高中化学选修3(第二章第二节).ppt
人教版高中化学选修三课件:第二章 第二节 第一课时 价层电子对互斥理论(26张PPT)
•1、所有高尚教育的课程表里都不能没有各种形式的跳舞:用脚跳舞,用思想跳舞,用言语跳舞,不用说,还需用笔跳舞。 •2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 •3、教育始于母亲膝下,孩童耳听一言一语,均影响其性格的形成。 •4、好的教师是让学生发现真理,而不只是传授知识。 •5、数学教学要“淡化形式,注重实质.
实例
2
0
2
3
0
3
2
1
直线形
直线形
HgCl2、 BeCl2、
CO2
三角形
平面三角形 V形
BF3、 BCl3 SnBr2、 PbCl2
σ键电 孤电子 价层电 电子对的 VSEP 分子或离子 实例
子对数 对数 子对数 排列方式 R模型 的立体构型
4
0
3
1
4
四面 体形
正四面体形 三角锥形
CH4、 CCl4 NH3、 NF3
VSEPR模型 的立体构型 体构型名称
NH3
_三__角__锥__形
HCN
_直__线__形
H3O+
_三__角__锥__形
SO2
_V_形
[特别提醒] VSEPR模型与分子的立体构型不一定一致,分子的 立体构型指的是成键电子对的立体构型,不包括孤电子 对(未用于形成共价键的电子对)。两者是否一致取决于 中心原子上有无孤电子对,当中心原子上无孤电子对 时,两者的构型一致;当中心原子上有孤电子对时,两 者的构型不一致。
2
2
V形
H2O
1.用价层电子对互斥理论判断SO3的分子构型为 ( )
A.正四面体形 B.V形
C.三角锥形
D.平面三角形
解析:SO3中S原子的价层电子对数为3,其全部用于形
人教版选修3高中化学 第2章第2节 分子的立体构型(第2课时)
锥形
sp 杂化和 sp2 杂化这两种形式中,原子还有未参与杂化的 p 轨道,可用于形成 π 键,而杂化轨道只能用于形成 σ 键或 者用来容纳未参与成键的孤电子对。
指出下列分子中,中心原子可能采取的杂化轨道类 型,并预测分子的立体构型。 (1)BeCl2:__________ (2)PCl3:__________ (3)BCl3:____________ (4)CS2:__________ (5)SCl2:____________
4.如图是甲醛分子的模型。根据该图和所学化学键知识回 答下列问题:
甲醛分子的比例模型 甲醛分子的球棍模型 (1)甲醛分子中碳原子的杂化方式是________________, 作出该判断的主要理由是_____________________。 (2) 下 列 是 对 甲 醛 分 子 中 碳 氧 键 的 判 断 , 其 中 正 确 的 是 ________(填序号)。 ①单键 ②双键 ③σ 键 ④π 键 ⑤σ 键和 π 键
(3)sp3 杂化 sp3 杂化轨道是由一个__s____轨道和三个_____p____轨道杂 化 而 得 , 杂 化 轨 道 间 的 夹 角 为 __1_0_9_°__2_8_′_ , 立 体 构 型 为 _正__四__面__体___形,如 CH4 分子。
(1)在形成多原子分子时,中心原子价电子层上的某些能量 相近的原子轨道发生混杂,重新组合成一组新的轨道的过 程,叫做轨道的杂化。双原子分子中,不存在杂化过程。 (2)只有能量相近的轨道才能杂化(ns,np)。
• 1、“手和脑在一块干是创造教育的开始,手脑双全是创造教育的目的。” • 2、一切真理要由学生自己获得,或由他们重新发现,至少由他们重建。 • 3、反思自我时展示了勇气,自我反思是一切思想的源泉。 • 4、好的教师是让学生发现真理,而不只是传授知识。 • 5、数学教学要“淡化形式,注重实质.
高中化学 选修三 第二章 第二节 配合物理论
(2) 配合物的组成
(配离子或内界)
Cu(H2O)4
SO4
配 位 数 外界
中 配配 位 心 体原 子 读作:硫酸四水合铜离 子
(3)配合物的命名 1 内界命名: 配体数--配体名称—“合”字— —中心离子名称—中心离子化合价(利用化合 价代数和原理计算,用带圆括号的罗马数字 表示)。
[Co(NH3)5(H2O)]3+ 一水五氨合钴(Ⅲ) 离子
[Cu(H2O)4]2+
Cu2+与H2O是如何结合的呢?
