴c n +1-c n =1123n n +-<0,∴c n +1<c n <…<c 1=13,∴c n +1<c n ≤13. 14.解:(1)由已知得S n =2a n -3n ,则S n +1=2a n +1-3(n +1), 两式相减并整理得:a n +1=2a n +3,所以3+a n +1=2(3+a n ). 又a 1=S 1=2a 1-3,所以a 1=3,所以3+a 1=6≠0, 所以a n +3≠0,所以133n na a +++ =2,故数列{3+a n }是首项为6,公比为2的等比数列,所以3+a n =6×2n -1,即a n =3(2n-1).(2)b n =n (2n -1)=n 2n -n .设T n =1×2+2×22+3×23+…+n ×2n,①则2T n =1×22+2×23+…+(n -1)2n +n ×2n +1,②②-①,得T n =-(2+22+23+…+2n )+n 2n +1=12212n +--+-n 2n +1=2+(n -1)2n +1. ∴B n =T n -(1+2+3+…+n )=2+(n -1)2n +1-(1)2n n +.。

人教版数学高二必修5质量检测 第二章 数列

人教版数学高二必修5质量检测 第二章 数列

阶段质量检测(二) 数 列(时间90分钟,满分120分)一、选择题(共10小题,每小题5分,共50分)1.数列3,5,9,17,33,…的通项公式a n 等于( )A .2nB .2n +1C .2n -1D .2n +1 2.下列四个数列中,既是无穷数列又是递增数列的是( )A .1,12,13,14,… B .-1,2,-3,4,…C .-1,-12,-14,-18,… D .1,2,3,…,n3.记等差数列的前n 项和为S n ,若S 2=4,S 4=20,则该数列的公差d =________.( )A .2B .3C .6D .74.在数列{a n }中,a 1=2,2a n +1-2a n =1,则a 101 的值为( )A .49B .50C .51D .525.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )A .90B .100C .145D .1906.(2012·安徽高考)公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( )A .1B .2C .4D .87.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( )A .0 B.12C.23D .-1 8.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A.第5项B.第12项C.第13项D.第6项9.设数列{a n}是以2为首项,1为公差的等差数列,{b n}是以1为首项,2为公比的等比数列,则ab1+ab2+…+ab10等于()A.1 033 B.1 034C.2 057 D.2 05810.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是()A.27 B.28C.29 D.30二、填空题(共4小题,每小题5分,共20分)11.若数列{a n}满足:a1=1,a n+1=2a n(n∈N*),则a5=________;前8项的和S8=________(用数字作答).12.数列{a n}满足a1=1,a n=a n-1+n(n≥2),则a5=________.13.等比数列{a n}中,a2+a4+…+a20=6,公比q=3,则前20项和S20=________.14.在等差数列{a n}中,其前n项的和为S n,且S6<S7,S7>S8,有下列四个命题:①此数列的公差d<0;②S9一定小于S6;③a7是各项中最大的一项;④S7一定是S n中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三、解答题(共4小题,共50分)15.(12分)等比数列{a n}中,已知a1=2,a4=16,(1)求数列{a n}的通项公式;(2)若a3,a5分别为等差数列{b n}的第3项和第5项,试求数列{b n}的通项公式及前n项和S n.16.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列;(2)求数列{b n }的通项公式.17.(12分)已知{a n }是公差不为零的等差数列,{b n }是各项都是正数的等比数列,(1)若a 1=1,且a 1,a 3,a 9成等比数列,求数列{a n }的通项公式;(2)若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(14分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *).(1)证明:数列{2na n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .答 案阶段质量检测(二) 数 列1.选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n =2n +1.2.选C A 为递减数列,B 为摆动数列,D 为有穷数列.3.选B S 4-S 2=a 3+a 4=20-4=16,∴a 3+a 4-S 2=(a 3-a 1)+(a 4-a 2)=4d =16-4=12,∴d =3.4.选D ∵2a n +1-2a n =1,∴a n +1-a n =12, ∴数列{a n }是首项a 1=2,公差d =12的等差数列, ∴a 101=2+12(101-1)=52. 5.选B 设公差为d ,∴(1+d )2=1×(1+4d ),∵d ≠0,∴d =2,从而S 10=100.6.选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12. 8.选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.9.选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033. 10.选B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28.法二:由图可知第n 个三角形数为n (n +1)2, ∴a 7=7×82=28. 11.解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知a 5=a 1q 4=16,S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255. 答案:16 25512.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15.答案:1513.解析:S 偶=a 2+a 4+…+a 20,S 奇=a 1+a 3+…+a 19,则S 偶S 奇=q , ∴S 奇=S 偶q =63=2. ∴S 20=S 偶+S 奇=6+2=8.答案:814.解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0.∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0,∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0,∴可知S 7为S n 中的最大项.答案:①②③15.解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n .(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧ b 1=-16,d =12. 从而b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n . 16.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1, 即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列.(2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1. 故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12,即b n =12n . 17.解:(1)由题意可设公差为d ,则d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d 1+2d, 解得d =1或d =0(舍去),故数列{a n }的通项公式为a n =1+(n -1)×1=n .(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.解:(1)证明:由已知可得a n +12n +1=a n a n +2n , 即2n +1a n +1=2n a n +1,即2n +1a n +1-2n a n=1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2n a n =2a 1+(n -1)×1=n +1, ∴a n =2n n +1. (3)由(2)知b n =n ·2n .S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二章过关测试卷
(100分,45分钟)
一、选择题(每题6分,共48分)
1.等差数列a1,a2,a3,…,a n的公差为d,则数列ca1,ca2,…,ca n(c为常数,且c≠0)是()
A.公差为d的等差数列
B.公差为cd的等差数列
C.非等差数列
D.以上都不对
2.已知等比数列{a n}的前三项依次为a-1,a+1,a+4,则a n等于( )
A.4·2 3
n
⎛⎫ ⎪⎝⎭B.4·
3
2
n
⎛⎫

