高二上学期期末考试数学(理科)试卷(含参考答案)

合集下载

学年上学期高二期末考试理科数学试卷(扫描版)(附答案)

学年上学期高二期末考试理科数学试卷(扫描版)(附答案)

江西省赣州市2015~2016学年度第一学期期末考试高二数学(理科)试题一、选择题1~5.CDCDD ; 6~10.BBABC 11~12.DC二、填空题13.400; 14.2213y x -=; 15.12;三、解答题17.解:设集合{}{}22(1)(820)0210A x x x x x x =|+--≤=|-≤≤………………2分集合{}{}222(1)0(0)11(0)B x x x m m x m x m m =|-+-≤>=-≤≤+>…………4分 p ⌝是q ⌝的必要不充分条件,即为q 是p 的必要不充分条件…………………………6分所以A B Ø,即012101m m m >⎧⎪-≤-⎨⎪≤+⎩,解得9m ≥………………………………………………9分所以实数m 的取值范围是9m ≥…………………………………………………………10分18.解:(1)成绩落在[)70.5,80.5内人数最多…………………………………………2分 频数为66182⨯=,频率为63136428=++++…………………………………………6分 (2)成绩高于60分的学生占总人数的00364210093.7513642+++⨯=++++…………………………………………………………12分 19.解:(1)52x =,692y =,所以735b =……………………………………………2分 2a y bx =-=-……………………………………………………………………………4分 故y 对x 的回归直线方程为7325y x =-………………………………………………6分 (2)当9x =时,129.4y =,故若广告费为9万元,则销售收入为129.4万元……12分20.解:(1)从袋中随机取两个球,其中所有可能的结果组成的基本事件有1和2,1和3, 1和4,2和3,2和4,3和4共6个,从袋中取出的球的编号之和为偶数的的事件共有1和3,2和4两个……………………………………………………………………………3分z1因此所求事件的概率13P =………………………………………………………………6分 (2)先从袋中随机取一个球,记下编号为m ,放回后,再从袋中随机取一个球,记下编号为n ,(,)m n 一切可能的结果有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4), (3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个……………8分其中满足1n m <+的有:(1,1),(2,1),(2,2),(3,1),(3,2),(3,3),(4,1),(4,2),(4,3),(4,4)十个…………………………………………………………………………………10分 故满足条件的概率为105168P ==……………………………………………………………12分 21.解:(1)证明:连接1AC ,交1AC 于点F …………………………………………1分 则F 为1AC 的中点………………………………………………………………………2分 又D 是AB 的中点,连接DF …………………………………………………………3分 则1BC ∥DF ,因为DF ⊂平面1ACD ,1BC ⊄平面1ACD ………………………4分 所以1BC ∥平面1ACD ……………………………………………………………………6分 (2)解:由1AA AC CB AB ===,得AC BC ⊥………………………………7分 以C 为坐标原点,CA 、CB 、1CC 为x 轴、y 轴、z 轴建立如图的空间坐标系C xyz -, 设2CA =,则(1,1,0)D ,(0,2,1)E ,1(2,0,2)A ,(1CD =1(2,0,2)CA =………………………………………………8分设1111(,,)n x y z =是平面1ACD 的法向量, 则11100n CD n CA ⎧⋅=⎪⎨⋅=⎪⎩,即11110220x y x z +=⎧⎨+=⎩, 可取1(1,1,1)n =--…………………………………………9分 同理,设2n 是平面1ACE 的法向量,则22100n CE n CA ⎧⋅=⎪⎨⋅=⎪⎩, 可取2(2,1,2)n =-………………………………………………………………………10分x2)从而1212123cos ,3n n n n n n ⋅<>==⋅……………………………………………………11分 故126sin,n n <>=……………………………………………………………………12分 即二面角1D AC E --22.解:如图,设点M 到直线l 的距离为d ,根据题意,2d MN =,由此4x -=…2化简得:22143x y +=………………………………………4所以动点M 的轨迹C 的方程为22143x y +=……………5分 (2)由题意,设直线m 的方程为3y kx =+……………6分11(,)A x y ,22(,)B x y ,如图所示. 将3y kx =+代入22143x y +=,得22(34)24240k x kx +++=………………………7 其中,222(24)424(34)96(23)0k k k ∆=-⨯+=->且1222434k x x k +=-+…①,1222434x x k =+…②………………………………………8 又A 是PB 的中点,故212x x =…③将③代入①②,得12834k x k =-+,2121234x k =+………………………………………9分 所以222812()3434k k k-=++,且23k >…………………………………………………11分 解得32k =-或32k =………………………………………………………………………12分 所以直线m 的斜率为32-或32.。

高二上理科数学期末试卷及答案

高二上理科数学期末试卷及答案

第一学期期末考试试题 高二(理科)数学(必修5;选修2-1)(满分150分;时间120分钟)第I 卷(选择题 共50分)一、选择题(本大题共10个小题;每小题只有一个正确选项。

每小题5分;共50分)1.{}为则,中,已知等差数列n a a a a a n n ,33,431521==+=( ) A.48 B.492. {}==⋅=+q a a a a a n 则公比中,在正项等比数列,16,105362( ) A.2 B.22C. 222或3.的值为则中,在A aS b A ABC ABC Osin ,3,1,60===∆∆( ) A.3392 B.8138 C.3326 D. 724.在下列函数中;最小值为2的是( ) A.xx y 1+=B.xx y -+=33C.()101lg 1lg <<+=x xx y D.⎪⎭⎫⎝⎛<<+=20sin 1sin πx x x y5. 若椭圆221x my +=的离心率为2;则它的长半轴长为( ) A .1 B .2 C .1或2 D .与m 有关6.()线准线方程为的右焦点重合,则抛物的焦点与椭圆若12602222=+>=y x p px y ( ) A.1-=xB. 2-=xC. 21-=x D. 4-=x7. 有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件.③0a b >>是33a b >的充要条件.则其中正确的说法有( ) A .0个B .1个C .2个D .3个8. 以椭圆1162522=+y x 的焦点为顶点;离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 9. 下列各组向量中不平行的是( )A .)4,4,2(),2,2,1(--=-=b aB .)0,0,3(),0,0,1(-==d cC .)0,0,0(),0,3,2(==f eD .)40,24,16(),5,3,2(=-=h g10.是的距离最小的点的坐标上到直线抛物线42212=-=y x x y ( ) A.(1;1) B.(1;2) C.(2;2) D.(2;4)第II 卷(非选择题 共100分)二、填空题(本大题共5个小题;每小题5分;共25分)11. 等差数列9}{,27,39,}{963741前则数列中n n a a a a a a a a =++=++项的和9S 等于 . 12.()的最大值为则若a a a 21,210-<< . 13. 的最大值为,则足若满y x z x y x y x y x -=⎪⎩⎪⎨⎧≥+≤-≤+302142, .14. 双曲线的渐近线方程为20x y ±=;焦距为10;这双曲线的方程为 . 15. 若19(0,2,)8A ;5(1,1,)8B -;5(2,1,)8C -是平面α内的三点;设平面α的法向量),,(z y x a =;则=z y x :: .三、解答题(本大题6个小题;共75分.解答应写出说明文字;证明过程或演算步骤) 16. (本小题共12分) 如图;△ACD 是等边三角形;△ABC 是等腰直角三角形;∠ACB=90°;BD 交AC 于E ;AB=2. (1)求cos ∠CBE 的值;(2)求AE 。

高二年级上学期期末考试数学(理科)试卷及参考答案(共3套)

高二年级上学期期末考试数学(理科)试卷及参考答案(共3套)

广东省珠海市高二(上)期末数学试卷(理科)一、选择题(共12小题,每小题,5分,满分60分)1.已知命题p:∀x≥0,x3﹣1≥0,则¬p为()A.∀x≥0,x3﹣1<0 B.∃x≥0,x3﹣1<0C.∃x<0,x3﹣1<0 D.∀A<0,x3﹣1<02.若=(2,﹣3,5),=(﹣3,1,2),则||=()A.B.C.D.3.下面四个条件中,使a>b成立的充分不必要条件是()A.<B.a>b﹣1 C.a2>b2D.a>b+14.已知ax2﹣(1+a)x+b≥0的解集为{x|≤x≤1},则a+b=()A.B.C.﹣4 D.45.已知=1表示焦点在y轴上椭圆,则m的取值范围为()A.(1,2) B.(1,)C.(1,+∞)D.(,2)6.已知{a n}为等差数列,前n项和为S n,若,则sinS9=()A.B.C.﹣D.7.设变量x,y满足,则目标函数z=2x+4y最大值为()A.13 B.12 C.11 D.108.已知在△ABC中,∠BAC=60°,AB=6,若满足条件的△ABC有两个,则边BC的取值范围为()A.[3,6) B.(3,6)C.[3,6) D.[,6)9.在棱长为3的正方体ABCD﹣A1B1C1D1中,点E,F分别在棱A1B1,C1D1上且A1E=1,C1F=1,则异面直线AE,B1F所成角的余弦值为()A.B.C.D.010.一动圆P过定点M(﹣3,0),且与已知圆N:(x﹣3)2+y2=16外切,则动圆圆心P的轨迹方程是()A.=1(x≥2)B.=1(x≥2)C.=1(x≤﹣2)D.=1(x≤﹣2)11.已知a n=log(n+1)(n+2)(n∈N*),我们把使乘积a1•a2•…•a n为整数的数n叫做“劣数”,则在n∈(1,2018)内的所有“劣数”的和为()A.1016 B.2018 C.2024 D.202612.已知点A,B均在抛物线x2=4y上运动,且线段AB的长度为5,则AB的中点到x轴的最短距离为()A.B.C.1 D.2二、填空题(共8小题,每小题5分,满分40分)13.已知=(1,﹣3,λ),=(2,4,﹣5),若,则λ=.14.已知F1,F2为椭圆=1的两个焦点,过F2的直线交椭圆于A,B两点,若|F1A|+|F1B|=,则|AB|=.15.命题p:关于x的不等式x2+2ax+4>0对一切x∈R恒成立,命题q:指数函数f(x)=(3﹣2a)x是增函数,若p∧q为真,则实数a的取值范围为.16.已知各项为正数的等比数列{a n}中,a1a3=4,a7a9=25,则a5=.17.已知空间四边形ABCD中,=,,=,若,且(x,y,z∈R),则y=.18.若在△ABC中,,则△ABC是三角形.19.已知直线l:ax+y+2=0及两点P(﹣2,1),Q(3,2),若直线l与线段PQ有公共点,则a的取值范围是.20.如图,已知F1,F2分别是双曲线=1(a>0,b>0)的左、右两个焦点,|F1F2|=10,P是双曲线右支上的一点,直线F2P与y轴交于点A,△APF1的内切圆在边PF1上的切点为Q,若|PQ|=3,则双曲线的离心率为.三、解答题(共5小题,共50分)21.(10分)在锐角△ABC中,a,b,c分别为角A,B,C所对的边,且(a2+b2﹣c2)tanC=ab.(1)求角C;(2)若c=,b=2,求边a的值及△ABC的面积.22.(10分)在梯形ABCD中,BC∥DA,BE⊥DA,EA=EB=BC=2,DE=1,将四边形DEBC沿BE 折起,使平面DEBC⊥平面ABE,如图2,连结AD,AC.(1)若F为AB中点,求证:EF∥平面ADC;(2)求平面ABE与平面ADC所成锐二面角的余弦值.23.(10分)某投资公司计划投资A,B两种金融产品,根据市场调查与预测,A产品的利润y1与投资金额x的函数关系为y1=18﹣,B产品的利润y2与投资金额x的函数关系为y2=(注:利润与投资金额单位:万元).(1)该公司已有100万元资金,并全部投入A,B两种产品中,其中x万元资金投入A产品,试把A,B两种产品利润总和表示为x的函数,并写出定义域;(2)在(1)的条件下,试问:怎样分配这100万元资金,才能使公司获得最大利润?其最大利润为多少万元?24.(10分)已知椭圆C:=1(a>b>0)的离心率为,以原点O为圆心,椭圆的短半轴长为半径的圆与直线x﹣y+=0相切.(1)求椭圆C的标准方程;(2)若直线l:y=kx+m与椭圆C相交于A、B两点,且k OA•k OB=.求证:△AOB的面积为定值.25.(10分)正项数列{a n}的前n项和S n满足:=0.(1)求数列{a n}的通项公式;(2)若数列{b n}满足,且前n项和为T n,且若对于∀n∈N*,都有(m ∈R),求m的取值范围.理科数学参考答案1-5:BCDCB6-10:BABAC11-12:DB13、-214、15、(-2,1)1617、2 318、等腰直角19、20、5 321、第一学期期末调研考试高二数学(必修⑤、选修2-1)试卷说明:本卷满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.命题“若2017x >,则0x >”的否命题是A .若2017x >,则0x ≤B .若0x ≤,则2017x ≤C .若2017x ≤,则0x ≤D .若0x >,则2017x >2.抛物线212y x =的焦点坐标是 A .()0,1 B .10,2⎛⎫ ⎪⎝⎭ C .10,4⎛⎫ ⎪⎝⎭ D .10,8⎛⎫ ⎪⎝⎭3.已知等比数列{}n a ,11a =,313a =,则5a =A .19±B ..19- D .194.在C ∆AB 中,角A ,B ,C 的对边长分别为a ,b ,c ,b =45A =,60B =,则a =A ..4 D .65.若a ,b 为实数,则“ab 1<”是“1<ab ”的 A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.椭圆221(0)x y m n m n+=>>的一个焦点为()1,0,且=12mn ,则椭圆的离心率为 A .32 B .32 C .12 D .41 7.在空间四边形CD AB 中,,,DA a DB b DC c ===,P 在线段D A 上,且DP=2PA ,Q 为C B 的中点,则PQ =A .211322a b c -++ B .112223a b c +- C .121232a b c -+ D .221332a b c +- 8.设0a >,0b >5a 与5b的等比中项,则11a b+的最小值为 A .8 B .4 C .1 D .149.已知等差数列{}n a 中,前n 项和为n S ,1100810090,0a a a >+=,则当n S 取最大值时,n = A .1008 B .1009 C .2016 D .201710.不等式组0002x y x y x -≥⎧⎪+≥⎨⎪≤≤⎩表示的平面区域的面积为A .2B .3C .4D .511.已知直线2+=kx y 与椭圆1922=+my x 总有公共点,则m 的取值范围是 A .4≥m B .90<<mC .94<≤mD .4≥m 且9≠m12.在三棱柱111ABC A B C -中,点E 、F 、H 、K 分别为1AC 、1CB 、1A B 、11B C 的中点,G 为ΔABC 的重心,有一动点P 在三棱柱的面上移动,使得该棱柱恰有5条棱与平面PEF 平行,则以下各点中,在点P 的轨迹上的点是A .HB .KC .GD .1B二、填空题:本大题共4小题,每小题5分,共20分.13.已知向量()2,1,1a =-,(),2,1b t =-,R t ∈,若a b ⊥,则t = . 14.等差数列{}n a 中, 74a =,1992a a =,则{}n a 的通项公式为 .15.已知命题:p R x ∃∈,220x x a --<,若命题p 是假命题,则实数a 的取值范围是 .(用区间表示)16.已知2z y x =-,式中变量x ,y 满足下列条件: 213201x y x y k y -≥-⎧⎪+-≥⎨⎪≥⎩,若z 的最大值为11,则k 的值为 .三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知命题p :指数函数(2)xy a =- 是R 上的增函数,命题q :方程22122x y a a +=-+表示双曲线.(Ⅰ)若命题p 为真命题,求实数a 的取值范围;(Ⅱ)若命题“p q ∨”为真命题,“p q ∧”为假命题,求实数a 的取值范围.18.(本小题满分12分)已知ABC ∆的三个内角A ,B ,C 的对边长分别为a ,b ,c ,60B =︒. (Ⅰ)若2b ac =,请判断三角形ABC 的形状;(Ⅱ)若54cos =A ,3c =+,求ABC ∆的边b 的大小.19.(本小题满分12分)已知等差数列}{n a 的前n 项和为n S ,且53-=a ,244-=S . (Ⅰ)求数列}{n a 的通项公式; (Ⅱ)求数列|}{|n a 的前20项和20T .20.(本小题满分12分)在平面直角坐标系xOy 中,椭圆2222:1(0)x y E a b a b +=>>的左焦点为1(1,0)F -,左顶点为A ,上、下顶点分别为,B C .(Ⅰ)若直线1BF 经过AC 中点M ,求椭圆E 的标准方程;(Ⅱ)若直线1BF 的斜率为1,1BF 与椭圆的另一交点为D ,椭圆的右焦点为2F ,求三角形2BDF 的面积.21.(本小题满分12分)某农场计划种植甲、乙两个品种的水果,总面积不超过300亩,总成本不超过9万元.甲、乙两种水果的成本分别是每亩600元和每亩200元.假设种植这两个品种的水果,能为该农场带来的收益分别为每亩0.3万元和每亩0.2万元.问该农场如何分配甲、乙两种水果的种植面积,可使农场的总收益最大?最大收益是多少万元?22.(本小题满分12分)如图,四棱锥ABCDP-中,底面ABCD为矩形,平面PDC⊥平面ABCD,32==PDAD,6==ABPB.(Ⅰ)证明:PABD⊥;(Ⅱ)求直线AP与平面PBC所成角的正弦值.PAB CD第一学期期末调研考试高中数学必修5及选修2-1试题 参考答案及评分意见一、选择题:本大题共12小题,每小题5分,共60分.二、填空题:本大题共4小题,每小题5分,共20分. 13.3214.12n n a += 15. (],1-∞- 16.23三、解答题:本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)解:(Ⅰ)命题p 为真命题时,2-a >1,即a <1. ……………………2分(Ⅱ)若命题q 为真命题,则(2)(2)0a a -+<,所以22a -<<, ……………………4分 因为命题“p q ∨”为真命题,则,p q 至少有一个真命题,“p q ∧”为假命题,则,p q 至少有一个假命题,所以,p q 一个为真命题,一个为假命题 ……………………6分 当命题p 为真命题,命题q 为假命题时,122a a a <⎧⎨≤-≥⎩或,则2a ≤-;当命题p 为假命题,命题q 为真命题时,122a a ≥⎧⎨-<<⎩,则12a ≤<. ………………9分综上,实数a 的取值范围为(][),21,2-∞-. ……………………10分18.(本小题满分12分)解:(Ⅰ)由2222cos b a c ac B ac =+-⋅=,1cos cos 602B =︒=,……………………3分 得2()0a c -=,=a c ,…………………………………………………5分 又60B =︒,∴ 三角形ABC 是等边三角形. ……………………………………………………6分 (Ⅱ)由4cos 5A =,得3sin 5A =,……………………………………………………7分 又60B =︒,∴ sin sin()sin cos cos sin C A B A B A B =+=⋅+⋅……………………………………………8分314525=⨯+10分由正弦定理得(3sin sin c Bb C+⋅=== ………………………………………12分19.(本小题满分12分)解:(Ⅰ)设等差数列}{n a 的公差为d ,则由条件得11254624a d a d +=-⎧⎨+=-⎩ ,…………………………………2分 解得⎩⎨⎧=-=291d a ,……………………………………3分所以错误!不能通过编辑域代码创建对象。