H2O
H+
提供孤电子对
提供空轨道接 受孤对电子
H2O Cu2+
H O H
H
配位键
H2O H2O Cu OH2 H2O
2+
2、配合物 (1) 定义 通常把接受孤电子对的金属离子
(或原子)与某些提供孤电子对的 分子或离子以配位键结合形成的化 合物称为配位化合物,简称配合物
1、配位键
(1)定义 提供孤电子对的原子与接受孤电 子对的原子之间形成的共价键, 注意: 配位键与共价键性质完全相同 (2)配位键的形成条件 一方提供孤电子对(配位体)
一方提供空轨道
常见的配位体 H2O NH3 X- CO CN SCN-
(3)配位键的表示方法
A B
电子对给予体 —电子对接受体” H O H H
天蓝色 溶液
H 2O H 2O Cu OH2 H 2O
蓝色 沉淀
2+
深蓝色 溶液
H 3N
+乙醇 静置 2+
深蓝色 晶体
[Cu(NH3) 4 ] SO4•H2O
Cu(OH)2
NH3 Cu NH3 NH3
人教版(2019)高中化学选择性必修三第二章第二节 第2课时 炔烃
物理 无色、无臭的气体,微溶于水,易溶于有机溶剂。
性质 密度比空气的略小
[微点拨]
乙炔的分子式为 C2H2 ,是最简单的炔烃,结构 ①乙炔燃烧时产生浓 简式是CH≡CH ,其分子为 直线形 结构,分子 烈黑烟的原因是因为
结构 中的碳原子均采取 sp 杂化,碳原子和氢原子之 乙炔的含碳量很高,
间均以单键(σ键)相连接,碳原子和碳原子之间以 没有完全燃烧。
解析:电石与水反应较剧烈,所以用饱和食盐水代替水,逐滴加入饱和食盐水 时可控制反应物水的量,从而控制生成乙炔的速率,A正确;酸性KMnO4溶液 能氧化乙炔,因此乙炔使酸性KMnO4溶液褪色,表现了乙炔的还原性,B正确; 乙炔气体中混有的硫化氢可以被Br2氧化,对乙炔性质的检验产生干扰,所以应 先用硫酸铜溶液洗气,C错误;对于烃类物质而言,不饱和程度越高,则含碳量 越高,火焰越明亮,冒出的烟越浓,乙炔含有碳碳三键,是不饱和程度较高的 烃类物质,D正确。
④收集方法:排水集气法
续表 ①使酸性 KMnO4 溶液褪色。 ②乙炔的燃烧 [微拓展] 乙炔可以在空气中燃烧,燃烧的化学方 聚乙炔导电的原理为高
化学 氧化 程式为 性质 反应 __2_C__H_≡__C__H_+ __5_O__2_____4_C_O__2_+__2_H_2_O_。___ 分子的共轭大 π 键体系为
电荷传递提供了通路。 乙炔燃烧时火焰明亮,并伴有浓烈的黑 烟。乙炔与空气混合后遇火会发生爆炸, 所以点燃乙炔之前必须 检验纯度
续
乙炔能与溴发生加成反应,反应过程可分步进行,方程式分别是
表
[随笔]
化加
_____________
_____________
学 性
成 反
在一定条件下,乙炔也能与氢气、氯化氢和水等物质发生加成反
人教版高中化学选修3课件-原子结构与元素周期表
知识点二 元素周期表的分区
1.根据原子的外层电子结构特征分区 (1)周期表中的元素可根据原子的外层电子结构特征划分为 如下图所示的 5 个区。
①s 区元素:最外层只有 1~2 个 s 电子,价电子分布在 s 轨道上,价电子构型为 ns1~2,包括ⅠA 族、ⅡA 族的所有元素。
②p 区元素:最外层除有两个 s 电子外,还有 1~6 个 p 电 子(He 无 p 电子),价电子构型为 ns2np1~6,包括ⅢA→ⅦA 族和 零族的所有元素。
a.元素的分区规律:按照元素的原子核外电子最后排布的能 级分区,如 s 区元素的原子的核外电子最后排布在 ns 能级上,d 区、ds 区元素的原子核外电子最后排布在n-1d 能级上。
b.s 区、p 区均为主族元素包括稀有气体,且除 H 外,非 金属元素均位于 p 区。
c.应根据外围电子排布判断元素的分区,不能根据最外层电 子排布判断元素的分区。p 区中,He 的外围电子排布1s2较特 殊。
第一章
原子结构与性质
第二节 原子结构与元素的性质
第一课时 原子结构与元素周期表
[学习目标] 1.通过碱金属和稀有气体的元素核外电子排布 对比进一步认识电子排布和价电子层的含义。
2.通过元素周期表认识周期表中各区、各周期、各族元素 原子核外电子的排布规律。
3.通过“螺壳上的螺旋”体会周期表中各区、各周期、各 族元素的原子结构和位置间的关系。
①原子序数-稀有气体原子序数(相近且小)=元素所在的 纵行数。第 1、2 纵行为ⅠA、ⅡA 族,第 3~7 纵行为ⅢB~ⅦB 族,第 8~10 纵行为Ⅷ族,第 11、12 纵行为ⅠB、ⅡB 族,第 13~17 纵行为ⅢA~ⅦA 族,第 18 纵行为 0 族。而该元素的周 期数=稀有气体元素的周期数+1。
高中化学选修三全套共张PPT课件
处于一定空间运动状态的电子在原子核外空间
的概率密度分布的形象化描述
小黑点:概率密度
单位体积内出现的概率
小黑点越密概率密度越大
小黑点不是电子!
