数学直线与方程题型总结
高考直线方程题型归纳
![高考直线方程题型归纳](https://img.taocdn.com/s3/m/820044d24793daef5ef7ba0d4a7302768e996f9a.png)
高考直线方程题型归纳知识点梳理 1.点斜式方程设直线l 过点P 0x 0,y 0,且斜率为k ,则直线的方程为y -y 0=kx -x 0,由于此方程是由直线上一点P 0x 0,y 0和斜率k 所确定的直线方程,我们把这个方程叫做直线的点斜式方程.注意:利用点斜式求直线方程时,需要先判断斜率存在与否. 1当直线l 的倾斜角α=90°时,斜率k 不存在,不能用点斜式方程表示,但这时直线l 恰与y 轴平行或重合,这时直线l 上每个点的横坐标都等于x 0,所以此时的方程为x =x 0.2当直线l 的倾斜角α=0°时,k =0,此时直线l 的方程为y =y 0,即y -y 0=0.3当直线l 的倾斜角不为0°或90°时,可以直接代入方程求解. 2.斜截式方程:如果一条直线通过点0,b 且斜率为k ,则直线的点斜式方程为y =kx + b 其中k 为斜率,b 叫做直线y =kx +b 在y 轴上的截距,简称直线的截距. 注意:利用斜截式求直线方程时,需要先判断斜率存在与否.1并非所有直线在y 轴上都有截距,当直线的斜率不存在时,如直线x =2在y 轴上就没有截距,即只有不与y 轴平行的直线在y 轴上有截距,从而得斜截式方程不能表示与x 轴垂直的直线的方程.2直线的斜截式方程y =kx +b 是y 关于x 的函数,当k =0时,该函数为常量函数.x =b ;当k ≠0时,该函数为一次函数,且当k >0时,函数单调递增,当k <0时,函数单调递减.3直线的斜截式方程是直线的点斜式方程的特例;要注意它们之间的区别和联系及其相互转化.3.直线的两点式方程若直线l 经过两点Ax 1,y 1,Bx 2,y 2,x 1≠x 2,则直线l 的方程为112121y y x x y y x x --=--,这种形式的方程叫做直线的两点式方程. 注意1当直线没有斜率x 1=x 2或斜率为零y 1=y 2时,不能用两点式112121y y x x y y x x --=--表示它的方程;2可以把两点式的方程化为整式x 2-x 1y -y 1= y 2-y 1x -x 1,就可以用它来求过平面上任意两点的直线方程; 如过两点A 1,2,B 1,3的直线方程可以求得x =1,过两点A 1,3,B -2,3的直线方程可以求得y =3.3需要特别注意整式x 2-x 1y -y 1= y 2-y 1x -x 1与两点式方程112121y y x x y y x x --=--的区别,前者对于任意的两点都适用,而后者则有条件的限制,两者并不相同,前者是后者的拓展; 4.直线的截距式方程若直线l 在x 轴上的截距是a ,在y 轴上的截距是b ,且a ≠0,b ≠0,则直线l 的方程为1x ya b+=,这种形式的方程叫做直线的截距式方程; 注意:1方程的条件限制为a ≠0,b ≠0,即两个截距均不能为零,因此截距式方程不能表示过原点的直线以及与坐标轴平行的直线;2用截距式方程最便于作图,要注意截距是坐标而不是长度;3要注意“截距相等”与“截距绝对值相等”是两个不同的概念,截距式中的截距可正、可负,但不可为零; 截距式方程的应用1与坐标轴围成的三角形的周长为:|a |+|b;2直线与坐标轴围成的三角形面积为:S =1||2ab ;3直线在两坐标轴上的截距相等,则k =-1或直线过原点,常设此方程为x +y =a 或y =kx . 5.直线方程的一般形式方程Ax +By +C =0A 、B 不全为零叫做直线的一般式方程. 注意1.两个独立的条件可求直线方程:求直线方程,表面上需求A 、B 、C 三个系数,由于A 、B 不同时为零,若A ≠0,则方程化为0B Cx y A A++=,只需确定,B C A A 的值;若B ≠0,同理只需确定两个数值即可;因此,只要给出两个条件,就可以求出直线方程; 2.直线方程的其他形式都可以化成一般式,解题时,如果没有特殊说明应把最后结果化为一般式,一般式也可以化为其他形式; 3.在一般式Ax +By +C =0A 、B 不全为零中,若A =0,则y =CB -,它表示一条与y 轴垂直的直线;若B =0,则Cx A=-,它表示一条与x 轴垂直的直线.6.直线方程的选择1待定系数法是求直线方程的最基本、最常用的方法,但要注意选择形式,一般地已知一点,可以待定斜率k ,但要注意讨论斜率k 不存在的情形,如果已知斜率可以选择斜截式待定截距等;2直线方程的几种特殊形式都有其使用的局限性,解题过程中要能够根据不同的题设条件,截距式方程 一般式能表示所有的直线求直线方程的最后结果均可以化为一般式方程典型例题剖析题型1.直线的点斜式方程例1.一条直线经过点M -2,-3,倾斜角α=135°,求这条直线的方程;例2.求斜率为33,且分别满足下列条件的直线方程: 1经过点M 3,-1;2在x 轴上的截距是-5. 题型2.直线的斜截式方程例3.若直线Ax +By +C =0通过第二、三、四象限,则系数A 、B 、C 需满足条件AA 、B 、C 同号 BAC <0,BC <0 CC =0,AB <0 DA =0,BC <0例4.直线y =ax +b a +b =0的图象是例5.写出过下列两点的直线方程,再化成斜截式方程. 1P 12,1,P 20,-3;2P 12,0,P 20,3;例6. 三角形的顶点是A -5,0、B 3,-3、C 0,2,求这个三角形三边所在的直线方程. 题型4.直线的截距式方程例7.已知直线的斜率为61,且和坐标轴围成面积为3的三角形,求该直线的方程;例8.过点A 1,4且纵截距与横截距的绝对值相等的直线共有的条数为 A 1 B 2 C 3 D 4 题型5.直线的一般式方程例9.已知直线经过点A 6,-4,斜率为-34,求直线的点斜式和一般式方程.例10.把直线l 的方程x -2y +6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画图. 题型6.定点问题 例11、已知直线所过定点的横、纵坐标分别是等差数列{}的第一项与第二项,若,数列的前n 项和为T n ,则T 10=A. B. C. D.题型7.对称问题例12、已知直线l 1:y =2x +3,直线l 2与l 1关于直线y =-x 对称,则直线l 2的斜率为A. B .- C .2 D .-2例13、直线关于直线对称的直线方程是A. B.C. D.例14、直线2x-y-4=0上有一点P,它与两定点A4,-1,B3,4的距离之差最大,则P点坐标是_________例15.1求点A3,2关于点B-3,4的对称点C的坐标;2求直线3x-y-4=0关于点P2,-1对称的直线l的方程;3求点A2,2关于直线2x-4y+9=0的对称点的坐标.题型8.最值问题例16、若点m,n在直线4x+3y-10=0上,则m2+n2的最小值是A.2 B.2 C.4 D.2例17、直线与直线互相垂直,则的最小值为A.1 B.2 C.4 D.5例18.过点P1,2作直线l,交x,y轴的正半轴于A、B两点,求使△OAB面积取得最小值时直线l 的方程.题型9.创新问题例19.已知两直线a1x+b1y+1=0和a2x+b2y+1=0的交点为P2,3,求过两点Q1a1,b1,Q2a2,b2的直线方程.例20、已知点A-1,0,B1,0,C0,1,直线y=ax+ba>0将△ABC分割为面积相等的两部分,则b的取值范围是A.0,1 B. C. D.例21、在平面直角坐标系中,定义dP,Q=|x1﹣x2|+|y1﹣y2|为两点Px1,y1,Qx2,y2之间的“折线距离”,在这个定义下,给出下列命题:①到原点的“折线距离”等于1的点的集合是一个圆;②到原点的“折线距离”小于等于2的点构成的区域面积为8;③到M0,﹣2,N0,2两点的“折线距离”相等的点的轨迹方程是y=0;④直线y=x+1上的点到N0,2的“折线距离”的最小值为1.其中真命题有A.1个B.2个C.3个D.4个例22、已知两定点M-2,0,N2,0,若直线上存在点P,使得,则该称直线为“A 型直线”.给出下列直线: ①, ②, ③, ④,其中是“A 型直线”的序号是 .例23、已知直线l :A ,B 不全为0,两点,,若,且,则A .直线l 与直线P 1P 2不相交B .直线l 与线段P 2 P 1的延长线相交C .直线l 与线段P 1 P 2的延长线相交D .直线l 与线段P 1P 2相交例24. 已知实数x,y 满足y =x 2-2x +2-1≤x≤1.试求错误!的最大值与最小值.强化训练1.下列说法中不正确的是A 点斜式y -y 0=kx -x 0适用于不垂直于x 轴的任何直线B 斜截式y =kx +b 适用于不垂直x 轴的任何直线C 两点式112121y y x x y y x x --=--适用于不垂直于坐标轴的任何直线 D 截距式1x ya b+=适用于不过原点的任何直线2.直线3x -2y =4的截距式方程为A 3142x y -=B 11132x y -=C 3142x y -=-D 1423x y +=-3.过点3,-4且平行于x 轴的直线方程是 ;过点5,-2且平行于y 轴的直线方程是 ;4.过点P 1,3的直线分别与两坐标轴交于A 、B 两点,若P 为AB 的中点,求直线的方程. 5.已知△ABC 中,A 1,-4,B 6,6,C -2,0,求:1△ABC 的平行于BC 边的中位线的一般式方程和截距式方程; 2BC 边的中线的一般式方程,并化为截距式方程. 6.如果AC <0,BC <0,那么直线Ax +By +C =0不通过A 第一象限B 第二象限C 第三象限D 第四象限7.直线l 过点P 1,3,且与x ,y 轴正半轴所围成的三角形的面积等于6,则l 的方程是 A 3x +y -6=0 Bx +3y -10=0 C 3x -y =0 Dx -3y +8=08.若直线2m 2+m -3x +m 2-my =4m -1在x 轴上的截距为1,则实数m 是A 1B 2C -21D 2或-219.已知直线l :Ax +By +C =0A 2+B 2≠0,点Px 0,y 0在l 上,则l 的方程可化为AAx +x 0+By +y 0+C =0 BAx +x 0+By +y 0=0 CAx -x 0+By -y 0+C =0 DAx -x 0+By -y 0=010.经过点-3,-2,在两坐标轴上截距相等的直线方程为 11.若点a ,12在过点1,3及点5,7的直线上,则a = .12.、在平面直角坐标系中,是坐标原点,设函数的图象为直线,且与轴、轴分别交于、两点,给出下列四个命题:①存在正实数,使△的面积为的直线仅有一条;②存在正实数,使△的面积为的直线仅有两条;③存在正实数,使△的面积为的直线仅有三条;④存在正实数,使△的面积为的直线仅有四条.其中所有真命题的序号是 .13、在平面直角坐标系xOy中,设点、,定义:.已知点,点M为直线上的动点,则使取最小值时点M的坐标是.141已知直线l:2m2+m-3x+m2-my-4m+1=0,求m的取值范围2如果ab>0,bc<0,那么直线ax-by-c必经过第几象限。