高二上学期期末考试数学(理)试卷及参考答案(共3套)

高二上学期期末考试数学(理)试卷及参考答案(共3套)

第一学期期末考试高二年级(理科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.一、选择题:本大题共12小题,每小题5分,满分60分. 1.下列说法正确的是(A) 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”(B) 若命题2:,210p x x x ∃∈-->R ,则命题2:,210p x x x ⌝∀∈--<R (C) 命题“若x y =,则sin sin x y =”的逆否命题为真命题 (D) “1x =-”是“2560x x --=”的必要不充分条件2.已知向量(1,1,0)=a ,(1,0,2)=-b ,且(R)k k +∈a b 与2-a b 互相垂直,则k 等于(A) 1 (B)15 (C) 3 (D)753.设ABC ∆的内角A ,B ,C 所对边分别为3a =,b =π3A =,则B =(A)π6 (B) 5π6 (C) (D)2π34.若公差为2的等差数列{}n a 的前9项和为81,则9a =(A) 1(B) 9(C) 17(D)195.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是(A)2(B) (C) 2 16.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a (2)n a +等于(A) 2)12(-n(B))12(31-n (C) 14-n (D))14(31-n 7.不等式220ax bx ++>的解集是11(,)23-,则a b -等于(A) 10- (B) 10 (C) 14- (D)148.已知0,0>>b a ,且132=+b a ,则23a b+的最小值为(A) 24(B) 25 (C) 26(D)279.若中心在原点,焦点在y(A) y x =± (B) y x = (C) y = (D)12y x =± 10.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是 (A) 30m -<< (B) 32m -<< (C) 34m -<< (D)13m -<<11.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为(A)13(B)3(C)(D)2312.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫ ⎝⎛4,27A ,则|||PA PM +的最小值是(A)211 (B) 4 (D)5二、填空题:本大题共4小题,每小题5分,满分20分.13.已知向量1(8,,),(,1,2)2a x xb x ==,其中0x >,若b a //,则x 的值为__________. 14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A 、B 两点,则AB =__________. 15.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =__________.16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。

高二上学期期末考试数学(理科)试卷(含参考答案)

高二上学期期末考试数学(理科)试卷(含参考答案)

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{14}A x x =<<,{lg(1)}B x y x ==-,则AB =( )A .{12}x x <<B .{12}x x ≤<C .{12}x x -<<D .{12}x x -≤< 2. 如果命题“p 且q ”是假命题,“q ⌝”也是假命题,则( ) A .命题“⌝p 或q ”是假命题 B .命题“p 或q ”是假命题 C .命题“⌝p 且q ”是真命题 D .命题“p 且q ⌝”是真命题3. 已知数列{}n a 为等差数列,其前n 项和为n S ,7825a a -=,则11S 为( ) A. 110 B. 55 C. 50 D. 不能确定4. 以抛物线28y x =的焦点为圆心,且过坐标原点的圆的方程为( ) A. 22(1)1x y ++= B. 22(1)1x y -+= C. 22(2)4x y ++= D. 22(2)4x y -+=5.“3a =”是 “函数()3xf x ax =-有零点”的 ( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件6.已知n m ,是两条不同的直线, βα,是两个不同的平面,给出下列命题: ①若βα⊥,α//m ,则β⊥m ; ②若α⊥m,β⊥n ,且n m ⊥,则βα⊥;③若β⊥m ,α//m ,则β⊥α; ④若α//m ,β//n ,且n m //,则βα//. 其中正确命题的序号是( )A .①④B .②④C .②③ D.①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题: “今有蒲生一日,长三尺。

莞生一日,长一尺。

蒲生日自半。

莞生日自倍。

问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A =,1a =.那么在①处应填( )A .2?T S >B .2?S T >C .2?S T <D .2?T S < 8.过函数()3213f x x x =-图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4π B.3π[0,)[,π) 24π⋃ C. 3π[,π) 4 D. 3(,]24ππ 9.已知定义在R 上的函数()f x 满足: ()1y f x =-的图象关于()1,0点对称,且当0x ≥时恒有()()2f x f x +=,当[)0,2x ∈时, ()1x f x e =-,则()()20162017f f +-= ( )(其中e为自然对数的底)A. 1e -B. 1e -C. 1e --D. 1e +10.已知Rt ABC ∆,点D 为斜边BC 的中点,63AB =,6AC =,12AE ED =,则A E E B ⋅等于( ) A. 14- B. 9- C. 9 D.1411.在平面直角坐标系中,不等式组22200x y x y x y r +≤⎧⎪-≤⎨⎪+≤⎩(r 为常数)表示的平面区域的面积为π,若,x y 满足上述约束条件,则13x y z x ++=+的最小值为 ( )A .1- B.17- C. 13 D .75-12. 设双曲线)0,0(12222>>=-b a by a x 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A ,两点,若AB F 1∆是以A 为直角顶点的等腰直角三角形,则=2e ( )A.221+B. 224-C.225-D.223+ 二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知α为锐角,向量(cos ,sin )a αα=、(1,1)b =-满足223a b ⋅=,则sin()4πα+= .15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c --+--=,则b c -的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列{}n a 中,14a =,21(1)22n n na n a n n +-+=+.(1)求证:数列n a n ⎧⎫⎨⎬⎩⎭是等差数列;(2)求数列1n a ⎧⎫⎨⎬⎩⎭的前n 项和n S . 18. (本小题满分12分) 在ABC ∆中,角,,A B C 所对的边分别是,,a b c,且sin sin sin sin 3a Ab Bc C C a B +-= .(1)求角C ;(2)若ABC ∆的中线CD 的长为1,求ABC ∆的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||>r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式∑∑∑===----=ni in i ini iiy y x x y y x x r 12121)()())((,参考数据55.03.0≈,95.09.0≈.20.(本小题满分12分)在五面体ABCDEF 中, ////,222AB CD EF CD EF CF AB AD =====,60DCF ︒∠=,AD ⊥平面CDEF .(1)证明:直线CE ⊥平面ADF ; (2)已知P 为棱BC 上的点,23CP CB =,求二面角P DF A --的大小.21. (本小题满分12分)已知椭圆C :22221(0)x y a b a b+=>>的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60︒. (1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ≠,使得QP TP PQ TQ ⋅=⋅?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数()ln a f x x x=+. (1)求函数()f x 的单调区间; (2)证明:当2a e≥时, ()x f x e ->.高二数学期末考试试题参考答案ACBDA CBBAD DC 13. 56 14.315. 323π 16. 117.解:(1)21(1)22n n na n a n n +-+=+的两边同时除以(1)n n +,得*12()1n na a n n n+-=∈+N , …………3分 所以数列n a n ⎧⎫⎨⎬⎩⎭是首项为4,公差为2的等差数列. …………………4分(2)由(1),得22n an n=+,…………………5分所以222n a n n =+,故2111(1)111()222(1)21n n n a n n n n n n +-==⋅=⋅-+++,………………7分所以111111[(1)()()]22231n S n n =-+-++-+, 1111111[(1)()]223231n n =++++-++++ 11(1)212(1)n n n =-=++. ……………10分 18.解:(1)∵ sin sinsin sin a A b B c C Ca B +-=,222cos 2a b c C Cab +-∴==…………4分,即tan C =(0,)C π∈3C π∴=.………………6分(2) 由222211()(2)44CD CA CB CA CB CA CB =+=++⋅ 即2222111(2cos )()44b a ab C b a ab =++=++…………………8分从而22442,3ab a b ab ab -=+≥≤(当且仅当a b ==10分 即114sin 223ABC S ab C ∆=≤⨯=…………………12分19.解:(1)由已知数据可得2456855x ++++==,3444545y ++++==.………1分因为51()()(3)(1)000316iii x x y y =--=-⨯-++++⨯=∑,…………………2分 ,52310)1()3()(22222512=+++-+-=-∑=i ix x …………………………3分=…………………………4分所以相关系数()()0.95ni ix x y yr--===≈∑.………………5分因为0.75r>,所以可用线性回归模型拟合y与的关系.……………6分(2)记商家周总利润为Y元,由条件可得在过去50周里:当70X>时,共有10周,此时只有1台光照控制仪运行,周总利润Y=1×3000-2×1000=1000元.…………8分当5070X≤≤时,共有35周,此时有2台光照控制仪运行,周总利润Y=2×3000-1×1000=5000元.……………………………9分当50X<时,共有5周,此时3台光照控制仪都运行,周总利润Y=3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y⨯+⨯+⨯==元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF===∴四边形CDEF为菱形,CE DF∴⊥,………1分又∵AD⊥平面CDEF∴CE AD⊥………2分又,AD DF D⋂=∴直线CE⊥平面ADF.………4分(2) 60DCF∠=,DEF∴∆为正三角形,取EF的中点G,连接GD,则,GD EF GD CD⊥∴⊥,又AD⊥平面CDEF,∴,,DA DC DG两两垂直,以D为原点,,,DA DC DG所在直线分别为,,x y z轴,建立空间直角坐标系D xyz-,………5分2,1CD EF CF AB AD=====,((0,,E F∴-,(1,1,0),(0,2,0)B C………6分由(1)知(0,CE=-是平面ADF的法向量,………7分()()0,1,3,1,1,0DF CB==-,222(,,0)333CP CB==-,(0,2,0)DC=则24(,,0)33DP DC CP=+=,………8分设平面PDF的法向量为(),,n x y z=,∴n DFn DP⎧⋅=⎪⎨⋅=⎪⎩,即2433yx y⎧=⎪⎨+=⎪⎩,令z=3,6y x==-,∴(6,3,n=-………10分∴1cos ,223n CE n CE n CE⋅===-………11分∴二面角P DF A --大小为60.………12分21. 解:(1)由题意知1c =,又tan 603bc ==,所以23b =,………2分2224a b c =+=,所以椭圆的方程为:22143x y += ;………4分 (2)当0k =时, 0t =,不合题意设直线PQ 的方程为:(1),(0)y k x k =-≠,代入22143x y+=,得:2222(34)84120k x k x k +-+-=,故0∆>,则,0k R k ∈≠ 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则2120002243,(1)23434x x k k x y k x k k +===-=-++ ,………7分由QP TP PQ TQ ⋅=⋅ 得:()(2)0PQ TQ TP PQ TR ⋅+=⋅= , 所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k y x k k k +=--++ , ………10分 令0y =得:T 点的横坐标22213344k t k k ==++,………11分因为2(0,)k ∈+∞, 所以234(4,)k +∈+∞,所以1(0,)4t ∈. ………12分所以线段OF 上存在点(,0)T t 使得QP TP PQ TQ ⋅=⋅,其中1(0,)4t ∈.22.解:(1)函数()ln af x x x=+的定义域为()0,+∞.由()ln a f x x x =+,得()221a x af x x x x ='-=-.………1分①当0a ≤时, ()0f x '>恒成立, ()f x 递增, ∴函数()f x 的单调递增区间是()0,+∞ ………2分 ②当0a >时,则()0,x a ∈时,()0,f x '<()f x 递减,(),x a ∈+∞时, ()0f x '>,()f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是(),a +∞.………4分 (2)要证明当2a e ≥时, ()x f x e ->,即证明当20,x a e >≥时, ln xa x e x-+>,………5分 即ln xx x a xe -+>,令()ln h x x x a =+,则()ln 1h x x ='+,当10x e <<时, ()0h x '<;当1x e>时, ()0h x '>. 所以函数()h x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1x e =时, ()min1h x a e ⎡⎤=-+⎣⎦.于是,当2a e ≥时, ()11h x a e e≥-+≥.①………8分 令()xx xe φ-=,则()()1xx x x exe e x φ---'=-=-.当01x <<时, ()0x ϕ'>;当1x >时, ()0x φ'<. 所以函数()x φ在()0,1上单调递增,在()1,+∞上单调递减.当1x =时, ()max1x e φ⎡⎤=⎣⎦.于是,当0x >时, ()1x eφ≤.②………11分 显然,不等式①、②中的等号不能同时成立.故当2a e≥时, (f x )xe ->.………12分。