⎝⎭
C.4·
1
2
3
n-
⎛⎫

⎝⎭
D.4·
1
3
2
n-
⎛⎫

⎝⎭
3.等比数列{a n}的前4项和为240,第2项与第4项的和为180,则数列{a n}的首项为()
A.2
B.4
C.6
D.8
4.〈济南外国语学校考试〉已知等比数列{a n}满足a1=3,且4a1,2a2,a3成等差数列,则数列{a n}的公比等于()
A.1
B.-1
C.-2
D.2
5.〈江西吉安高三模拟〉若{a n}为等差数列,S n是其前n项和,且S13=26
3
π
,则tan a7的值为
()
33
-3 D.
3
3 -
6.〈郑州模拟〉已知各项均不为0的等差数列{a n}满足2a3-2
7
a+2a11=0,数列{b n}为等比数列,且b7=a7,则b6b8等于( )
A.2
B.4
C.8
D.16
7.〈全国Ⅰ理〉设等差数列{a n}的前n项和为S n,若S m-1=-2,S m=0,
S m+1=3,则m等于( )
A.3
B.4
C.5
D.6
8.各项都是实数的等比数列{a n}的前n项和记为S n,若S10=10,S30=70,则S40等于()
A.150
B.-200
C.150或-200
D.400或-50
二、填空题(每题5分,共15分)
9.等比数列{a n}的前n项和为S n,且4a1,2a2,a3成等差数列.若a1=1,则S4= .
10.已知等差数列{a n }的前n 项和为S n ,若a 2=1,S 5=10,则S 7= . 11.〈新定义题〉若数列{a n }满足
21
1n n n n
a a a a +++-=k (k 为常数),则称{a n }为等比差数列,k 叫做公比差.已知{a n }是以2为公比差的等比差数列,其中a 1=1,a 2=2,则a 5= . 三、解答题(14题13分,其余每题12分,共37分)
12.〈全国大纲理〉等差数列{a n }的前n 项和为S n ,已知S 3=2
2a ,且S 1,S 2,S 4成等比数列,求{a n }的通项公式.
13.〈辽宁五校协作体高二上学期期中考试〉数列{a n }的前n 项和为S n ,a 1=1,1n a + =2S n +1(n ∈N +),等差数列{b n }满足b 3=3,b 5=9. (1)分别求数列{a n },{b n }的通项公式; (2)设c n =22n n b a ++ (n ∈N +),求证c n +1<c n ≤1
3
.
14.〈河南师大附中高二上学期期中考试〉已知数列{a n }的前n 项和为S n ,且a n =1
2
(3n +S n )对一切正整数n 均成立.
(1)求出数列{a n }的通项公式;
(2)设b n =3
n
a n ,求数列{
b n }的前n 项和B n .
参考答案及点拨
一、1.B 点拨:∵a n -a n -1=d ,c ≠0,(n ≥2,n ∈N +)∴ca n -ca n -1=c (a n -a n -1)=cd (常数),∴数列{ca n }是公差为cd 的等差数列.
2.D 点拨:由等比数列的性质可得(a +1)2=(a -1)(a +4),解得a =5.∴a 1=5-1=4,公比
q =513=42+,∴a n =4·1
32n -⎛⎫ ⎪⎝⎭
.
3.C 点拨:由S 4-(a 2+a 4)=60,得a 1+a 3=60,∴q =
24
13
a a a a ++=3,又a 1+a 3=a 1+a 1·q 2=60,∴a 1=6.
4.D 点拨:设等比数列{a n }的公比为q (q ≠0),因为4a 1,2a 2,a 3成等差数列,所以4a 1+a 1q 2=4a 1q .因为a 1≠0,所以q 2-4q +4=0,解得q =2.
5.B 点拨:由题意,得S 13=13a 7=
263π,则a 7=23π,从而tan a 7=tan 23
π
6.D 点拨:因为{a n }是等差数列,所以a 3+a 11=2a 7,所以已知等式可化为4a 7-2
7a =0,解得a 7=4或a 7=0(舍去),又{b n }为等比数列,所以b 6b 8=27b =2
7a =16.