直线与方程知识点总结与题型
![直线与方程知识点总结与题型](https://img.taocdn.com/s3/m/9b92bc0e03d8ce2f00662322.png)
第三章:直线与方程的知识点姓名 班别 学号倾斜角与斜率1. 当直线l 与x 轴相交时,我们把x 轴正方向与直线l 向上方向之间所成的角叫做直线l 的倾斜角.当直线l 与x 轴平行或重合时, 我们规定它的倾斜角为0°. 则直线l 的倾斜角α的范围是0απ≤<.2. 倾斜角不是90°的直线的斜率,等于直线的倾斜角的正切值,即tan k θ=. 如果知道直线上两点1122(,),(,)P x y P x y ,则有斜率公式2121y y k x x -=-. 特别地是,当12x x =,12y y ≠时,直线与x 轴垂直,斜率k 不存在;当12x x ≠,12y y =时,直线与y 轴垂直,斜率k =0.注意:直线的倾斜角α=90°时,斜率不存在,即直线与y 轴平行或者重合. 当α=90°时,斜率k =0;当090α︒<<︒时,斜率0k >,随着α的增大,斜率k 也增大;当90180α︒<<︒时,斜率0k <,随着α的增大,斜率k 也增大. 这样,可以求解倾斜角α的范围与斜率k 取值范围的一些对应问题.两条直线平行与垂直的判定1. 对于两条不重合的直线1l 、2l ,其斜率分别为1k 、2k ,有:(1)12//l l ⇔12k k =;(2)12l l ⊥⇔121k k ⋅=-.2. 特例:两条直线中一条斜率不存在时,另一条斜率也不存在时,则它们平行,都垂直于x 轴;….直线的点斜式方程1. 点斜式:直线l 过点000(,)P x y ,且斜率为k ,其方程为00()y y k x x -=-.2. 斜截式:直线l 的斜率为k ,在y 轴上截距为b ,其方程为y kx b =+.3. 点斜式和斜截式不能表示垂直x 轴直线. 若直线l 过点000(,)P x y 且与x 轴垂直,此时它的倾斜角为90°,斜率不存在,它的方程不能用点斜式表示,这时的直线方程为00x x -=,或0x x =.4. 注意:0y y k x x -=-与00()y y k x x -=-是不同的方程,前者表示的直线上缺少一点000(,)P x y ,后者才是整条直线.直线的两点式方程1. 两点式:直线l 经过两点111222(,),(,)P x y P x y ,其方程为112121y y x x y y x x --=--, 2. 截距式:直线l 在x 、y 轴上的截距分别为a 、b ,其方程为1x ya b+=.3. 两点式不能表示垂直x 、y 轴直线;截距式不能表示垂直x 、y 轴及过原点的直线.4. 线段12P P 中点坐标公式1212(,)22x x y y ++.直线的一般式方程1. 一般式:0Ax By C ++=,注意A 、B 不同时为0. 直线一般式方程0(0)Ax By C B ++=≠化为斜截式方程A C y x B B =--,表示斜率为A B -,y 轴上截距为CB-的直线.2. 与直线:0l Ax By C ++=平行的直线,可设所求方程为10Ax By C ++=;与直线0Ax By C ++=垂直的直线,可设所求方程为10Bx Ay C -+=.3. 已知直线12,l l 的方程分别是:1111:0l A x B y C ++=(11,A B 不同时为0),2222:0l A x B y C ++=(22,A B 不同时为0),则两条直线的位置关系可以如下判别:(1)1212120l l A A B B ⊥⇔+=; (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)1l 与2l 重合122112210,0A B A B AC A B ⇔-=-=; (4)1l 与2l 相交12210A B A B ⇔-≠.如果2220A B C ≠时,则11112222//A B C l l A B C ⇔=≠;1l 与2l 重合111222A B CA B C ⇔==;1l 与2l 相交1122A BA B ⇔≠. 两条直线的交点坐标1. 一般地,将两条直线的方程联立,得到二元一次方程组1112220A x B y C A x B y C ++=⎧⎨++=⎩. 若方程组有惟一解,则两条直线相交,此解就是交点的坐标;若方程组无解,则两条直线无公共点,此时两条直线平行;若方程组有无数解,则两条直线有无数个公共点,此时两条直线重合.2. 方程111222()()0A x B y C A x B y C λ+++++=为直线系,所有的直线恒过一个定点,其定点就是1110A x B y C ++=与2220A x B y C ++=的交点. 两点间的距离1. 平面内两点111(,)P x y ,222(,)P x y,则两点间的距离为:12||PP .特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;点到直线的距离及两平行线距离 1. 点00(,)P x y 到直线:0l Ax By C ++=的距离公式为d =2. 利用点到直线的距离公式,可以推导出两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d =,推导过程为:在直线2l 上任取一点00(,)P x y ,则0020A x B yC ++=,即00A x B y C +=-. 这时点00(,)P x y 到直线11:0l Ax By C ++=的距离为d ==一.选择题1.(安徽高考) 过点(1,0)且与直线x-2y=0平行的直线方程是( ) A.x-2y-1=0 B. x-2y+1=0 C. 2x+y-2=0 D. x+2y-1=02. 过点(1,3)P -且垂直于直线032=+-y x 的直线方程为( ) A. 012=-+y x B. 052=-+y x C. 052=-+y x D. 072=+-y x3. 已知过点(2,)A m -和(,4)B m 的直线与直线012=-+y x 平行,则m 的值为( ) A. 0 B. 8- C. 2 D. 104.(安徽高考)直线过点(-1,2),且与直线2x-3y+4=0垂直,则直线的方程是( ) A . 3x+2y-1=0 B. 3x+2y+7=0 C. 2x-3y+5=0 D. 2x-3y+8=05.设直线ax+by+c=0的倾斜角为θ,切sin cos 0θθ+=则a,b 满足 ( ) A. a+b=1 B. a-b=1 C. a+b=0 D. a-b=06. 如果直线ax+2y+2=0与直线3x-y-2=0平行,则系数a= A 、 -3 B 、-6 C 、23- D 、327.点P (-1,2)到直线8x-6y+15=0的距离为( ) A 2 B 21 C 1 D 278. 直线mx-y+2m+1=0经过一定点,则该点的坐标是 A (-2,1) B (2,1) C (1,-2) D (1,2)9. (上海文,15)已知直线12:(3)(4)10,:2(3)230,l k x k y l k x y -+-+=--+=与平行,则k 得值是( )A. 1或3B.1或5C.3或5D.1或210、若图中的直线L 1、L 2、L 3的斜率分别为K 1A 、K 1﹤K 2﹤K 3B 、K 2﹤K 1﹤K 3C 、K 3﹤K 2﹤K 1D 、K 1﹤K 3﹤K 212、与直线2x+3y-6=0关于点(1,-1)对称的直线是( )A.3x-2y-6=0B.2x+3y+7=0C. 3x-2y-12=0D. 2x+3y+8=0 13. 若直线ax + by + c = 0在第一、二、三象限,则( )A. ab >0,bc >0B. ab >0,bc <0C. ab <0,bc >0D. ab <0,bc <0 14.(2005北京文)“m=21”是“直线(m+2)x+3my+1=0与直线(m -2)x+(m+2)y -3=0相互垂直”的 ( )A.充分必要条件B.充分而不必要条件C.必要而不充分条件D.既不充分也不必要条件15. 如果直线 l 经过两直线2x - 3y + 1 = 0和3x - y - 2 = 0的交点,且与直线y = x 垂直,则原点到直线 l 的距离是( )A. 2B. 1 2C. 22 16. 原点关于x - 2y + 1 = 0的对称点的坐标为( ) A. ⎪⎭⎫ ⎝⎛52 ,54- B. ⎪⎭⎫ ⎝⎛54 ,52- C. ⎪⎭⎫ ⎝⎛52 ,54D. ⎪⎭⎫ ⎝⎛54 ,52- 二、填空题1. 点(1,1)P -到直线10x y -+=的距离是________________.2.已知A(-4,-6),B(-3,-1),C(5,a)三点共线,则a 的值为( )3.经过两直线11x+3y -7=0和12x+y -19=0的交点,且与A (3,-2), B (-1,6)等距离的直线的方程是 。
直线与方程经典题型总结(超值)
![直线与方程经典题型总结(超值)](https://img.taocdn.com/s3/m/696d37d1551810a6f524869b.png)