高二第一学期数学(理)期末试卷及答案5套

高二第一学期数学(理)期末试卷及答案5套

高二第一学期数学(理)期末试卷及答案5套(时间:120分钟 总分:150分,交答题纸)第Ⅰ卷(12题:共60分)一、选择题(包括12小题,每小题5分,共60分) 1.某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .100 B .40 C .75 D .252.某市进行一次高三教学质量抽样检测,考试后统计的所有考生的数学成绩服从正态分布.已知数学成绩平均分为90分,60分以下的人数占10%,则数学成绩在90分至120分之间的考生人数所占百分比约为 ( ) A.40%B.30%C.20%D. 10%3.对于空间的两条直线n m ,和一个平面α,下列命题中的真命题是 ( ) A.n m n m //,////则,若αα B.n m n m //,则,若αα⊥⊥ C.n m n m //,//则,若αα⊥ D.n m n m //,//则,若αα⊂4.根据历年气象统计资料,某地四月份吹东风的概率为930,下雨的概率为1130,既吹东风又下雨的概率为830,则在吹东风的条件下下雨的概率为 ( )A.911B.811C.89D.255.甲、乙两名学生六次数学测验成绩如右图所示。

①甲同学成绩的中位数大于乙同学成绩的中位数; ②甲同学的平均分比乙同学的平均分高; ③甲同学的平均分比乙同学的平均分低; ④甲同学成绩的方差小于乙同学成绩的方差。

上面说法正确的是( )A.②④B.①②④C.③④D.①③ 6.下图是把二进制数11111(2)化成十进制数的一个程序框图, 则判断框内应填入的条件是( )A.?5>iB.?4≤iC.?4>iD.?5≤i7.在4次独立重复试验中,事件A 发生的概率相同,若事件A 至少发生1次的概率为8165,则事件A 在1次试验中发生的概率为( ) A.32 B.31 C.95 D.94 8.已知双曲线)0,0(12222>>=-b a by a x 的一个焦点与圆01022=-+x y x 的圆心重合,且双曲线的离心率等于5,则该双曲线的标准方程为( )A.120522=-y x B.1202522=-y x C.152022=-y x D.1252022=-y x 9.设A 为定圆C 圆周上一点,在圆周上等可能地任取一点与A 连接,求弦长超过半径2倍的概率( ) A.34B. 35C.13D.1210.命题“设R b a ∈,,若6≠+b a ,则3≠a 或3≠b ”是一个真命题; 若“q p ∨”为真命题,则q p ,均为真命题;命题“)1(2,,22--≥+∈∀b a b a R b a ”的否定是“)1(2,,22--≤+∈∃b a b a R b a ”; ④“)(2Z k k ∈+=ππϕ”是函数)2sin(ϕ+=x y 为偶函数的充要条件。

高二上学期数学(理)期末试卷及答案

高二上学期数学(理)期末试卷及答案

上学期期末考试高二数学(理)试卷考试时间:120分钟 试题分数:150分卷Ⅰ一、选择题:本大题共12小题;每小题5分;共60分.在每小题给出的四个选项中;只有一项是符合题目要求的.1. i 是虚数单位;计算23i i i ++=( )A.1-B.1C.i -D.i 2.下列命题中的真命题为( )A.,0Z x ∈∃使得 3410<<xB.,0Z x ∈∃ 使得 0150=+xC.01,2=-∈∀x R x D.02,2>++∈∀x x R x 3. 已知()1,3,a λ=-;()2,4,5b =-;若a b ⊥; 则λ= ( )A .2B .4-C .2-D .34. 原命题“若3x ≤-;则0x <”的逆否命题是( ) A .若3x <-;则0x ≤ B .若3x >-;则0x ≥ C .若0x <;则3x ≤- D .若0x ≥;则3x >-5.“双曲线渐近线方程为x y 2±=”是“双曲线方程为)0(422≠=-λλλ为常数且y x ”的( )C . 充要条件 D.既不充分也不必要条件6. 设向量{},,是空间一个基底;则一定可以与向量,,-=+=构成空间的另 一个基底的向量是 ( ) A .B .C .D .或7. 椭圆221164x y +=上的点到直线220x y +-=的最大距离为( ). A. 3 B. 11 C. 22 D. 108. 若正三棱锥的侧面都是直角三角形;则它的侧棱与底面所成角的余弦值为( ) A.36 B.33 C.32 D. 31 9. 已知抛物线方程为x y 42=;则经过它的焦点的弦的中点轨迹方程是( )A.12-=x y B.)1(22-=x y C.212-=x y D.122-=x y 10.设点)2,1,12(++a a C 在点)4,1,8(),2,3,1(),0,0,2(--B A P 确定的平面上;则a =( )A.16B.4C.2D.811.设离心率为e 的双曲线方程为)0,0(12222>>=-b a by a x ;它的右焦点为F ;直线l 过点F 且斜率为k ;若直线l 与双曲线的左、右两支都相交;则有( )A.122>-e k B.122<-e k C.122>-k e D.122<-k e12.若椭圆)0(1:112122121>>=+b a b y a x C 和椭圆)0(1:222222222>>=+b a b y a x C 的焦点相同且21a a >.给出如下四个结论:①椭圆1C 与椭圆2C 一定没有公共点 ②2121b b a a > ③22212221b b a a -=- ④2121b b a a -<-其中所有正确结论的序号是( )A. ①②③B. ①③④C. ①②④D.②③④卷Ⅱ二、填空题:本大题共4小题;每小题5分.共20分.13. i 是虚数单位;若复数()()12i a i -+ 是纯虚数;则实数a 的值为__________.21,F F 为椭圆192522=+y x 的两个焦点;过1F 的直线交椭圆于B A ,两点;若12||||22=+B F A F ;则||AB =__________.°;这条直线与斜线在平面内的射影的夹角为45°;则斜线与平面所成的角为_______.16.如图;已知21,F F 分别是双曲线)0,0(12222>>=-b a by a x 的左、右两个焦点;8||21=F F ;P 是双曲线右支上的一点;直线P F 2与y 轴交于点A ;△1APF 的内切圆在边1PF 上的切点为Q ;若2||=PQ ;则双曲线的离心率为________三、解答题:本大题共6小题;共70分.解答应写出文字说明、证明过程或演算步骤. 17.(本小题满分10分)已知抛物线方程为x y 82=;直线l 过点)4,2(P 且与抛物线只有一个公共点;求直线l 的方程.18.(本小题满分12分)已知命题p :“方程221222+=-+-m m ym x 表示的曲线是椭圆”;命题q :“方程123122+=-+-m m y m x 表示的曲线是双曲线”。

