函数的奇偶性的典型例题
高中数学函数的奇偶性经典习题(带答案)
绝密★启用前1.判断下列函数的奇偶性:(1)f(x)=x 3-1x ; (2)f(x)=|2|2x +-; (3)f(x)=(x -(4)f(x). 【答案】(1)奇函数(2)奇函数(3)既不是奇函数也不是偶函数(4)既是奇函数也是偶函数解析:(1)定义域是(-∞,0)∪(0,+∞),关于原点对称,由f(-x)=-f(x),所以f(x)是奇函数.(2)去掉绝对值符号,根据定义判断.由210|2|20x x ⎧≥⎨≠⎩-,+-,得1104x x x ≤≤⎧⎨≠≠⎩-,且-. 故f(x)的定义域为[-1,0)∪(0,1],关于原点对称,且有x +2>0.从而有f(x)=22x x=+-, 这时有f(-x)=21(x x --)-=-f(x),故f(x)为奇函数. (3)因为f(x)定义域为[-1,1),所以f(x)既不是奇函数也不是偶函数.(4)因为f(x)定义域为{,所以f(x)=0,则f(x)既是奇函数也是偶函数2.下列函数是奇函数的是( )A .()||f x x =-B .()22x x f x -=+C .()lg(1)lg(1)f x x x =+--D .3()1f x x =-【答案】C 解析:对于B ,()22()x x f x f x --=+=,函数()f x 为偶函数,所以B 错;对于C ,由1010x x +>⎧⎨->⎩,故11x -<<,关于原点对称,又()lg(1)lg(1)()f x x x f x -=--+=-对于D ,33()()11()()f x x x f x f x -=--=--≠≠-,函数()f x 既不是奇函数,也不是偶函数,3.已知函数)(x f y =是奇函数,当0>x 时,,lg )(x x f =则( )C.2lgD.-2lg 【答案】D.解析:4.已知函数(1)f x +是奇函数,(1)f x -是偶函数,且(0)2,(4)则f f ==( )A .-2B .0C .2D .3【答案】A 解析:因为函数(1)f x +是奇函数,所以)(x f 的对称中心为(1,0),因为(1)f x -是偶函数,所以)(x f 的对称轴为x=-1。
函数的奇偶性的典型例题
函数的奇偶性的典型例题函数的奇偶性的判断判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:①、定义域是否关于原点对称;②、数量关系)()(x f x f ±=-哪个成立;例1:判断下列各函数是否具有奇偶性⑴、x x x f 2)(3+= ⑵、2432)(x x x f += ⑶、1)(23--=x x x x f ⑷、2)(x x f = []2,1-∈x / ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数注:教材中的解答过程中对定义域的判断忽略了。
例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x x x f 的奇偶性。
.)(),()()()()()(,0,0)()()(,0,0)(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的几个命题的判定。
~命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。
此命题正确。
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。
函数的奇偶性(2)
例3;求下列函数的单调区间:
1)f(X)=x2-2x-3的递增区间为
.
递减区间是
.
2)
f
(x)
x2
1 2x
的递增区间为
3
.
递减区间是
.
3) f (x) x2 2x 3 的递增区间为
x 1
延伸与拓展:
已知: f(x)是偶函数,g(x)是偶函数,x∈R, f(x) g(x)不恒为零 证明: f(x) +g(x)是偶函数。
分析: 设h(x)=f(x)+g(x) ∵ h(x)=f(x)+g(x)不是具体给出的函数, 无法作出图象 ∴ 只能用定义证明 即需证明G(-x) = G(x) 而G(-x)= f(-x) +g(-x) =f(x) +g(x) ∴ G(-x) = G(x) 命题得证
1、2、4
2、已知函数 f(x) x 5 ax 3 bx 8 且f(-2)=10,则f(2)等于( ) A -26 B -18 C -10 D 10 3)若f(x) 2x2 (3 a 2)x 5是偶函数,则 a
例2:已知函数f(x)是定义在[-1,1]上的增函数, 且有f(x-1)<f(3x-4),求x的取值范围.
f (a·b) = a f (b) + b f (a).
(1)求 f (0)=
, f (1)=
.
2、(2004年全国)设函数f(x)(x∈R)为奇函数,
f (1) = 1/2 ,f(x + 2)= f(x)+ f(2),则f(5)=(c )
函数的奇偶性练习题
函数的奇偶性练习题1. 函数f(x)在定义域上是否是奇函数还是偶函数?解析:要判断函数的奇偶性,需要分析函数在x和-f(x)两点处的取值情况。
2. 函数g(x) = x^3 - x是奇函数还是偶函数?解析:首先,我们分别计算g(x)和g(-x)的值。
当x = 1时,g(1) = 1^3 - 1 = 0;当x = -1时,g(-1) = (-1)^3 - (-1) = -2。
由于g(1) = 0,且g(-1) = -2,即当x = 1时,g(x) = -g(-x)成立。
因此,函数g(x)是奇函数。
3. 函数h(x) = x^4 - x^2是奇函数还是偶函数?解析:同样地,我们分别计算h(x)和h(-x)的值。
当x = 1时,h(1) = 1^4 - 1^2 = 0;当x = -1时,h(-1) = (-1)^4 - (-1)^2 = 0。
由于h(1) = h(-1) = 0,即当x = 1和x = -1时,h(x) = h(-x)成立。
因此,函数h(x)是偶函数。
4. 函数i(x) = sin(x)是奇函数还是偶函数?解析:对于三角函数,我们需要利用其周期性质进行判断。
由于sin(x)的周期是2π,即sin(x + 2πk) = sin(x)(k为整数)。
考虑到奇函数关于原点对称,我们将其分为两种情况进行分析:当x = 0时,sin(0) = 0;当x = π时,sin(π) = 0。
由于sin(0) = sin(π) = 0,即当x = 0和x = π时,sin(x) = sin(-x)成立。
因此,函数i(x)是奇函数。
5. 函数j(x) = x^2 + 1是奇函数还是偶函数?解析:对于函数j(x),我们分别计算j(x)和j(-x)的值。
当x = 1时,j(1) = 1^2 + 1 = 2;当x = -1时,j(-1) = (-1)^2 + 1 = 2。
由于j(1) = j(-1) = 2,即当x = 1和x = -1时,j(x) = j(-x)成立。
函数的奇偶性练习题及答案
函数的奇偶性练习题一、选择题1.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx ( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数2.已知函数f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则( )A .a=1/3,b =0B .a =-1,b =0C .a =1,b =0D .a =3,b =03.已知f (x )是定义在R 上的奇函数,当x ≥0时,f (x )=x 2-2x ,则f (x )在R 上的表达式是( )A .y =x (x -2)B .y =x (|x |-1)C .y =|x |(x -2)D .y =x (|x |-2)4.已知f (x )=x 5+ax 3+bx -8,且f (-2)=10,那么f (2)等于( )A .-26B .-18C .-10D .105.函数1111)(22+++-++=x x x xx f 是( )A 偶函数B 奇函数C 非奇非偶函数D 既是奇函数又是偶函数6.若)(x ϕ,g (x )都是奇函数,2)()(++=x bg a x f ϕ在(0,+∞)上有最大值5,则f (x )在(-∞,0)上有( )A .最小值-5 B .最大值-5 C .最小值-1 D .最大值-3二、填空题7.函数2122)(xx x f ---=的奇偶性为________(填奇函数或偶函数) 8.若y =(m -1)x 2+2mx +3是偶函数,则m =_________9.已知f (x )是偶函数,g (x )是奇函数,若11)()(-=+x x g x f ,则f (x )的解析式为_______10.已知函数f (x )为偶函数,且其图象与x 轴有四个交点,则方程f (x )=0的所有实根之和为________三、解答题11.设定义在[-2,2]上的偶函数f (x )在区间[0,2]上单调递减,若f (1-m )<f (m ),求实数m 的取值范围12.已知函数f (x )满足f (x +y )+f (x -y )=2f (x )·f (y )(x ∈R ,y ∈R ),且f (0)≠0, 试证f (x )是偶函数13.已知函数f (x )是奇函数,且当x >0时,f (x )=x 3+2x 2—1,求f (x )在R 上的表达式14.f (x )是定义在(-∞,-5] [5,+∞)上的奇函数,且f (x )在[5,+∞)上单调递减,试判断f (x )在(-∞,-5]上的单调性,并用定义给予证明15.设函数y =f (x )(x ∈R 且x ≠0)对任意非零实数x 1、x 2满足f (x 1·x 2)=f (x 1)+f (x 2), 求证f (x )是偶函数1.解析:f (x )=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数,∴g (x )=ax 3+bx 2+cx =f (x )·)(x ϕ满足奇函数的条件. 答案:A2.解析:由f (x )=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .故选A .3.解析:由x ≥0时,f (x )=x 2-2x ,f (x )为奇函数,∴当x <0时,f (x )=-f (-x )=-(x2+2x )=-x 2-2x =x (-x -2).∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f (x )=x (|x|-2)答案:D 4.解析:f (x )+8=x 5+ax 3+bx 为奇函数,f (-2)+8=18,∴f (2)+8=-18,∴f (2)=-26. 答案:A5.解析:此题直接证明较烦,可用等价形式f (-x )+f (x )=0. 答案:B6.解析:)(x ϕ、g (x )为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数.又f (x )在(0,+∞)上有最大值5, ∴f (x )-2有最大值3.∴f (x )-2在(-∞,0)上有最小值-3, ∴f (x )在(-∞,0)上有最小值-1. 答案:C7.答案:奇函数8.答案:0解析:因为函数y =(m -1)x 2+2mx +3为偶函数,∴f (-x )=f (x ),即(m -1)(-x )2+2m (-x )+3=(m —1)x 2+2mx +3,整理,得m =0.9.解析:由f (x )是偶函数,g (x )是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .答案:11)(2-=x x f 10.答案:0 11.答案:21<m 12.证明:令x =y =0,有f (0)+f (0)=2f (0)·f (0),又f (0)≠0,∴可证f (0)=1.令x =0,∴f (y )+f (-y )=2f (0)·f (y )⇒f (-y )=f (y ),故f (x )为偶函数.13.解析:本题主要是培养学生理解概念的能力.f (x )=x 3+2x 2-1.因f (x )为奇函数,∴f (0)=0.当x <0时,-x >0,f (-x )=(-x )3+2(-x )2-1=-x 3+2x 2-1,∴f (x )=x 3-2x 2+1.因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f 点评:本题主要考查学生对奇函数概念的理解及应用能力.14.解析:任取x 1<x 2≤-5,则-x 1>-x 2≥-5.因f (x )在[5,+∞]上单调递减,所以f (-x 1)<f (-x 2)⇒f (x 1)<-f (x 2)⇒f (x 1)>f (x 2),即单调减函数.点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.15.解析:由x 1,x 2∈R 且不为0的任意性,令x 1=x 2=1代入可证,f (1)=2f (1),∴f (1)=0.又令x 1=x 2=-1,∴f [-1×(-1)]=2f (1)=0,∴(-1)=0.又令x 1=-1,x 2=x ,∴f (-x )=f (-1)+f (x )=0+f (x )=f (x ),即f (x )为偶函数.点评:抽象函数要注意变量的赋值,特别要注意一些特殊值,如,x 1=x 2=1,x 1=x 2=-1或x 1=x 2=0等,然后再结合具体题目要求构造出适合结论特征的式子即可.。
函数的奇偶性与周期性典型例题
函数的奇偶性和周期性
例1、 已知为定义在上的奇函数,当时,,求的
表达式.