23
②电子云轮廓图
电子出现的概率约为90%的空间
即精简版电子云
③电子云轮廓图特点
a.形状
ns能级的电子云轮廓图:球形
np能级的电子云轮廓图:双纺锤形
nd能级的电子云轮廓图:多纺锤形
能级符号:ns、np、nd、nf…… n代表能层
最多容纳电子的数量 s:2 p:6 d:10 f:14
能层: 一
K
二
L
三
M
四……
N ……
能级: 1s 2s 2p 3s 3p 3d 4s 4p 4d 4f
14
3、注意问题
①能层与能级的关系
每一能层的能级从s开始,s,p,d,f……
能层中能级的数量不超过能层的序数
2、电离能
①第一电离能
气态电中性基态原子失去一个电子转
化为气态基态正离子所需最低能量
同周期主族元素第一电离能从左至右逐渐升高
ⅡA、ⅤA反常!比下一主族的高
②逐级电离能
利用逐级电离能判断化合价
43
3、电负性(第三课时)
键合电子:参与化学键形成
原子的价电子
孤对电子:未参与化学键形成
①电负性
不同元素的原子对键合电子吸引能力
②特点
头碰头
重叠程度大,稳定性高
轴对称
可绕键轴旋转
H
Cl
s-p σ键
H
H
56
5、π键
定义:两个原子轨道以平行
即“肩并肩”方式重叠
人教版高中化学选修3 物质结构与性质 第二章 第二节 分子的立体构型(第1课时)
2014年7月20日星期日
21
价层电子对互斥理论
ABn 型分子的VSEPR模型和立体结构
电子对数 目 电子对的空 间构型 成键电子 对数 孤电子 对数 电子对的 排列方式 分子的 空间构型 实 例
2
直线
2
0
直 线形
BeCl2 CO2
3 3 三角型 2
0
三角形
BF3 SO3
1
V形
SnBr2 PbCl2
2014年7月20日星期日 17
价层电子对互斥理论
化学式 HCN SO2 NH2- BF3 H 3O + SiCl4 CHCl3 NH4+ SO42-
2014年7月20日星期日
价层电子对数 结合的原子数 孤对电子对数
2 3 4 3 4 4 4 4 4
2 2
0 1
2 3 3 4 4 4 4
2
0 1 0 0 0 0
1 0 0 0
2 2 2 3 3
4 4 4
直线形 V形 V形 平面三角形 三角锥形 正四面体 四面体 正四面体
26
2014年7月20日星期日
价层电子对互斥理论
1、下列物质中分子立体结构与水分子相似的是 A.CO2 B.H2S B C.PCl3 D.SiCl4 2、下列分子立体结构其中属于直线型分子的是 A.H2O B.CO2 BC C.C2H2 D.P4 3、下列分子立体结构其中属正八面体型分子的 A.H3O + B.CO32— D C.PCl5 D.SF6
新课标人教版高中化学课件系列
选修3 物质结构与性质 第二章 分子结构与性质
第二节 分子的立体构型 第1课时
2014年7月20日星期日
1
高中化学选修三第二章第二节《分子的立体结构》
VP模型
分子构型
SO3 6 3 2
0 3 3 平面三角形 平面三角形
CH4 4 4 1
0
4 4 正四面体 正四面体
SO32- 8 3 2
1
H2O 6 2 1 2
3 4 正四面体 三角锥形 2 4 正四面体 V形
NH3 5 3 1 1
3 4 正四面体 三角锥形
价电子对的空间构型即VSEPR模型
ABn分子或离子的立体构型
分子或 a
离子
x
b 孤对电 σ键 VP 子对
VP模型
分子构型
SO3 6 3 2
0 3 3 平面三角形
CH4 4 4 1
0
4 4 正四面体
SO32- 8 3 2
1
H2O 6 2 1 2
3 4 四面体 2 4 四面体
NH3 5 3 1 1
3 4 四面体
价电子对的空间构型即VSEPR模型
价层电子
对数 目
VP模型
分子构型
SO3 6 3 2
0 3 3 平面三角形 平面三角形
CH4 4 4 1
0
4 4 正四面体 正四面体
SO32- 8 3 2
1
H2O 6 2 1 2
3 4 正四面体 三角锥形 2 4 正四面体
NH3 5 3 1 1
3 4 正四面体
正 四 面 体
V形
分子或 a
离子
x
b 孤对电 σ键 VP 子对
价层电子 对数 目 (VP)
价层电 子对空 间构
型
2
3
4
5
6
直线形
平面 正四面体
正八面体
三角形
三角双锥
正 八 面 体
高中化学人教版2019选修三烯烃 炔烃
乙炔
乙炔的化学性质
➢ 加成反应 乙炔能使溴的四氯化碳溶液褪色
△ CH≡CH+H2 催化剂 CH2=CH2
CH≡CH+Br2
CH=CH+Br2 Br Br
CH=CH Br Br
Br Br CH—CH Br Br
1 , 2 —二溴乙烯
催化剂
△ CH≡CH+HCl
CH2=CHCl
1 , 1 , 2 , 2 —四溴乙烷
不反应 不反应 加成、聚合
加成反应,使溴的四氯化碳溶液褪色 被氧化,使高锰酸钾酸性溶液褪色
加成
炔烃
学生活动 ➢ 请写出戊炔所有属于炔怪的同分异构体的结构简式。
CH≡CCH2CH2CH3 CH3CH≡CCH2CH3 CH≡CCH(CH3)CH3