直线与方程一、 知识要点: 1、直线的斜率:倾斜角不是90°的直线.它的倾斜角的正切叫做这条直线的斜率.直线的斜率常用k 表示,即 αtan =k 2、直线的斜率公式:在坐标平面上,已知两点P1(x1,y1)、P2(x2,y2), 由于两点可以确定一条直线,直线P1P2就是确定的.当x1≠x2时,直线的倾角不等于90°时,这条直线的斜率也是确定的.怎样用P2和P1的坐标来表示这条直线的斜率?P2分别向x 轴作垂线P1M1、P2M2,再作P1Q ⊥P2M ,垂足分别是M1、M2、Q .那么:α=∠QP1P2(图甲)或α=π-∠P2P1Q(图乙)在图甲中:121212tan x x y y Q P QP --==α 在图乙中:xx y y QP QP Q P P --==<-=2121212tan tan α如果P 1P 2向下时,用前面的结论课得:xx y y x x y y --=--=2122121tan α 综上所述,我们得到经过点P1(x1,y1)、P2(x2,y2)两点的直线的斜率公式:3、直线的点斜式方程:①其中(00,x y )为直线上一点坐标,k 为直线的斜率。
式方程,简称点斜式。
4、直线斜截式方程:………… ②我们把直线l 与y 轴交点(0,b )的纵坐标b 叫做直线l 在y 轴上的截距(即纵截距)。
方程②是由直线l 的斜率k 和它在y 轴上的截距b 确定的,所以叫做直线斜截式方程,简称为斜截式。
5、直线方程的两点式:),(2121121121y y x x x x x x y y y y ≠≠--=-- 其中2211,,,y x y x 是直线两点),(),,(2211y x y x 的坐标. 6、直线方程的截距式:1=+byax ,其中a ,b 分别为直线在x 轴和y 轴上截距.7、直线方程的一般形式:Ax+By+C=0 (A 、B 不全为0) 8、两条直线的交点坐标: 设两直线的方程是l 1: A 1x+B 1y+C 1=0, l 2: A 2x+B 2y+C 2=0.(2)当A 1B 2-A 2B 1=0时:方程无解,即两直线平行.9、两点间的距离公式:思考题1、如图(1),求两点A (—2,0),B (3,0)间的距离。
直线与方程知识点总结
![直线与方程知识点总结](https://img.taocdn.com/s3/m/d958b0846037ee06eff9aef8941ea76e58fa4ac8.png)
直线与方程知识点总结一、直线的表示1、比例表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线上任意的一点P(x,y)都满足比例关系:$$\frac{y-y_1}{y_2-y_1}=\frac{x-x_1}{x_2-x_1}$$2、斜截式:也叫斜率表达式:对于任意的两个不同的点A(x1,y1)与B(x2,y2),它们所连成的直线可用如下斜率表达式:$$y-y_1=k(x-x_1)$$其中,k为斜率,可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$k=\frac{y_2-y_1}{x_2-x_1}$$3、标准方程:直线可以用标准方程表达:$$Ax+By+C=0$$其中,A、B、C可以根据两点A(x1,y1)与B(x2,y2),计算得出:$$A=y_2-y_1,B=x_1-x_2,C=x_2y_1-x_1y_2$$二、方程的表示1、一元一次方程:一元一次方程可以按如下形式表示:$$Ax+B=0$$其中,A、B为常数,A≠0,解析解可以表示为:$$x=-\frac{B}{A}$$2、一元二次方程:一元二次方程可以按如下形式表示:$$Ax^2+Bx+C=0$$其中,A、B、C为常数,A≠0,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$3、二元一次方程:二元一次方程可以按如下形式表示:$$Ax+By+C=0$$其中,A、B、C为常数,解析解可以表示为:$$x=\frac{-B\pm\sqrt{B^2-4AC}}{2A}$$$$y=\frac{-A\pm\sqrt{B^2-4AC}}{2B}$$4、同次及非同次线性方程组:。
直线方程重点题型
![直线方程重点题型](https://img.taocdn.com/s3/m/71e4471a0740be1e650e9af8.png)
直线方程重难点题型1、斜率问题1. 若三点)2,2(A ,)0,(a B ,),0(b C )0(≠ab 共线,则=+ba 11 。
2. 若直线先向做平移一个单位,再向上平移两个单位,所得直线与原直线重合,则该直线的斜率为 。
3. 直线01=++y ax 与连接)3,2(A ,)2,3(-B 的线段相交,则a 的取值范围是( )A . ]2,1[-B . ),2[)1,(+∞⋃--∞C . ]1,2[-D . ),1[)2,(+∞⋃--∞4. 已知实数y x ,满足222+-=x x y )11(≤≤-x ,试求23++x y 的最大值与最小值。
拓展:著名数学家华罗庚曾说过:“数形结合百般好,割裂分家万事休。
”事实上,很多代数问题可以转化为几何问题加以解决。
如:22)()(b y a x -+-可以转化为平面上的点),(y x M 与点),(b a N 的距离。
结合上述观点,可得102204)(22+++++=x x x x x f 的最小值为 。
2、求直线方程 5. 已知两直线07:111=++y b x a l ,07:222=++y b x a l 都经过点)5,3(,则经过点),(11b a ,),(22b a )(21a a ≠的直线方程 。
3、中点问题6. 一条直线l 被两条直线064:1=++y x l 和0653:2=--y x l 截得的线段中点M 恰好是坐标原点,求直线l 的方程。
7. 过点)1,0(M 作直线,使得它被两条直线0103:1=+-y x l 和082:2=-+y x l 所截得的线段恰好被点M 平分,求此直线的方程。
4、距离问题8. 到直线012:=++y x l 的距离为55的点的轨迹方程为( ) A . 直线022=-+y x B . 直线02=+y xC . 直线02=+y x 或直线022=-+y xD . 直线02=+y x 或直线022=++y x9.已知正方形的中心为直线2x-y+2=0和x+y+1=0的交点,正方形一边所在直线的方程为x+3y-5=0,求其他三边所在直线的方程.5、对称问题及应用(1)点关于直线对称10.已知P(2,3)和直线l:x+y+1=0.求(1)点P关于直线l的对称点;(2)若一束光线由P点射到l上,反射后经过点Q(1,1),求入射光线及反射光线的方程.11.如图,已知)0,4(A,)4,0(B,从点)0,2(P射出的光线经直线AB反射后再射到OB上,最后经直线OB反射后又回到点P,则光线所经过的路程是。
(shi)数学直线与方程题型总结
![(shi)数学直线与方程题型总结](https://img.taocdn.com/s3/m/17f777d36137ee06eef91808.png)
定义:(1)直线的倾斜角:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
一、直线的倾斜角和斜率1、已知直线的倾斜角为,将直线绕直线与x 轴交点逆时针旋转45︒的直线,求的倾斜角。
2、已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求l 的斜率。
练习:1、 已知,求直线x +y-1=0的倾斜角的范围;2、 已知两点A (-1,-5),Q (m ,1)的直线的斜率k ;3、 已知点M 是直线l:2x-y=4,与x 轴交点,求直线绕点M 逆时针旋转45︒的直线方程4、已知直线35y x =+的倾斜角是直线l 的倾斜角的大小的5倍,且直线l 分别满足下列条件: (1)过点(34)P -,;(2)在x 轴上截距为2-;(3)在y 轴上截距为3.求直线l 的方程. 5、已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围6、求经过点(-5,6)且与直线2x+y-5=0的夹角为 45的直线方程。
二、两直线的位置关系(垂直、平行)的值平行,求实数与直线已知直线a ay x a l ay x l 01)13(:012:.121=---=-+的值平行,求实数与直线已知直线a y a x a l ay x a l 03)2()2(:013)2(:.221=-++-=+++3.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直?4.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程.5.已知直线l 1:x+y+2=0, l 2:2x-3y-3=0,求经过的交点且与已知直线3x +y -1=0平行的直线l 的方程。
史上最全直线与直线方程题型归纳
![史上最全直线与直线方程题型归纳](https://img.taocdn.com/s3/m/c08c027caa00b52acfc7cafa.png)
直线与直线方程一、知识梳理1. 直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x轴相交的直线,如果把x轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角•当直线和x轴平行或重合时,我们规定直线的倾斜角为0。
•倾斜角的取值范围是0°< v 180° .倾斜角不是90 °的直线,它的倾斜角的正切叫做这条直线的斜率,常用k表示•倾斜角是90°的直线没有斜率.2. 斜率公式:经过两点R(x i, yj, P2(X2, y2)的直线的斜率公式:k 池一匕(x i X2)X2 X i7•斜率存在时两直线的平行:h〃|21= 2且12.&斜率存在时两直线的垂直:l1l2 k1k2 1 •9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90 °,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90 °,另一条直线的倾斜角为0°,两直线互相垂直.二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是()①任何一条直线都有唯一的倾斜角;②倾斜角为300的直线有且仅有一条;③若直线的斜率为tan ,则倾斜角为④如果两直线平行,则它们的斜率相等A. 0 个个个个练习】如果AC 0且BC 0 ,那么直线Ax By C 0不通过()A. 第一象限B.第二象限C. 第三象限D. 第四象限【例2】如图,直线l经过二、三、四象限,1的倾斜角为a,斜率为k,则()A. k sin a >0 B . k cos a >0 C . k sin a <0 D. k cos a <0【练习】图中的直线li, I2, I s的斜率分别为k i, k2, k s,则().A. k1< k2< k s B.k3< k1 < k2C. k s< k2< k i D.k1<k3<k2【例3】经过点P 1,2 作直线l ,若直线l 与连接A 0,—1 ,B 4,1 的线段总有公共点,求直线l的倾斜角与斜率k的取值范围。