思路点拨:().00上,这是解题的关键的解析式转化到时将<>x x f x 解:∵
为奇函数,且在处有定义0=x ∴ 当 时, ∵
为奇函数 ∴
∴ ∴()()()()⎪⎩
⎪⎨⎧<--=>-=000022x x x x x x x x f
解题回顾:若一个函数具有奇偶性,则不论这个函数是奇函数还是偶函数,它的定义域一定关于原点对称。
如果一个函数定义域不关于原点对称,那么它就失去了奇函数或是偶函数的条件,即这个函数既不是奇函数又不是偶函数。
变式:已知为定义在上的偶函数,当0≤x 时,,求的
表达式.
例2、 已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有
()()x f x f =+4,若()263=f ,求()()75f f 与的大小关系 思路点拨:解此题的关键由()()x f x f =+4知函数的周期是4. 解:对一切x R ∈,总有f (x+4)=f (x ),故函数)(x f 是周期为4的函数,因此,,2)1(=-f 又函数f (x )是定义在R 上的奇函数,所以,.2)7(,2)5(,2)1(=-=∴-=f f f )7()5(f f <∴。
变式1、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()x f x f -=+2,若()263=f ,则()()75f f 与的大小关系是
变式2、已知函数f (x )是定义在R 上的奇函数,且对一切x R ∈,总有()()
x f x f 12=+,若()263=f ,求()()75f f 与的大小关系。
函数的奇偶性的典型例题
第一种方法判断函数的奇偶性大致有下列两种方法:第一种方法:利用奇、偶函数的定义,主要考查是否与、 相等,判断步骤如下:①、定义域是否关于原点对称;②、数量关系哪个成立;例1:判断下列各函数是否具有奇偶性⑴、 ⑵、⑶、 ⑷、⑸、 ⑹、解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数注:教材中的解答过程中对定义域的判断忽略了。
例2:判断函数的奇偶性。
第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的几个命题的判定。
命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分条件。
此命题正确。
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。
此命题错误。
一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x∈〔-1,1〕),g(x)=x(x∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。
)(x f )(x f -)(x f )()(x f x f ±=-x x x f 2)(3+=2432)(x x x f +=1)(23--=x x x x f 2)(x x f =[]2,1-∈x x x x f -+-=22)(2211)(x x x f -+-=⎩⎨⎧<≥-=)0()0()(22x x x x x f .)(),()()()()()(,0,0)()()(,0,0)(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。
函数奇偶性常见经典试题
函数奇偶性试题1.函数f 〔x 〕=ax 2+bx +c 〔a ≠0〕是偶函数,那么g 〔x 〕=ax 3+bx 2+cx 〔 〕A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数解析:f 〔x 〕=ax 2+bx +c 为偶函数,x x =)(ϕ为奇函数, ∴g 〔x 〕=ax 3+bx 2+cx =f 〔x 〕·)(x ϕ满足奇函数的条件.2.函数f 〔x 〕=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],那么〔 〕A .31=a ,b =0 B .a =-1,b =0 C .a =1,b =0D .a =3,b =0解析:由f 〔x 〕=ax 2+bx +3a +b 为偶函数,得b =0.又定义域为[a -1,2a ],∴a -1=2a ,∴31=a .3.f 〔x 〕是定义在R 上的奇函数,当x ≥0时,f 〔x 〕=x 2-2x ,那么f 〔x 〕在R 上的表达式是〔 〕A .y =x 〔x -2〕B .y =x 〔|x |-1〕C .y =|x |〔x -2〕D .y =x 〔|x |-2〕解析:由x ≥0时,f 〔x 〕=x 2-2x ,f 〔x 〕为奇函数,∴当x <0时,f 〔x 〕=-f 〔-x 〕=-〔x 2+2x 〕=-x 2-2x =x 〔-x -2〕. ∴,,)0()0()2()2()(<≥---=⎩⎨⎧x x x x x x x f 即f 〔x 〕=x 〔|x |-2〕4.f 〔x 〕=x 5+ax 3+bx -8,且f 〔-2〕=10,那么f 〔2〕等于〔 〕A .-26B .-18C .-10D .10解析:f 〔x 〕+8=x 5+ax 3+bx 为奇函数,f 〔-2〕+8=18,∴f 〔2〕+8=-18,∴f 〔2〕=-26.5.函数1111)(22+++-++=x x x x x f 是〔 〕 A .偶函数 B .奇函数 C .非奇非偶函数 D . 既是奇函数又是偶函数解析:此题直接证明较烦,可用等价形式f 〔-x 〕+f 〔x 〕=0. 6.假设)(x ϕ,g 〔x 〕都是奇函数,2)()(++=x bg a x f ϕ在〔0,+∞〕上有最大值5,那么f 〔x 〕在〔-∞,0〕上有〔 〕A .最小值-5B .最大值-5C .最小值-1D .最大值-3解析:)(x ϕ、g 〔x 〕为奇函数,∴)()(2)(x bg x a x f +=-ϕ为奇函数. 又f 〔x 〕在〔0,+∞〕上有最大值5, ∴f 〔x 〕-2有最大值3.∴f 〔x 〕-2在〔-∞,0〕上有最小值-3, ∴f 〔x 〕在〔-∞,0〕上有最小值-1.7. 设f (x )是(-∞,+∞)上的奇函数,f (x +2)=-f (x ),当0≤x ≤1时,f (x )=x ,那么f (7.5)等于( )B.-0.5 D.-1.5解析:f (7.5)=f (5.5+2)=-f (5.5)=-f (3.5+2)=f (3.5)=f (1.5+2)=-f (1.5)=-f (-0.5+2)=f (-0.5)=-f (0.5)=-0.5.8. 定义域为(-1,1)的奇函数y =f (x )又是减函数,且f (a -3)+f (9-a 2)<0,那么a 的取值范围是( ) A.(22,3) B.(3,10)C.(22,4)D.(-2,3)解析:∵f (x )是定义在(-1,1〕上的奇函数又是减函数,且f (a -3)+f (9-a 2)<0.∴f (a -3)<f (a 2-9).∴⎪⎩⎪⎨⎧->-<-<-<-<-9319113122a a a a ∴a ∈(22,3).9.函数2122)(xx x f ---=的奇偶性为________〔填奇函数或偶函数〕 .10.假设y =〔m -1〕x 2+2mx +3是偶函数,那么m =_________. 解析:因为函数y =〔m -1〕x 2+2mx +3为偶函数,∴f 〔-x 〕=f 〔x 〕,即〔m -1〕〔-x 〕2+2m 〔-x 〕+3=〔m —1〕x 2+2mx +3,整理,得m =0.11.f 〔x 〕是偶函数,g 〔x 〕是奇函数,假设11)()(-=+x x g x f ,那么f〔x 〕的解析式为_______.解析:由f 〔x 〕是偶函数,g 〔x 〕是奇函数,可得11)()(--=-x x g x f ,联立11)()(-=+x x g x f ,∴11)1111(21)(2-=----=x x x x f .12.函数f 〔x 〕为偶函数,且其图象与x 轴有四个交点,那么方程f 〔x 〕=0的所有实根之和为________.13. 假设f (x )为奇函数,且在(0,+∞)内是增函数,又f (-3)=0,那么xf (x )<0的解集为_________.解析:由题意可知:xf (x )<0⎩⎨⎧<>⎩⎨⎧><⇔0)(00)(0x f x x f x 或 ⎩⎨⎧<>⎩⎨⎧-><⇔⎩⎨⎧<>⎩⎨⎧-><⇔3030 )3()(0 )3()(0x x x x f x f x f x f x 或或 ∴x ∈(-3,0)∪(0,3)14. 假设函数f (x )=ax 3+bx 2+cx +d 满足f (0)=f (x 1)=f (x 2)=0 (0<x 1<x 2),且在[x 2,+∞)上单调递增,那么b 的取值范围是_________.解析:∵f (0)=f (x 1)=f (x 2)=0,∴f (0)=d =0.f (x )=ax (x -x 1)(x -x 2)=ax 3-a (x 1+x 2)x 2+ax 1x 2x ,∴b =-a (x 1+x 2),又f (x )在[x 2,+∞)单调递增,故a >0.又知0<x 1<x ,得x 1+x 2>0,∴b =-a (x 1+x 2)<0.15.设定义在[-2,2]上的偶函数f 〔x 〕在区间[0,2]上单调递减,假设f 〔1-m 〕<f 〔m 〕,求实数m 的取值范围.16.函数f〔x〕满足f〔x+y〕+f〔x-y〕=2f〔x〕·f〔y〕〔x∈R,y∈R〕,且f〔0〕≠0,试证f〔x〕是偶函数.16.证明:令x=y=0,有f〔0〕+f〔0〕=2f〔0〕·f〔0〕,又f〔0〕≠0,∴可证f〔0〕=1.令x=0,∴f〔y〕+f〔-y〕=2f〔0〕·f〔y〕⇒f〔-y〕=f〔y〕,故f 〔x〕为偶函数.17.函数f〔x〕是奇函数,且当x>0时,f〔x〕=x3+2x2—1,求f 〔x〕在R上的表达式.解析:此题主要是培养学生理解概念的能力.f〔x〕=x3+2x2-1.因f〔x〕为奇函数,∴f〔0〕=0.+2x 2-1,∴f 〔x 〕=x 3-2x 2+1. 因此,.)0()0()0(12012)(,,2323<=>+--+=⎪⎩⎪⎨⎧x x x x x x x x f18.f 〔x 〕是定义在〔-∞,-5] [5,+∞〕上的奇函数,且f 〔x 〕在[5,+∞〕上单调递减,试判断f 〔x 〕在〔-∞,-5]上的单调性,并用定义给予证明.18.解析:任取x 1<x 2≤-5,那么-x 1>-x 2≥-5.因f 〔x 〕在[5,+∞]上单调递减,所以f 〔-x 1〕<f 〔-x 2〕⇒f 〔x 1〕<-f 〔x 2〕⇒f 〔x 1〕>f 〔x 2〕,即单调减函数. 点评:此题要注意灵活运用函数奇偶性和单调性,并及时转化.19.设函数y=f〔x〕〔x∈R且x≠0〕对任意非零实数x1、x2满足f〔x1·x2〕=f〔x1〕+f〔x2〕,求证f〔x〕是偶函数.解析:由x1,x2∈R且不为0的任意性,令x1=x2=1代入可证,f〔1〕=2f〔1〕,∴f〔1〕=0.又令x1=x2=-1,∴f[-1×〔-1〕]=2f〔1〕=0,∴〔-1〕=0.又令x1=-1,x2=x,∴f〔-x〕=f〔-1〕+f〔x〕=0+f〔x〕=f〔x〕,即f〔x〕为偶函数.点评:抽象函数要注意变量的赋值,分外要注意一些特殊值,如,x1=x2=1,x1=x2=-1或x1=x2=0等,然后再结合具体标题问题要求构造出适合结论特征的式子即可.函数的奇偶性试题参考答案1A 2A 3D 4A 5B 6C 7B 8A 9奇函数 10 0 1111)(2-=x x f12 013 (-3,0〕∪(0,3〕 14 (-∞,0〕 15 21<m。