高二上学期期末数学试卷(理科)含答案

高二上学期期末数学试卷(理科)含答案

高二(上)期末测试数学试卷(理科)一、选择题(本大题共12小题,共60.0分)1.函数:的单调递增区间是 f(x)=3+xlnx ()A. B. C. D. (0,1e ).(e,+∞)(1e ,+∞)(1e ,e)【答案】C【解析】解:由函数得:,f(x)=3+xlnx f(x)=lnx +1令即,根据得到此对数函数为增函数,f'(x)=lnx +1>0lnx >‒1=ln 1e e >1所以得到,即为函数的单调递增区间.x >1e 故选:C .求出的导函数,令导函数大于0列出关于x 的不等式,求出不等式的解集即可得到x 的范围即为函数的单f(x)调递增区间.本题主要考查学生会利用导函数的正负得到函数的单调区间,同时考查了导数的计算,是一道基础题.2.函数的图象在点处的切线方程为 f(x)=lnx ‒2x x (1,‒2)()A. B. C. D. 2x ‒y ‒4=02x +y =0x ‒y ‒3=0x +y +1=0【答案】C【解析】解:由函数知,f(x)=lnx ‒2x x f'(x)=1‒lnxx 2把代入得到切线的斜率,x =1k =1则切线方程为:,y +2=x ‒1即.x ‒y ‒3=0故选:C .求出曲线的导函数,把代入即可得到切线的斜率,然后根据和斜率写出切线的方程即可.x =1(1,2)本题考查学生会利用导数求曲线上过某点的切线方程,考查计算能力,注意正确求导.3.已知,,,则向量与的夹角为 A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)⃗AB ⃗AC ()A. B. C. D. 30∘45∘60∘90∘【答案】C 【解析】解:因为,,,A(2,‒5,1)B(2,‒2,4)C(1,‒4,1)所以,⃗AB =(0,3,3),⃗AC = (‒1,1,0)所以,并且,,⃗AB ⋅⃗AC═0×(‒1)+3×1+3×0=3|⃗AB |=32|⃗AC |=2所以,,cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |=332×2=12的夹角为∴⃗AB 与⃗AC 60∘故选:C .由题意可得:,进而得到与,,再由,可得答⃗AB=(0,3,3),⃗AC = (‒1,1,0)⃗AB ⋅⃗AC |⃗AB ||⃗AC |cos <⃗AB ⃗AC >=⃗AB ⋅⃗AC |⃗AB ||⃗AC |案.解决此类问题的关键是熟练掌握由空间中点的坐标写出向量的坐标与向量求模,以及由向量的数量积求向量的夹角,属于基础试题4.已知椭圆的左焦点为,则 x 225+y 2m 2=1(m >0)F 1(‒4,0)m =()A. 2B. 3C. 4D. 9【答案】B【解析】解:椭圆的左焦点为,∵x 225+y 2m 2=1(m >0)F 1(‒4,0),∴25‒m 2=16,∵m >0,∴m =3故选:B .利用椭圆的左焦点为,可得,即可求出m .x 225+y 2m 2=1(m >0)F 1(‒4,0)25‒m 2=16本题考查椭圆的性质,考查学生的计算能力,比较基础.5.等于 ∫10(e x +2x)dx ()A. 1B. C. e D. e ‒1e +1【答案】C 【解析】解:,∵(e x +x 2)'=e x +2x ,∴∫10(e x +2x)dx ═(e x +x 2)|10=(e +1)‒(1+0)=e故选:C .由,可得,即可得出.(e x +x 2)'=e x +2x ∫10(e x +2x)dx =(e x +2x)|10本题考查了微积分基本定理,属于基础题.6.若函数在处有极大值,则 f(x)=x(x ‒c )2x =3c =()A. 9B. 3C. 3或9D. 以上都不对【答案】A 【解析】解:函数的导数为f(x)=x(x ‒c )2f'(x)=(x ‒c )2+2x(x ‒c),=(x ‒c)(3x ‒c)由在处有极大值,即有,f(x)x =3f'(3)=0解得或3,c =9若时,,解得或,c =9f'(x)=0x =9x =3由在处导数左正右负,取得极大值,f(x)x =3若,,可得或1c =3f'(x)=0x =3由在处导数左负右正,取得极小值.f(x)x =3综上可得.c =9故选:A .由题意可得,解出c 的值之后必须验证是否符合函数在某一点取得极大值的充分条件.f'(3)=0本题考查导数的运用:求极值,主要考查求极值的方法,注意检验,属于中档题和易错题.7.函数的示意图是 y =e x (2x ‒1)()A. B.C. D.【答案】C【解析】解:由函数,y =e x (2x ‒1)当时,可得,排除A ;D x =0y =‒1当时,可得,时,.x =‒12y =0∴x <12y <0当x 从时,越来越大,递增,可得函数的值变大,排除B ;12→+∞y =e x y =2x ‒1y =e x (2x ‒1)故选:C .带入特殊点即可选出答案本题考查了函数图象变换,是基础题.8.若AB 过椭圆 中心的弦,为椭圆的焦点,则面积的最大值为 x 225+y 216=1F 1△F 1AB ()A. 6B. 12C. 24D. 48【答案】B【解析】解:设A 的坐标则根据对称性得:,(x,y)B(‒x,‒y)则面积.△F 1AB S =12OF ×|2y|=c|y|当最大时,面积最大,∴|y|△F 1AB 由图知,当A 点在椭圆的顶点时,其面积最大,△F 1AB 则面积的最大值为:.△F 1AB cb =25‒16×4=12故选:B .先设A 的坐标则根据对称性得:,再表示出面(x,y)B(‒x,‒y)△F 1AB积,由图知,当A 点在椭圆的顶点时,其面积最大,最后结合椭圆的标准方程即可求出面积△F 1AB △F 1AB 的最大值.本小题主要考查函数椭圆的标准方程、椭圆的简单性质、面积公式等基础知识,考查运算求解能力,考查数形结合思想、化归与转化思想属于基础题..9.设函数的极大值为1,则函数的极小值为 f(x)=13x 3‒x +m f(x)()A. B. C. D. 1‒13‒113【答案】A【解析】解:,∵f(x)=13x 3‒x +m ,∴f'(x)=x 2‒1令,解得,f'(x)=x 2‒1=0x =±1当或时,,x >1x <‒1f'(x)>0当时,;‒1<x <1f'(x)<0故在,上是增函数,在上是减函数;f(x)(‒∞,‒1)(1,+∞)(‒1,1)故在处有极大值,解得f(x)x =‒1f(‒1)=‒13+1+m =1m =13在处有极小值,f(x)x =1f(1)=13‒1+13=‒13故选:A .求出函数的导数,解关于导函数的方程,求出函数的单调区间,从而求出函数的极值即可.本题考查函数的极值问题,属基础知识的考查熟练掌握导数法求极值的方法步骤是解答的关键..10.设抛物线的准线与x 轴交于点Q ,若过点Q 的直线l 与抛物线有公共点,则直线l 的斜率的取值y 2=4x 范围是 ()A. B. C. D. [‒12,12][‒2,2][‒1,1][‒4,4]【答案】C【解析】解:,∵y 2=4x 为准线与x 轴的交点,设过Q 点的直线l 方程为.∴Q(‒1,0)(Q )y =k(x +1)与抛物线有公共点,∵l 方程组有解,可得有解.∴{y =k(x +1)y 2=4x k 2x 2+(2k 2‒4)x +k 2=0,即.∴△=(2k 2‒4)2‒4k 4≥0k 2≤1,∴‒1≤k ≤1故选:C .根据抛物线方程求得Q 点坐标,设过Q 点的直线l 方程与抛物线方程联立消去y ,根据判别式大于等于0求得k 的范围.本题主要考查了抛物线的应用涉及直线与抛物线的关系,常需要把直线方程与抛物线方程联立,利用韦达定.理或判别式解决问题.11.已知函数 x ,若在区间内恒成立,则实数a 的取值范围是 f(x)=ax ‒ln f(x)>1(1,+∞)()A. B. C. D. (‒∞,1)(‒∞,1](1,+∞)[1,+∞)【答案】D 【解析】解: x ,在内恒成立,∵f(x)=ax ‒ln f(x)>1(1,+∞)在内恒成立.∴a >1+lnx x (1,+∞)设,g(x)=1+lnx x 时,,∴x ∈(1,+∞)g'(x)=‒lnxx 2<0即在上是减少的,,g(x)(1,+∞)∴g(x)<g(1)=1,即a 的取值范围是.∴a ≥1[1,+∞)故选:D .化简不等式,得到在内恒成立设,求出函数的导数,利用函数的单调性化简求a >1+lnx x (1,+∞).g(x)=1+lnx x 解即可.本题考查函数的导数的综合应用,考查转化思想以及计算能力.12.设双曲线的两条渐近线与直线分别交于A ,B 两点,F 为该双曲线的右焦点若x 2a 2‒y 2b 2=1x =a 2c .,则该双曲线的离心率的取值范围是 60∘<∠AFB <90∘()A. B. C. D. (1,2)(2,2)(1,2)(2,+∞)【答案】B【解析】解:双曲线的两条渐近线方程为,时,,x 2a 2‒y 2b 2=1y =±b a x x =a 2c y =±ab c ,,∴A(a 2c ,ab c )B(a 2c ,‒ab c ),∵60∘<∠AFB <90∘,∴33<k FB <1,∴33<ab c c ‒a 2c <1,∴33<a b <1,∴13<a 2c 2‒a 2<1,∴1<e 2‒1<3.∴2<e <2故选:B .确定双曲线的两条渐近线方程,求得A ,B 的坐标,利用,可得,由x 2a 2‒y 2b 2=160∘<∠AFB <90∘33<k FB <1此可求双曲线的离心率的取值范围.本题考查双曲线的几何性质,考查学生的计算能力,正确寻找几何量之间的关系是关键.二、填空题(本大题共4小题,共20.0分)13.双曲线的顶点到其渐近线的距离等于______.x 2‒y 2=1【答案】22【解析】解:双曲线的,x 2‒y 2=1a =b =1可得顶点为,(±1,0)渐近线方程为,y =±x 即有顶点到渐近线的距离为d =11+1=22故答案为:.22求得双曲线的,求得顶点坐标,渐近线方程,运用点到直线的距离公式计算即可得到所求值.a =b =1本题考查双曲线的顶点到渐近线的距离,注意运用点到直线的距离公式,考查运算能力,属于基础题.14.已知函数的导函数为,且满足,则______.f(x)f'(x)f(x)=3x 2+2xf'(2)f'(5)=【答案】6【解析】解:f'(x)=6x +2f'(2)令得x =2f'(2)=‒12∴f'(x)=6x ‒24∴f'(5)=30‒24=6故答案为:6将看出常数利用导数的运算法则求出,令求出代入,令求出.f'(2)f'(x)x =2f'(2)f'(x)x =5f'(5)本题考查导数的运算法则、考查通过赋值求出导函数值.15.已知向量5,,1,,若平面ABC ,则x 的值是______.⃗AB=(1,‒2)⃗BC =(3,2)⃗DE =(x,‒3,6).DE//【答案】‒23【解析】解:平面ABC ,∵DE//存在事实m ,n ,使得,∴⃗DE =m ⃗AB +n ⃗BC ,解得.∴{x =m +3n ‒3=5m +n 6=‒2m +2n x =‒23故答案为:.‒23由平面ABC ,可得存在事实m ,n ,使得,利用平面向量基本定理即可得出.DE//⃗DE =m ⃗AB +n ⃗BC 本题考查了平面向量基本定理、方程的解法,考查了推理能力与计算能力,属于基础题.16.已知抛物线C :的焦点F ,,则曲线C 上的动点P 到点F 与点A 的距离之和的最小值为y 2=‒4x A(‒1,1)______.【答案】2【解析】解:抛物线方程为,∵y 2=‒4x ,可得焦点为,准线为∴2p =4F(‒1,0)x =1设P 在抛物线准线l 上的射影点为Q 点,A(‒1,1)则由抛物线的定义,可知当P 、Q 、A 点三点共线时,点P 到点的距离与P 到该抛物线焦点的距离之和(‒1,1)最小,最小值为.∴1+1=2故答案为:2.根据抛物线方程求出焦点坐标和准线方程,再由抛物线的定义知:当P 、A 和P 在准线上的射影点Q 三点共线时,这个距离之和最小,即可得出结论.本题给出抛物线上的动点,求该点到定点Q 和焦点F 距离之和的最小值,着重考查了抛物线的定义和简单几何性质等知识,属于中档题.三、解答题(本大题共6小题,共70.0分)17.已知函数.f(x)=x 3+x ‒16求曲线在点处的切线的方程;(I)y =f(x)(2,‒6)Ⅱ直线L 为曲线的切线,且经过原点,求直线L 的方程及切点坐标.()y =f(x)【答案】解:函数的导数为,(I)f(x)=x 3+x ‒16f'(x)=3x 2+1可得曲线在点处的切线的斜率为,y =f(x)(2,‒6)3×4+1=13即有曲线在点处的切线的方程为,y =f(x)(2,‒6)y ‒(‒6)=13(x ‒2)即为;13x ‒y ‒32=0Ⅱ的导数为,()f(x)f'(x)=3x 2+1设切点为,可得切线的斜率为,(m,n)3m 2+1即有,3m 2+1=n m =m 3+m ‒16m 即为,2m 3+16=0解得,m =‒2,n =‒8‒2‒16=‒26可得直线L 的方程为及切点坐标为.y =13x (‒2,‒26)【解析】求出的导数,可得切线的斜率,由点斜式方程即可得到所求切线的方程;(I)f(x)Ⅱ的导数为,设切点为,可得切线的斜率,运用两点的斜率公式,可得m 的方程,()f(x)f'(x)=3x 2+1(m,n)解方程可得m 的值,即可得到所求切线的方程和切点坐标.本题考查导数的运用:求切线的方程,考查导数的几何意义,以及运算能力,正确求导和运用直线方程是解题的关键,属于基础题.S‒ABCD SD⊥18.如图,在四棱锥中,底面ABCD,底面ABCD是矩形,且SD=AD=2AB,E是SA的中点.(1)BED⊥求证:平面平面SAB;(2)()求平面BED与平面SBC所成二面角锐角的大小.(1)∵SD⊥SD⊂【答案】证明:底面ABCD,平面SAD,∴SAD⊥ABCD (2)平面平面分∵AB⊥AD SAD∩,平面平面ABCDAD,∴AB⊥平面SAD,DE⊂又平面SAD,∴DE⊥AB (4),分∵SD=AD∴DE⊥SA,E是SA的中点,,∵AB∩SA=A DE⊥AB DE⊥SA,,,∴DE⊥平面SAB,∵DE⊂平面BED,∴BED⊥SAB (6)平面平面分(2)D‒xyz AD=2解:由题意知SD,AD,DC两两垂直,建立如图所示的空间直角坐标系,不妨设.则0,,0,,,,0,,0,,D(0,0)A(2,0)B(2,2,0)C(0,2,0)S(0,2)E(1,1),,,分∴⃗DB=(2,2,0)⃗DE=(1,0,1)⃗CB=(2,0,0)⃗CS=(0,‒2,2)…(8)设是平面BED 的法向量,则,即,⃗m =(x 1,y 1,z 1){⃗m ⋅⃗DB =0⃗m ⋅⃗DE=0{2x 1+2y 1=0x 1+z 1=0令,则,x 1=‒1y 1=2,z 1=1是平面BED 的一个法向量.∴⃗m=(‒1,2,1)设是平面SBC 的法向量,则,即,⃗n=(x 2,y 2,z 2){⃗n ⋅⃗CB =0⃗n ⋅⃗CS=0{2x 2=0‒2y 2+2z 2=0解得,令,则,x 2=0y 2=2z 2=1是平面SBC 的一个法向量分∴⃗n=(0,2,1) (10),∵cos〈⃗m ,⃗n>=⃗m ⋅⃗n|⃗m|⋅|⃗n|=323=32平面BED 与平面SBC所成锐二面角的大小为分∴π6 (12)【解析】证明平面平面SAB ,利用面面垂直的判定定理,证明平面SAB 即可;(1)BED ⊥DE ⊥建立空间直角坐标系,求出平面BED 与平面SBC 的法向量,利用向量的夹角公式,即可求平面BED 与平(2)面SBC 所成二面角锐角的大小.()本题考查面面垂直,考查面面角,解题的关键是掌握面面垂直的判定,正确利用向量法,属于中档题.19.如图所示,斜率为1的直线过抛物线的焦点F ,与抛物线交y 2=2px(p >0)于A ,B 两点且,M 为抛物线弧AB 上的动点.|AB|=8求抛物线的方程;(1)求的最大值.(2)S △ABM 【答案】解 由条件知:,(1)l AB y =x ‒p2与联立,消去y ,得,y 2=2px x 2‒3px +14p 2=0则由抛物线定义得.x 1+x 2=3p.|AB|=x 1+x 2+p =4p 又因为,即,|AB|=8p =2则抛物线的方程为;y 2=4x 由知,且:,(2)(1)|AB|=4p l AB y =x ‒p2设与直线AB 平行且与抛物线相切的直线方程为,y =x +m 代入抛物线方程,得.x 2+2(m ‒p)x +m 2=0由,得.△=4(m ‒p )2‒4m 2=0m =p 2与直线AB 平行且与抛物线相切的直线方程为y =x +p2两直线间的距离为,d =22p故的最大值为.S △ABM 12×4p ×22p =2p 2=42【解析】根据题意,分析易得直线AB 的方程,将其与联立,得,由根与系数的(1)y 2=2px x 2‒3px +14p 2=0关系可得,结合抛物线的定义可得,解可得p 的值,即可得抛物线的x 1+x 2=3p |AB|=x 1+x 2+p =4p =8方程;设与直线AB 平行且与抛物线相切的直线方程为,代入抛物线方程,得,(2)y =x +m x 2+2(m ‒p)x +m 2=0进而可得与直线AB 平行且与抛物线相切的直线方程,计算可得两直线间的距离,由三角形面积公式计算即可得答案.本题考查直线与抛物线的位置关系,注意抛物线的焦点弦的性质,属于中档题20.函数在处取得极值.f(x)=ax +xlnx x =1Ⅰ求的单调区间;()f(x)Ⅱ若在定义域内有两个不同的零点,求实数m 的取值范围.()y =f(x)‒m ‒1【答案】解:Ⅰ,分( (1),解得,当时,,分a =‒1a =‒1f(x)=‒x +xlnx (2)即,令0'/>,解得;分x >1 (3)令,解得;分0<x <1 (4)在处取得极小值,的增区间为,减区间为分∴f(x)x =1f(x)(1,+∞)(0,1)…(6)Ⅱ在内有两个不同的零点,()y =f(x)‒m ‒1(0,+∞)可转化为在内有两个不同的根,f(x)=m +1(0,+∞)也可转化为与图象上有两个不同的交点,分y =f(x)y =m +1...(7)由Ⅰ知,在上单调递减,在上单调递增,()f(x)(0,1)(1,+∞),分f(x )min =f(1)=‒1 (8)由题意得,即分m +1>‒1m >‒2①…(10)当时,;0<x <1f(x)=x(‒1+lnx)<0当且时,;x >0x→0f(x)→0当时,显然或者举例:当,;x→+∞f(x)→+∞(x =e 2f(e 2)=e 2>0)由图象可知,,即分m +1<0m <‒1②...(11)由可得分①②‒2<m <‒1 (12)【解析】Ⅰ求出函数的导数,计算,求出a 的值,从而求出函数的单调区间即可;()f'(1)Ⅱ问题转化为在内有两个不同的根,结合函数的图象求出m 的范围即可.()f(x)=m +1(0,+∞)本题考查了函数的单调性、极值问题,考查导数的应用以及数形结合思想、转化思想,是一道中档题.21.已知椭圆,已知定点,若直线与椭圆交于C 、D 两点问:是否存在x 23+y 2=1E(‒1,0)y =kx +2(k ≠0).k 的值,使以CD 为直径的圆过E 点?请说明理由.【答案】解:假若存在这样的k 值,由得.{y =kx +2x 2+3y 2‒3=0(1+3k 2)x 2+12kx +9=0 ∴△=(12k )2‒36(1+3k 2)>0.①设、,则C(x 1,y 1)D(x 2,y 2){x 1+x 2=‒12k1+3k 2x 1⋅x 2=91+3k 2②而.y 1⋅y 2=(kx 1+2)(kx 2+2)=k 2x 1x 2+2k(x 1+x 2)+4要使以CD 为直径的圆过点,当且仅当时,则,即E(‒1,0)CE ⊥DE y 1x 1+1⋅y 2x2+1=‒1.y 1y 2+(x 1+1)(x 2+1)=0 ∴(k 2+1)x 1x 2+2(k +1)(x 1+x 2)+5=0.③将式代入整理解得经验证,,使成立.②③k =76.k =76①综上可知,存在,使得以CD 为直径的圆过点E .k =76【解析】把直线的方程与椭圆的方程联立,转化为关于x 的一元二次方程,得到根与系数的关系,假设以CD为直径的圆过E 点,则,将它们联立消去,即可得出k 的值.CE ⊥DE x 1x 2本题考查椭圆的标准方程,考查椭圆的性质,考查直线与椭圆的位置关系,考查韦达定理的运用,考查向量知识,解题的关键是联立方程,利用韦达定理求解.22.设函数.f(x)=x ‒ae x ‒1求函数的单调区间;(1)f(x)若对恒成立,求实数a 的取值范围.(2)f(x)≤0x ∈R 【答案】解:(1)f'(x)=1‒ae x ‒1当时,,在R 上是增函数;a ≤0f'(x)>0f(x)当时,令得a >0f'(x)=0x =1‒lna 若,则,从而在区间上是增函数;x <1‒lna f'(x)>0f(x)(‒∞,1‒lna)若,则,从而在区间上是减函数.x >1‒lna f'(x)<0f(x)(1‒lna,+∞由可知:当时,不恒成立,(2)(1)a ≤0f(x)≤0又当时,在点处取最大值,a >0f(x)x =1‒lna 且,f(1‒lna)=1‒lna ‒ae‒lna=‒lna 令得,‒lna <0a ≥1故若对恒成立,则a 的取值范围是.f(x)≤0x ∈R [1,+∞)【解析】对函数求导,使得导函数大于0,求出自变量的取值范围,针对于a 的值小于进行讨论,得到函(1)数的单调区间.这是一个恒成立问题,根据上一问做出的结果,知道当时,不恒成立,又当时,在(2)a ≤0f(x)≤0a >0f(x)点处取最大值,求出a 的范围.x =1‒lna 本题考查求函数的单调区间和解决函数恒成立的问题,解题时注意函数的单调性是解决最值的必经途径,注意数字的运算.。

高二第一学期期末数学试卷理科含答案

高二第一学期期末数学试卷理科含答案

高二第一学期期末数学试卷(理科)第I 卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项符合题目要求)。

1.设集合{}{}2/2,/340S x x T x x x =>-=+-≤,则()SRC T ⋃=() A.(-2,1]B.(-∞,-4]C.(-∞,1]D.[1,+∞)2.已知△ABC 中,a=4,b=030,则等于()A.030 B.030或0150 C.060 D.060或0120 3.在△ABC 中,若a=7,b=8,1314COSC=,则最大角的余弦是() A.15-B.16-C.17-D.18- 4.若x>0,则函数1y x x=--()A.有最大值-2B.有最小值-2C.有最大值2D.有最小值2 5.等比数列{}n a 的各项均为正数,且564718a a a a +=,则1012333log log log a a a +++=()A.5B.9C.453log D.106.设命题P:对,,xx R e Inx +∀∈>则p ⌝为() A.000,x x R eInx +∃∈< B.,x x R e Inx +∃∈<C.000,x x R e Inx +∃∈≤ D.,x x R e Inx +∃∈≤7.向量(2,4,),(2,,2),ax b y →→==若6a =且a b ⊥,则x +y 的值为()A .-3B .1C .-3或1D .3或18.已知双曲线22214x y b-=的右焦点与抛物线212y x =的焦点重合,则该双曲线的焦点到其渐近线的距离等于()9.2<m<6是“方程22126x y m m+=--为椭圆方程”的() A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.已知()2,f x ax bx =+且满足:1(1)3,1(1)1f f ≤≤-≤-≤,则(2)f 的取值范围是() A.[0,12]B.[2,10]C.[0,10]D.[2,12]11.已知12,F F 是双曲线E:22221x y a b +=的左,右焦点,点M 在E 上,1MF 与X 轴垂直,211sin 3MF F ∠=,则E 的离心率为()B.32D.2 12.已知点12,F F 是椭圆2222x y +=的左,右焦点,点P 是该椭圆上的一个动点,那么12PF PF +的最小值是()A.0B.2C.1D.第II 卷(非选择题,共90分)二、填空题(本大题共4小题,每题5分,共20分,把答案填在题中横线上)13.已知函数94(1),1y x x x =-+>-+当x=a 时,y 取得最小值b ,则a b +等于________。

高二上学期期末考试数学(理)试题及答案

高二上学期期末考试数学(理)试题及答案

N MD 1C 1B 1A 1DCA学年第一学期高二年级期末质量抽测 数 学 试 卷(理科)(满分150分,考试时间 120分钟)考生须知: 1. 本试卷共6页,分第Ⅰ卷选择题和第Ⅱ卷非选择题两部分。