➢ 请写出1-丁炔与足量氢气完全反应的化学方程式,并分析该反应中化学键和 官能团的变化。
乙炔
乙炔的实验室制法 实验室可用电石(CaC2)与水反应制取乙炔,反应的化学方程式为:
CaC2+2H2O→Ca(OH)2+ CH≡CH
(1) 电石与水反应非常剧烈,为了减小其反应速率,可用饱和氯化钠溶液代替水作反 应试剂。 (2) 反应制得的乙炔中通常会含有硫化氢等杂质气体,可用硫酸铜溶液吸收,以防止 其干扰探究乙炔化学性质的实验。 (3) 乙炔属于可燃性气体,点燃前要检验纯度,防止爆炸。
△ CH≡CH+H2O
CH3CHO
乙炔
乙炔的化学性质 ➢ 加聚反应 在一定的条件下,乙炔可以发生加聚反应,生成聚乙炔。
催化剂
nCH ≡ CH
[ CH=CH ]n
乙炔的工业制法
乙炔
乙炔的用途
⑴乙炔是一种重要的基本有机原料,可以用来 制备氯乙烯、聚氯乙烯和乙醛等。
人教版(2019)高中化学选择性必修三第二章第二节 第1课时 烯烃
B.CH2===CHCH===CH2
D.CH3CH3
(4) 聚 乙 烯 安 全 无 毒 , 可 用 于 制 食 品 包 装 袋 。 聚 乙 烯 的 结 构 简 式 为
________________ 。
解析:(1)乙烯为共价化合物,C 原子最外层可达到 8 个电子,H 原子最外层可
达到 2 个电子,电子式为
构现象
反异构现象
顺反异构的情
顺式结构:相同的原子或原子团位于双键同一侧 况如双键碳原 结构
反式结构:相同的原子或原子团位于双键两侧 子上连有相同
互为顺反异构体,它们的化学性质基本相同,而 的原子或原子
性质
物理性质有一定的差异
团,则不能形成
续表
实例
结构
物理性质
顺-2-丁烯
反-2-丁烯
熔点、沸点、密度均不相同
,它的名称是( )
A.丁烯 B.2-丁烯 C.2-戊烯 D.1-戊烯
答案:C
2.下列说法正确的是
()
A.C2H4与C4H8一定互为同系物 B.乙烯和乙烷都能使酸性KMnO4溶液褪色 C.1-丁烯与2-丁烯互为同分异构体
D.新戊烷和2,2-二甲基丙烷互为同分异构体
解析:C4H8可以是烯烃也可以是环烷烃,A项错误;乙烯能使酸性KMnO4溶 液褪色,而乙烷不能,B项错误;新戊烷和2,2-二甲基丙烷是同一种物质,D 项错误。
顺反异构。
(三)二烯烃 定义
是分子中含有两个碳碳双键的烯烃
实例(以 1,3-丁二 烯为例)
CH2===CH—CH===CH2+ 1,2-加成
Cl2―→
CH2===CH—CH===CH2+ 1,4-加成
Cl2―→
[微点拨] 1,3-丁二烯的 1,2加成和 1,4-加成 是竞争反应,到 底哪一种加成产 物占优势取决于 反应条件。
人教版高中化学选择必修三第二章第二节第2课时炔烃
第2课时炔烃[素养发展目标]1.从化学键的不饱和性等微观角度理解炔烃的结构特点,能辨析物质类别与反应类型之间的关系。
2.认识加成反应的特点和规律,了解有机反应类型与有机化合物的组成及结构特点的关系。
3.能通过模型假设、证据推理认识常见有机化合物分子的空间结构,会判断有机化合物分子中原子间的位置关系。
知识点一乙炔的结构与性质1.结构特点结构式官能团碳原子的杂化方式三键所含共价键分子空间结构H—C≡C—H 碳碳三键sp1个σ键,2个π键直线形,分子中的所有原子都处于同一直线上乙炔(俗称电石气)是最简单的炔烃。
乙炔是无色、无臭的气体,密度比空气小,微溶于水,易溶于有机溶剂。
3.化学性质(1)实验探究实验装置①中反应CaC2+2H2O―→Ca(OH)2+C2H2↑(反应生成乙炔)②中反应CuSO4+H2S===CuS↓+H2SO4(除去硫化氢等杂质气体)③中现象 溶液紫红色褪去(乙炔被酸性高锰酸钾溶液氧化)④中现象 溶液橙色褪去(乙炔与溴发生加成反应)⑤处现象火焰明亮,并冒出浓烈黑烟注意事项 a.电石与水反应非常剧烈,为了减小其反应速率;可用饱和氯化钠溶液代替水作为反应试剂;b.乙炔属于可燃性气体,点燃前要检验纯度,防止爆炸(2)化学性质 ①氧化反应a .能使酸性KMnO 4溶液褪色;b .能燃烧,火焰明亮并伴有黑烟,化学方程式是2C 2H 2+5O 2――→点燃4CO 2+2H 2O 。
②加成反应与Br 2加成、与H 2加成生成乙烯 CH ≡CH +H 2――→催化剂△ CH 2==CH 2 与HCl 加成生成氯乙烯 CH ≡CH +HCl ――→催化剂△ CH 2==CHCl 与H 2O 加成生成乙醛CH ≡CH +H 2O ――→催化剂△CH 3CHO [注] 乙炔与水加成后的产物乙烯醇(CH 2==CH —OH)不稳定,很快转化为乙醛。
③加聚反应聚乙炔可用于制备导电高分子材料,由乙炔合成聚乙炔的化学方程式为n CH ≡CH ――→催化剂CH==CH。
高中化学选修三 第二章 第二节 第二课时杂化轨道理论配合物理论
1.下列对sp3、sp2、sp杂化轨道的夹角的比较,得出结
论正确的是 A.sp杂化轨道的夹角最大 B.sp2杂化轨道的夹角最大 C.sp3杂化轨道的夹角最大 D.sp3、sp2、sp杂化轨道的夹角相等 解析:sp、sp2、sp3杂化轨道的夹角分别为180°、 ( )