函数奇偶性经典例题
函数的奇偶性一、典型例题例1 判断下列函数的奇偶性(1)1()(1)1x f x x x +=-- (2)2lg(1)()|2|2x f x x -=--(3)22(0)()(0)x x x f x x xx ⎧+<⎪=⎨-+>⎪⎩ (4)22()11f x x x =--(5)()11f x x x =-+- (6)2211()11x x f x x x ++-=+++例2 已知()f x 是R 上的奇函数,且当(0,)x ∈+∞时,3()(1)f x x x =+,则()f x 的解析式为________________.例 3 ①已知函数)(x f 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有)()1()1(x f x x xf +=+,则)25(f 的值是________________.②已知()f x 是奇函数,满足()()2f x f x += ,当[]0,1x ∈时,()21xf x =- ,则=)2(f _____,21log 24f ⎛⎫ ⎪⎝⎭的值是_________ .例 4 ()f x 和()g x 的定义域都是非零实数,()f x 是偶函数,()g x 是奇函数,且21()()1f xg x x x +=-+,求()()f x g x 的取值范围。
二、课后练习1、判断下列函数的奇偶性(1)x xy a a -=+ (2)x xy a a-=-(3)x x x xa a y a a ---=+ (4)11x x a y a -=+(5)1log 1a x y x-=+ (6)2log (1)a y x x =+-(7)若0,1,()a a F x >≠是一个奇函数,讨论11()()12xG x F x a ⎛⎫=+ ⎪-⎝⎭的奇偶性。
2、设()f x 为定义在R 上的奇函数,当0x ≥时,()22xf x x b =++ (b 为常数),则(1)f -=( )(A) 3 (B) 1 (C)-1 (D)-3 3、已知函数()f x 对一切,x y R ∈,都有()()()f x y f x f y +=+, (1)求证:()f x 是奇函数; (2)若(3)f a -=,用a 表示(12)f4、已知3()sin 4f x a x b x =++(,a b 为实数)且3(lg log 10)5f =,则(lglg3)f =____5、函数1(1)1y x x =≠±-可以表示成一个偶函数()f x 与一个奇函数()g x 的和,则()f x =____6、已知)(x f y =是偶函数,当0>x 时,2)1()(-=x x f ;若当⎥⎦⎤⎢⎣⎡--∈21,2x 时,m x f n ≤≤)(恒成立,则n m -的最小值为( ) A.1 B. 21 C. 31 D. 43。
奇偶性习题课
ax + b f ( x) = 2 2、函数 是定义在 ( ∞, +∞) x +1
上的奇函数, 上的奇函数,且 f ( 1 ) = 2 2 5 (1)求实数a、b,并确定f(x)的解析式 求实数a 并确定f(x)的解析式 f(x) (2)判断f(x)在(-1,1)上的单调性,并 判断f(x)在(-1 f(x) 上的单调性, 用定义证明你的结论; 用定义证明你的结论; (3)写出f(x)的单调区间,并判断f(x)有无 写出f(x)的单调区间,并判断f(x)有无 f(x)的单调区间 f(x) 最大值或最小值?如有,写出来( 最大值或最小值?如有,写出来(不需说明理 由)
函数奇偶性习题课
题型一: 题型一:奇偶性的判断
例1、判断函数的奇偶性
1 x f ( x) = ( x ∈ [1, 0) U (0,1]) x+2 2
2
题型二: 题型二:利用函数的奇偶性求解析式 例2、已知f(x)是奇函数,且当x>0 已知f(xቤተ መጻሕፍቲ ባይዱ是奇函数,且当x>0 f(x)是奇函数 时,
f ( x) = x x 2
求当x<0时 f(x)的表达式 求当x<0时,f(x)的表达式 x<0
变式:改为偶函数如何? 变式:改为偶函数如何?
题型三: 题型三:函数的单调性与奇偶性的综合问题
例3、已知f(x)是偶函数,它在区 已知f(x)是偶函数, f(x)是偶函数 [a,b]上是减函数 0<a<b)。 上是减函数( 间[a,b]上是减函数(0<a<b)。 试证明f(x)在区间[ b,-a]上是增 试证明f(x)在区间[-b,-a]上是增 f(x)在区间 函数
f (a b) = af (b) + bf (a )
函数的奇偶性试题(含答案)
一、选择题1.下列命题中错误的是( )①图象关于原点成中心对称的函数一定为奇函数②奇函数的图象一定过原点③偶函数的图象与y 轴一定相交④图象关于y 轴对称的函数一定为偶函数A .①②B .③④C .①④D .②③[答案] D[解析] f (x )=1x 为奇函数,其图象不过原点,故②错;y =⎩⎨⎧ x -1 x ≥1-x -1 x ≤-1为偶函数,其图象与y 轴不相交,故③错.2.如果奇函数f (x )在(0,+∞)上是增函数,则f (x )在(-∞,0)上( )A .减函数B .增函数C .既可能是减函数也可能是增函数D .不一定具有单调性[答案] B3.已知f (x )=x 7+ax 5+bx -5,且f (-3)=5,则f (3)=( )A .-15B .15C .10D .-10[答案] A[解析] 解法1:f (-3)=(-3)7+a (-3)5+(-3)b -5=-(37+a ·35+3b -5)-10=-f (3)-10=5,∴f (3)=-15.解法2:设g (x )=x 7+ax 5+bx ,则g (x )为奇函数,∵f (-3)=g (-3)-5=-g (3)-5=5,∴g (3)=-10,∴f (3)=g (3)-5=-15.4.若f (x )在[-5,5]上是奇函数,且f (3)<f (1),则下列各式中一定成立的是( )A .f (-1)<f (-3)B .f (0)>f (1)C .f (2)>f (3)D .f (-3)<f (5)[答案] A[解析] ∵f (3)<f (1),∴-f (1)<-f (3),∵f (x )是奇函数,∴f (-1)<f (-3).5.设f (x )是定义在R 上的奇函数,且当x >0时,f (x )=2x -3,则f (-2)的值等于( )A .-1B .1 C.114D .-114[答案] A[解析] ∵x >0时,f (x )=2x -3,∴f (2)=22-3=1,又f (x )为奇函数,∴f (-2)=-f (2)=-1.6.设f (x )在[-2,-1]上为减函数,最小值为3,且f (x )为偶函数,则f (x )在[1,2]上( )A .为减函数,最大值为3B .为减函数,最小值为-3C .为增函数,最大值为-3D .为增函数,最小值为3[答案] D[解析] ∵f (x )在[-2,-1]上为减函数,最大值为3,∴f (-1)=3,又∵f (x )为偶函数,∴f (x )在[1,2]上为增函数,且最小值为f (1)=f (-1)=3.7.(胶州三中高一模块测试)下列四个函数中,既是偶函数又在(0,+∞)上为增函数的是( )A .y =x 3B .y =-x 2+1C .y =|x |+1D .y =2-|x | [答案] C[解析] 由偶函数,排除A ;由在(0,+∞)上为增函数,排除B ,D ,故选C.8.(09·辽宁文)已知偶函数f (x )在区间[0,+∞)单调递增,则满足f (2x -1)<f ⎝ ⎛⎭⎪⎫13的x 取值范围是( ) A.⎝ ⎛⎭⎪⎫13,23B.⎣⎢⎡⎭⎪⎫13,23C.⎝ ⎛⎭⎪⎫12,23 ` D.⎣⎢⎡⎭⎪⎫12,23 [答案] A[解析] 由题意得|2x -1|<13⇒-13<2x -1<13⇒23<2x <43⇒13<x <23,∴选A.9.若函数f (x )=(x +1)(x +a )为偶函数,则a =( )A .1B .-1C .0D .不存在[答案] B[解析] 解法1:f (x )=x 2+(a +1)x +a 为偶函数,∴a +1=0,∴a =-1.解法2:∵f (x )=(x +1)(x +a )为偶函数,∴对任意x ∈R ,有f (-x )=f (x )恒成立,∴f (-1)=f (1),即0=2(1+a ),∴a =-1.10.奇函数f (x )当x ∈(-∞,0)时,f (x )=-2x +3,则f (1)与f (2)的大小关系为( )A .f (1)<f (2)B .f (1)=f (2)C .f (1)>f (2)D .不能确定 [答案] C[解析] 由条件知,f (x )在(-∞,0)上为减函数,∴f (-1)<f (-2),又f (x )为奇函数,∴f (1)>f (2).[点评] 也可以先求出f (x )在(0,+∞)上解析式后求值比较,或利用奇函数图象对称特征画图比较.二、填空题11.若f (x )=ax 2+bx +c (a ≠0)为偶函数,则g (x )=ax 3+bx 2+cx 的奇偶性为________.[答案] 奇函数[解析] 由f (x )=ax 2+bx +c (a ≠0)为偶函数得b =0,因此g (x )=ax 3+cx ,∴g (-x )=-g (x ),∴g (x )是奇函数.12.偶函数y =f (x )的图象与x 轴有三个交点,则方程f (x )=0的所有根之和为________.[答案] 0[解析] 由于偶函数图象关于y 轴对称,且与x 轴有三个交点,因此一定过原点且另两个互为相反数,故其和为0.三、解答题13.判断下列函数的奇偶性:(1)f (x )=⎩⎪⎨⎪⎧-x 2+x (x >0)x 2+x (x ≤0); (2)f (x )=1x 2+x. [解析] (1)f (-x )=⎩⎨⎧ x 2-x (x ≥0)-x 2-x (x <0),∴f (-x )=-f (x ),∴f (x )为奇函数.(2)f (-x )=1x 2-x≠f (x ),f (-x )≠-f (x ),∴f (x )既不是奇函数,又不是偶函数.14.已知f (x )是偶函数,g (x )是奇函数,且f (x )+g (x )=x 2+x -2,求f (x ),g (x )的表达式.