2. 答题前考生务必将答题卡上的学校、班级、姓名、考试编号用黑色字迹的签字笔填写。

3. 答题卡上第I 卷(选择题)必须用2B 铅笔作答,第II 卷(非选择题)必须用黑色字迹的签字笔作答,作图时可以使用2B 铅笔。

请按照题号顺序在各题目的答题区内作答,未在对应的答题区域内作答或超出答题区域作答的均不得分。

4. 修改时,选择题部分用塑料橡皮擦涂干净,不得使用涂改液。

保持答题卡整洁,不要折叠、折皱、破损。

不得在答题卡上做任何标记。

5. 考试结束后,考生务必将答题卡交监考老师收回,试卷自己妥善保存。

第Ⅰ卷(选择题 共50分)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.)(1)抛物线210y x =的焦点到准线的距离为(A )52(C )5 (C )10 (D )20 (2)过点(2,1)-且倾斜角为060的直线方程为(A) 10y --=( B) 330y --=( C)10y -+=( D)330y -+=(3)若命题p 是真命题,命题q 是假命题,则下列命题一定是真命题的是(A)p q ∧ (B )()p q ⌝∨ (C)()p q ⌝∧ (D )()()p q ⌝∨⌝(4)已知平面α和直线,a b ,若//a α,则“b a ⊥”是“b α⊥”的(A)充分而不必要条件 ( B )必要而不充分条件 ( C)充分必要条件 (D)既不充分也不必要条件 (5)如图,在正方体1111ABCD A B C D -中,点,M N 分别是面对角线111A B B D 与的中点,若1,,,DA DC DD ===a b c 则MN =CA 1俯视图侧(左)视图正(主)视图(A)1()2+-c b a ( B) 1()2+-a b c ( C) 1()2-a c ( D) 1()2-c a(6)已知双曲线22221(0,0)x y a b a b-=>>(A) y =( B) y x = ( C) 12y x =± ( D) 2y x =± (7)某三棱锥的三视图如图所示,则该三棱锥的表面积是(A )2+ ( B)2( C)4+ ( D)4(8)从点(2,1)P -向圆222220x y mx y m +--+=作切线,当切线长最短时m 的值为(A )1- (B )0 (C )1 (D )2(9)已知点12,F F 是椭圆22:14x C y +=的焦点,点M 在椭圆C 上且满足1223MF MF += 则12MF F ∆的面积为(A)3(B) 2(C ) 1 (D) 2 (10) 如图,在棱长为1的正方体1111ABCD A B C D -中,点M 是左侧面11ADD A 上的一个动点,满足11BC BM ⋅=,则1BC 与BM 的夹角的最大值为 (A) 30︒ ( B) 45︒ ( C ) 60︒ ( D) 75︒P D 1C 1B 1A 1D C BAD 1C 1B 1A 1D第Ⅱ卷(非选择题 共100分)二、填空题(本大题共6小题,每小题5分,共30分)(11)若命题2:R,220p x x x ∃∈++>,则:p ⌝ . (12) 已知(1,3,1)=-a ,(1,1,3)=--b ,则-=a b ______________.(13)若直线()110a x y +++=与直线220x ay ++=平行,则a 的值为____ .(14)如图,在长方体ABCD -A 1B 1C 1D 1中,设 11AD AA ==, 2AB =,P 是11C D 的中点,则11B C A P 与所成角的大小为____________, 11BC A P ⋅=___________.(15)已知P 是抛物线28y x =上的一点,过点P 向其准线作垂线交于点E ,定点(2,5)A ,则PA PE +的最小值为_________;此时点P 的坐标为_________ .(16)已知直线:10l kx y -+=()k ∈R .若存在实数k ,使直线l 与曲线C 交于,A B 两点,且||||AB k =,则称曲线C 具有性质P .给定下列三条曲线方程: ① y x =-; ② 2220x y y +-=; ③ 2(1)y x =+. 其中,具有性质P 的曲线的序号是________________ .三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)已知圆22:2410C x y x y +--+=. (I)求过点(3,1)M 的圆C 的切线方程;(II)若直线:40l ax y -+=与圆C 相交于,A B 两点,且弦AB的长为a 的值.(18)(本小题满分14分)在直平行六面体1111ABCD A B C D -中,底面ABCD 是菱形,60DAB ∠=︒,ACBD O =,11AB AA ==.(I)求证:111//OC AB D 平面;N MDCBAP(II)求证:1111AB D ACC A ⊥平面平面; (III)求三棱锥111A AB D -的体积. (19)(本小题满分14分)已知椭圆2222:1(0)x y C a b a b+=>>,且经过点(0,1)A -.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)如果过点3(0,)5B 的直线与椭圆交于,M N 两点(,M N 点与A 点不重合),求证:AMN ∆为直角三角形.(20)(本小题满分14分)如图,在四棱锥P ABCD -中,PA ABCD ⊥底面,底面ABCD 为直角梯形,//,90,AD BC BAD ∠=︒22PA AD AB BC ====,过AD 的平面分别交PB PC ,于,M N 两点.(I )求证://MN BC ;(II )若,M N 分别为,PB PC 的中点,①求证:PB DN ⊥;②求二面角P DN A --的余弦值.(21)(本小题满分14分)抛物线22(0)y px p =>与直线1y x =+相切,112212(,),(,)()A x y B x y x x ≠是抛物线上两个动点,F 为抛物线的焦点,且8AF BF +=. (I ) 求p 的值;(II ) 线段AB 的垂直平分线l 与x 轴的交点是否为定点,若是,求出交点坐标,若不是,说明理由;(III )求直线l 的斜率的取值范围.高二年级期末质量抽测数学试卷参考答案及评分标准 (理科)一、选择题(本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目二、填空题(本大题共6小题,每小题5分,共30分)(11)2:,220p x x x ⌝∀∈++≤R(12) 6 (13)1或2- (14)60︒;1 (15)5;(2,4) (16)②③ 三、解答题(本大题共5小题,共70分.解答应写出文字说明,证明过程或演算步骤.) (17)(本小题满分14分)解:(I )圆C 的方程可化为22(1)(2)4x y -+-=,圆心(1,2)C ,半径是2.…2分①当切线斜率存在时,设切线方程为1(3)y k x -=-,即310kx y k --+=. ……3分因为2d ===,所以34k =. …………6分 ②当切线斜率不存在时,直线方程为3x =,与圆C 相切. ……… 7分所以过点(3,1)M 的圆C 的切线方程为3x =或3450x y --=. ………8分(II )因为弦AB 的长为所以点C 到直线l 的距离为11d ==. ……10分 即11d ==. …………12分所以34a =-. …………14分O 1ABCDA 1B 1C 1D 1O(18)(本小题满分14分)证明:(I) 如图,在直平行六面体1111ABCD A B C D -中,设11111AC B D O =,连接1AO .因为1111//AA CC AA CC =且,所以四边形11AAC C 是平行四边形.所以1111//AC AC AC AC =且. ……1分因为底面ABCD 是菱形, 所以1111//O C AO O C AO =且. 所以四边形11AOC O 是平行四边形.所以11//AO OC . ……2分 因为111AO AB D ⊂平面,111OC AB D ⊄平面所以111//OC AB D 平面. ……4分(II)因为11111AA A B C D ⊥平面,111111B D A B C D ⊂平面,所以111B D AA ⊥. ……5分 因为底面ABCD 是棱形,所以1111B D AC ⊥. ……6分 因为1111AA AC A =,所以1111B D ACC A ⊥平面. ……7分 因为1111B D AB D ⊂平面, ……8分 所以1111AB D ACC A ⊥平面平面. ……9分 (III)由题意可知,11111AA A B C D ⊥平面,所以1AA 为三棱锥111A A B D -的高. ……10分因为111111111111111332A AB D A A B D A B D V V S AA --∆==⋅=⨯⨯所以三棱锥111A AB D -. ……14分(19)(本小题满分14分)解:(Ⅰ)因为椭圆经过点(0,1)A -,e =, 所以1b =. ……1分由c e a ===,解得2a =. ……3分 所以椭圆C 的标准方程为2214x y +=. ……4分(Ⅱ)若过点3(0,)5的直线MN 的斜率不存在,此时,M N 两点中有一个点与A 点重合,不满足题目条件. ……5分若过点3(0,)5的直线MN 的斜率存在,设其斜率为k ,则MN 的方程为35y kx =+,由223514y kx x y ⎧=+⎪⎪⎨⎪+=⎪⎩可得222464(14)0525k x kx ++-=. ……7分设1122(,),(,)M x y N x y ,则122122245(14)64,25(14)0k x x k x x k ⎧+=-⎪+⎪⎪⋅=-⎨+⎪⎪∆>⎪⎩, ……9分 所以1212266()55(14)y y k x x k +=++=+, 221212122391009()52525(14)k y y k x x k x x k -+⋅=⋅+++=+. ……11分因为(0,1)A -,所以1122121212(,1)(,1)()1AM AN x y x y x x y y y y ⋅=+⋅+=++++22264100925(14)25(14)k k k -+=-+++26105(14)k ++=+所以AM AN ⊥,AMN ∆为直角三角形得证. ……14分(20)(本小题满分14分)证明:(I )因为底面ABCD 为直角梯形, 所以//BC AD .因为,,BC ADNM AD ADNM ⊄⊂平面平面所以//BC ADNM 平面. ……2分 因为,BC PBC PBCADNM MN ⊂=平面平面平面,所以//MN BC . ……4分 (II )①因为,M N 分别为,PB PC 的中点,PA AB =,所以PB MA ⊥. ……5分 因为90,BAD ∠=︒ 所以DA AB ⊥.因为PA ABCD ⊥底面,所以DA PA ⊥. 因为PAAB A =,所以DA PAB ⊥平面. 所以PB DA ⊥. ……7分 因为AMDA A =,所以PB ADNM ⊥平面因为DN ADNM ⊂平面,所以PB DN ⊥. ……9分 ②如图,以A 为坐标原点,建立空间直角坐标系A xyz -. ……10分 则(0,0,0),(2,0,0),(2,1,0),(0,2,0),(0,0,2)A B C D P . ……11分由(II )可知,PB ADNM ⊥平面,所以ADNM 平面的法向量为(2,0,2)BP =-. ……12分 设平面PDN 的法向量为(,,)x y z =n 因为(2,1,2)PC =-,(0,2,2)PD =-, 所以00PC PD ⎧⋅=⎪⎨⋅=⎪⎩n n .即220220x y z y z +-=⎧⎨-=⎩.令2z =,则2y =,1x =. 所以(1,2,2)=n所以cos ,622BP BP BP⋅〈〉===n n n .所以二面角P DN A --的余弦值为6. ……14分(21)(本小题满分14分)解:(I )因为抛物线22(0)y px p =>与直线1y x =+相切,所以由221y px y x ⎧=⎨=+⎩ 得:2220(0)y py p p -+=>有两个相等实根. …2分即2484(2)0p p p p ∆=-=-=得:2p =为所求. ……4分 (II )法一:抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………5分 设直线AB 的垂直平分线l 与x 轴的交点(,0)C m . 由C 在AB 的垂直平分线上,从而AC BC =………6分即22221122()()x m y x m y -+=-+. 所以22221221()()x m x m y y ---=-.即12122112(2)()444()x x m x x x x x x +--=-=-- ………8分 因为12x x ≠,所以1224x x m +-=-. 又因为126x x +=,所以5m =, 所以点C 的坐标为(5,0).即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 法二:由112212(,),(,)()A x y B x y x x ≠可知直线AB 的斜率存在,设直线AB 的方程为y kx m =+.由24y x y kx m⎧=⎨=+⎩可得222(24)0k x km x m +-+=. ………5分 所以12221224216160km x x k m x x k km -⎧+=⎪⎪⎪⋅=⎨⎪∆=-+>⎪⎪⎩. ………6分因为抛物线24y x =的准线1x =.且8AF BF +=,所以由定义得1228x x ++=,则126x x +=. ………7分 所以232km k +=.设线段AB 的中点为00(,)M x y . 则12003,32x x x y k m +===+. 所以(3,3)M k m +. ………8分 所以线段AB 的垂直平分线的方程为13(3)y k m x k--=--. ………9分 令0y =,可得2335x m mk =++=.即直线AB 的垂直平分线l 与x 轴的交点为定点(5,0). ………10分 (III )法一:设直线l 的斜率为1k ,由(II )可设直线l 方程为1(5)y k x =-.设AB 的中点00(,)M x y ,由12032x x x +==.可得0(3,)M y .因为直线l 过点0(3,)M y ,所以012y k =-.………11分 又因为点0(3,)M y 在抛物线24y x =的内部,所以2012y <.…12分 即21412k < ,则213k <.因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分 法二:设直线l 的斜率为1k ,则11k k =-.由(II )可知223km k =-.因为16160km ∆=-+>,即1km <, …11分 所以2231k -<.所以213k >.即21113k >.所以2103k <<.…12分 因为12x x ≠,则10k ≠. …13分 所以1k的取值范围为((0,3).………14分。

高二第一学期期末测试卷及答案(理数)

高二第一学期期末测试卷及答案(理数)

中学高二期末测试卷(理数)时量:120分钟 总分:150分一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数=++−i i i 1)21)(1(在复平面内对应的点在( ) A .第一象限,B .第二象限C .第三象限D .第四象限2.特称命题“∃实数x ,使012<+x ”的否定可以写成 A .2,10x x ∀∈+≥R B .2,10x x ∃∈+≥R C .2,10x x ∀∈+<R D .若x ∈R ,则210x +<3.下面的抽样方法是简单随机抽样的是 ( ) A .在某年明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后四位为2709的为三等奖B .某车间包装一种产品,在自动包装的传送带上,每隔30分钟抽一包产品,称其重量是否合格C .某学校分别从行政人员、教师、后勤人员中抽取2人、14人、4人了解学校机构改革的意见D .用抽签法从10件产品中选取3件进行质量检验解析:A 、B 不是简单随机抽样,因为抽取的个体间的间隔是固定的;C 不是简单随机抽样,因为总体的个体有明显的层次;D 是简单随机抽样. 答案:D4.如图所示,在一个边长为1的正方形AOBC 内,曲线2y x =和曲线y x =围成一个叶形图(阴影部分),向正方形AOBC 内随机投一点(该点落在正方形AOBC 内任何一点是等可能的),则所投的点落在叶形图内部的概率是 A .12 B .13 C .14D .165.如图,1F 和2F 分别是双曲线)0,0(12222>>=−b a by a x 的两个焦点,A 和B 是以O 为圆心,以1F O 为半径的圆与该双曲线左支的两个交点,且△AB F 2是等边三角形,则双曲线的离心率为开始A =1k =1B=2A+1A=Bk=k +1k >5?输出A结束是否甲 乙 0 8 5 2 1 3 4 6 5 4 2 3 4 6 9 7 6 6 1 1 3 3 8 9 9 4 4 8 0 5 5 8 A .31+B .5C .25 D . 36.已知下面两个程序:甲: i=1 乙:i=1000 S=0 S=0 WHILE i<=1000 DO S=S+i S=S+i i=i+l i=i -1WEND LOOP UNTIL i<1 PRINT S PRINT SEND END对甲、乙两程序和输出结果判断正确的是 ( )A .程序不同,结果不同B .程序不同,结果相同C .程序相同,结果不同D .程序相同,结果相同7.抛物线24y x =的焦点为F ,准线为l ,经过F 且斜率为3的直线与抛物线在x 轴上方的部分相交于点A ,AK l ⊥,垂足为K ,则AKF △的面积是( ) A .4B .33C .43D .88. 已知()2,0A ,()0,1B ,点()y x C ,是椭圆1422=+x y 上的点,,则使三角形ABC 的面积为21的点C 有( )个 A .4 B .3 C .2 D .1二、填空题:本大题共7小题,每小题5分,共35分.把答案填在答题卡对应题号后的横线上。