120°、109°28′。
答案:A
例如:
2.配合物 (1)定义: 金属离子或(原子)与某些 分子或离子 (称 为 配体)以 配位键 结合形成的化合物,简称配合物。
(2)配合物的形成举例。
实验操作 实验现象 有关离子方程式
滴加氨水后,试管 Cu2++2NH ·H O=== 3 2 蓝色沉 中首先出现 + Cu(OH)2↓+2NH4 , 淀 ,氨水过量后沉 Cu(OH)2+4NH3=== 溶解 淀逐渐 ,滴加 [Cu(NH3)4]2++2OH- , 乙醇后析出 深蓝色 2+ 2- [Cu(NH ) ] + SO 晶体 3 4 4 + 乙醇 H2O===== [Cu(NH3)4]SO4· H2O↓
C.配位化合物中的配体可以是分子也可以是阴离子 D.共价键的形成条件是成键原子必须有未成对电子 解析:配位键是一方提供孤电子对,一方提供空轨道形 成的一种特殊共价键,配体可以是分子、原子,也可以 是阴离子。 答案:D
[例1]
[双选题]三氯化磷分子中的中心原子以sp3杂化,
下列有关叙述正确的是
A.3个P—Cl键长、键角均相等 B.空间构型为平面三角形
(
)
C.空间构型为正四面体
D.空间构型为三角锥形 [解析] 锥形。 [答案] AD PCl3中P以sp3杂化,有一对孤对电子,结构类似
于NH3分子,3个P—Cl键长,键角均相等,空间构型为三角
分子或离子中中心原子杂化类型的判断 (1)根据分子或离子的立体结构判断,如直线形为sp杂化,
高中化学 第2章 第二节 第1课时 价层电子对互斥模型课件高中选修3化学课件
价电子对数
2
3
4
成键电子对数 电子对立体构型
2
直线(zhíxiàn)形
3
平面三角形
4
正四面体形
分子立体构型
直线形
平面三角形
正四面体形
12/12/2021
实例
CO2、BeCl2 BF3、BCl3、BBr3 CH4、CCl4、SiF4
第六页,共四十页。
(2)中心原子有孤电子对的分子(fēnzǐ)(ABn)
1.硫化氢分子(fēnzǐ)中,两个H—S键的夹角都接近90°,推测H2S分子的立体构型是怎样的? 提示 V形
2.科学家研制出可望成为高效火箭推进剂的N(NO2)3(如图所示)。已知该分子中N—N—N键 角都是108.1°。试推测四个氮原子围成的空间是空间正四面体吗?
提示 不是。由于N—N—N键角都是108.1°。所以(suǒyǐ)四个氮原子围成的空间不是正四面 体而是三角锥形。
12/12/2021
第十四页,共四十页。
3.分子(fēnzǐ)的立体构型与化学式有必然联系吗?
提示(tíshì) 没有。AB2(或A2B)型分子可能是直线形分子,也可能是V形分子,AB3(或A3B) 型分子可能是平面三角形分子,也可能是三角锥形分子,AB4型分子一定是正四面体形 分子。
12/12/2021
12/12/2021
第二十页,共四十页。
【变式训练】
1.下列分子的立体(lìtǐ)构型为正四面体形的是( )
①P4 ②NH3 ③CCl4 ④CH4 ⑤H2S ⑥CO2
A.①③④⑤
B.①③④⑤⑥
C.①③④
D.④⑤
解析 NH3的立体构型是三角锥形、H2S的立体构型是V形、CO2的立体构型是直线(zhíxiàn)形 ,故选C。
人教版高中化学选修三第二章 第二节 分子的立体构型(第2课时)
例如: Sp 杂化 —— BeCl2分子的形成 Cl Be Cl
180 sp px px ° 22s2 Be原子:1s 没有单个电子,
Cl
Cl
2p
2p
激发
2s
2s
sp
sp杂化
sp2杂化轨道的形成过程 120° z y y
z y x
z
z y
x x x sp2杂化:1个s 轨道与2个p 轨道进行的杂化,
第二章 分子结构与性质 第二节 分子的立体构型
第2课时
选修三
活动:请根据价层电子对互斥理论分 析CH4的立体构型
1.写出碳原子的核外电子排布图,思考为什么碳原子与氢原 子结合形成CH4,而不是CH2 ? C原子轨道排布图 2p2 2s2 1s2 H原子轨道排布图
1s1
C
C
为了解决这一矛盾,鲍林提出了杂化轨道理论 按照我们已经学过的价键理论,甲烷的4个C — H单键 都应该是σ键,然而,碳原子的4个价层原子轨道是3 个相互垂直的2p 轨道和1个球形的2s轨道,用它们跟4 个氢原子的1s原子轨道重叠,不可能得到四面体构型 的甲烷分子
z y x x
z y x
109°28′
z
z y x y
sp3杂化:1个s 轨道与3个p 轨道进行的杂化,
形成4个sp3 杂化轨道。
每个sp3杂化轨道的形状也为一头大,一头小,含有 1/4 s 轨道和 3/4 p 轨道的成分,每两个轨道间的夹角为 109.5°,空间构型为正四面体型
例如:
Sp3 杂化 —— CH4分子的形成
(3)杂化前后原子轨道为使相互间排斥力最小,故在空间 取最大夹角分布,不同的杂化轨道伸展方向不同;
sp杂化轨道的形成过程 z y x x z
新教材高中化学第2章第2节第3课时影响化学平衡的因素课件新人教版选择性必修1ppt