[解析] f (-x )+g (-x )=x 2-x -2,由f (x )是偶函数,g (x )是奇函数得,f (x )-g (x )=x 2-x -2又f (x )+g (x )=x 2+x -2,两式联立得:f (x )=x 2-2,g (x )=x .15.函数f (x )=ax +b 1+x 2是定义在(-1,1)上的奇函数,且f ⎝ ⎛⎭⎪⎫12=25,求函数f (x )的解析式.[解析] 因为f (x )是奇函数且定义域为(-1,1),所以f (0)=0,即b =0.又f ⎝ ⎛⎭⎪⎫12=25,所以12a 1+⎝ ⎛⎭⎪⎫122=25, 所以a =1,所以f (x )=x 1+x 2. 16.定义在(-1,1)上的奇函数f (x )是减函数,且f (1-a )+f (1-a 2)<0,求实数a 的取值范围.[解析] 由f (1-a )+f (1-a 2)<0及f (x )为奇函数得,f (1-a )<f (a 2-1),∵f (x )在(-1,1)上单调减,∴⎩⎪⎨⎪⎧-1<1-a<1-1<1-a 2<11-a >a 2-1 解得0<a <1.故a 的取值范围是{a |0<a <1}.17.f (x )是奇函数,当x ≥0时,f (x )的图象是经过点(3,-6),顶点为(1,2)的抛物线的一部分,求f (x )的解析式,并画出其图象.[解析] 设x ≥0时,f (x )=a (x -1)2+2,∵过(3,-6)点,∴a (3-1)2+2=-6,∴a =-2.即f (x )=-2(x -1)2+2.当x <0时,-x >0,f (-x )=-2(-x -1)2+2=-2(x +1)2+2,∵f (x )为奇函数,∴f (-x )=-f (x ),∴f (x )=2(x +1)2-2,即f (x )=⎩⎨⎧ -2(x -1)2+2 (x ≥0)2(x +1)2-2 (x <0),其图象如图所示.。
函数的奇偶性(含习题练习)
2 2 函数的奇偶性1.函数奇偶性的定义及图象特点判断f (-x) 与 f (x)的关系时,也可以使用如下结论:如果 f (-x) -f (x)= 0 或f (-x)= 1( f (x) ≠ 0) f (x) ,则函数 f (x)为偶函数;如果 f (-x) +f (x)= 0 或f (-x)=-1( f (x) ≠ 0) ,则函数f (x)为奇函数.f (x)注意:由函数奇偶性的定义可知,函数具有奇偶性的一个前提条件是:对于定义域内的任意一个x,-x也在定义域内(即定义域关于原点对称).定义:设y =f (x) ,x ∈A,如果对于任意x ∈A,都有f (-x) =f (x) ,则称y =f (x) 为偶函数。
如果对于任意x ∈A,都有f (-x) =-f (x) ,则称y =f (x) 为奇函数。
证明:任意一个定义域关于原点对称的函数均可以写为一个奇函数和偶函数之和且唯一。
若函数 f (x) 的定义域关于原点对称,则 f (x) 可以表示为f(x)=1⎡⎣f(x)+f(-x)⎤⎦+1⎡⎣f(x)-f(-x)⎤⎦,该式的特点是:右端为一个奇函数和一个偶函数的和。
2.性质:① y =f (x) 是偶函数⇔y =f (x) 的图象关于y 轴对称;y=f(x)是奇函数⇔y =f (x) 的图象关于原点对称。
②若奇函数定义域中有 0,则必有f (0) = 0.即0 ∈f (x) 的定义域时,f (0) = 0是f (x) 为奇函数的必要非充分条件.对于偶函数而言有:f (-x) =f (x) =f (| x |) 。
既奇又偶函数有无穷多个(f (x) = 0 ,定义域是关于原点对称的任意一个数集)。
③奇±奇=奇偶±偶=偶奇×奇=偶偶×偶=偶奇×偶=奇[两函数的定义域D1,D2,D1∩D2要关于原点对称]④奇函数的导函数为偶函数,偶函数的导函数为奇函数。
函数奇偶性六类经典题型
奇偶性类型一:判断奇偶性[例1] 判断下列函数奇偶性(1)(且)(2)(3)(4)(5)解:(1)且∴奇函数(2),关于原点对称∴奇函数(3),关于原点对称∴既奇又偶(4)考虑特殊情况验证:;无意义;∴非奇非偶(5)且,关于原点对称∴为偶函数类型二:根据奇偶性求解析式1.函数f(x)在R上为奇函数,且x>0时,f(x)=x+1,则当x<0时,f(x)=________.解析:∵f(x)为奇函数,x>0时,f(x)=x+1,∴当x<0时,-x>0,f(x)=-f(-x)=-(-x+1),即x<0时,f(x)=-(-x+1)=--x-1.答案:--x-12.求函数的解析式 (1)为R 上奇函数,时,,解:时,∴∴ (2)为R 上偶函数,时,解:时,∴类型三:根据奇偶性求参数1.若函数f(x)= xln (2a x +a=【解题指南】f(x)= xln (x+2a x +2ln(y x a x =+是奇函数,利用()()0f x f x -+=确定a 的值.【解析】由题知2ln()y x a x =++是奇函数,所以22ln()ln()x a x x a x +++-+=22ln()ln 0a x x a +-==,解得a =1. 答案:1.2.函数f (x )=(x +1)(x +a )x 3为奇函数,则a =______.解析:由题意知,g (x )=(x +1)(x +a )为偶函数,∴a =-1. 答案:-13.已知f (x )=3ax 2+bx -5a +b 是偶函数,且其定义域为[6a -1,a ],则a +b =( )A.17 B .-1 C .1D .7解析:选A 因为偶函数的定义域关于原点对称,所以6a -1+a =0,所以a =17.又f (x )为偶函数,所以3a (-x )2-bx -5a +b =3ax 2+bx -5a +b ,解得b =0,所以a +b =17.4.若函数f(x)=2x -|x +a|为偶函数,则实数a =______. (特殊值法)解析:由题意知,函数f(x)=2x -|x +a|为偶函数,则f(1)=f(-1), ∴1-|1+a|=1-|-1+a|,∴a =0. 答案:05.已知函数f (x )=⎩⎪⎨⎪⎧x 2+x , x ≤0,ax 2+bx , x >0为奇函数,则a +b =________.(待定系数法)解析:当x >0时,-x <0, 由题意得f (-x )=-f (x ), 所以x 2-x =-ax 2-bx , 从而a =-1,b =1,a +b =0. 答案:06.(1),为何值时,为奇函数; (2)为何值时,为偶函数。
函数奇偶性的典型例题
函数奇偶性的典型例题[例1]设f(x)是定义在R 上的偶函数,且f(1+x)= f(1-x),当-1≤x≤0时, f (x)=-21x ,则f (8.6) = _________.[解析]∵f(x)是定义在R 上的偶函数,∴x = 0是y =f(x)对称轴. 又∵f(1+x)=f(1-x),∴x=1也是y=f(x)对称轴. 故y=f(x)是以2为周期的周期函数, ∴f(8.6)=f(8+0.6)=f(0.6)=f(-0.6)=0.3.[答案]0.3苏州进步网: szjjedu 整理[例2]定义在(-1,1)上的函数f(x)是奇函数,并且在(-1,1)上f(x)是减函数,求满足条件f(1-a)+f(1-a 2)<0的a 取值范围.[解析]∵f(x)的定义域是(-1,1),∴-1<1-a <1①,-1<1-a 2<1 ②. 又∵f(x)是奇函数,∴-f(1-a 2)=f[-(1-a 2)]=f(a 2-1). 又∵f(1-a)+f(1-a 2)<0,有f(1-a)<-f(1-a 2)=f(a 2-1). ∵f(x)在(-1,1)是减函数,∴1-a >a 2-1③由①②③组成不等式组:221111110111a a a a a -<-<⎧⎪-<-<<<⎨⎪->-⎩得∴所求a 的范围为:0<a <1. [答案]0<a <1[例3]定义在区间(-∞,+∞)上的奇函数f(x)为增函数,偶函数g(x)在[0,+∞)上的图象与f(x)的图象重合.设a >b >0,给出下列不等式,其中成立的是( )①f(b)-f(-a)>g(a)-g(-b)②f(b)-f(-a)<g(a)-g(-b)③f(a)-f(-b)>g(b)-g(-a)④f(a)-f(-b)<g(b)-g(-a)A.①④B.②③C.①③D.②④[解析]本题可采用三种解法:解法一:直接根据奇、偶函数的定义:由f(x)是奇函数得:f(-a)=-f(a),f(-b)=-f(b),g(a)=f(a),g(b)=f(b),g(-a)=g(a),g(-b)=g(b)∴以上四个不等式分别可简化为①f(b)>0;②f(b)<0;③f(a)>0;④f(a)<0苏州进步网: szjjedu 整理又∵f(x)既是奇函数又是增函数,且a>b>0,故f(a)>f(b)>f(0)=0,从而以上不等式中①③成立.故选C.解法二:结合函数图象由如图(下图),分析得:f(a)=g(a)=g(-a)=-f(-a),f(b)=g(b)=g(-b)=-f(-b),从而根据所给结论,得到①与③是正确的.故选C.解法三:利用间接法,即构造满足题意的两个模型函数:f(x)=x,g(x)=x,取特殊值a,b.如:a=2,b=1,可验证正确的是①与③,故选C.[答案]C[点拨](1)本题考查了函数的奇偶性和单调性等性质,还考查了图象的对称性和不等式,体现了高考突出重点知识的考查及在各知识网络交汇点上出题这一观点,函数的奇偶性是其相应图象的特殊的对称性的反映,也体现了在关于原点对称的定义域的两个区间上函数值及其性质的相互转化,这是对称思想的应用.[例4]设f(x)为定义在R 上的偶函数,当x≤-1时,y=f(x)的图象是经过点(-2,0),斜率为1的射线,又在y=f(x)的图象中有一部分是顶点在(0,2),且过点(-1,1)的一段抛物线,试写出函数f(x)的表达式,并在图中作出其图象.[解析](1)当x≤-1时,设f(x)=x+b ,则∵射线过点(-2,0), ∴0=-2+b 即b=2.∴f(x)=x+2.(2)当-1<x<1时,设f(x)=ax 2+2. ∵抛物线过点(-1,1), ∴1=a·(-1)2+2,即a=-1,∴f(x)=-x 2+2. (3)当x≥1时,f(x)=-x+2.综上可知:f(x)=⎪⎩⎪⎨⎧≥+-<<---≤+1,211,21,12x x x x x x 作图由读者自己完成.[答案]见解析[例5]设f(x)是定义在R 上的奇函数,且f(x+2)=-f(x),当0≤x≤1时, f (x)=x ,则f (7.5) =( ) 苏州进步网: szjjedu 整理A.0.5B.-0.5C.1.5D.-1.5[解析]∵y=f(x)是定义在R 上的奇函数,∴点(0,0)是其对称中心. 又∵f (x+2 )=-f(x)=f (-x),即f (1+ x) = f (1-x),∴直线x = 1是y = f (x)的对称轴,故y = f (x)是周期为2的周期函数.∴f (7.5)=f(8-0.5)=f(-0.5)=-f (0.5) =-0.5. [答案]B[例6]已知函数f(x)是定义在区间[-2,2]上的偶函数,当x ∈[0,2]时,f(x)是减函数,如果不等式f(1-m)<f(m)成立,求实数m 的取值范围.