《数学文化论文》

合集下载
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

本科生《数学文化》选修课程论文

数学文化的思考

与中外数学文化的差异

学院:理学院

专业:化学工程与工艺

姓名: Zen Ting

学号:

联系电话:

电子邮箱:

指导教师:布和

教师职称:讲师

论文完成日期:二零一二年十二月一日

摘要

数学在人类发展史上有着举足轻重的作用,扮演着重要的角色,可以毫不夸张的说,没有数学这门科学,人类的历史就无法展开,它不仅在学术层面上重要,更是对我们绚丽多彩的文化起着重大的作用。本文将回顾数学的发展史,浅谈数学对文化的作用,以及中外数学文化的差异。

关键词:阿基里斯追龟论飞箭静止论《算术》希腊数学文化中国数学代表

引言

数学文化哲学作为一门学科或一个研究方向,是将数学置于人类文化大背景下而对其进行哲学反思。从数学哲学转向数学文化哲学是在数学文化背景下的必然选择。数学文化哲学不仅涵盖了对于数学本质及其价值更为深入的认识,而且从一个更为广泛的角度指明了影响数学发展的各个因素,因此是对传统数学哲学的深化和拓展。数学文化哲学的孕育和产生有着深刻的学术背景和社会因素。这种转向有助于使数学哲学走出现在的困境,更为重要的是,还将大大拓宽数学哲学研究的视野,从而为数学哲学的发展开辟更为广阔的前景。

正文

首先我们来回顾布和老师课上讲得第一个方面,即数学的发展。

古代数学最重要的两个分支就是古希腊和古代中国。古希腊文明是人类古代文明中的一个皇冠,而数学则是这皇冠上最大的那一颗钻石,向世人展示了希腊人的精神——好奇多思,渴求知识。其哲学与数学的发展则达到了那一时期的顶峰。公元480年以后鸭店称为希腊的文化,政治中心,各种学术思想开始在雅典争奇斗艳,古希腊数学家更是层出不穷,艾丽娅学派的芝若提出了四个著名的悖论(二分说,追龟说,飞箭静止说,运动场说)迫使哲学家和数学家开始思考极限的问题。

我依稀记得我接触最早的,也是使我对数学产生兴趣并选修这门课的原因,就是因为追龟说——阿基里斯永远跑不过乌龟,和飞箭静止说。下面我将详述这两个事列,阐述数学问题中极限对人类文化精神上带来的冲击与思考。

1.1追龟说

阿基里斯是古希腊神话中善跑的英雄。在他和乌龟的竞赛中,他速度为乌龟十倍,乌龟在前面100米跑,他在后面追,但他不可能追上乌龟。因为在竞赛中,追者首先必须到达被追者的出发点,当阿基里斯追到100米时,乌龟已经又向前爬了10米,于是,一个新的起点产生了;阿基里斯必须继续追,而当他追到乌龟爬的这10米时,乌龟又已经向前爬了1米,阿基里斯只能再追向那个1米。就这样,乌龟会制造出无穷个起点,它总能在起点与自己之间制造出一个距离,不管这个距离有多小,但只要乌龟不停地奋力向前爬,阿基里斯就永远也追不上乌龟,“乌龟” 动得最慢的物体不会被动得最快的物体追上。由于追赶者首先应该达到被追者出发之点,此时被追者已经往前走了一段距离。因此被追者总是在追赶者前面。

我们看看这个故事的历史背景。当时柏拉图描述,芝诺说这样的悖论,是兴之所至的小玩笑。首先,巴门尼德编出这个悖论,用来嘲笑"数学派"所代表的毕达哥拉斯的" 1-0.999...>0"思想。然后,他又用这个悖论,嘲笑他的学生芝诺的"1-0.999 0

但1-0.999...>0"思想。最后,芝诺用这个悖论,反过来嘲笑巴门尼德的"1-0.999 0

或1-0.999...>0"思想。有人解释道:若慢跑者在快跑者前一段,则快跑者永远赶不上慢跑者,因为追赶者必须首先跑到被追者的出发点,而当他到达被追者的出发点,慢跑者又向前了一段,又有新的出发点在等着它,有无限个这样的出发点。芝诺当然知道阿基里斯能够捉住海龟,跑步者肯定也能跑到终点。类似阿基里斯追上海龟之类的追赶问题,我们可以用无穷数列的求和,或者简单建立起一个方程组就能算出所需要

的时间,那么既然我们都算出了追赶所花的时间,我们还有什么理由说阿基里斯永远也追不上乌龟呢?然而问题出在这里:我们在这里有一个假定,那就是假定阿基里斯最终是追上了乌龟,才求出的那个时间。但是芝诺的悖论的实质在于要求我们证明为何能追上。上面说到无穷个步骤是难以完成。以上初等数学的解决办法,是从结果推往过程的。悖论本身的逻辑并没有错,它之所以与实际相差甚远,在于这个芝诺与我们采取了不同的时间系统。人们习惯于将运动看做时间的连续函数,而芝诺的解释则采取了离散的时间系统。即无论将时间间隔取的再小,整个时间轴仍是由有限的时间点组成的。换句话说,连续时间是离散时间将时间间隔取为无穷小的极限。其实这归根到底是一个时间的问题。譬如说,阿基里斯速度是10m/s,乌龟速度是1m/s,乌龟在前面100m。实际情况是阿基里斯必然会在100/9秒之后追上乌龟。按照悖论的逻辑,这100/9秒可以无限细分,给我们一种好像永远也过不完的印象。但其实根本不是如此。这就类似于有1秒时间,我们先要过一半即1/2秒,再过一半即1/4秒,再过一半即1/8秒,这样下去我们永远都过不完这1秒,因为无论时间再短也可无限细分。但其实我们真的就永远也过不完这1秒了吗?显然不是。尽管看上去我们要过1/2、1/4、1/8秒等等,好像永远无穷无尽。但其实时间的流动是匀速的,1/2、1/4、1/8秒,时间越来越短,看上去无穷无尽,其实加起来只是个常数而已,也就是1秒。

所以说,整个故事看起来就像一场数学教学中的失败。也许在你的小学数学学习中,你可能对一些隐隐约约的数学问题产生疑问。这就好比我们会利用3无法被10整除产生很多的悖论。然而,对于这个数学问题中的无限话题又对人生有着思考。我们都知道,古希腊的数学与哲学是并行不悖的。很多知名的学者不仅是伟大的数学家,更是伟大的哲学家。而飞箭静止说,则更好的反应了哲学的思考,就像我们本学期开始学习的《马克思主义基本原理概论》,其中费尔巴哈的形而上学,就提到过无限对人类思想的启迪意义。

1.2飞箭静止说

我们可以很容易的拿初高中物理,相对静止与运动来辩驳这项悖论。运动是绝对的,静止是相对的!相对静止是运动的特殊情况。之所以是静止的是因为所选的参照物的速度与研究对象的速度相同(大小和方向相同)。回想我们上学期得《高等数学》,什么是极限?极限的概念是什么?。速度的定义是v=limΔs/Δt(Δt-〉0)可以这么理解Δt越接近0,Δs就越接近0。当Δt接近于0时(永远不等于0),Δs/Δt

相关文档
最新文档