史上最全直线与直线方程题型归纳
![史上最全直线与直线方程题型归纳](https://img.taocdn.com/s3/m/b09dedf2de80d4d8d05a4fb8.png)
曲线与曲线圆程之阳早格格创做一、知识梳理1.曲线的倾斜角与斜率:正在仄里曲角坐标系中,对付于一条与x 轴相接的曲线,如果把x 轴绕着接面按顺时针目标转动到战曲线沉适时所转的最小正角记为α,那么α便喊干曲线的倾斜角.当曲线战x 轴仄止或者沉适时,咱们确定曲线的倾斜角为0°.倾斜角的与值范畴是0°≤α<180°.倾斜角不是90°的曲线,它的倾斜角的正切喊干那条曲线的斜率,时常使用k 表示.倾斜角是90°的曲线不斜率.2.斜率公式:通过二面),(),,(222111y x P y x P 的曲线的斜率公式:)(211212x x x x y y k ≠--=()0不全为、B A7.斜率存留时二曲线的仄止:21//l l ⇔1k =2k 且21b b ≠. 8.斜率存留时二曲线的笔曲:⇔⊥21l l 121-=k k .9.特殊情况下的二曲线仄止与笔曲:当二条曲线中有一条曲线不斜率时:(1)当另一条曲线的斜率也不存留时,二曲线的倾斜角皆为90°,互相仄止;(2)当另一条曲线的斜率为0时,一条曲线的倾斜角为90°,另一条曲线的倾斜角为0°,二曲线互相笔曲.二、典例粗析题型一:倾斜角与斜率【例1】下列道法粗确的个数是( ) ①所有一条曲线皆有唯一的倾斜角; ②倾斜角为030的曲线有且仅有一条; ③若曲线的斜率为θtan ,则倾斜角为θ; ④如果二曲线仄止,则它们的斜率相等A. 0个B.1个C.2个D.3个 【训练】如果0<AC 且0<BC ,那么曲线0=++C By Ax 短亨过( )【例2】如图,曲线l 通过二、三、四象限,l 的倾斜角为α,斜率为k ,则( )A .ksinα>0B .kcosα>0C .ksinα≤0D .kcosα≤0【训练】图中的曲线l1,l2,l3的斜率分别为k1,k2,k3,则().A .k1<k2<k3B .k3<k1<k2C .k3<k2<k1D .k1<k3<k2【例3】通过面()2,1P 做曲线l ,若曲线l 与对接()10—,A ,()1,4B 的线段总有大众面,供曲线l 的倾斜角α与斜率k 的与值范畴. 【训练】已知二面()4,3-A ,()2,3B ,过面()1-2,P 的曲线l 与线段AB 有大众面,供曲线l 的斜率k 的与值范畴.【例4】若曲线l 的圆程为2tan +=αx y ,则( )A.α一定是曲线l 的倾斜角 B.α一定不是曲线l 的倾斜角C.α—π一定是曲线l 的倾斜角D.α纷歧定是曲线l 的倾斜角【训练】设曲线0=++c by ax 的倾斜角为α,且0cos sin =+αα,则b a 、谦脚( )A.1=+b aB.1=b a —C.0=+b aD.0=b a —题型二:斜率的应用 【例5】若面()()()4,0,0,2,2C a B A ,共线则a的值为_________________.【训练】若三面()()()b C a B A ,0,0,2,2,()0≠ab 共线,则ba11+的值为_____________.【例6】已知真数y x 、谦脚82=+y x ,当32≤≤x 时,供xy 的最大值为_______,最小值为_________________ 【训练】1、若45ln ,23ln ,12ln ===c b a ,则( )A.c b a <<B.a b c <<C.b a c <<D.c a b <<2、供函数1212+=x x y —的值域.题型三:二曲线位子闭系的推断已知,二曲线21,l l 斜率存留且分别为21,k k ,若二曲线仄止或者沉合则有21__________k k ,若二曲线笔曲则有21__________k k . 【例7】已知曲线1l 的倾斜角为 60,曲线2l 通过面()3,1,A ,()322—,—B ,推断曲线1l 与2l 的位子闭系.【训练】1、已知面()3,2P ,()5,4Q ,()a A ,—1,()2,2a B 当a 为何值时,曲线PQ 与曲线AB 相互笔曲?2、已知曲线1m 通过面()()3,23—,,a B a A ,曲线2m 通过面()()5,6,3N a M ,,若21m m ⊥,供a 的值.【例8】正在仄里曲角坐标系中,对付Ra ∈,曲线012:012:21=+=+—和—y ax l ay x l ( ).A 互相仄止 .B 互相笔曲.C 闭于本面对付称 .D 闭于曲线x y —=对付称【训练】曲线()()()()07425084123=++=+++——与—y a x a y a x a 笔曲,供a 的值.题型四:供曲线圆程(一)面斜式【例9】根据条件写出下列曲线的圆程:(1)通过面A(1,2),斜率为2;(2)通过面B (—1,4),倾斜角为 135; (3)通过面C (4,2),倾斜角为 90;(4)通过面D (—3,—2),且与x 轴仄止.已知曲线过一面,可设面斜式【训练】已知ABCAD⊥于D,∆中,()()()0,2,CA,BCB—,46,2,1—供AD的曲线圆程.(二)斜截式【例10】根据条件写出下列曲线的圆程:(1)斜率为2,正在y轴上的截距是5;150,正在y轴的截距为—2;(2)倾斜角为(3)倾斜角为 45,正在y轴上的截距为0.已知斜率时,可设斜截式:3,且与坐标轴围成的三角形周少是12的【训练】供斜率为4曲线l的圆程.(三)截距式【例12】根据条件写出下列曲线的圆程:(1)正在x轴上的截距为—3,正在y轴上的截距为2;(2)正在x轴上的截距为1,正在y轴上的截距为—4;与截距相闭的问题,可设截距式【训练】曲线l过面()3,4P,且正在轴x上的截距之比为1:2,轴、y供曲线l的圆程.(四)二面式【例11】供通过下列二面的曲线圆程:(1)A(2,5),B(4,3) (2)A(2,5),B(4,5) (3)A(2,5),B(2,7) 适时应用“二面决定一条曲线”【训练】过面()1,0M 做曲线l ,使他被二条已知曲线04:103:21=+++y x l y x l 和—所截得的线段AB被面M l 的圆程.【例12】1、已知面A (3,3)战曲线l :2543—x y =.供:(1)通过面A 且与曲线l 仄止的曲线圆程; (2)通过面A 且与曲线l 笔曲的曲线圆程.2、已知三角形三个顶面的坐标分别为A (—1,0),B (2,0),C (2,3),试供AB 边上的下的曲线圆程.(思索:如果供AB 边上的中线、角仄分线呢?)【例13】已知曲线l 的斜率为2,且l 战二坐标轴围成里积为4的三角形,则曲线l 的圆程为________________.【训练】已知,曲线l 通过面(—5,—4),且与二坐标轴所围成的三角形里积为5,则曲线l 的圆程为________________ 【例14】曲线l 不通过第三象限,其斜率为k ,正在y 轴上的截距为b (0≠b ),则( )A.00>≤b k 且 B.0<≥b k 且 C.00><b k 且D.00>>b k 且【训练】二条曲线y=ax+b 与y=bx+a 正在共背来角坐标系中的图象位子大概是( ) A . B . C . D .三、课后训练<一>采用题:1、若曲线l :y=kx-3与曲线2x+3y-6=0的接面位于第一象限,则曲线l 的倾斜角的与值范畴( )A .[6π,3π) B .(6π,2π) C .(3π,2π) D .[6π,2π]2、已知曲线l1:(k-3)x+(5-k )y+1=0与l2:2(k-3)x-2y+3=0笔曲,则K 的值是( )A .1或者3B .1或者5C .1或者4D .1或者23、曲线y=3x 绕本面顺时针转动90°,再背左仄移1个单位,所得到的曲线为( )A .3131+=x y — B .131+=x y — C .33—x y = D .13+=x y<二>挖空题:1、正在仄里曲角坐标系中,如果x 与y 皆是整数,便称面(x ,y )为整面,下列命题中粗确的是 _________________(写出所有粗确命题的编号).①存留那样的曲线,既不与坐标轴仄止又不通过所有整面 ②如果k 与b 皆是无理数,则曲线y=kx+b 不通过所有整面 ③曲线l 通过无贫多个整面,当且仅当l 通过二个分歧的整面④曲线y=kx+b 通过无贫多个整面的充分需要条件是:k 与b 皆是有理数⑤存留恰通过一个整面的曲线.2、若面()21—,P 正在曲线l 上的射影为()1,1—Q ,则曲线l 的圆程为__________________.3、正在仄里曲角坐标系xOy 中,过坐标本面的一条曲线与函数f(x)=x2的图象接于P 、Q 二面,则线段PQ 少的最小值是________________. <三>解问题:1、设曲线1l :11+=x k y ,2l :12—x k y =,其中真数21,k k 谦脚0221=+•k k ,道明1l 与2l 相接.2、已知曲线圆程为b kx y +=,当[][]13,8,4,3—时—∈∈y x ,供此曲线的圆程.3、当20<<a 时,曲线1l :422:422222+=+=a y a x l a y ax 与——战二坐标轴围成一个四边形,问a 与何值时,那个四边形的里积最小?并供出最小里积.。
高中数学必修二直线与直线方程题型归纳总结
![高中数学必修二直线与直线方程题型归纳总结](https://img.taocdn.com/s3/m/c761421f2bf90242a8956bec0975f46527d3a7f3.png)