[解析]∵f(x)在[0,2]上是减函数,在[-2,0]上是增函数,故分类可得: (1)当⎩⎨⎧≤≤-≤≤∴⎩⎨⎧≤≤-≤-≤-023102012m m m m 解得m ∈∅,故此情况不存在;(2)当⎩⎨⎧≤≤≤≤-∴⎩⎨⎧≤≤≤-≤201120210m m m m 解得0≤m≤1;∵f(x)在[0,2]上为减函数,∴f(1-m)<f(m)可转化为1-m >m.∴m <21.∴0≤m <21.苏州进步网: szjjedu 整理(3)当⎩⎨⎧≤≤-≤≤-∴⎩⎨⎧≤≤-≤-≤021102210m m m m 解得-1≤m≤0;∵f(1-m)=f(m-1),∴f(1-m)<f(m)可转化为f(m-1)<f(m). ∵f(x)在[-2,0]上是增函数,∴m-1<m .∴-1≤m≤0.(4)当⎩⎨⎧≤≤≤≤∴⎩⎨⎧≤≤≤-≤-203120012m m m m 解得1≤m≤2.∴0≤m -1≤1.∴f(1-m)=f(m-1).∴f(1-m)<f(m)可转化为f(m-1)<f(m). ∵f(x)在[0,2]上是减函数,∴m-1>m 无解.综上所述,满足条件的实数m 的取值范围为-1≤m <21.[答案]-1≤m <21[例7]设函数f(x)是定义在R 上的偶函数,并在区间(-∞,0)内单调递增,f(2a 2+a+1)<f(3a 2-2a+1).求a 的取值范围,并在该范围内求函数y=(21)132+-a a 的单调递减区间.[解析]设0<x 1<x 2,则-x 2<-x 1<0,∵f(x)在区间(-∞,0)内单调递增, ∴f(-x 2)<f(-x 1).∵f(x)为偶函数,∴f(-x 2)=f(x 2),f(-x 1)=f(x 1). ∴f(x 2)<f(x 1). ∴f(x)在(0,+∞)内单调递减..032)31(3123,087)41(2122222>+-=+->++=++a a a a a a 又由f(2a 2+a+1)<f(3a 2-2a+1)得:2a 2+a+1>3a 2-2a+1.解得0<a<3. 又a 2-3a+1=(a-23)2-45.∴函数y=(21)132+-a a 的单调减区间是[23,+∞].结合0<a<3,得函数y=(23)132+-a a 的单调递减区间为[23,3].[答案][23,3] 苏州进步网: szjjedu 整理[例8]已知函数y=f(x)是定义在R 上的周期函数,周期T=5,函数y=f(x)(-1≤x≤1)是奇函数,又知y=f(x)在[0,1]上是一次函数,在[1,4]上是二次函数,且在x=2时,函数取得最小值,最小值为-5.(1)证明:f(1)+f(4)=0;(2)试求y=f(x),x ∈[1,4]的解析式; (3)试求y=f(x)在[4,9]上的解析式.[解析](1)证明:∵y=f(x)是以5为周期的周期函数,∴f(4)=f(4-5)=f(-1),又y=f(x)(-1≤x≤1)是奇函数,∴f(1)=-f(-1)=-f(4).∴f(1)+f(4)=0.(2)当x ∈[1,4]时,由题意,可设f(x)=a(x-2)2-5(a≠0),由f(1)+f(4)=0得a(1-2)2-5+a(4-2)2-5=0,解得a=2,∴f(x)=2(x-2)2-5(1≤x≤4).(3)∵y=f(x)(-1≤x≤1)是奇函数,∴f(0)=-f(-0),∴f(0)=0,又y=f(x) (0≤x≤1)是一次函数,∴可设f(x)=kx(0≤x≤1),∵f(1)=2(1-2)2-5=-3,又f(1)=k·1=k ,∴k=-3.∴当0≤x≤1时,f(x)=-3x ,当-1≤x <0时,f(x)=-3x ,当4≤x≤6时, -1≤x -5≤1,∴f(x)=f(x-5)=-3(x-5)=-3x+15,当6<x≤9时,1<x-5≤4,f(x)= f(x-5)=2[(x-5)-2]2-5=2(x-7)2-5.∴f(x)=⎩⎨⎧≤<--≤≤+-)96( 5)7(2)64(1532x x x x . [答案]见解析苏州进步网: szjjedu 整理[例9])(),(x g x f 分别是定义在R 上的奇函数和偶函数,当0<x 时,,0)()()()(>'+'x g x f x g x f 且,0)3(=-g 则不等式0)()(<x g x f 的解集是( )A.),3()0,3(+∞⋃-B.)3,0()0,3(⋃-C.),3()3,(+∞⋃--∞D.)3,0()3,(⋃--∞[解析]结合新知识导数的应用与函数的性质在其交汇处知识重构,画出函数草图.f(x)是奇函数,g(x)是偶函数,所以f(x)g(x)是奇函数.由题设可知当x<0时,f(x)g(x)的导数值大于0,故此时函数f(x)g(x)为增函数,结合已知条件及奇函数的图象关于原点对称,可画出函数草图,选出正确答案为D.[答案]D[例10]设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时,f(x)的图象如图所示,则不等式f(x)<0的解集为_________.苏州进步网: szjjedu 整理[解析]根椐函数的奇偶性作出图象.由图象易知不等式的解集是(-2,0)∪(2,5][答案](-2,0)∪(2,5][例11]已知函数y= f (x)在(0,2)上是增函数,y= f(x+2)是偶函数,则下列结论正确的是( )A.)27()25()1(f f f <<B.)25()1()27(f f f <<C.)1()25()27(f f f <<D.)27()1()25(f f f <<[解析]y= f(x+2)是偶函数,f(x)关于x=2对称,f(x)在(0,2)上是增函数,如图所示,由图可知距x=2越近,函数值越大,所以答案选B.[答案]B[例12]若奇函数f(x)在区间[3,7]上的最小值是5,那么f(x)在区间[-7,-3]上( ).A.最小值是5B.最小值是-5C.最大值是-5D.最大值是5[解析]用定义去求,可设x 为[-7,-3]上任意一个值,则-x ∈[3,7],由题意f(-x)≥5,由于f(x)是奇函数,所以有f(-x)=-f(x),则-f(x)≥5,得f(x)≤-5,故,-5为f(x)在[-7,-3]上的最大值,故选C.[答案]C苏州进步网: szjjedu 整理[例13]解方程:2)1x(222221)1x(1x1x4x2-=++++++[解析]两边取以2为底的对数得x)1xx(log)x(f)1x()1)1x(1x(logx2)1x4x2(log1x2x)1)1x(1x(log)1x4x2(log)1x(1)1x(1x1x4x2log2222222222222222222222+++=++++++=++++-=++++-++-=++++++构造函数即即于是f(2x)=f(x2+1)易证f(x)为奇函数,且是R上的增函数,所以2x=x2+1.解得x=1.[答案]{}1x x=[点拨]本题构造函数,巧妙地运用函数奇偶性和单调性来解决方程问题.苏州进步网: szjjedu 整理[例14]函数y=f (x) (x≠0)是奇函数,且当x∈R+时是增函数,若f (1)=0,求不等式0)]21([<-xxf的解集.[解析]由函数y=f(x)是奇函数且当x∈R+时是增函数,可得y=f(x)的图象形状大致如图所示,f (-1)=f (1)=0.①若0)21(>-xx时,∵)1()]21([fxxf<-,∴0<1)21(<-xx.解得02171<<-x 或217121+<<x . ②若0)21(<-x x 时,)1()]21([-<-f x x f ,1)21(-<-x x ,解得x ∈Φ. 所以,02171<<-x 或217121+<<x . [答案]02171<<-x 或217121+<<x 苏州进步网: szjjedu 整理。
(完整版)函数的奇偶性练习题[(附答案)
(完整版)函数的奇偶性练习题[(附答案)函数的奇偶性1.函数f (x )=x(-1﹤x ≦1)的奇偶性是()A .奇函数⾮偶函数B .偶函数⾮奇函数C .奇函数且偶函数D .⾮奇⾮偶函数2. 已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是( )A .奇函数B .偶函数C .既奇⼜偶函数D .⾮奇⾮偶函数 3. 若函数f (x )是定义在R 上的偶函数,在]0,(-∞上是减函数,且f (2)=0,则使得f (x )<0的x 的取值范围是 ( )A.(-∞,2)B. (2,+∞)C. (-∞,-2)?(2,+∞)D. (-2,2) 4.已知函数f (x )是定义在(-∞,+∞)上的偶函数.当x ∈(-∞,0)时,f (x )=x -x 4,则当x ∈(0.+∞)时,f (x )= . 5. 判断下列函数的奇偶性:(1)f (x )=lg (12+x -x ); (2)f (x )=2-x +x -2(3) f (x )=?>+<-).0()1(),0()1(x x x x x x6.已知g (x )=-x 2-3,f (x )是⼆次函数,当x ∈[-1,2]时,f (x )的最⼩值是1,且f (x )+g (x )是奇函数,求f (x )的表达式。
7.定义在(-1,1)上的奇函数f (x )是减函数,且f(1-a)+f(1-a 2)<0,求a 的取值范围8.已知函数21()(,,)ax f x a b c N bx c+=∈+是奇函数,(1)2,(2)3,f f =<且()[1,)f x +∞在上是增函数,(1)求a,b,c 的值;(2)当x ∈[-1,0)时,讨论函数的单调性.9.定义在R 上的单调函数f (x )满⾜f (3)=log 23且对任意x ,y ∈R 都有f (x+y )=f (x )+f (y ). (1)求证f (x )为奇函数;(2)若f (k ·3x )+f (3x -9x -2)<0对任意x ∈R 恒成⽴,求实数k 的取值范围.10下列四个命题:(1)f (x )=1是偶函数;(2)g (x )=x 3,x ∈(-1,1]是奇函数;(3)若f (x )是奇函数,g (x )是偶函数,则H (x )=f (x )·g (x )⼀定是奇函数;(4)函数y =f (|x |)的图象关于y 轴对称,其中正确的命题个数是() A .1B .2C .3D .411下列函数既是奇函数,⼜在区间[]1,1-上单调递减的是( )A.()sin f x x =B.()1f x x =-+C.()1()2x x f x a a -=+ D.2()2xf x lnx-=+ 12若y =f (x )(x ∈R )是奇函数,则下列各点中,⼀定在曲线y =f (x )上的是() A .(a ,f (-a )) B .(-sin a ,-f (-sin a ))C .(-lg a ,-f (lg a1)) D .(-a ,-f (a ))13. 已知f (x )=x 4+ax 3+bx -8,且f (-2)=10,则f (2)=_____________。
函数的单调性和奇偶性-典型例题