合成氨所需的氢气可用煤和水作原料经多步反应制得,其
中的一步反应为 CO(g)+H2O(g) CO2(g)+H2(g) ΔH<0。反应达到平
衡后,为提高 CO 的转化率,下列措施中不正确的是
()
A.容器容积不变,再充入 CO
B.容器的容积不变,及时移走 CO2 C.增大 H2O 的浓度 D.减小 H2 的浓度
【答案】A 【解析】一般来说,有两种及两种以上反应物的可逆反应中,在其 他条件不变时,增大其中一种反应物的浓度,能使其他反应物的转化率 升高,但其本身的转化率反而降低,故A错误。
拉至 40 mL 处(体积增大, 压强减小)
气体颜色_先__变__深__,__后__变__浅__,_ _最__终__比__原__来__深_
气体颜色_先__变__浅__,__后__变_ 深__,__最__终__比__原__来__浅__
实验结论
压强增大,体积减小时, c(NO2)_变__大__后__又__减__小_,平衡向 ___左_____(填“左”或“右”) 移动
说明___N_O_2__浓__度__减__小___,即平衡向_正__反__应___方向移动
②结论。
其他条件不变时,升高温度平衡向着_吸__热__反__应_的方向移动,降低温 度平衡向着放__热__反__应__的方向移动。
(4)催化剂。 催化剂可_同__等__程__度_____地改变正反应速率和逆反应速率,因此催化 剂对化学平衡的移动___没__有__影__响___。但催化剂可_改__变____反应达到平衡 所需的时间。
下图是反应 2NO2(g) N2O4(g)平衡体系的压强、透光率与时间关系 的图像:
(1)阅读材料并解释为什么空气中一氧化碳浓度增大时会发生一氧化 碳中毒?
高中化学选修三(人教)第二章 第二节--配合物
配位数:直接同中心原子配位的原子的数目叫中心原子的配位数。
配离子的电荷数:配离子的电荷数等于中心离子和配位体的总电荷数的代数和。
[板书]
[练习]如:[Co(NH3)5Cl]Cl2这种配合物,其配位体有两种:NH3、Cl-,配位数为5+1=6。
[实验现象]看到试管里溶液的颜色跟血液极为相似。
[讲]这种颜色是三价铁离子跟硫氰酸根(SCN—)离子形成的配离子。利用该离子的颜色,可鉴定溶液中存在Fe3+;又由于该离子的颜色极似血液,常被用于电影特技和魔术表演。
[讲]配位键的强度有大有小,因而有的配合物很稳定,有的很不稳定。许多过渡金属离子对多种配体具有很强的结合力,是因为过渡金属原子或离子都有接受孤对电子的空轨道,对多种配体具有较强的结合力,因而,过渡金属配合物远比主族金属配合物多。
[板书](2)配位键越强,配合物越稳定。
[投影]科学视野:已知的配合物种类繁多,新的配合物由于纷繁复杂的有机
物配体而层出不穷,使得无机化合物的品种迅速增长。叶绿素、血红素和维
生素B12都是配合物,它们的配体大同小异,是一种称为卟啉的大环有机物,
而中心离子分别是镁离子、亚铁离子和钴离子。图2—25是叶绿素的结构示意图:
知识
目标
第二章分子结构与性质第二节分子的立体结构:(配合物)
能力
目标
1、配位键、配位化合物的概念
2、配位键、配位化合物的表示方法
重点
配位键、配位化合物的概念
难点
配合物理论
教学过程
备注
引入]我们在了解了价层电子互斥理论和杂化轨道理论后,我们再来学习一类特殊的化合物,配合物
高中化学选修三(人教)第二章第二节--杂化轨道
知识目标第一章分子结构与性质第二节分子的立体结构:(第二课时)能力目标1.认识杂化轨道理论的要点2.进一步了解有机化合物中碳的成键特征3.能根据杂化轨道理论判断简单分子或离子的构型过程重点杂化轨道理论的要点难点杂化轨道理论教学过程备注[复习]共价键类型:σ、π键,价层电子对互斥模型。
[质疑] 我们已经知道,甲烷分子呈正四面体形结构,它的4个C--H键的键长相同,H—C--H的键角为109~28°。
按照我们已经学过的价键理论,甲烷的4个C--H单键都应该是π键,然而,碳原子的4个价层原子轨道是3个相互垂直的2p轨道和1个球形的2s轨道,用它们跟4个氢原子的ls原子轨道重叠,不可能得到四面体构型的甲烷分子。
为什么?[讲]碳原子具有四个完全相同的轨道与四个氢原子的电子云重叠成键。
[引入]碳原子的价电子构型2s22p2,是由一个2s轨道和三个2p轨道组成的,为什么有这四个相同的轨道呢?为了解释这个构型Pauling提出了杂化轨道理论。
[板书]三、杂化轨道理论简介1、杂化的概念:在形成多原子分子的过程中,中心原子的若干能量相近的原子轨道重新组合,形成一组新的轨道,这个过程叫做轨道的杂化,产生的新轨道叫杂化轨道。
[讲]杂化轨道理论是一种价键理论,是鲍林为了解释分子的立体结构提出的。
为了解决甲烷分子四面体构型,鲍林提出了杂化轨道理论,它的要点是:当碳原子与4个氢原子形成甲烷分子时,碳原子的2s轨道和3个2p轨道会发生混杂,混杂时保持轨道总数不变,却得到4个相同的轨道,夹角109°28′,称为sp3杂化轨道,表示这4个轨道是由1个s轨道和3个p轨道杂化形成的。