高中数学必修二直线与直线方程题型归纳总结知识点归纳概括:1.直线的倾斜角为0°≤α<180°,斜率为k=tanα(α≠90°)。
2.已知两点求斜率公式为k=(y2-y1)/(x2-x1)(x2≠x1)。
3.两直线平行时,它们的斜率相等;垂直时,它们的斜率之积为-1.4.直线的五种方程:点斜式、斜截式、两点式、截距式、一般式。
5.两直线的交点坐标可通过联立两直线方程求得,两点间距离可用距离公式计算。
题型归纳分析:1.直线的倾斜角与斜率的计算。
2.平行和垂直直线的判断及斜率之间的关系。
3.直线的方程及其应用。
4.两直线交点坐标和两点间距离的计算。
例1:过点M(-2,a)和N(a,4)的直线的斜率等于1,则a的值为()。
A。
1B。
4C。
1或3D。
1或4解析:由题意可得,直线MN的斜率为1,即(k=(4-a)/(a+2)=1),解得a=2,故选B。
变式1:已知点A(1,3)、B(-1,3),则直线AB的倾斜角是()。
A。
60°B。
30°C。
120°D。
150°解析:由斜率公式可得,k=(3-3)/(-1-1)=0,因为斜率为0,所以直线与x轴平行,倾斜角为0°,故选A。
变式2:已知两点A(3,2)、B(-4,1),求过点C(-1.)的直线l与线段AB有公共点,求直线l的斜率k的取值范围。
解析:首先求出AB的斜率k1=(1-2)/(-4-3)=-1/7,然后求出点C到直线AB的距离d,d=|(-1-3)×(-1)+(?-2)×(-4+3)|/√((-4+3)²+(1-2)²)=|4-2×(?-1)|/√5,因为直线l与AB有公共点,所以点C到直线l的距离也为d,根据距离公式可得,|k1×(-1)+1×(?-1)-d|/√(k1²+1²)=d,化简得,|k1×(-1)+1×(?-1)|=2d√(k1²+1²),即|k1+?(?-1)|=2d√(k1²+1²),因为直线l过点C,所以直线l的斜率为k2=(?-1)/(-1-3),代入得,|k1+k2|=2d√(k1²+1²),整理得,|?-1+7k2|=2d√(50),因为|?-1+7k2|≥0,所以d≥0,又因为√(50)>7,所以|?-1+7k2|≤2d×7,即|?-1+7k2|≤14d,代入得|?-1+7(?-1)/(-1-3)|≤14d,即|-2?-6/(-4)|≤14d,解得-1/2≤d≤1/2,因为d≥0,所以1/2≥d≥0,代入得-1/2≤?-1+7k2≤1/2,解得-3/14≤k2≤1/14,故k2的取值范围为[-3/14,1/14]。
直线与方程题型总结答案
![直线与方程题型总结答案](https://img.taocdn.com/s3/m/e6e9ab74e55c3b3567ec102de2bd960590c6d995.png)
题型一:重点考查直线的倾斜角)2cos10,2sin10,)2cos130,2sin130,则直线.160【详解】方法一:由斜率和倾斜角关系,利用两点连线斜率公式可得tan 方法二:根据三角函数定义可知,P Q 在圆160QOM +,由此可得倾斜角.的倾斜角为)0180θ≤<,()()33cos10sin10sin 12010sin102sin1302sin10222cos1302cos10cos 12010cos1033cos10sin1022−+−−==−+−−−()()3sin10cos103sin 1030sin 20sin 202tan 20sin 70cos 2033sin 1060sin10cos102−−==−=−=−++tan160.PQ 的倾斜角为160;方法二:由三角函数的定义可知:点,P Q 在圆24x y +=上,如图所示,为直线PQ 与轴的交点,则10,130QOM ∠,120=,又OQ =,30OQM ∴∠,160QOM +∠,∴直线PQ 的倾斜角为160. 160.2023春·安徽合肥·高二统考开学考试)直线y ++ 34π⎤⎡⋃⎥⎢⎦⎣精练核心考点3,24ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭3,24ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭3,4ππ⎤⎡⎫⎪⎥⎢⎦⎣⎭【详解】解:直线l 的斜率为3≤,α∈3,4⎤⎡⎫⎪⎥⎢⎦⎣⎭ππ. .(2023·全国·高二专题练习)直线,135︒︒⎤⎦【详解】解:直线x y −,则3x =,直线的斜率不存在,倾斜角为90;1≤,可得为不等于90的倾斜角),90135θ︒<≤综合,倾斜角的取值范围是45︒≤.题型二:重点考查直线的斜率19,6⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭)因为点M 在函数)在线段AB ()19,6⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭,记点16,2P ⎛− ⎝16,2P ⎛⎫− ⎪⎝⎭,所以21y +精练核心考点30,则实数D .323303=两点的直线的方向向量为题型三:重点考查斜率与倾斜角的变化关系第一象限,则直线l 的倾斜角的取值范围是()30,60)30,90 )60,9060,90⎤⎦B【详解】因为直线:l ,直线23x y +()0,2B ;30; 90;)30,90.·全国·高二专题练习)经过点P10PA k −=且直线l 与连接点如下图所示,则tan PA k ≤α∴∈π[0,4故选:B例题3.(精练核心考点2.(2023·全国·高二专题练习)已知坐标平面内三点ABC 的边A .0,⎡⎢⎣C .3⎡⎢⎣【答案】D【详解】如图所示,1为ABC 的边BD 斜率k .(2023·全国·高二专题练习)若实数的取值范围为5,73⎡⎤⎢⎥⎣⎦题型四:重点考查斜率公式的应用精练核心考点题型五:重点考查由直线与线段相交求直线斜率(倾斜角)范围3,7⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭【详解】解:设过点P 且垂直于当直线l 由位置PA 绕点P 此时,11354725PA k k +≥==+当直线l 由位置PC 绕点P 此时,1254PB k k +≤==精练核心考点1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭1,2⎤⎡⎫+∞⎪⎥⎢⎦⎣⎭题型六:重点考查两直线的平行或垂直关系;方法二:直线1l 的方向向量()6,3AB =−的方向向量(3,6CD =因为0AB CD ⋅=,所以AB CD ⊥,所以5.(2023·全国·高二专题练习)已知两条直线60my +=2)30m x y −+=,当m 为何值时,相交; 平行; 垂直.【答案】(1)m ≠−3;题型七:重点考查直线的方程.(2023·全国·高二专题练习)在ABC中,已知点轴上截距是y轴上截距的3⎫,即(−⎪⎭;题型八:重点考查两直线的交点坐标【详解】三条直线不能构成三角形三条直线相交于同一点S的最小值AOBS最小值为AOB题型九:重点考查两点间的距离公式故选:B.xA B'=所以函数的最小值为故答案为:42精练核心考点1.(2023·全国·高二专题练习)已知故选:B2.(2023·全国·高二课堂例题)【答案】32【详解】()2221x x x ++=+()(224824x x x −+=−+=如图,设点(),0A x ,()1,1B −,值.由于AB AC BC +≥,当A ,B 故答案为: 32.3.(2023·全国·高二专题练习)函数为 .【答案】41【详解】()()219f x x =−+1故答案为:41题型十:重点考查点到直线的距离公式例题2.(2023秋·高二课时练习)求垂直于直线3105的直线l 的方程. 【答案】390x y −+=或3x −【详解】设与直线35x y +−则由点到直线的距离公式知()()2310310⨯−−+−===mm d350y+=.春·上海·高二期中)已知ABC的三个顶点y+=,且60)2,3,所以因此有+24=723+6=0m n m n −−⎧⎨⎩或+24=723+6=0m n m n −−−⎧⎨⎩,解得:=3=4m n ⎧⎨⎩或=3=0m n −⎧⎨⎩, 所以点A 的坐标为:()3,4或()3,0−.题型十一:重点考查两条平行线间的距离公式精练核心考点。
直线与方程知识点归纳及对应习题
![直线与方程知识点归纳及对应习题](https://img.taocdn.com/s3/m/dedb1cfdce2f0066f53322fb.png)
直线与方程一、直线倾斜角和斜率000180α≤<. k=tan α(α不为090)。
经过两点),(),,(222111y x P y x P (21x x ≠)的直线的斜率公式是1212x x y y k --=(21x x ≠) 练习:1、直线x +y -5=0的倾斜角为( )A. -30°B. 60°C. 120°D. 150°2、在下列四个命题中,正确的共有()①坐标平面内的任何一条直线均有倾斜角和斜率;②直线的倾斜角的取值范围是[0,π];③若一条直线的斜率为tanα,则此直线的倾斜角为α;④若一条直线的倾斜角为α,则此直线的斜率为tanα.A. 0个B. 1个C. 2个D. 3个二、直线的方程1、直线方程的几种形式点斜式:)(11x x k y y -=- (斜率存在) ; 两点式:121121x x x x y y y y --=--),(2121y y x x ≠≠其中 斜截式:b kx y += (斜率存在) ; 截距式:1=+by a x (0a ≠≠且b 0) 一般式:0=++C By Ax )不同时为其中0,(B A 练习:3、过点(-1,2)且在坐标轴上的截距相等的直线的一般式方程是______.4、 已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在直线方程为2x-y-5=0,∠B 平分线BN 所在直线方程为x-2y-5=0.求:(1)顶点B 的坐标;(2)直线BC 的方程.5、已知△ABC 的顶点A (5,1),AB 边上的中线CM 所在的直线方程为2x-y-5=0,AC 边上的高BH 所在直线的方程为x-2y-5=0.