函数的单调性和奇偶性例1(1)画出函数y=-x2+2|x|+3的图像,并指出函数的单调区间.解:函数图像如下图所示,当x≥0时,y=-x2+2x+3=-(x-1)2+4;当x<0时,y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函数是增函数:在[-1,0]和[1,+∞)上,函数是减函数.评析函数单调性是对某个区间而言的,对于单独一个点没有增减变化,所以对于区间端点只要函数有意义,都可以带上.(2)已知函数f(x)=x2+2(a-1)x+2在区间(-∞,4]上是减函数,求实数a的取值范围.分析要充分运用函数的单调性是以对称轴为界线这一特征.解:f(x)=x2+2(a-1)x+2=[x+(a-1)]2-(a-1)2+2,此二次函数的对称轴是x=1-a.因为在区间(-∞,1-a]上f(x)是单调递减的,若使f(x)在(-∞,4]上单调递减,对称轴x=1-a必须在x=4的右侧或与其重合,即1-a≥4,a≤-3.评析这是涉及逆向思维的问题,即已知函数的单调性,求字母参数范围,要注意利用数形结合.例2判断下列函数的奇偶性:(1)f(x)=-(2)f(x)=(x-1).解:(1)f(x)的定义域为R.因为f(-x)=|-x+1|-|-x-1|=|x-1|-|x+1|=-f(x).所以f(x)为奇函数.(2)f(x)的定义域为{x|-1≤x<1},不关于原点对称.所以f(x)既不是奇函数,也不是偶函数.评析用定义判断函数的奇偶性的步骤与方法如下:(1)求函数的定义域,并考查定义域是否关于原点对称.(2)计算f(-x),并与f(x)比较,判断f(-x)=f(x)或f(-x)=-f(x)之一是否成立.f(-x)与-f(x)的关系并不明确时,可考查f(-x)±f(x)=0是否成立,从而判断函数的奇偶性.例3已知函数f(x)=.(1)判断f(x)的奇偶性.(2)确定f(x)在(-∞,0)上是增函数还是减函数?在区间(0,+∞)上呢?证明你的结论.解:因为f(x)的定义域为R,又f(-x)===f(x),所以f(x)为偶函数.(2)f(x)在(-∞,0)上是增函数,由于f(x)为偶函数,所以f(x)在(0,+∞)上为减函数.其证明:取x1<x2<0,f(x1)-f(x2)=- ==.因为x1<x2<0,所以x2-x1>0,x1+x2<0,x21+1>0,x22+1>0,得f(x1)-f(x2)<0,即f(x1)<f(x2).所以f(x)在(-∞,0)上为增函数.评析奇函数在(a,b)上的单调性与在(-b,-a)上的单调性相同,偶函数在(a,b)与(-b,-a)的单调性相反.例4已知y=f(x)是奇函数,它在(0,+∞)上是增函数,且f(x)<0,试问F(x)=在(-∞,0)上是增函数还是减函数?证明你的结论.分析根据函数的增减性的定义,可以任取x1<x2<0,进而判定F(x1)-F(x2)=-=的正负.为此,需分别判定f(x1)、f(x2)与f(x2)的正负,而这可以从已条件中推出.解:任取x1、x2∈(-∞,0)且x1<x2,则有-x1>-x2>0.∵y=f(x)在(0,+∞)上是增函数,且f(x)<0,∴f(-x2)<f(-x1)<0.①又∵f(x)是奇函数,∴f(-x2)=-f(x2),f(-x1)=-f(x1)②由①、②得f(x2)>f(x1)>0.于是F(x1)-F(x2)=>0,即F(x1)>F(x2),所以F(x)=在(-∞,0)上是减函数.评析本题最容易发生的错误,是受已知条件的影响,一开始就在(0,+∞)内任取x1<x2,展开证明.这样就不能保证-x1,-x2,在(-∞,0)内的任意性而导致错误.避免错误的方法是:要明确证明的目标,有针对性地展开证明活动.例5讨论函数f(x)=(a≠0)在区间(-1,1)内的单调性.分析根据函数的单调性定义求解.解:设-1<x1<x2<1,则f(x1)-f(x2)=-=∵x1,x2∈(-1,1),且x1<x2,∴x1-x2<0,1+x1x2>0,(1-x21)(1-x22)>0于是,当a>0时,f(x1)<f(x2);当a<0时,f(x1)>f(x2).故当a>0时,函数在(-1,1)上是增函数;当a<0时,函数在(-1,1)上为减函数.评析根据定义讨论(或证明)函数的单调性的一般步骤是:(1)设x1、x2是给定区间内任意两个值,且x1<x2;(2)作差f(x1)-f(x2),并将此差式变形;(3)判断f(x1)-f(x2)的正负,从而确定函数的单调性.例6求证:f(x)=x+ (k>0)在区间(0,k]上单调递减.解:设0<x1<x2≤k,则f(x1)-f(x2)=x1+ -x2-=∵0<x1<x2≤k,∴x1-x2<0,0<x1x2<k2,∴f(x1)-f(x2)>0∴f(x1)>f(x2),∴f(x)=x+ 中(0,k]上是减函数.评析函数f(x)在给定区间上的单调性反映了函数f(x)在区间上函数值的变化趋势,是函数在区间上的整体性质.因此,若要证明f(x)在[a,b]上是增函数(减函数),就必须证明对于区间[a,b]上任意两点x1,x2,当x1<x2时,都有不等式f(x1)<f(x2)(f(x1)>f(x2))类似可以证明:函数f(x)=x+ (k>0)在区间[k,+∞]上是增函数.例7判断函数f(x)=的奇偶性.分析确定函数的定义域后可脱去绝对值符号.解:由得函数的定义域为[-1,1].这时,|x-2|=2-x.∴f(x)=,∴f(-x)===f(x).且注意到f(x)不恒为零,从而可知,f(x)=是偶函数,不是奇函数.评析由于函数解析式中的绝对值使得所给函数不像具有奇偶性,若不作深入思考,便会作出其非奇非偶的判断.但隐含条件(定义域)被揭示之后,函数的奇偶性就非常明显了.这样看来,解题中先确定函数的定义域不仅可以避免错误,而且有时还可以避开讨论,简化解题过程.。
函数的奇偶性经典例题
精品资料 欢迎下载2.4 函数的奇偶性【知识网络】1.奇函数、偶函数的定义及其判断方法; 2.奇函数、偶函数的图象.3.应用奇函数、偶函数解决问题. 【典型例题】例 1.( 1)下面四个结论中,正确命题的个数是( A )①偶函数的图象一定与 y 轴相交;②函数 f ( x) 为奇函数的充要条件是 f (0) 0 ;③偶函数的图象关于 y 轴对称;④既是奇函数,又是偶函数的函数一定是f ( x )=0( x ∈ R ).A . 1B . 2C . 3D .4提示:①不对,如函数 f ( x)1y轴没有交点;②不对,因为奇函 x 2 是偶函数,但其图象与f ( x )数的定义域可能不包含原点;③正确;④不对,既是奇函数又是偶函数的函数可以为 =0〔 x ∈(- a , a )〕,答案为 A .( 2 )已知函数 f ( x) ax 2 bx 3a b 是偶函数,且其定义域为[a 1, 2a ],则()A1 b = 0B . ab 0C b = 0D . a 3b = 03提示:由 f (x) ax 2bx 3ab 为偶函数,得 b = 0.又定义域为[ a1, 2a ],∴ ( a 1) 2a 0 ,∴ a1 .故答案为 A .3x 2( 3)已知 f ( x) 是定义在 R 上的奇函数,当 x0 时, f ( x)2 x ,则 f ( x) )在 R 上的表达式是()A . y x( x2) B . y x(| x | 2)C .y| x |( x 2)D .y提示:由 x 0 时, f ( x) x 22x , f ( x) 是定义在 R 上的奇函数得: 当 x < 0 时, x 0 , f ( x) f ( x) ( x 2 2x) x( x 2) x( x 2) ( x 0) x(| x | 2) ,答案为 D . ∴ f ( x) x 2) ( x,即 f ( x) x( 0) ( 4)已知 f ( x) x 5 ax 3bx 8 ,且 f ( 2) 10 ,那么 f (2)等于 26 提示: f ( x)8x5ax3bx 为奇函数,f (2) 8 18 ,∴ f (2) 818( 5)已知 f ( x) 是偶函数,g (x) 是奇函数,若1f (x) g( x),则x1x(| x | 2),∴ f (2) 26.f ( x) 的解析式为提 示 : 由 f ( x) 是 偶 函 数 , g (x) 是奇函数,可得1 , 联 立f ( x)g (x)x1f ( x) g( x)111111x 1 ,得: f ( x) 2 ( x1x 1 )x21, ∴ f (x)1x2例 2.判断下列函数的奇偶性:( 1 ) f ( x) (x 1) 1x; (2) f ( x) 1 x2x 2 1 ;1 x2x 2x ( x 0)( 3 ) f (x)lg(1 x ) ;( 4) f ( x)x 2 x.| x 2 2 | 2( x 0)解:( 1)由1 x1,1),关于原点不对称,∴f (x) 为非奇非偶函数.10 ,得定义域为 [x(2)1x20x2 1 x 1 ,∴ f ( x)0 ∴ f ( x) 既是奇函数又是偶函数.x210(3)由1x20得定义域为 (1,0)(0,1) ,∴f ( x)lg(1x)2lg(1x)2| x22|2 0( x22) 2x2,∵ f (x)lg[1(x) 2 ]lg(1x2 )f (x)∴ f ( x) 为偶函数(x) 2x2( 4)当x0 时,x0 ,则 f ( x)( x)2x(x2x) f (x) ,当 x0 时, x0 ,则 f (x) ( x) 2x( x2x) f (x) ,综上所述,对任意的x(,) ,都有 f (x) f ( x),∴ f ( x) 为奇函数.例 3.若奇函数 f ( x) 是定义在(1,1)上的增函数,试解关于 a 的不等式:f ( a 2) f ( a 24) 0.解:由已知得 f ( a 2) f ( a24)因 f(x) 是奇函数,故 f (a24) f (4a2 ) ,于是 f (a2) f (4 a2 ) .又 f ( x) 是定义在(1, 1)上的增函数,从而a24 a 23a21 a211a33a21a2415a或3a5 3即不等式的解集是(3,2) .例 4.已知定义在 R 上的函数 f ( x)对任意实数x、y,恒有 f ( x) f ( y) f ( x y) ,且当 x 0时, f ( x)0 ,又 f (1)2.3(1)求证: f ( x)为奇函数;( 2)求证:f(x ) 在R上是减函数;(3)求 f ( x) 在[3,6]上的最大值与最小值.(1)证明:令x y0 ,可得 f (0) f (0) f (0 0) f (0),从而, f(0) = 0 .令y x,可得 f ( x) f (x) f ( x x) f (0)0 ,即 f ( x) f (x),故 f ( x ) 为奇函数.(2)证明:设x1 , x2∈R,且 x1x2,则 x1x20 ,于是 f ( x1 x2 )0 .从而f ( x1 ) f ( x2 ) f [( x1x2 ) x2 ] f ( x2 ) f ( x1x2 ) f (x2 ) f ( x2 ) f ( x1x2 ) 0所以, f ( x) 为减函数.