当碳原子跟4个氢原子结合时,碳原子以4个sp3杂化轨道分别与4个氢原子的ls轨道重叠,形成4个C--Hσ键,因此呈正四面体的分子构型。
[投影][讲]杂化轨道理论认为:在形成分子时,通常存在激发、杂化、轨道重叠等过程。
但应注意,原子轨道的杂化,只有在形成分子的过程中才会发生,而孤立的原子是不可能发生杂化的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
大π 键
C6 H6
C6H6的大π键
价层电子对数为3的中心 原子采用sp2杂化方式
sp3杂化轨道的形成过程
z z y y x x x x y y z 109°28′ z
sp3杂化:1个s 轨道与3个p 轨道进行的杂化, 形成4个sp3 杂化轨道。 每个sp3杂化轨道的形状也为一头大,一头小, 含有 1/4 s 轨道和 3/4 p 轨道的成分 每两个轨道间的夹角为109.5°, 空间构型为正四面体型
(2)杂化前后原子轨道数目不变:参加杂化的轨道数 目等于形成的杂化轨道数目;但杂化轨道改变了原子 轨道的形状方向,在成键时更有利于轨道间的重叠;
sp杂化轨道的形成过程
z z 180° z z
y x
y
y x x
y
x
sp 杂化:1个s 轨道与1个p 轨道进行的杂化,
形成2个sp杂化轨道。可形成2σ键。 剩下的两个未参与杂化的道用于形成π键 。
乙炔的成键
价层电子对数为2的中心 原子采用sp杂化方式
sp2杂化轨道的形成过程
120° z z z z
y x x
y x
y x
y
sp2杂化:1个s 轨道与2个p 轨道进行的杂化,
形成3个sp2 杂化轨道。 每个sp2杂化轨道的形状也为一头大,一头小, 含有 1/3 s 轨道和 2/3 p 轨道的成分
杂化轨道 sp sp2 每个轨道的成分 1/2 s,1/2 p 1/3 s,2/3 p 轨道间夹角( 键角) 180° 120°
sp3
1/4 s,3/4p
109°28′
H2O原子 轨道杂化
22p4 O 原子: 2 s 有2个 不等性杂化:参与杂化的各原子轨道进行成分上的 单电子,可形成2个共价键, 键角应当是90°, Why? 不均匀混合。某个杂化轨道有孤电子对
1、三原子分子立体结构(有直线形和V形)
CO2
直线形
H2O
V形 105°
180°
2、四原子分子立体结构(常见的是平面三角 形、三角锥形)
HCHO
平面三角形 120°
NH3
三角锥形 107°
3 、五原子分子立体结构(最常见的是正四面 体)
CH4
正四面体
4、其它
P4
正四面体 60°
C2H2
直线形 180°
为了解决这一矛盾,鲍林提出了杂化轨道理论
C:2s22p2
2s
2p
3
激发
2p
2s
sp3
sp 杂化
由1个s轨道和3个p轨道混杂并重新组合成4个能量与 形状完全相同的轨道。我们把这种轨道称之为 sp3杂化 轨道。
为了四个杂化轨道在空间尽可能远离,使轨道间的排 斥最小,4个杂化轨道的伸展方向成什么立体构型?
四个H原子分别以4个s轨道与C原子上的四个 sp3杂化轨道相互重叠后,就形成了四个性质、 能量和键角都完全相同的S-SP3σ键,从而构成一 个正四面体构型的分子。
三.杂化轨道理论
主族元素的 ns、np轨道
1.概念:在形成分子时,在外界条件影响下若干不同 类型能量相近的原子轨道混合起来,重新组合成一组 新轨道的过程叫做原子轨道的杂化,所形成的新轨道 就称为杂化轨道。 2.要点: (1)参与参加杂化的各原子轨道能量要相近(同一 能级组或相近能级组的轨道);
排斥力最小
剖析内容
排斥力最小
对ABn型的分子或离子,中心原子A价层电子对 (包括成键σ键电子对和未成键的孤对电子对)之 间由于存在排斥力,将使分子的几何构型总是采取 电子对相互排斥最小的那种构型,以使彼此之间斥 力最小,分子体系能量最低,最稳定。
A
3.价电子对的空间构型(VSEPR模型)
电子对数目:2 VSEPR模型: 直线
孤电子对的计算
分子或 中心原 离子 子 H2O SO2 NH4+ CO32O S
6
=½ (a-xb)
x b
中心原子 上的孤电 子对数
a
6
2
1
2
2
2
1
N
5-1=4 4 1 0
C
4+2=6 3 2 0
2.价层电子对(σ键电子对和未成键的孤对电子对)
代表 物 电子式 中心原子结合 σ键电子 孤对电 价层电 原子数 对 子对 子对数
NH3
2
2
AB2
V形
H2O
1.若ABn型分子的中心原子A上没有未用于形 成共价键的孤对电子,运用价层电子对互斥模 型,下列说法正确的( C ) A.若n=2,则分子的立体构型为V形 B.若n=3,则分子的立体构型为三角锥形 C.若n=4,则分子的立体构型为正四面体形 D.以上说法都不正确 2.用价层电子对互斥模型判断SO3的分子构型 ___ A、正四面体形 B、V形 C、三角锥形 D、平面三 角形
O2
HCl
活动:
2、利用几何知识分析一下,空间分布的三个点 是否一定在同一直线上? 迁移:三个原子构成的分子,将这3个原子看成 三个点,则它们在空间上可能构成几种形状?分 别是什么?