(1)求直线BC 的方程;(2)求直线BC 关于CM 的对称直线方程.2、 两条直线位置关系的判定:已知 0:11=++C By Ax l , 0:22=++C By Ax l ,则:(1)0212121=+⇔⊥B B A A l l(2)1212211221//(1)-00(0);l l A B A B BC B C B ⇔=-≠≠且斜率存在,即1221(2)0(0).AC A C B -≠=斜率存在,即(3)1l 与2l 相交01221≠-⇔B A B A练习:6、若直线l1:(m-2)x-y-1=0与直线l2:3x-my=0互相平行,则m 的值为( )A. 0或或3B. 0或3C. 0或D. 或37、已知直线ax+3y-1=0与直线3x-y+2=0互相垂直,则a=( )A. -3B. -1C. 1D. 38、已知两条直线l1(3+m )x+4y=5-3m ,l2 2x+(5+m )y=8.当m 分别为何值时,l1与l2:(1)相交?(2)平行?(3)垂直?3、几种直线系方程(1)过两条直线0:1111=++C y B x A l , 0:2222=++C y B x A l 的交点的直线系方程为0)(222111=+++++C y B x A C y B x A λ(λ为参数),其中直线l 2不在直线系中. (2)平行于直线0n 0(n )Ax By C Ax By C ++=++=≠的直线可表示为(3)垂直于直线0m 0Ax By C Bx Ay ++=-+=的直线可表示为练习:9、过直线x+y-3=0和2x-y=0的交点,且与直线2x+y-5=0垂直的直线方程是()A. 4x+2y-3=0B. 4x-2y+3=0C. x+2y-3=0D. x-2y+3=010、已知直线l1:x-2y+3=0与直线l2:2x+3y-8=0的交点为M ,(1)求过点M 且到点P (0,4)的距离为2的直线l 的方程;(2)求过点M 且与直线l3:x+3y+1=0平行的直线l 的方程.三、直线的交点坐标与距离公式1.两条直线的交点2.几种距离平面上的两点),(),,(222111y x P y x P 间的距离公式21221221)()(y y x x P P-+-= 点),(00y x P 到直线0:=++C By Ax l 的距离2200B A CBy Ax d +++=(直线方程要化为一般式)两条平行线0:11=++C By Ax l , 0:22=++C By Ax l 间的距离2212B A C C d +-=(直线化为系数相同的一般式)练习:11、原点到直线y=-x+的距离为( ) A. 1 B. C. 2 D.12、直线3x+4y-12=0和6x+8y+6=0间的距离是______ .13、若直线l1:x-2y+1=0与l2:2x+ay-2=0平行,则l1与l2的距离为( ) A. B. C. D.3、 直线l 上一动点P 到两个定点A 、B 的距离“最值问题”:(1) 在直线l 上求一点P ,使PB PA +取得最小值:“同侧对称异侧连”(2)在直线l 上求一点P 使PB PA -取得最大值:“异侧对称同侧连” (3) 22PB PA +的最值:函数思想“转换成一元二次函数,找对称轴”。
第三章 直线与方程知识点归纳及练习题
![第三章 直线与方程知识点归纳及练习题](https://img.taocdn.com/s3/m/0d58e0fcfad6195f302ba68a.png)
1.直线的倾斜角与斜率(1)倾斜角与斜率从“形”和“数”两方面刻画了直线的倾斜程度,但倾斜角α是角度(0°≤α<180°),是倾斜度的直接体现;斜率k是实数(k∈(-∞,+∞)),是倾斜程度的间接反映.在解题的过程中,用斜率往往比用倾斜角更方便.(2)倾斜角与斜率的对应关系:当α=90°时,直线的斜率不存在;当α≠90°时,斜率k=tan α,且经过两点A(x1,y1),B(x2,y2)(x1≠x2)的直线的斜率k AB=y2-y1 x2-x1.(3)当α由0°→90°→180°(不含180°)变化时,k由0(含0)逐渐增大到+∞(不存在),然后由-∞(不存在)逐渐增大到0(不含0).2.解题时要根据题目条件灵活选择,注意其适用条件:点斜式和斜截式不能表示斜率不存在的直线,两点式不能表示与坐标轴垂直的直线,截距式不能表示与坐标轴垂直和过原点的直线,一般式虽然可以表示任何直线,但要注意A2+B2≠0,必要时要对特殊情况进行讨论.3.由两直线的方程判断两条直线是否平行或垂直时,要注意条件的限制;同时已知平行或垂直关系求直线的方程或确定方程的系数关系时,要根据题目条件设出合理的直线方程.4.学习时要注意特殊情况下的距离公式,并注意利用它的几何意义,解题时往往将代数运算与几何图形直观分析相结合.5.直线系方程直线系方程是解析几何中直线方程的基本内容之一,它把具有某一共同性质的直线族表示成一个含参数的方程,然后根据直线所满足的其他条件确定出参数的值,进而求出直线方程.直线系方程的常见类型有:(1)过定点P (x 0,y 0)的直线系方程是:y -y 0=k (x -x 0)(k 是参数,直线系中未包括直线x =x 0),也就是平常所提到的直线的点斜式方程;(2)平行于已知直线Ax +By +C =0的直线系方程是:Ax +By +λ=0(λ是参数,λ≠C );(3)垂直于已知直线Ax +By +C =0的直线系方程是:Bx -Ay +λ=0(λ是参数);(4)过两条已知直线l 1:A 1x +B 1y +C 1=0和l 2:A 2x +B 2y +C 2=0的交点的直线系方程是:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0(λ是参数,当λ=0时,方程变为A 1x +B 1y +C 1=0,恰好表示直线l 1;当λ≠0时,方程表示过直线l 1和l 2的交点,但不含直线l 2).6.“对称”问题的解题策略对称问题主要有两大类:一类是中心对称,一类是轴对称.(1)中心对称①两点关于点对称,设P 1(x 1,y 1),P (a ,b ),则P 1(x 1,y 1)关于P (a ,b )对称的点为P 2(2a -x 1,2b -y 1),即P 为线段P 1P 2的中点.特别地,P (x ,y )关于原点对称的点为P ′(-x ,-y ).②两直线关于点对称,设直线l 1,l 2关于点P 对称,这时其中一条直线上任一点关于点P 对称的点在另一条直线上,并且l 1∥l 2,P 到l 1,l 2的距离相等.(2)轴对称①两点关于直线对称,设P 1,P 2关于直线l 对称,则直线P 1P 2与l 垂直,且线段P 1P 2的中点在l 上,这类问题的关键是由“垂直”和“平分”列方程.②两直线关于直线对称,设l 1,l 2关于直线l 对称.当三条直线l 1,l 2,l 共点时,l 上任意一点到l 1,l 2的距离相等,并且l 1,l 2中一条直线上任意一点关于l 对称的点在另外一条直线上;当l 1∥l 2∥l 时,l 1与l 间的距离等于l 2与l 间的距离.题型一 直线的倾斜角和斜率倾斜角和斜率分别从“形”和“数”两个方面刻画了直线的倾斜程度.倾斜角α与斜率k 的对应关系和单调性是解题的易错点,应引起特别重视.(1)对应关系①α≠90°时,k =tan α.②α=90°时,斜率不存在.(2)单调性当α由0°→90°→180°(不含180°)变化时,k 由0(含0)逐渐增大到+∞,然后由-∞逐渐增大到0(不含0).经过A (x 1,y 1),B (x 2,y 2)(x 1≠x 2)两点的直线的斜率公式k =y 2-y 1x 2-x 1(x 1≠x 2),应注意其适用的条件x 1≠x 2,当x 1=x 2时,直线斜率不存在.例1 已知坐标平面内的三点A (-1,1),B (1,1),C (2,3+1).(1)求直线AB ,BC ,AC 的斜率和倾斜角;(2)若D 为△ABC 的边AB 上一动点,求直线CD 的斜率k 的取值范围.跟踪训练1 求经过A (m,3)、B (1,2)两点的直线的斜率,并指出倾斜角α的取值范围.题型二 直线方程的五种形式直线方程的五种形式在使用时要根据题目的条件灵活选择,尤其在选用四种特殊形式的方程时,注意其适用条件,必要时要对特殊情况进行讨论.求直线方程的方法一般是待定系数法,在使用待定系数法求直线方程时,要注意直线方程形式的选择及适用范围,如点斜式、斜截式适合直线斜率存在的情形,容易遗漏斜率不存在的情形;两点式不含垂直于坐标轴的直线;截距式不含垂直于坐标轴和过原点的直线;一般式适用于平面直角坐标系中的任何直线.因此,要注意运用分类讨论的思想.在高考中,题型以选择题和填空题为主,与其他知识点综合时,一般以解答题的形式出现.例2 求与直线y =43x +53垂直,并且与两坐标轴围成的三角形的面积为24的直线l 的方程.跟踪训练2 过点P (-1,0),Q (0,2)分别作两条互相平行的直线,使它们在x 轴上截距之差的绝对值为1,求这两条直线的方程.题型三直线的位置关系两条直线的位置关系有相交(特例垂直)、平行、重合三种,主要考查两条直线的平行和垂直.通常借助直线的斜截式方程来判断两条直线的位置关系.解题时要注意分析斜率是否存在,用一般式方程来判断,可以避免讨论斜率不存在的情况.例3已知两条直线l1:ax-by+4=0,l2:(a-1)x+y+b=0,求分别满足下列条件的a、b的值.(1)直线l1过点(-3,-1),并且直线l1与直线l2垂直;(2)直线l1与直线l2平行,并且坐标原点到l1、l2的距离相等.跟踪训练3(1)求经过两直线l1:x-2y+4=0和l2:x+y-2=0的交点P,且与直线l3:3x-4y+5=0垂直的直线l的方程;(2)已知直线l1:mx+8y+n=0与l2:2x+my-1=0互相平行,且l1,l2之间的距离为 5.求直线l1的方程.题型四最值问题方法梳理1.构造函数求解最值:利用函数的定义域、奇偶性、周期性、单调性等性质特征及复合函数的结构特征求解函数的最值.2.结合直线方程的相关特征,保证在符合条件的范围内求解最值.3.结合图象,利用几何性质帮助解答.数学思想函数思想:通常情况下求解最值问题可以转化为对函数的研究,函数思想给我们一种最严谨的眼光来看待问题,是一种探求普遍真理的思想,本章中求最大距离、最大面积等问题时常常会用到函数思想.例4已知△ABC,A(1,1),B(m,m)(1<m<4),C(4,2).