(3)解:由(2)知,所求函数的最大值为 f ( 3) ,最小值为 f (6) .f (3) f (3)[ f (2) f (1)][2 f (1) f (1)] 3 f (1)2f (6) f (6)[ f (3) f (3)]4于是, f ( x)在 [-3,6]上的最大值为2,最小值为-4.【课内练习】1.下列命题中,真命题是( C )A .函数 y1是奇函数,且在定义域内为减函数xB .函数 y x 3 ( x 1)0 是奇函数,且在定义域内为增函数C .函数 y x 2 是偶函数,且在(3, 0)上为减函数D .函数 yax 2 c(ac 0) 是偶函数,且在(0, 2)上为增函数提示: A 中, y 1B 中,函数的定义域不关于原点对称; D 中,在定义域内不具有单调性;x当 a 0 时, y ax 2 c(ac0) 在( 0, 2)上为减函数,答案为 C .2. 若(x) , g (x) 都是奇函数, f ( x)a ( x) bg ( x)2 在( 0,+∞)上有最大值5 ,则 f (x) 在(-∞, 0)上有( )A .最小值- 5B .最大值- 5C .最小值- 1D .最大值- 3提示:( x) 、 g( x) 为奇函数,∴ f ( x)2 a (x)bg( x) 为奇函数.又 f (x) 有最大值 5,∴- 2 在( 0,+∞)上有最大值3.∴ f (x) - 2 在 (, 0) 上有最小值- 3,∴ f ( x) 在 ( , 0) 上有最小值- 1.答案为 C .3.定义在 R 上的奇函数 f ( x) 在( 0, +∞)上是增函数,又 f ( 3) 0 ,则不等式 xf ( x)的解集为( A )A .(- 3, 0)∪( 0, 3)B .(-∞,- 3)∪( 3, +∞)C .(- 3, 0)∪( 3, +∞)D .(-∞,- 3)∪( 0, 3) 提示:由奇偶性和单调性的关系结合图象来解.答案为 A .4. 已知函数 y f ( x) 是偶函数, yf ( x2) 在[ 0,2]上是单调减函数,则( A )A . f (0) f ( 1) f (2)B . f ( 1) f (0)f (2) C.f ( 1) f (2) f (0)D.f (2) f ( 1)f (0)提示:由 f ( x - 2)在[ 0, 2]上单调递减,∴ f ( x) 在[- 2, 0]上单调递减 .∵ y f ( x) 是偶函数,∴f ( x) 在[ 0, 2]上单调递增 . 又 f ( 1) f (1) ,故应选 A .5.已知 f ( x) 奇函数,当 x ∈( 0,1)时, f ( x) lg 1 ,那么当 x ∈(- 1,0)时, f ( x)的表达式是 lg(1 x) .1 x提示:当 x(- 1,0)时, x ∈( 0, 1),∴ f ( x)f ( x)lg 1lg(1 x) .x2 ax是奇函数,则a 20071 6.已知 f ( x)log 3 + 2007a = 2008.a x提示:f (0) log 32a0 ,2a1 ,解得: a 1 ,经检验适合, a 20072007a 2008 .aa7.若 f ( x) 是偶函数,当 x ∈[ 0,+∞) 时, f ( x) x 1,则 f (x 1) 0的解集是 { x | 0 x 2}提示:偶函数的图象关于 y 轴对称,先作出 f ( x) 的图象,由图可知 f ( x) 0的解集为 { x | 1 x 1} ,∴ f ( x 1) 0 的解集为 { x | 0 x 2} .8.试判断下列函数的奇偶性:(1) f ( x) | x2| | x 2| ; ( 2) f ( x)1 x2 ; ( 3) f ( x)| x |( x 1)0 . x 33x解:( 1)函数的定义域为 R , f ( x) | x2|| x 2| | x2|| x 2|f (x) ,故 f (x) 为偶函数.1 x2 0x1且 x 0 ,定义域为 [ 1, 0)(0, 1] ,关于原点对称,(2)由3| 得: 1| x3 01 x2 1 x2x) 1 x 2f ( x)3x,f (f ( x) ,故 f ( x) 为奇函数.x 3x( 3)函数的定义域为 (- ∞, 0)∪ (0,1)∪ (1,+∞ ),它不关于原点对称,故函数既非奇函数,又非偶函数.9.已知函数 f (x) 对一切 x, y R ,都有 f ( x y)f (x)f ( y) ,若 f ( 3)a ,用 a表示 f (12) .解:显然 f (x) 的定义域是 R ,它关于原点对称.在f ( x y)f (x) f ( y) 中,令 y x ,得 f (0)f ( x) f ( x) ,令 xy0 ,得 f (0)f (0)f (0) ,∴ f (0) 0 ,∴ f ( x) f ( x) 0 ,即 f ( x) f ( x) , ∴ f (x) 是奇函数.∵ f ( 3) a , ∴ f (12) 2 f (6)4 f (3) 4 f ( 3)4a .10.已知函数 f ( x)ax 21b, c Z ) 是奇函数,又, f (1)2 , f (2)3 ,求 a 、 b 、 cbx ( a, 的值 .c解:由 f ( x) f ( x) 得 bxc (bx c) ∴c=0. 又 f (1)2 ,得 a 12b ,而 f (2) 3 ,得4a1 3 ,解得 1 a2 .a 1又 a Z ,∴ a 0 或 a 1.若 a 0 ,则 b= 1 Z ,应舍去;若 a 1 ,则 b=1 ∈Z.2∴ a 1, b 1, c 0 .。
函数的奇偶性典型例题及练习
2.4 函数的奇偶性典型例题及练习●知识梳理1.奇函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=-f (x )〔或f (x )+ f (-x )=0〕,则称f (x )为奇函数.2.偶函数:对于函数f (x )的定义域内任意一个x ,都有f (-x )=f (x )〔或f (x )-f (-x )=0〕,则称f (x )为偶函数.3.奇、偶函数的性质 (1)具有奇偶性的函数,其定义域关于原点对称(也就是说,函数为奇函数或偶函数的必要条件是其定义域关于原点对称).(2)奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(3)若奇函数的定义域包含数0,则f (0)=0. (4)奇函数的反函数也为奇函数.(5)定义在(-∞,+∞)上的任意函数f (x )都可以唯一表示成一个奇函数与一个偶函数之和.●点击双基1.下面四个结论中,正确命题的个数是①偶函数的图象一定与y 轴相交 ②奇函数的图象一定通过原点 ③偶函数的图象关于y 轴对称 ④既是奇函数,又是偶函数的函数一定是f (x )=0(x ∈R )A.1B.2C.3D.42.已知函数f (x )=ax 2+bx +c (a ≠0)是偶函数,那么g (x )=ax 3+bx 2+cx 是A.奇函数B.偶函数C.既奇且偶函数D.非奇非偶函数3.若偶函数f (x )在区间[-1,0]上是减函数,α、β是锐角三角形的两个内角,且α≠β,则下列不等式中正确的是A.f (cos α)>f (cos β)B.f (sin α)>f (cos β)C.f (sin α)>f (sin β)D.f (cos α)>f (sin β)4.已知f (x )=ax 2+bx +3a +b 是偶函数,且其定义域为[a -1,2a ],则a =______,b =_____5.给定函数:①y =x1(x ≠0);②y =x 2+1;③y =2x ;④y =log 2x ;⑤y =log 2(x +12+x ).在这五个函数中,奇函数是_________,偶函数是_________,非奇非偶函数是__________.●典例剖析【例1】 已知函数y =f (x )是偶函数,y =f (x -2)在[0,2]上是单调减函数,则A.f (0)<f (-1)<f (2)B.f (-1)<f (0)<f (2)C.f (-1)<f (2)<f (0)D.f (2)<f (-1)<f (0)【例2】 判断下列函数的奇偶性:(1)f (x )=|x +1|-|x -1|; (2)f (x )=(x -1)·xx-+11; (3)f (x )=2|2|12-+-x x ;(4)f (x )=⎩⎨⎧>+<-).0()1(),0()1(x x x x x x【例3】 (2005年北京东城区模拟题)函数f (x )的定义域为D ={x |x ≠0},且满足对于任意x 1、x 2∈D ,有f (x 1·x 2)=f (x 1)+f (x 2).(1)求f (1)的值;(2)判断f (x )的奇偶性并证明;(3)如果f (4)=1,f (3x +1)+f (2x -6)≤3,且f (x )在(0,+∞)上是增函数,求x 的取值范围.深化拓展已知f (x )、g (x )都是奇函数,f (x )>0的解集是(a 2,b ),g (x )>0的解集是(22a ,2b ),2b >a 2,那么f (x )·g (x )>0的解集是A.(22a ,2b) B.(-b ,-a 2)C.(a 2,2b )∪(-2b,-a 2)D.(22a ,b )∪(-b 2,-a 2)【例4】已知函数f (x )=x +xp+m (p ≠0)是奇函数. (1)求m 的值. (2)(理)当x ∈[1,2]时,求f (x )的最大值和最小值.(文)若p >1,当x ∈[1,2]时,求f (x )的最大值和最小值. 深化拓展f (x )=x +xp的单调性也可根据导函数的符号来判断,本题如何用导数来解?●闯关训练 夯实基础1.定义在区间(-∞,+∞)上的奇函数f (x )为增函数,偶函数g (x )在区间[0,+∞)上的图象与f (x )的图象重合,设a <b <0,给出下列不等式,其中成立的是①f (b )-f (-a )>g (a )-g (-b ) ②f (b )-f (-a )<g (a )-g (-b ) ③f (a )-f (-b )>g (b )-g (-a )④f (a )-f (-b )<g (b )-g (-a ) A.①④ B.②③ C.①③ D.②④2.(2003年北京海淀区二模题)函数f (x )是定义域为R 的偶函数,又是以2为周期的周期函数.若f (x )在[-1,0]上是减函数,那么f (x )在[2,3]上是A.增函数 B .减函数C.先增后减的函数D.先减后增的函数3.已知f (x )是奇函数,当x ∈(0,1)时,f (x )=lgx+11,那么当x ∈(-1,0)时,f (x )的表达式是_____.4.(2003年北京)函数f (x )=lg (1+x 2),g (x )=⎪⎩⎪⎨⎧>+-≤-<+.12,1||0,12x x x x x h (x )=tan2x 中,_________是偶函数. 5.若f (x )=1222+-+⋅xx a a 为奇函数,求实数a 的值. 6.(理)定义在[-2,2]上的偶函数g (x ),当x ≥0时,g (x )单调递减,若g (1-m )<g (m ),求m 的取值范围.(文)定义在R 上的奇函数f (x )在(0,+∞)上是增函数,又f (-3)=0,则不等式xf (x )<0的解集为A.(-3,0)∪(0,3)B.(-∞,-3)∪(3,+∞)C.(-3,0)∪(3,+∞)D.(-∞,-3)∪(0,3)培养能力7.已知f (x )=x (121-x +21).(1)判断f (x )的奇偶性; (2)证明f (x )>0. 探究创新8.设f (x )=log 21(11--x ax)为奇函数,a 为常数, (1)求a 的值;(2)证明f (x )在(1,+∞)内单调递增;(3)若对于[3,4]上的每一个x 的值,不等式f (x )>(21)x+m 恒成立,求实数m 的取值范围. ●思悟小结1.函数的奇偶性是函数的整体性质,即自变量x 在整个定义域内任意取值.2.有时可直接根据图象的对称性来判断函数的奇偶性.拓展题例【例1】 已知函数f (x )=cbx ax ++12(a 、b 、c ∈Z )是奇函数,又f (1)=2,f (2)<3,求a 、b 、c 的值.【例2】 已知函数y =f (x )的定义域为R ,对任意x 、y ∈R 均有f (x +y )=f (x )+f (y ),且对任意x >0,都有f (x )<0,f (3)=-3.(1)试证明:函数y =f (x )是R 上的单调减函数; (2)试证明:函数y =f (x )是奇函数; (3)试求函数y =f (x )在[m ,n ](m 、n ∈Z ,且mn <0)上的值域.。