高二上学期期末考试数学(理)试卷及参考答案(共3套)

高二上学期期末考试数学(理)试卷及参考答案(共3套)

绝密★启用前第一学期期末考试高二年级(理科数学)试题卷 本试卷共22小题,满分150分.考试用时120分钟.注意事项:1.答卷前,考生先检查试卷与答题卷是否整洁无缺损,并用黑色字迹的签字笔在答题卷指定位置填写自己的班级、姓名、学号和座位号。

2.选择题每小题选出答案后,请将答案填写在答题卷上对应的题目序号后,如需改动,用橡皮擦干净后,再选涂其它答案,答案不能答在试卷上。

不按要求填涂的,答案无效。

3.非选择题必须用黑色字迹的签字笔作答,答案必须写在答题卷各题目指定区域内相应位置上,请注意每题答题空间,预先合理安排;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用铅笔和涂改液。

不按以上要求作答的答案无效。

4.考生必须保持答题卷的整洁,考试结束后,将答题卷交回。

一、选择题:本大题共12小题,每小题5分,满分60分.1.下列说法正确的是(A) 命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”(B) 若命题2:,210p x x x ∃∈-->R ,则命题2:,210p x x x ⌝∀∈--<R (C) 命题“若x y =,则sin sin x y =”的逆否命题为真命题 (D) “1x =-”是“2560x x --=”的必要不充分条件2.已知向量(1,1,0)=a ,(1,0,2)=-b ,且(R)k k +∈a b 与2-a b 互相垂直,则k 等于(A) 1 (B)15 (C) 35 (D)753.设ABC ∆的内角A ,B ,C 所对边分别为a ,b ,c ,若3a =,3b =π3A =,则B =(A)π6 (B) 5π6 (C) π6或5π6(D)2π34.若公差为2的等差数列{}n a 的前9项和为81,则9a =(A) 1(B) 9(C) 17(D)195.设椭圆的两个焦点分别为1F 、2F ,过2F 作椭圆长轴的垂线交椭圆于点P ,若12F PF ∆为等腰直角三角形,则椭圆的离心率是(A)(B) (C) 2 16.已知等比数列{n a }的前n 项和12-=n n S ,则++2221a a (2)n a +等于(A) 2)12(-n(B))12(31-n (C) 14-n (D))14(31-n 7.不等式220ax bx ++>的解集是11(,)23-,则a b -等于(A) 10- (B) 10 (C) 14- (D)148.已知0,0>>b a ,且132=+b a ,则23a b+的最小值为(A) 24(B) 25 (C) 26(D)279.若中心在原点,焦点在y(A) y x =± (B) 2y x =±(C) y = (D)12y x =± 10.方程22123x y m m +=-+表示双曲线的一个充分不必要条件是 (A) 30m -<< (B) 32m -<< (C) 34m -<< (D)13m -<<11.已知正四棱锥S ABCD -的侧棱长与底面边长都相等,E 是SB 的中点,则AE SD ,所成的角的余弦值为(A)13(B)3(C)(D)2312.已知点P 是抛物线22y x =上的动点,点P 在y 轴上的射影是M ,点A 的坐标是⎪⎭⎫ ⎝⎛4,27A ,则|||PA PM +的最小值是(A)211 (B) 4 (C)29 (D)5二、填空题:本大题共4小题,每小题5分,满分20分.13.已知向量1(8,,),(,1,2)2a x xb x ==,其中0x >,若b a //,则x 的值为__________.14.过抛物线214y x =的焦点F 作一条倾斜角为30︒的直线交抛物线于A 、B 两点,则AB =__________. 15.已知21F F 、为椭圆192522=+y x 的两个焦点,过1F 的直线交椭圆于A 、B 两点若1222=+B F A F ,则AB =__________.16.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨。

(完整版)高二数学(理科)第一学期期末考试题(含答案)

(完整版)高二数学(理科)第一学期期末考试题(含答案)

2012~2013学年度第一学期 高二数学(理科)期末考试题一、选择题(每小题5分,共60分)1.在△ABC 中,若030,6,90===B a C ,则b c -等于( ) A .1 B .1- C .32 D .32-2.在△ABC 中,角,A B 均为锐角,且,sin cos B A >则△ABC 的形状是( ) A . 锐角三角形 B .钝角三角形 C . 直角三角形 D .等腰三角形3.已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16= ( )A.7B.16C.27D.644.已知等差数列{}n a 的公差为3,若431,,a a a 成等比数列,则2a 等于A.9B.3C.-3D.-95.数列1,x ,x 2,…,x n -1,…的前n 项之和是 ( )A.x x n --11B.x x n +--111C.x x n +--211D.以上均不正确6.数列{}n a 是等差数列,{}n b 是正项等比数列,且56a b =,则有( ) A .8473b b a a +≤+ B .8473b b a a +≥+C .8473b b a a +≠+D .8473b b a a ++与 大小不确定7.一元二次不等式220ax bx ++>的解集是11(,)23-,则a b +的值是( )。

A. 10B. 10-C. 14D. 14-8.设集合等于则B A x x B x x A I ,31|,21|⎭⎬⎫⎩⎨⎧>=⎭⎬⎫⎩⎨⎧<=( ) A .⎪⎭⎫⎝⎛2131, B .⎪⎭⎫ ⎝⎛∞+,21C .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,3131Y D .⎪⎭⎫ ⎝⎛∞+⎪⎭⎫ ⎝⎛-∞-,,2131Y 9.一动圆圆心在抛物线y x 42=上,过点(0 , 1)且与定直线l 相切,则l 的方程为( ) A.1=x B.161=x C.1-=y D.161-=yABCDE10.已知点),4,3(A F 是抛物线x y 82=的焦点,M 是抛物线上的动点,当MF MA +最小时,M 点坐标是( )A. )0,0(B. )62,3(C. )4,2(D. )62,3(-11.“12m =”是“直线(m+2)x+3my+1=0与直线(m-2)x+(m+2)y-3=0相互垂直”的( ) A 、充分不必要条件 B 、必要不充分条件 C 、充要条件 D 、既不充分也不必要 12、如图,面ACD 与面BCD 的二面角为060,AC=AD ,点A 在面BCD 的投影E 是△BCD 的垂心,CD=4,求三棱锥A-BCD 的体积为( ) A.BC. D . 缺条件二、选择题(每小题5分,共20分)13.在△ABC 中,若sin A ∶sin B ∶sin C =7∶8∶13,则C =_____________. 14.设,x y R +∈ 且191x y+=,则x y +的最小值为________. 15.不等式组222232320x x x x x x ⎧-->--⎪⎨+-<⎪⎩的解集为__________________。

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案

高二上学期期末考试(理科)数学试卷-附带答案一.选择题(共12小题,满分60分,每小题5分) 1.(5分)不等式2x−1x+2≥3的解集为( ) A .{x |﹣2<x ≤12}B .{x |x >﹣2}C .{x |﹣7≤x <﹣2}D .{x |﹣7≤x ≤﹣2}2.(5分)已知p :∀x ∈R ,(x +1)2<(x +2)2;q :∃x ∈R ,x =1﹣x 2,则( ) A .p 假q 假B .p 假q 真C .p 真q 真D .p 真q 假3.(5分)若实数a ,b 满足ab =1(a ,b >0),则a +2b 的最小值为( ) A .4B .3C .2√2D .24.(5分)已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直,则实数m 的值为( ) A .﹣3B .−13C .13D .15.(5分)已知F 1,F 2是椭圆C :x 24+y 23=1的左、右焦点,点P 在椭圆C 上.当∠F 1PF 2最大时,求S △PF 1F 2=( ) A .12B .√33C .√3D .2√336.(5分)已知△ABC 的三个内角A ,B ,C 的对边分别为a ,b ,c 且B =2A ,则c b−a的取值范围是( )A .(0,3)B .(1,2)C .(2,3)D .(1,3)7.(5分)过抛物线y 2=4x 的焦点F 的直线l 与抛物线交于A ,B 两点,若|AF |=2|BF |,则|AB |等于( ) A .4B .92C .5D .68.(5分)已知直线l :y =kx +m (m <0)过双曲线C :x 2a 2−y 22=1的左焦点F 1(﹣2,0),且与C 的渐近线平行,则l 的倾斜角为( ) A .π4B .π3C .2π3D .3π49.(5分)“a +1>b ﹣2”是a >b ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件10.(5分)已知函数f (x )=ax 2﹣3ax +a 2﹣3(a <0),且不等式f (x )<4对任意x ∈[﹣3,3]恒成立,则实数a 的取值范围为( ) A .(−√7,√7)B .(﹣4,0)C .(−√7,0)D .(−74,0)11.(5分)古代城池中的“瓮城”,又叫“曲池”,是加装在城门前面或里面的又一层门,若敌人攻入瓮城中,可形成“瓮中捉鳖”之势.如下图的“曲池”是上、下底面均为半圆形的柱体.若AA 1⊥面ABCD ,AA 1=3,AB =4,CD =2,E 为弧A 1B 1的中点,则直线CE 与平面DEB 1所成角的正弦值为( )A .√39921B .√27321C .2√4221D .√422112.(5分)关于x 的方程2|x +a |=e x 有三个不同的实数解,则实数a 的取值范围是( ) A .(﹣∞,1] B .[1,+∞) C .(﹣∞,l ﹣ln 2]D .(1﹣ln 2,+∞)二.填空题(共4小题,满分20分,每小题5分)13.(5分)若不等式ax 2+bx ﹣2>0的解集为(﹣4,1),则a +b 等于 .14.(5分)如图所示,点A ,B ,C 是圆O 上的三点,线段OC 与线段AB 交于圆内一点P ,若OC →=m OA →+2mOB →,AP →=λAB →则λ= .15.(5分)公差不为0的等差数列{a n }的前n 项和为S n ,若a 2,a 5,a 14成等比数列S 5=a 32,则a 10= .16.(5分)在平面直角坐标系xOy 中,已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)与不过坐标原点O 的直线l :y =kx +m 相交于A 、B 两点,线段AB 的中点为M ,若AB 、OM 的斜率之积为−34,则椭圆C 的离心率为 . 三.解答题(共6小题,满分70分)17.(10分)已知x ,y 满足的约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0(1)求z 1=9x ﹣4y 的最大值与最小值; (2)求z 2=x+2y+4x+2的取值范围. 18.(12分)已知函数f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx . (1)求f(π6)的值;(2)在锐角△ABC 中,角A ,B ,C 所对边的长分别为a ,b ,c .若f(A2)=1,a =2,求b +c 的取值范围.19.(12分)已知双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2. (Ⅰ)求双曲线的标准方程;(Ⅱ)若抛物线y 2=2px (p >0)的焦点F 与该双曲线的一个焦点相同,点M 为抛物线上一点,且|MF |=3,求点M 的坐标.20.(12分)如图,在四棱锥P ﹣ABCD 中,P A ⊥底面ABCD ,底面ABCD 为正方形,P A =AB ,E ,F ,M 分别是PB ,CD ,PD 的中点. (1)证明:EF ∥平面P AD ;(2)求平面AMF 与平面EMF 的夹角的余弦值.21.(12分)已知A 、B 是椭圆x 24+y 2=1上两点,且OA →⋅OB →=0.(O 为坐标原点)(1)求证:1|OA|2+1|OB|2为定值,并求△AOB 面积的最大值与最小值;(2)过O 作OH ⊥AB 于H ,求点H 的轨迹方程.22.(12分)已知数列{a n }的通项为a n ,前n 项和为s n ,且a n 是S n 与2的等差中项,数列{b n }中,b 1=1,点P (b n ,b n +1)在直线x ﹣y +2=0上.求数列{a n }、{b n }的通项公式.参考答案与试题解析一.选择题(共12小题,满分60分,每小题5分) 1.【解答】解:由2x−1x+2≥3得,2x−1x+2−3≥0即x+7x+2≤0解得,﹣7≤x <﹣2. 故选:C .2.【解答】解:对于命题p :∀x ∈R ,(x +1)2<(x +2)2,当x =﹣2时,不等式(x +1)2<(x +2)2不成立所以命题p 为假命题对于命题q :∃x ∈R ,x =1﹣x 2,方程x 2+x ﹣1=0的判别式Δ=1+4=5>0,故方程有解,即∃x ∈R ,x =1﹣x 2,故命题q 为真命题. 所以p 假q 真. 故选:B .3.【解答】解:因为ab =1(a ,b >0),所以a +2b ≥2√2ab =2√2 当且仅当a =2b 且ab =1即b =√22,a =√2时取等号 所以a +2b 的最小值为2√2. 故选:C .4.【解答】解:已知向量a →=(m +1,2),b →=(1,m),若a →与b →垂直 故a →⋅b →=m +1+2m =0,故m =−13. 故选:B .5.【解答】解:由椭圆的性质可知当点P 位于椭圆的上下顶点时,∠F 1PF 2最大由椭圆C :x 24+y 23=1,可得|OP |=√3,|F 1F 2|=2c =2√4−3=2所以S △PF 1F 2=12|OP |•|F 1F 2|=12×√3×2=√3. 故选:C .6.【解答】解:由正弦定理可知c b−a=sinC sinB−sinA=sin(B+A)sinB−sinA=sin3A sin2A−sinA=2sin3A 2cos 3A 22cos 3A 2sinA 2=sin3A2sinA 2=sin A 2cosA+2cos 2A 2sinA 2sinA2=2cos A +1∵A +B +C =180°,B =2A∴3A +C =180°,A =60°−C 3<60° ∴0<A <60° ∴12<cos A <1则2<2cos A +1<3. 故c b−a的取值范围是:(2,3).故选:C .7.【解答】解:∵F (1,0),根据题意设y =k (x ﹣1),A (x 1,y 1),B (x 2,y 2) 联立{y =k(x −1)y 2=4x ,可得k 2x 2﹣(2k +4)x +k 2=0∴{x 1+x 2=2k+4k2x 1x 2=1,又|AF |=2|BF |∴1+x 1=2(1+x 2) ∴x 1=1+2x 2,又x 1x 2=1 ∴x 2=12,x 1=2∴|AB |=p +x 1+x 2=2+2+12=92故选:B .8.【解答】解:设l 的倾斜角为α,α∈[0,π). 由题意可得k =−ba ,(﹣2)2=a 2+2,b 2=2,a ,b >0 解得a =√2=b∴k =tan α=﹣1,α∈[0,π). ∴α=3π4 故选:D .9.【解答】解:由a +1>b ﹣2,可得a >b ﹣3由a >b ﹣3不能够推出a >b ,故“a +1>b ﹣2”是“a >b ”的不充分条件 由a >b ,可推出a >b ﹣3成立,故“a +1”>b ﹣2”是a >b ”的必要条件 综上“a +1>b ﹣2”是“a >b ”的必要不充分条件 故选:B .10.【解答】解:由不等式f (x )<4对任意x ∈[﹣3,3]恒成立 即ax 2﹣3ax +a 2﹣7<0对任意x ∈[﹣3,3]恒成立 ∵a <0,对称轴x =32∈[﹣3,3] ∴只需x =32<0即可可得a ×94−32×3a +a 2−7<0. 即(4a +7)(a ﹣4)<0 解得−74<a <4 ∴−74<a <0. 故选:D .11.【解答】解:因为AA 1⊥平面ABCD ,AB ⊂平面ABCD ,则AA 1⊥AB由题意可以点A 为原点,AB 所在直线为y 轴,AA 1所在直线为z 轴,平面ABCD 内垂直于AB 的直线为x 轴建立空间直角坐标系,如图所示则A (0,0,0),B (0,4,0),C (0,3,0),D (0,1,0),A 1(0,0,3) B 1(0,4,3),C 1(0,3,3),D 1(0,1,3) 又因为E 为A 1B 1的中点,则E (2,2,3)则B 1E →=(2,−2,0),B 1D →=(0,﹣3,﹣3),CE →=(2,−1,3) 设平面DEB 1的法向量n →=(x ,y ,z ),则{B 1E →⋅n →=2x −2y =0B 1D →⋅n →=−3y −3z =0令x =1,则y =1,z =﹣1,则n →=(1,1,−1) 设直线CE 与平面DE B 1所成角为θ 则sinθ=|cos <CE →,n →>|=|CE →⋅n →||CE →||n →|=2√14×√3=√4221. 故选:D .12.【解答】解:由已知有方程2|x+a|=e x有三个不同的实数解可转化为y=|x+a|的图象与y=12ex的图象有三个交点设直线y=x+a的图象与y=12e x相切于点(x0,y0)因为y′=12e x所以{ y 0=x 0+a y 0=12e x 012e x=1解得:{x 0=ln2y 0=1a =1−ln2 要使y =|x +a |的图象与y =12e x 的图象有三个交点 则需a >1﹣ln 2即实数a 的取值范围是(1﹣ln 2,+∞) 故选:D .二.填空题(共4小题,满分20分,每小题5分)13.【解答】解:∵不等式ax 2+bx ﹣2>0的解集为(﹣4,1) ∴﹣4和1是ax 2+bx ﹣2=0的两个根 即{−4+1=−ba −4×1=−2a解得{a =12b =32; ∴a +b =12+32=2. 故答案为:2.14.【解答】解:根据条件知,OP →与OC →共线; ∵AP →=λAB →;∴OP →−OA →=λ(OB →−OA →); ∴OP →=(1−λ)OA →+λOB →; 又OC →=m OA →+2mOB →; ∴λ=2(1﹣λ); ∴λ=23. 故答案为:23.15.【解答】解:设数列的公差为d ,(d ≠0) ∵S 5=a 32,得:5a 3=a 32 ∴a 3=0或a 3=5;∵a 2,a 5,a 14成等比数列 ∴a 52=a 2•a 14∴(a 3+2d )2=(a 3﹣d )(a 3+11d )若a 3=0,则可得4d 2=﹣11d 2即d =0不符合题意 若a 3=5,则可得(5+2d )2=(5﹣d )(5+11d ) 解可得d =0(舍)或d =2 ∴a 10=a 3+7d =5+7×2=19 故答案为:19.16.【解答】解:设A (x 1,y 1),B (x 2,y 2).线段AB 的中点M (x 0,y 0). ∵x 12a 2+y 12b 2=1,x 22a 2+y 22b 2=1 相减可得:(x 1+x 2)(x 1−x 2)a 2+(y 1+y 2)(y 1−y 2)b 2=0把x 1+x 2=2x 0,y 1+y 2=2y 0,y 1−y 2x 1−x 2=k 代入可得:2x 0a 2+2y 0k b 2=0又y 0x 0•k =−34,∴1a 2−34b 2=0,解得b 2a 2=34. ∴e =√1−b 2a2=12.故答案为:12.三.解答题(共6小题,满分70分)17.【解答】解:(1)由z 1=9x ﹣4y ,得y =94x −14z 1 作出约束条件{5x +2y −18≤02x −y ≥0x +y −3≥0对应的可行域(阴影部分)平移直线y =94x −14z 1,由平移可知当直线y =94x −14z 1经过点C 时,直线y =94x −14z 1的截距最小,此时z 取得最大值 由{x +y −3=05x +2y −18=0,解得C (4,﹣1). 将C (4,﹣1)的坐标代入z 1=9x ﹣4y ,得z =40 z 1=9x ﹣4y 的最大值为:40. 由{x +y −3=02x −y =0解得B (1,2)将B (1,2)的坐标代入z 1=9x ﹣4y ,得z =1 即目标函数z =9x ﹣4y 的最小值为1. (2)z 2=x+2y+4x+2=1+2•y+1x+2,所求z 2的取值范围. 就是P (﹣2,﹣1)与可行域内的点连线的斜率的2倍加1的范围 K PC =0.由{5x +2y −18=02x −y =0解得A (2,4),K P A =4+12+2=54 ∴z 2的范围是:[1,72].18.【解答】解:(1)f(x)=sin(π4+x)sin(π4−x)+√3sinxcosx =sin(π4+x)cos(π4+x)+√3sinxcosx =12sin(π2+2x)+√32sin2x=12cos2x +√32sin2x=sin(2x +π6) 所以f(π6)=sin(2×π6+π6) =sin π2 =1;(2)f(A2)=sin(A +π6)=1 在锐角三角形中0<A <π2所以π6<A +π6<2π3故A +π6=π2,可得A =π3 因为a =2,由正弦定理bsinB=c sinC=a sinA=√32=4√33所以b +c =4√33(sinB +sinC) =4√33[sinB +sin(2π3−B)] =4√33(sinB +√32cosB +12sinB) =4√33(32sinB +√32cosB) =4sin(B +π6) 又B +C =2π3,及B ,C ∈(0,π2) 所以B ∈(π6,π2) 所以B +π6∈(π3,2π3) 则b +c =4sin(B +π6)∈(2√3,4].19.【解答】解:(Ⅰ)由题意设所求双曲线方程为x 2a 2−y 2b 2=1又双曲线的顶点在x 轴上,两顶点间的距离是2,离心率e =2 则a =1,c =2 即b 2=c 2﹣a 2=3即双曲线方程为x 2−y 23=1;(Ⅱ)由(Ⅰ)可知F (2,0) 则p =4即抛物线的方程为y 2=8x 设点M 的坐标为(x 0,y 0) 又|MF |=3 则x 0+2=3则x 0=1,y 0=±2√2即点M 的坐标为(1,2√2)或(1,﹣2√2).20.【解答】(1)证明:取P A 的中点N ,连接EN ,DN ,如图所示: 因为E 是PB 的中点,所以EN ∥AB ,且EN =12AB又因为四边形ABCD 为正方形,F 是CD 的中点,所以EN ∥DF ,且EN =DF 所以四边形ENDF 为平行四边形,所以EF ∥DN因为EF ⊄平面P AD ,DN ⊂平面P AD ,所以EF ∥平面P AD ;(2)解:以A 为坐标原点,AB ,AD ,AP 所在直线分别为x 、y 、z 轴 建立空间直角坐标系,如图所示:设AB =2,则E (1,0,1),F (1,2,0),P (0,0,2),D (0,2,0),M (0,1,1); 所以EM →=(−1,1,0) MF →=(1,1,−1),AF →=(1,2,0) 设平面AMF 的法向量为m →=(x ,y ,z ),则由m →⊥AF →,m →⊥MF →可得{x +2y =0x +y −z =0,令y =1,得m →=(−2,1,−1)设平面EMF 的法向量为n →=(a ,b ,c ),则由n →⊥MF →,n →⊥EM →可得{a +b −c =0−a +b =0,令b =1,得n →=(1,1,2)则cos <m →,n →>=m →⋅n →|m →||n →|=√4+1+1×√1+1+4=−12因为两平面的夹角范围是[0,π2]所以平面AMF 与平面EMF 夹角的余弦值为12.21.【解答】证明:(1)设A (r 1cos θ,r 1sin θ),B (r 2cos (90°+θ),r 2sin (90°+θ)),即B (﹣r 2sin θ,r 2cos θ) 则r 12cos 2θ4+r 12sin 2θ=1,r 22sin 2θ4+r 22cos 2θ=1,即1r 12=cos 2θ4+sin 2θ,1r 22=sin 2θ4+cos 2θ故1|OA|2+1|OB|2=1r 12+1r 22=54△AOB 面积为S =12r 1r 2=2√4sin θ+17sin θcos θ+4cos θ∵4sin 4θ+17sin 2θcos 2θ+4cos 2θ=(2sin 2θ+2cos 2θ)+9sin 2θcos 2θ=4+94sin 22θ ∴当sin2θ=0时,S 取得最大值1,当sin2θ=±1时,S 取值最小值45故△AOB 面积的最大值为1,最小值为45;(2)解:∵|OH ||AB |=|OA ||OB | ∴1|OH|2=|AB|2|OA|2|OB|2=r 12+r 22r 12+r 22=1r 12+1r 22=54∴|OH|2=45故点H 的轨迹方程为x 2+y 2=45.22.【解答】解:∵a n 是s n 与2的等差中项,∴2a n =S n +2,即S n =2a n ﹣2. ∴当n =1时,a 1=2a 1﹣2,解得a 1=2.当n ≥2时,a n =S n ﹣S n ﹣1=(2a n ﹣2)﹣(2a n ﹣1﹣2) 化为a n =2a n ﹣1∴数列{a n }是等比数列,首项为2,公比为2,a n =2n . ∵点P (b n ,b n +1)在直线x ﹣y +2=0上. ∴b n ﹣b n +1+2=0,即b n +1﹣b n =2∴数列{b n }是等差数列,首项为1,公差为2.∴b n=1+2(n﹣1)=2n﹣1.。