当m为何值时,△ABC的面积S最大?跟踪训练4 如图,一列载着危重病人的火车从O 地出发,沿北偏东α度(射线OA )方向行驶,其中sin α=1010.在距离O 地5a (a 为正常数)千米,北偏东β度的N 处住有一位医学专家,其中sin β=35,现120指挥中心紧急征调离O 地正东p 千米B 处的救护车,先到N 处载上医学专家,再全速赶往乘有危重病人的火车,并在C 处相遇.经计算,当两车行驶的路线与OB 所围成的三角形OBC 的面积S 最小时,抢救最及时.(1)在以O 为原点,正北方向为y 轴的直角坐标系中,求射线OA 所在的直线方程;(2)求S 关于p 的函数关系式S =f (p );(3)当p 为何值时,抢救最及时?题型五 分类讨论思想分类讨论思想其实质就是将整体问题化为部分问题来解决.在解题过程中,需选定一个标准,根据这个标准划分成几个能用不同形式解决的小问题,从而使问题得到解决.在本章中涉及到分类讨论的问题主要是由直线的斜率是否存在及直线的点斜式、斜截式、两点式、截距式的局限性引起的分类讨论问题.例5 设直线l 的方程为(a +1)x +y +2-a =0(a ∈R )在两坐标轴上的截距相等,求直线l 的方程.题型六 数形结合思想根据数学问题的条件和结论的内在联系,将抽象的数学语言与直观的图形相结合,使抽象思维与形象思维相结合. 例6 已知直线l 过点P (-1,2),且与以A (-2,-3),B (3,0)为端点的线段相交,求直线l 的斜率的取值范围.1.在平面解析几何中,用代数知识解决几何问题时应首先挖掘出几何图形的几何条件,把它们进一步转化为代数方程之间的关系求解.2.关于对称问题,要充分利用“垂直平分”这个基本条件,“垂直”是指两个对称点的连线与已知直线垂直,“平分”是指:两对称点连成线段的中点在已知直线上,可通过这两个条件列方程组求解.3.涉及直线斜率问题时,应从斜率存在与不存在两方面考虑,防止漏掉情况.。
史上最全直线与直线方程题型归纳
![史上最全直线与直线方程题型归纳](https://img.taocdn.com/s3/m/4f6def08192e45361066f570.png)
精心整理直线与直线方程一、知识梳理1.直线的倾斜角与斜率:在平面直角坐标系中,对于一条与x 轴相交的直线,如果把x 轴绕着交点按逆时针方向旋转到和直线重合时所转的最小正角记为α,那么α就叫做直线的倾斜角.当直线和x 轴平行或重合时,我们规定直线的倾斜角为0°.倾斜角的取值范围是0°≤α<180°.倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率,常用k 表示.倾斜角是90°的直线没有斜率.2.斜率公式:经过两点),(),,(222111y x P y x P 的直线的斜率公式:)(211212x x x x y y k ≠--=3.直线方程的五种形式直线形式 直线方程局限性选择条件 点斜式不能表示与x 轴垂直的直线①已知斜率 ②已知一点 斜截式不能表示与x 轴垂直的直线①已知斜率②已知在y 轴上的截距两点式不能表示与x 轴、y 轴垂直的直线①已知两个定点 ②已知两个截距 截距式(b a 、分别为直线在x 轴和y 轴上的截距)不能表示与x 轴垂直、与y 轴垂直、过原点的直线 已知两个截距(截距可以为负)一般式表示所有的直线求直线方程的结果均可化为一般式方程 7.斜率存在时两直线的平行:21//l l ⇔1k =2k 且21b b ≠. 8.斜率存在时两直线的垂直:⇔⊥21l l 121-=k k .9.特殊情况下的两直线平行与垂直:当两条直线中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直. 二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是() ①任何一条直线都有唯一的倾斜角;②倾斜角为030的直线有且仅有一条; ③若直线的斜率为θtan ,则倾斜角为θ; ④如果两直线平行,则它们的斜率相等 A.0个B.1个C.2个D.3个【练习】如果0<AC 且0<BC ,那么直线0=++C By Ax 不通过() A.第一象限B.第二象限C.第三象限D.第四象限【例2】如图,直线l 经过二、三、四象限,l 的倾斜角为α,斜率为k ,则( ) A .k sin α>0 B .k cos α>0C .k sin α≤0 D .k cos α≤0【练习】图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则().A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2【例3】经过点()2,1P 作直线l ,若直线l 与连接()10—,A ,()1,4B 的线段总有公共点,求直线l 的倾斜角α与斜率k 的取值范围。
直线方程题型分类总结
![直线方程题型分类总结](https://img.taocdn.com/s3/m/38862bc3af45b307e97197d5.png)
直线的点斜式与斜截式不能表示斜率不存在(垂直于x 轴)的直线;两点式不能表示平行或重合两坐标轴的直线;截距式不能表示平行或重合两坐标轴的直线及过原点的直线。
题型一:两直线的位置关系判断直线平行:已知直线12l l ,的方程为1111:0l A x B y C ++=,2222:0l A x B y C ++=,若12//l l ,则有12210A B A B -=,且1221B C B C ≠或1221A C B C ≠判断直线相交:1111:0l A x B y C ++=,2222:0l A x B y C ++=,若两直线相交,则有12210A B A B -≠判断直线垂直:已知直线12l l ,的方程为1111:0l A x B y C ++=,2222:0l A x B y C ++=,若12l l ⊥,则有12120A AB B +=,反之亦然。
两点间的距离,点到直线的距离,两条平行线间的距离 1.两点间距离公式:设平面内两点111(,)P x y ,222(,)P x y ,则两点间的距离为:12||PP .特别地,当12,P P 所在直线与x 轴平行时,1212||||PP x x =-;当12,P P 所在直线与y 轴平行时,1212||||PP y y =-;2.点到直线距离公式:点()00,y x P 到直线0:1=++C By Ax l 的距离2200B A C By Ax d +++=3.两平行直线距离公式:两条平行直线11:0l Ax By C ++=,22:0l Ax By C ++=之间的距离公式d ,1.若直线210ax y ++=与直线20x y +-=互相垂直,那么a 的值等于 A .1 B .2-2.若直线1:(3)4350l m x y m +++-=与2:2(5)80l x m y ++-=平行,则m 的值为A .7-B .1-或7-C .6-D .133- 题型二:定点问题1. 直线130kx y k -+-=,当k 变化时,所有直线恒过定点. A .(0,0) B .(3,1)C .(1,3) D .(1,3)--2.若不论m 取何实数,直线:120l mx y m +-+=恒过一定点,则该定点的坐标为 A .(2,1)- B . (2,1)- C .(2,1)-- D .(2,1)3.不论m 为何实数,直线(m -1)x -y +2m +1=0 恒过定点A.(1, -2, 0) C.(2, 3) D.(-2, 3) 题型三:对称问题1.已知点(5,8),(4,1)A B ,则点A 关于点B 的对称点C 的坐标 .2.求点(1,2)关于直线20x y --=的对称点。
史上最全直线与直线方程题型归纳
![史上最全直线与直线方程题型归纳](https://img.taocdn.com/s3/m/98fd72d11eb91a37f0115c79.png)
史上最全直线与直线方程题型归纳.直线与直线方程一、知识梳理1.直线的倾斜角与斜率:在平面直角坐标系中,xx轴绕着交对于一条与如果把轴相交的直线,点按逆时针方向旋转到和直线重合时所转的最小正角记为,那么就叫做直线的倾斜角.当直??x轴平行或重合时,我们规定直线的倾斜角线和为0°.倾斜角的取值范围是0°≤<180°.倾?斜角不是90°的直线,它的倾斜角的正切叫做k表示.倾斜角是90这条直线的斜率,常用°的直线没有斜率.2.斜率公式:经过两点的直线的斜率),y),P(x(Px,y111222y?y公式:12)k?xx(?21xx?12直线方程的五种形式3.- 2 -.且7.斜率存在时两直线的平行:=?kkb?bll//212211..斜率存在时两直线的垂直:81kk???l?l2112当两条直线:.9特殊情况下的两直线平行与垂直- 3 -中有一条直线没有斜率时:(1)当另一条直线的斜率也不存在时,两直线的倾斜角都为90°,互相平行;(2)当另一条直线的斜率为0时,一条直线的倾斜角为90°,另一条直线的倾斜角为0°,两直线互相垂直.二、典例精析题型一:倾斜角与斜率【例1】下列说法正确的个数是()①任何一条直线都有唯一的倾斜角;②倾斜角为的直线有且仅有一条;030;③若直线的斜率为,则倾斜角为??tan④如果两直线平行,则它们的斜率相等C.2 B.1个 A. 0个D.3个个,那么直线【练习】如果且0BCAC?0?)不通过(0?C?ByAx? C.第三象限 A.第一象限 B.第二象限第四象限D.的l】如图,直线l经过二、三、四象限,例2【)(倾斜角为α,斜率为k,则0αkC >0 cos.>0sin.AkαBkα.sin≤- 4 -D.kcosα≤0【练习】图中的直线l,l,l的斜率分别为k,1213k,k,则().32A.k<k<kB.k<k<k 2113 32C.k<k<k D.k<k<k2 23131【例3】经过点作直线,若直线与连接??ll21,P 的倾斜的线段总有公共点,求直线,????l14,BA0,—1角与斜率的取值范围。
高中数学-直线与方程章末归纳总结
![高中数学-直线与方程章末归纳总结](https://img.taocdn.com/s3/m/1c0cdc08cc22bcd127ff0c68.png)
【解析】 【评析】考查直线系方程.