第4讲函数的奇偶性-原卷版
第4讲 函数的奇偶性典型例题【例1】若定义在R 上的奇函数()f x 在()0∞-,上单调递减,且()20f =,则满足()10xf x -的x 的取值范围是( ) A .][)113⎡-∞⎣,,+B .][3101⎡⎤--⎣⎦,,C .][)101⎡-∞⎣,,+D .][1013⎡⎤-⎣⎦,,【例2】判断下列函数的奇偶性.(1)()f x(2)()f x (3)()2114y x--=.【例3】判断下列函数的奇偶性. (1)()22(5)461(5)416x x f x x x ⎧---⎨--⎩+,<,=,<; (2)()25000250x x f x x x x ⎧⎪⎨⎪-⎩+,>,=,=,,<.【例4】(多选题)已知定义在R 上的函数()y f x =满足条件()()2f x f x -+=,且函数()1y f x -=为奇函数,则( )A .函数()y f x =是周期函数B .函数()y f x =的图象关于点()10-,对称 C .函数()y f x =为R 上的偶函数 D .函数()y f x =为R 上的单调函数 【例5】设()f x 是定义域为R 的奇函数,且()()1f x f x -+=.若1133f ⎛⎫- ⎪⎝⎭=,则53f ⎛⎫ ⎪⎝⎭=( )A .53-B .13-C .13D .53【例6】已知函数()()()232sin log 313xf x f m f m xα--+=+,=,=,则m = .【例7】已知函数()f x 是定义域为R 的偶函数,且()1f x -是奇函数,当01x 时,有()f x .若函数()()1y f x k x --=的零点个数为5,则实数k 取值范围是( ) A .1152k << B .1163k <<C k k =D .k <k【例8】已知函数()f x 和()g x 均为奇函数,()()()32h x af x bg x --=在区间()0∞,+上有最大值5,则()h x 在()0∞-,上的最小值为( ) A .5- B .9- C .7- D .1-【例9】(多选题)下列函数中,在其定义域内是偶函数的为( )A .cos y x x =B .2x y e x =+C .y =D .sin y x x =【例10】 (多选题)若函数()f x 的定义域为R ,且()1f x +与()2f x +都为奇函数,则( ) A .()f x 为奇函数 B .()f x 为周期函数 C .()3f x +为奇函数 D .()4f x +为偶函数【例11】已知函数()()1tan ln11axf x x a x≠--+=+为奇函数,则不等式()0f x >的解集为( ) A .()10-, B .()11-, C .()01,D .()()011∞⋃,,+【例12】(多选题)对于函数())(1xf x x x∈R =+,下列判断中正确的是( )A .()()110f x f x --++=B .当()01m ∈,时,方程()f x m =有唯一实数解C .函数()f x 的值域为()∞∞-,+D .对()()1212120f x f x x x x x -∀≠-,>【例13】若定义在R 上的偶函数()f x 在[)0∞,+上单调递增,且()0f π-=,则下列取值范围中,每个x 都能使不等式()sin 0x f x π⋅+成立的是( ) A .[]20π-,B .[]02π,C .[]ππ-,D .2k x x k π⎧⎫∈⎨⎬⎩⎭Z ∣=,【例14】已知函数()()lg 0lg 0x x g x x x ⎧⎪⎨--⎪⎩,>,=,<,若关于x 的方程()()5222g x g x -+=有四个不等的根1234x x x x ,,,,则()()()()12341234x x x x g x g x g x g x +++++++的值是( )A .0B .2C .4D .8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
函数的奇偶性的典型例题
函数的奇偶性的判断
判断函数的奇偶性大致有下列两种方法:
第一种方法:利用奇、偶函数的定义,主要考查)(x f 是否与)(x f -、)(x f 相等,判断步骤如下:
①、定义域是否关于原点对称;
②、数量关系)()(x f x f ±=-哪个成立;
例1:判断下列各函数是否具有奇偶性
⑴、x x x f 2)(3+= ⑵、2
432)(x x x f += ⑶、1
)(2
3--=x x x x f ⑷、2)(x x f = []2,1-∈x ⑸、x x x f -+-=22)( ⑹、2211)(x x x f -+-=
解:⑴为奇函数 ⑵为偶函数 ⑶为非奇非偶函数
⑷为非奇非偶函数 ⑸为非奇非偶函数 ⑹既是奇函数也是偶函数
注:教材中的解答过程中对定义域的判断忽略了。
例2:判断函数⎩⎨⎧<≥-=)0()0()(22x x x
x x f 的奇偶性。
.)(),()()
()()()(,0,0)
()()(,0,0)
(0)0(:22222为奇函数故总有有时即当有时即当解x f x f x f x f x x x f x x x f x x x f x x x f f =-∴-=--=-=->-<-=-=--=-<->-==
第二种方法:利用一些已知函数的奇偶性及下列准则(前提条件为两个函数的定义域交集不为空集):两个奇函数的代数和是奇函数;两个偶函数的和是偶函数;奇函数与偶函数的和既不非奇函数也非偶函数;两个奇函数的积为偶函数;两个偶函数的积为偶函数;奇函数与偶函数的积是奇函数。
四、关于函数的奇偶性的几个命题的判定。
命题 1 函数的定义域关于原点对称,是函数为奇函数或偶函数的必要不充分
条件。
此命题正确。
如果函数的定义域不关于原点对称,那么函数一定是非奇非偶函数,这一点可以由奇偶性定义直接得出。
命题2 两个奇函数的和或差仍是奇函数;两个偶函数的和或差仍是偶函数。
此命题错误。
一方面,如果这两个函数的定义域的交集是空集,那么它们的和或差没有定义;另一方面,两个奇函数的差或两个偶函数的差可能既是奇函数又是偶函数,如f(x)=x(x ∈〔-1,1〕),g(x)=x(x ∈〔-2,2〕),可以看出函数f(x)与g(x)都是定义域上的函数,它们的差只在区间〔-1,1〕上有定义且f(x)-g(x)=0,而在此区间上函数f(x)-g(x)既是奇函数又是偶函数。
命题3 f(x)是任意函数,那么|f(x)|与f(|x|)都是偶函数。
此命题错误。
一方面,对于函数|f(x)|=⎩
⎨⎧<-≥),0)((),(0)((),(x f x f x f x f 不能保证f(-x)=f(x)或f(-x)=-f(x);另一方面,对于一个任意函数f(x)而言,不能保证它的定义域关于原点对称。
如果所给函数的定义域关于原点对称,那么函数f(|x|)是偶函数。
命题4 如果函数f(x)满足:|f(x)|=|f(-x)|,那么函数f(x)是奇函数或偶
函数。
此命题错误。
如函数f(x)=⎩
⎨⎧∈+=∈=),12(,),2(,2N n n x x N n n x x 从图像上看,f(x)的图像既不关于原点对称,也不关于y 轴对称,故此函数非奇非偶。
命题5 函数f(x)+f(-x)是偶函数,函数f(x)-f(-x)是奇函数。
此命题正确。
由函数奇偶性易证。
命题6 已知函数f(x)是奇函数,且f(0)有定义,则f(0)=0。
此命题正确。
由奇函数的定义易证。
命题7 已知f(x)是奇函数或偶函数,方程f(x)=0有实根,那么方程f(x)=0的所有实根之和为零;若f(x)是定义在实数集上的奇函数,则方程f(x)=0有奇数个实根。
此命题正确。
方程f(x)=0的实数根即为函数f(x)与x 轴的交点的横坐标,由奇偶性的定义可知:若f(x 0)=0,则f(-x 0)=0。
对于定义在实数集上的奇函数来说,必有f(0)=0。
故原命题成立。
五、关于函数按奇偶性的分类
全体实函数可按奇偶性分为四类:①奇偶数、②偶函数、③既是奇函数也是偶函数、④非奇非偶函数。
六、关于奇偶函数的图像特征
例1:已知偶函数)(x f y =在y 轴右则时的图像如图(一)试画出函数y 轴右则的图像。
七、关于函数奇偶性的简单应用
1、利用奇偶性求函数值
例1:已知8)(3
5-++=bx ax x x f 且10)2(=-f ,那么=)2(f
2、利用奇偶性比较大小
例2:已知偶函数)(x f 在()0,∞-上为减函数,比较)5(-f ,)1(f ,)3(f 的大小。
3.利用奇偶性求解析式
例3:已知)(x f 为偶函数时当时当01,1)(,10<≤--=≤≤x x x f x ,求)(x f 的解析式?
4、利用奇偶性讨论函数的单调性
例4:若3)3()2()(2+-+-=x k x k x f 是偶函数,讨论函数)(x f 的单调区间?
5、利用奇偶性判断函数的奇偶性
例5:已知函数)0()(23≠++=a cx bx ax x f 是偶函数,判断cx bx ax x g ++=23)(的奇偶
性。
6、利用奇偶性求参数的值
例6:定义在R 上的偶函数)(x f 在)0,(-∞是单调递减,若)123()12(22+-<++a a f a a f ,则a 的取值范围是如何?
7、利用图像解题
图(二)
图(一)
例7(2004.上海理)设奇函数f(x)的定义域为[-5,5].若当x ∈[0,5]时, f(x)的图象如右图,则()0<x f 的解是 .
8.利用定义解题
例8.已知函数1().21
x f x a =-
+,若()f x 为奇函数,则a =________。