7.C 点拨:∵{a n }是等差数列,S m -1=-2,S m =0,∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3,∴公差d =a m +1-a m =1.又S m =11()(2)
22
m m a a m a ++=
=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.
8.A 点拨:方法一:由S m +n =S m +q m S n ,得S 30=S 20+q 20S 10=S 10+q 10S 10 +q 20S 10,从而有q 20+q 10-6=0,∴q 10=2(q 10=-3舍去).∴S 40=S 30+q 30S 10
=70+23×10=150.故选A.方法二:由S 40= S 30+q 30
S 10, S 30>0,q 30
>0, S 10>0,知S 40>0,从而排除B 、C 、D,故选A.
二、9.15 点拨:设{a n }的公比为q (q ≠0).∵4a 1,2a 2,a 3成等差数列,∴4a 1+a 3=4a 2,即
4a 1+a 1q 2=4a 1q ,∴q 2
-4q +4=0,解得q =2,∴S 4=4
112
⨯-(1-2)
=15.
10.21 点拨:设{a n }的公差为d ,由题意知1111,
1,5(51)
0.510,2
a d d a a d +=⎧=⎧⎪
⎨⎨⨯-=+=⎩⎪⎩解得故S 7
=7a 1+
72
d ⨯(7-1)
=21. 11.384 点拨:由32212a a a a -=得,a 3=8,由34322a
a a a -=得,a 4=48,由5443
2a a a a -=得,a 5=384.
三、12.解:设{a n }的公差为d . 由S 3=22a ,得3a 2=2
2a ,故a 2=0或a 2=3.
因为S 1=a 2-d ,S 2=2a 2-d ,S 4=4a 2+2d , S 1, S 2, S 4成等比数列, 所以(2a 2-d )2=(a 2-d )(4a 2+2d ).
若a 2=0,则d 2=-2d 2,所以d =0,此时S n =0,不符合题意,舍去; 若a 2=3,则(6-d )2
=(3-d )(12+2d ),解得d =0或d =2. 因此{a n }的通项公式为a n =3或a n =2n -1.
13.(1)解:由1n a +=2S n +1①,得a n =2S n -1+1(n ≥2,n ∈N +)②, ①-②,得a n +1-a n =2(S n -S n -1),∴a n +1=3a n ,∴a n =3n -
1; 设{b n }的公差为d ,
∵b 5-b 3=2d =6,∴d =3.∴b n =3n -6.
(2)证明:∵a n +2=3n +1,b n +2=3n ,∴c n =
133n n +=3
n n
, ∴c n +1-c n =1123n n +-<0,∴c n +1<c n <…<c 1=1
3,
∴c n +1<c n ≤1
3
.
14.解:(1)由已知得S n =2a n -3n ,则S n +1=2a n +1-3(n +1), 两式相减并整理得:a n +1=2a n +3,所以3+a n +1=2(3+a n ). 又a 1=S 1=2a 1-3,所以a 1=3,所以3+a 1=6≠0, 所以a n +3≠0,所以
1
33n n
a a +++ =2,
故数列{3+a n}是首项为6,公比为2的等比数列,
所以3+a n=6×2n-1,即a n=3(2n-1).
(2)b n=n(2n-1)=n2n-n.设T n=1×2+2×22+3×23+…+n×2n,①则2T n=1×22+2×23+…+(n-1)2n+n×2n+1,②
②-①,得T n=-(2+22+23+…+2n)+n2n+1=
1
22
12
n+
-
-+
-
n2n+1=2+(n-1)2n+1.
∴B n=T n-(1+2+3+…+n)=2+(n-1)2n+1-
(1)
2
n n+
.。

相关文档
最新文档