高二数学上学期期末考试试卷理含解析试题(共21页)

高二数学上学期期末考试试卷理含解析试题(共21页)

2021-2021学年(xuénián)高二〔上〕期末试卷数学〔理科〕一、选择题:本大题一一共12小题,每一小题5分,一共60分,在每一小题给出的四个选项里面,有且只有一项符合题目要求。

1.抛物线x2=4y的焦点坐标是〔〕A. 〔0,2〕B. 〔2,0〕C. 〔0,1〕D. 〔l,0〕【答案】C【解析】【分析】先根据HY方程求出p值,判断抛物线x2=4y的开口方向及焦点所在的坐标轴,从而写出焦点坐标.【详解】∵抛物线x2=4y中,p=2,1,焦点在y轴上,开口向上,∴焦点坐标为〔0,1 〕,应选:C.【点睛】此题考察抛物线的HY方程和简单性质的应用,抛物线x2=2py的焦点坐标为〔0,〕,属根底题.2.命题“∃x0>1,使得x0-1≥0”的否认为〔〕A. ∃x0>1,使得x0-1<0B. ∀x≤1,x-1<0C. ∃x0≤1,使得x0-1<0D. ∀x>1,x-1<0【答案】D【解析】【分析(fēnxī)】直接利用特称命题的否认是全称命题写出结果即可.【详解】因为全称命题的否认是全称命题,所以命题p“∃x0>1,使得x0﹣1≥0“,那么¬p为∀x>1,x﹣1<0.应选:D.【点睛】此题考察命题的否认,特称命题与全称命题的否认关系,属于对根本知识的考察.3.椭圆E:的焦点为F1,F2,点P在E上,|PF1|=2|PF2|,那么△PF1F2的面积为〔〕A. 2B. 4C. 6D. 8【答案】B【解析】【分析】由得|PF2|=2,判断三角形的形状,由此能求出△PF1F2的面积.【详解】∵椭圆E:1的焦点为F1、F2,点P在椭圆上,|PF1|=2|PF2|,|PF1|+|PF2|=6,|PF1|=4,|PF2|=2,∴F1〔,0〕,F2〔,0〕,|F1F2|=2,三角形△PF1F2是直角三角形.∴△PF1F2的面积为S4.应选:B.【点睛】此题考察三角形的面积的求法,是根底题,解题时要认真审题,注意椭圆性质的合理运用.4.圆锥(yuánzhuī)的底面半径为1,高为,那么圆锥的外表积为〔〕A. πB. 2πC. 3πD. 4π【答案】C【解析】【分析】先得出母线的长,再根据圆锥外表积公式计算.【详解】圆锥的底面半径为1,高为,那么母线长l2圆锥的外表积S=S底面+S侧面=πr2+πrl=π+2π=3π应选:C.【点睛】此题考察了圆锥外表积的计算.属于根底题.5.双曲线Γ:的实轴长为6,那么Γ的渐近线方程为〔〕A. y=B. y=±3xC. y=D. y=【答案】C【解析】【分析】通过双曲线的实轴长求出a,利用双曲线的HY方程,求解渐近线方程即可.【详解】双曲线Γ:1的实轴长为6,可得a=3,所以Γ的渐近线方程为:y.应选:C.【点睛】此题考察双曲线的简单性质的应用,是根本知识的考察.6.设α,β为两个不同的平面,m,n为两条不同的直线,那么以下命题中正确的为〔〕A. 假设(jiǎshè)m∥n,n⊂α,那么m∥αB. 假设m∥α,n⊂α,那么m∥nC. 假设α⊥β,m⊂α,那么m⊥βD. 假设m⊥β,m⊂α,那么α⊥β【答案】D【解析】【分析】在A中,m与α相交、平行或者m⊂α;在B中,m与n平行或者异面;在C中,m与β相交、平行或者m⊂β;在D中,由面面垂直的断定定理得α⊥β.【详解】由α,β为两个不同的平面,m,n为两条不同的直线,得:在A中,假设m∥n,n⊂α,那么m与α相交、平行或者m⊂α,故A错误;在B中,假设m∥α,n⊂α,那么m与n平行或者异面,故B错误;在C中,假设α⊥β,m⊂α,那么m与β相交、平行或者m⊂β,故C错误;在D中,假设m⊥β,m⊂α,那么由面面垂直的断定定理得α⊥β,故D正确.应选:D.【点睛】此题考察命题真假的判断,考察空间中线线、线面、面面间的位置关系等根底知识,考察运算求解才能,考察函数与方程思想,是中档题.7.“m=﹣2”是“直线2x+〔m﹣2〕y+3=0与直线〔6﹣m〕x+〔2﹣m〕y﹣5=0垂直〞的〔〕A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件【答案】A【解析】【分析】求出直线垂直的等价条件,结合充分条件(chōnɡ fēn tiáo jiàn)和必要条件的定义进展判断即可.【详解】假设直线2x+〔m﹣2〕y+3=0与直线〔6﹣m〕x+〔2﹣m〕y﹣5=0垂直,那么2〔6﹣m〕+〔m﹣2〕〔2﹣m〕=0,得12﹣2m﹣m2+4m﹣4=0,即m2﹣2m﹣8=0,得〔m+2〕〔m﹣4〕=0,得m=4或者m=﹣2,那么m=﹣2是“直线2x+〔m﹣2〕y+3=0与直线〔6﹣m〕x+〔2﹣m〕y﹣5=0垂直〞的充分不必要条件,应选:A.【点睛】此题主要考察充分条件和必要条件的判断,结合直线垂线的等价条件求出m的范围是解决此题的关键.8.三棱柱ABC﹣A1B1C1的体积为3,点M在棱AA1上,那么四棱锥M﹣BCC1B1的体积为〔〕A. B. 1 C. 2 D. 不能确定【答案】C【解析】【分析】利用,即可得出结论.【详解】由题意,V M﹣BCC1B12应选:C.【点睛(diǎn jīnɡ)】此题考察棱柱、棱锥的体积,考察学生的计算才能,比拟根底.9.点P的坐标〔x,y〕满足方程,点B〔0,1〕,那么|PB|的最大值为〔〕A. 1B. 3C.D. 2【答案】C【解析】【分析】利用两点间间隔公式,结合椭圆方程,转化求解即可.【详解】点P的坐标〔x,y〕满足方程1,点B〔0,1〕,那么|PB|,当且仅当y=﹣1时,表达式获得最大值.应选:C.【点睛】此题考察直线与椭圆的位置关系的应用,二次函数的最值的求法,考察计算才能.10.某空间几何体的三视图如下图,那么此几何体的体积为〔〕A. π+2B. 2π+2C. π+4D. 2π+4【答案(dá àn)】A【解析】【分析】判断几何体的形状,利用三视图的数据求解几何体的体积即可.【详解】由题意可知几何体是一个半圆柱与一个三棱柱最长的几何体,如图:几何体的体积为:2+π.应选:A.【点睛】此题考察三视图求解几何体的体积,判断几何体的形状是解题的关键.11.双曲线C:的两个顶点分别为A,B,点P是C上异于A,B的一点,直线PA,PB的倾斜角分别为α,β.假设,那么C的离心率为〔〕A. B. C. D.【答案(dá àn)】D【解析】【分析】设出双曲线的顶点A,B的坐标,P〔m,n〕,代入双曲线方程,运用直线的斜率公式和两角和差的余弦公式,以及弦化切的方法,求得PA,PB的斜率之积,再由离心率公式计算可得所求值.【详解】双曲线C:1〔a>0,b>0〕的两个顶点分别为A〔﹣a,0〕,B〔a,0〕,点P〔m,n〕是C上异于A,B的一点,可得1,即有,设k1=tanα,k2=tanβ,k1k2=tanαtanβ,假设,那么,解得tanαtanβ=5,即b2=5a2,可得双曲线的离心率为e.应选:D.【点睛】此题考察双曲线的方程和性质,主要是离心率的求法,考察直线的斜率公式的应用和两角的和差的余弦公式的运用,考察化简整理的运算才能,属于中档题.12.在三棱柱ABC﹣A1B1C1中,AA1⊥平面ABC,AB=BC=CA=2,AA1=4,D为A1B1的中点,E为棱BB1上的点,AB1⊥平面C1DE,且B1,C1,D,E四点在同一球面上,那么该球的外表积为〔〕A. 9πB. 11πC. 12πD. 14π【答案(dá àn)】A【解析】【分析】由题意,AA1⊥平面ABC,三棱柱ABC﹣A1B1C1是直三棱柱,AB=BC=CA=2,底面是正的三角形.D为A1B1的中点,E为棱BB1上的点,AB1⊥平面C1DE,求E为棱BB1上的位置,在求解B1﹣C1DE三棱锥的外接球即可得球的外表积.【详解】由题意,AA1⊥平面ABC,三棱柱ABC﹣A1B1C1是直三棱柱,AB=BC=CA=2,底面是正三角形.AB1,∴sin∠AB1B.那么DB1,AB1⊥平面C1DE,AB1⊥DE,D为A1B1的中点,E为棱BB1上的点,DE∩AB1=M,∵△ABB1∽△EB1M∴那么:EB1=1那么在D﹣B1C1E三棱锥中:B1C1=2,C1D,EC1=3,DE,B1D∵EB1⊥平面DB1C1,底面DB1C1是直角三角形,∴球心在EC1在的中点上,∴R球的外表积S=4πR2=9π.应选:A.【点睛(diǎn jīnɡ)】此题考察球的外表积的求法,是中档题,解题时要认真审题,注意空间思维才能的培养.二、填空题:本大题一一共4小题,每一小题5分,一共20分,把答案填写上在题中横线上。