在多原子构成的分子中,由于原子间排 列的空间顺序不一样,使得分子有不同 的结构,这就是所谓的分子的立体构型。
一.形形色色的分子
分子或 离子
σ键电子对
数
孤电子对 数
VSEPR模 分子的立体 型及名称 构型及名称
O C O
CO2
CO3 SO2
2-
2
0
直线形
直线形
O
3
0
O
平面三角形 平面三角形 O
O S O
C
2
1
平面三角形
V形
分子或 离子
σ键电子对 数
孤电子对 数
VSEPR模 分子的立体 型及名称 构型及名称
H
CH4
NH3
4
0
正四面体
H
C
H
H 正四面体
3
H2O
1
N
正四面体
H
H
三角锥形
O
H
2
2
正四面体
H
H
V形
应用反馈
化学式
中心原子 孤对电子 数 σ键电 子对数
VSEPR模型
空间构型 V形
H 2S BF3 NH2-
2 0 2
2 3
四面体
平面三角形 平面三角形
2
四面体
V形
ABn 型分子的VSEPR模型和立体结构
价 成 孤 层 VSEPR 键 对 分子 电子对的排 电 电 电 类型 布模型 立体结构 子 模型 子 子 对 对 对 数 数 数
价层电子对数为4的中心原子采用sp3杂 化方式
• 如:CH
4
NH3 H2O
SiCl4
NH4+
例如:
Sp3 杂化 —— CH4分子的形成
2s
2p 2p
激发
C:2s22p2
2s
sp3
sp 杂化
3
3.杂化轨道分类:
2 s CH4原子
轨道杂化
2p
2p
激发
2s
sp3
sp 杂化
3
等性杂化:参与杂化的各原子轨道进行成分的均匀混合。
每个sp杂化轨道的形状为一头大,一头小,含有1/2 s 轨道和1/2 p 轨道的成分
两个轨道间的夹角为180°,呈直线型
例如:
Sp 杂化 —— BeCl2分子的形成
Cl
Be
180° sp
Cl
px 2 2 Be原子: Cl 1s 2s
px 没有单个电子, Cl
2s
2p
激发
2p
2s
sp
sp杂化
C原子在形成乙炔分子时发生sp杂化,两个 碳原子以sp杂化轨道与氢原子的1s轨道结合形成 σ键。各自剩余的1个sp杂化轨道相互形成1个σ 键,两个碳原子的未杂化2p轨道分别在Y轴和Z轴 方向重叠形成π键。所以乙炔分子中碳原子间以 叁键相结合。
2 直线 2 形 平面 3 3 三角 形
实 例
0 AB2 0 AB3
直线形
CO2
平面三角形 V形
BF3
2 1 AB2
SO2
价 VSEPR 层 模型 电 子 对 数
成键 电子 对数
孤对 电子 对数
分 子 类 型
实 例
电子对的排布 模型 分子构型
4
4
四面 体
0 1
AB4 AB3
正四面体
CH4
3
三角锥形
+ +
-
+
3个sp2杂化轨道 可形成3个σ键 剩下的一个未参与杂化 的p轨道用于形成π键
平面三角形 键角 120°
碳形成3个价层电子对 数。
C原子在形成乙烯分子时,碳原子的2s轨道与2个 2p轨道发生杂化,形成3个sp2杂化轨道,伸向平面正 三角形的三个顶点。每个C原子的2个sp2杂化轨道分 别与2个H原子的1s轨道形成2个相同的σ键,各自剩 余的1个sp2杂化轨道相互形成一个σ键,各自没有杂 化的l个2p轨道则垂直于杂化轨道所在的平面,彼此 肩并肩重叠形成π键。所以,在乙烯分子中双键由一 个σ键和一个π键构成。
3
平面三角形
4
正四面体
价层电子对数 =δ键个数+中心原子上的孤对电子对个数
δ键电子对数 = 与中心原子结合的原子数
中心原子上的孤电子对数 =½ (a-xb)
a:
对于原子:为中心原子的最外层电子数
(对于阳离子:a为中心原子的最外层电子数减去 离子的电荷数;对于阴离子: a为中心原子的最 外层电子数加上离子的电荷数) x 为与中心原子结合的原子数 b 为与中心原子结合的原子最多能接受的电子数 (H为1,其他原子为“8-该原子的最外层电子数)