高二上学期期末考试数学理科试题(有答案)

高二上学期期末考试数学理科试题(有答案)

高二上学期期末考试数学理科试题考试时间:120分钟 分数:150分一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的。

1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.双曲线19422=-y x 的渐近线方程是( )A .x y 23±= B .x y 32±= C .x y 49±= D .x y 94±= 3.如果两个球的体积之比为8:27,那么两个球的表面积之比为( )A . 8:27B . 2:3C . 4:9D . 2:9 4.过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( )A . 052=-+y xB .012=-+y xC .052=-+y xD .072=+-y x5.如图,一个水平放置的图形的斜二测直观图是一个底角为045,腰和上底均为1的等腰梯形,那么原平面图形的面积是( ) A . 22+B .221+ C . 222+ D . 21+ 6.半径为R 的半圆卷成一个圆锥,则它的体积为( )A3R B3R C3R D3R 7.在正方体1111ABCD A BC D -中,若E 是11AC 的中点,则直线CE 垂直于( ) A .AC B . BD C .1A D D .11A D数学试卷第1页(共4页)8.已知F 是抛物线241x y =的焦点,P 是该抛物线上的动点,则线段PF 中点的轨迹方程是( )正视图 侧视图 俯视图A .122-=y xB .16122-=y x C .212-=y x D .222-=y x9.把正方形ABCD 沿对角线AC 折起,当以,,,A B C D 四点为顶点的三棱锥体积最大时,直线BD 和平面ABC 所成的角的大小为( ) A .90 B .60 C .45 D .30 10.若椭圆)0(122>>=+b a by ax 和双曲线)0,(122>=-n m ny mx 有相同的焦点F 1、F 2,P是两曲线的交点,则21PF PF ⋅的值是( ) A .n b -B .m a - C . n b - D . m a -11.在四面体ABCD 中,已知棱AC 其余各棱长都为1,则二面角A CD B--的余弦值为( )A .12 B .13 C D .312.两直线330x y +-=与610x my ++=平行,则它们之间的距离为( )A .4BCD 二、填空题13.已知圆C 的方程为03222=--+y y x ,过点(1,2)P -的直线l 与圆C交于,A B 两点,若使AB 最小,则直线l 的方程是________________。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二第一学期理科数学期末考试试题一、选择题:本大题共12小题,每小题5分,满分60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合2{14}A x x,{lg(1)}B x y x ,则AB()A .{12}x xB .{12}x xC .{12}xx D .{12}x x 2. 如果命题“p 且q ”是假命题,“q ”也是假命题,则( ) A .命题“p 或q ”是假命题B .命题“p 或q ”是假命题C .命题“p 且q ”是真命题D .命题“p 且q ”是真命题3. 已知数列n a 为等差数列,其前n 项和为n S ,7825a a ,则11S 为()A. 110B.55 C.50 D.不能确定4. 以抛物线28yx 的焦点为圆心,且过坐标原点的圆的方程为()A. 22(1)1x yB.22(1)1x yC.22(2)4x y D. 22(2)4x y 5.“3a ”是“函数()3x f x ax 有零点”的 ( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件6.已知n m,是两条不同的直线,,是两个不同的平面,给出下列命题:①若,//m ,则m ;②若m,n,且n m,则;③若m,//m ,则;④若//m ,//n ,且n m //,则//.其中正确命题的序号是()A .①④ B .②④C .②③D .①③7.我国古代数学典籍《九章算术》第七章“盈不足”中有一问题:“今有蒲生一日,长三尺。

莞生一日,长一尺。

蒲生日自半。

莞生日自倍。

问几何日而长等?”(蒲常指一种多年生草本植物,莞指水葱一类的植物)现欲知几日后,莞高超过蒲高一倍.为了解决这个新问题,设计右面的程序框图,输入3A,1a .那么在①处应填()A .2?TS B .2?S T C .2?S T D .2?T S 8.过函数3213f xxx 图象上一个动点作函数的切线,则切线倾斜角的范围为( )A. 3[0,]4B.3π[0,)[,π) 24 C. 3π[,π) 4D. 3(,]249.已知定义在R 上的函数f x 满足:1y f x 的图象关于1,0点对称,且当0x时恒有2f x f x ,当0,2x 时,1xf xe,则20162017f f( )(其中e 为自然对数的底)A. 1e B. 1e C. 1e D. 1e 10.已知Rt ABC ,点D 为斜边BC 的中点,63AB ,6AC ,12AEED ,则AE E B 等于()A.14 B. 9 C. 9 D.1411.在平面直角坐标系中,不等式组2220xy x y xyr(r 为常数)表示的平面区域的面积为,若,x y 满足上述约束条件,则13x y zx 的最小值为()A .1 B.5217C.13D .7512. 设双曲线)0,0(12222ba by ax 的左、右焦点分别为21,F F ,离心率为e ,过2F 的直线与双曲线的右支交于B A,两点,若AB F 1是以A 为直角顶点的等腰直角三角形,则2e()A.221B. 224C.225 D.223二、填空题:本大题共4小题,每小题5分,满分20分.13. 袋中有形状、大小都相同的4只球,其中1只白球,1只红球,2只黄球,从中一次随机摸出2只球,则这2只球颜色不同的概率为________.14.已知为锐角,向量(cos ,sin )a 、(1,1)b满足223a b,则sin()4.15.某三棱锥的三视图如图所示,则其外接球的表面积为______.16.若实数,,a b c 满足22(21)(ln )0a b a c c ,则b c 的最小值是_________.三、解答题:本大题共6小题,满分70分,解答须写出文字说明、证明过程和演算步骤.17. (本小题满分10分)在数列n a 中,14a ,21(1)22nnna n a n n .(1)求证:数列n a n是等差数列;(2)求数列1na 的前n 项和n S . 18. (本小题满分12分)在ABC 中,角,,A B C 所对的边分别是,,a b c ,且sin sin sin 23sin sin 3a Ab Bc CC a B.622俯视图侧视图正视图(1)求角C ;(2)若ABC 的中线CD 的长为1,求ABC 的面积的最大值.19.(本小题满分12分)某基地蔬菜大棚采用水培、无土栽培方式种植各类蔬菜.过去50周的资料显示,该地周光照量X (小时)都在30小时以上,其中不足50小时的周数有5周,不低于50小时且不超过70小时的周数有35周,超过70小时的周数有10周.根据统计,该基地的西红柿增加量y (百斤)与使用某种液体肥料x (千克)之间对应数据为如图所示的折线图.(1)依据数据的折线图,是否可用线性回归模型拟合y 与x 的关系?请计算相关系数r 并加以说明(精确到0.01).(若75.0||r ,则线性相关程度很高,可用线性回归模型拟合)(2)蔬菜大棚对光照要求较大,某光照控制仪商家为该基地提供了部分光照控制仪,但每周光照控制仪最多可运行台数受周光照量X 限制,并有如下关系:周光照量X (单位:小时)3050X5070X70X光照控制仪最多可运行台数321若某台光照控制仪运行,则该台光照控制仪周利润为3000元;若某台光照控制仪未运行,则该台光照控制仪周亏损1000元.若商家安装了3台光照控制仪,求商家在过去50周周总利润的平均值.附:相关系数公式n i ini ini iiy y x x y y x x r12121)()())((,参考数据55.03.0,95.09.0.20.(本小题满分12分)在五面体ABCDEF 中,////,222AB CD EF CD EF CF AB AD ,60DCF ,AD 平面CDEF . (1)证明:直线CE 平面ADF ;(2)已知P 为棱BC 上的点,23CP CB ,求二面角P DFA 的大小.x y (百斤)54386542(千克)O21. (本小题满分12分)已知椭圆C :22221(0)x y a bab的右焦点(1,0)F ,过点F 且与坐标轴不垂直的直线与椭圆交于P ,Q 两点,当直线PQ 经过椭圆的一个顶点时其倾斜角恰好为60.(1)求椭圆C 的方程;(2)设O 为坐标原点,线段OF 上是否存在点(,0)T t (0)t ,使得QP TP PQ TQ ?若存在,求出实数t 的取值范围;若不存在,说明理由.22.(本小题满分12分)已知函数ln a f xxx.(1)求函数f x 的单调区间;(2)证明:当2ae时,xf x e .高二数学期末考试试题参考答案ACBDA CBBAD DC 13.5614.5315.32316.117.解:(1)21(1)22nnna n a nn 的两边同时除以(1)n n ,得*12()1nn a a nn nN ,…………3分所以数列n a n是首项为4,公差为2的等差数列.…………………4分(2)由(1),得22n a n n,…………………5分所以222na nn ,故2111(1)111()222(1)21nn n a nn n n nn ,………………7分所以111111[(1)()()]22231nS n n ,1111111[(1)()]223231nn 11(1)212(1)n n n . ……………10分18.解:(1)∵sin sin sin 23sin sin 3a A b Bc CCa B,2223cos sin 23a bcCCab…………4分,即tan 3C,又(0,)C3C .………………6分(2) 由222211()(2)44CDCA CB CACB CA CB 即2222111(2cos )()44baab C ba ab …………………8分从而22442,3ababab ab(当且仅当233ab时,等号成立),…………10分即11433sin 22323ABCSab C…………………12分19.解:(1)由已知数据可得2456855x,3444545y .………1分因为51()()(3)(1)00316i ii x x y y ,…………………2分,5231)1()3()(22222512i ix x …………………………3分52222221()(1)12.ii y y …………………………4分所以相关系数12211()()690.9510252()()nii i nniii i x x y y rx x y y .………………5分因为0.75r ,所以可用线性回归模型拟合y 与x 的关系.……………6分(2)记商家周总利润为Y 元,由条件可得在过去50周里:当70X时,共有10周,此时只有1台光照控制仪运行,周总利润Y =1×3000-2×1000=1000元.…………8分当5070X时,共有35周,此时有2台光照控制仪运行,周总利润Y =2×3000-1×1000=5000元.……………………………9分当50X时,共有5周,此时3台光照控制仪都运行,周总利润Y =3×3000=9000元.…………………10分所以过去50周周总利润的平均值10001050003590005460050Y元,所以商家在过去50周周总利润的平均值为4600元.………………………12分20.证明:(1)//,2,CD EF CD EF CF四边形CDEF 为菱形,CE DF ,………1分又∵AD 平面CDEF ∴CE AD ………2分又,ADDF D 直线CE 平面ADF .………4分(2) 60DCF,DEF 为正三角形,取EF 的中点G ,连接GD ,则,GD EF GD CD ,又AD平面CDEF ,∴,,DA DC DG 两两垂直,以D 为原点,,,DA DC DG 所在直线分别为,,x y z 轴,建立空间直角坐标系D xyz ,………5分2,1CD EF CF ABAD,0,1,3,0,1,3E F ,(1,1,0),(0,2,0)B C ………6分由(1)知0,3,3CE是平面ADF 的法向量,………7分0,1,3,1,1,0DF CB ,222(,,0)333CPCB,(0,2,0)DC 则24(,,0)33DP DC CP ,………8分设平面PDF 的法向量为,,n x y z ,∴00n DF n DP,即3024033yzxy,令3z ,则3,6yx ,∴(6,3,3)n ………10分∴121cos ,22343n CE n CE n CE………11分∴二面角PDFA 大小为60.………12分21. 解:(1)由题意知1c ,又tan 603bc,所以23b,………2分2224abc,所以椭圆的方程为:22143xy;………4分(2)当0k时,0t,不合题意设直线PQ 的方程为:(1),(0)y k x k,代入22143x y ,得:2222(34)84120k x k x k ,故0,则,0k R k 设1122(,),(,)P x y Q x y ,线段PQ 的中点为00(,)R x y ,则212002243,(1)23434x x kk x y k x kk,………7分由QP TP PQ TQ 得:()(2)0PQ TQ TP PQ TR ,所以直线TR 为直线PQ 的垂直平分线,………8分直线TR 的方程为:222314()3434k k yxk k k,………10分令0y 得:T 点的横坐标22213344ktkk,………11分因为2(0,)k,所以234(4,)k,所以1(0,)4t . ………12分所以线段OF 上存在点(,0)T t 使得QP TPPQ TQ ,其中1(0,)4t .22.解:(1)函数ln af xx x 的定义域为0,.由ln a fxx x,得221a x afxxxx.………1分①当0a时,0f x 恒成立,f x 递增,∴函数()f x 的单调递增区间是0,………2分②当0a时,则0,xa 时,0,f xf x 递减,,x a 时,0fx,f x 递增.∴函数()f x 的单调递减区间是(0,)a ,单调递增区间是,a .………4分(2)要证明当2a e时,xf x e ,即证明当20,x ae时,ln xa xe x,………5分即ln xx xaxe ,令ln h xx xa ,则ln 1h xx ,当10xe时,0h x;当1xe时,0h x.所以函数h x 在10,e上单调递减,在1,e上单调递增.当1x e时,min1h xa e.于是,当2ae时,11h xaee.①………8分令xx xe ,则1xxxx exee x . 当01x 时,0x;当1x时,0x.所以函数x 在0,1上单调递增,在1,上单调递减.当1x时,max1xe.于是,当0x 时,1x e.②………11分显然,不等式①、②中的等号不能同时成立.故当2ae时,(f x )xe .………12分。

相关文档
最新文档