过点P(-1,0),Q(0,2)分别作两条互相平行的直 线,使它们在x轴上截距之差的绝对值为1,求这两条直 线的方程.
【解析】
专题三 最值问题 如图1,过点P(2,1)作直线l,与x轴,y轴正半轴 分别交于A,B两点,求: (1)△AOB面积的最小值及 此时直线l的方程; (2)求直线l在两坐标轴上截 距之和的最小值及此时直线l的方程. 【分析】最值问题是高考题中非常重要的一种题型, 涉及面非常广泛,在函数中求最值是我们常见的题 型.与直线有关的问题有时也涉及到最值问题,在解 决这类问题时经常转化为函数求最值问题.
如图2,过点A(1,1)且斜率为-m(m>0)的直线l与x 轴,y轴分别交于P,Q两点,过P,Q作直线2x+y=0的垂线,垂 足为R,S,求四边形PQSR面积的最小值.
【解析】
【解析】
∵用定义可证明2k+ k1
在(-∞,-
2 2
]上单调递增,
在[- 2 ,0)上单调递减,2源自∴2k+1 k
有最大值-2
2
,此时k=-
2 ,即k=-
2
2 时截距
2
之和最小值为3+2 2 ,此时l的方程为y-1=- 2(2 x-
2),即 2x+2y-2-2 2 =0.
【评析】本题也可使用截距式方程进行求解,不妨试 一试.
专题二 求直线方程 求经过两直线2x-3y-3=0和x+y+2=0的交点且与直线 3x+y-1=0平行的直线方程.
【分析】过两直线A1x+B1y+C1=0和A2x+B2y+C2=0的交 点的直线方程为(A1x+B1y+C1) +λ(A2x+B2y+C2)=0(λ∈R),但此直线不包括 A2x+B2y+C2=0.
直线的方程经典题型总结加练习题-含答案
![直线的方程经典题型总结加练习题-含答案](https://img.taocdn.com/s3/m/8f141de91eb91a37f1115cde.png)
(1)直线的倾斜角定义:x轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率①定义:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k表示。
即tankα=。
斜率反映直线与轴的倾斜程度。
当[)οο90,∈α时,0≥k;当()οο180,90∈α时,0<k;当ο90=α时,k不存在。
②过两点的直线的斜率公式:)(211212xxxxyyk≠--=所有直线都有倾斜角,但不是所有直线都有斜率概念考查1、已知经过点A(-2,0)和点B(1,3a)的直线1λ与经过点P(0,-1)和点Q(a,-2a)的直线2λ互相垂直,求实数a的值。
2、直线baxy+=与abxy+=在同一坐标系下可能的图是()3、直线3)2(+-=xky必过定点,该定点的坐标为()A.(3,2)B.(2,3)C.(2,–3)D.(–2,3)4、如果直线0=++cbyax(其中cba,,均不为0)不通过第一象限,那么cba,,应满足的关系是()A.0>abc B.0>ac C.0<ab D.cba,,同号5、若点A(2,–3),B(–3,–2),直线l过点P(1,1),且与线段AB相交,则l的斜率k 的取值范围是()A.43≥k或4-≤k B.43≥k或41-≤k C.434≤≤-k D.443≤≤k(3)两点间距离公式:设1122(,),A x yB x y,()是平面直角坐标系中的两个点,则||AB=(4)点到直线距离公式:一点()00,y x P 到直线0:1=++C By Ax l 的距离2200B A CBy Ax d +++=概念考查(1) 求两平行线1l :3x+4y=10和2l :3x+4y=15的距离。
(2) 求过点M (-2,1)且与A (-1,2),B (3,0)两点距离相等的直线方程。
高中数学必修2---直线与方程(小结与复习)
![高中数学必修2---直线与方程(小结与复习)](https://img.taocdn.com/s3/m/eb7e3b18a76e58fafab00389.png)
直线与方程(小结与复习)1、倾斜角与斜率的互化问题(1)倾斜角的取值范围是:[)πα,0∈直线的斜率:αtan =k ,且斜率k 的取值范围为:R k ∈(2)已知倾斜角α求k :当2πα=时,k 不存在;当2πα≠时,αtan =k(3)经过两点),(),,(222111y x P y x P 的直线的斜率公式: 1212tan x x y y k --==α )(21x x ≠ (4)利用斜率证明三点共线的方法:已知),(),,(),,(332211y x C y x B y x A ,若AC AB k k x x x ===或321,则C B A 、、三点共线。
例1、(1)若)33,3(--∈k ,则∈α ;(2)若)1,1(-∈k ,则∈α 。
例2、若直线l 过点),1(),2,0(2m N m M )(R m ∈,求直线l 的倾斜角的取值范围。
例3、已知直线l 过点)1,2(),,32(-+m N m m M )(R m ∈,当m 为何值时,直线l 的倾斜角为锐角、直角、钝角?例4、直线)3,6(03cos 2⎥⎦⎤⎢⎣⎡∈=--ππαa y x 的倾斜角的变化范围是( ) ⎥⎦⎤⎢⎣⎡3,6.ππA ⎥⎦⎤⎢⎣⎡3,4.ππB ⎥⎦⎤⎢⎣⎡2,4.ππC ⎥⎦⎤⎢⎣⎡32,4.ππD例5、)3,6(03sin 2⎥⎦⎤⎢⎣⎡∈=--ππαa y x 的倾斜角的变化范围是( ) ⎥⎦⎤⎢⎣⎡3,6.ππA ⎥⎦⎤⎢⎣⎡3,4.ππB ⎥⎦⎤⎢⎣⎡2,4.ππC ⎥⎦⎤⎢⎣⎡32,4.ππD 例6、已知点)2,3(),51(---B A ,,直线l 的倾斜角是直线AB 的倾斜角的2倍,求直线l 的斜率.例7、已知点)2,3-(),32(--B A ,,直线l 过点)11(,P 且与线段AB 有交点,设直线l 的斜率为k ,则k 的取值范围是( )443.-≤≥k k A 或 434.≤≤-k B 4143.-≤≥k k C 或 443.≤≤-k D2、直线平行与垂直的问题(1)两条直线平行:对于两条不重合的直线21,l l ,其斜率分别为21,k k ,则有⇔21//l l 21k k =,特别地,当直线21,l l 的斜率都不存在时21l l 与的关系为平行。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
定义:(1)直线的倾斜角:x 轴正向与直线向上方向之间所成的角叫直线的倾斜角。
特别地,当直线与x 轴平行或重合时,我们规定它的倾斜角为0度。
因此,倾斜角的取值范围是0°≤α<180°(2)直线的斜率:倾斜角不是90°的直线,它的倾斜角的正切叫做这条直线的斜率。
直线的斜率常用k 表示。
即tan k α=。
斜率反映直线与轴的倾斜程度。
一、直线的倾斜角和斜率1、已知直线的倾斜角为,将直线绕直线与x 轴交点逆时针旋转45?的直线,求的倾斜角。
2、已知两点A (-1,-5),B (3,-2),直线l 的倾斜角是直线AB 倾斜角的一半,求l 的斜率。
练习:1、 已知,求直线x +y-1=0的倾斜角的范围;2、 已知两点A (-1,-5),Q (m ,1)的直线的斜率k ;3、 已知点M 是直线l:2x-y=4,与x 轴交点,求直线绕点M 逆时针旋转45?的直线方程4、已知直线353y x =-+的倾斜角是直线l 的倾斜角的大小的5倍,且直线l 分别满足下列条件: (1)过点(34)P -,;(2)在x 轴上截距为2-;(3)在y 轴上截距为3.求直线l 的方程. 5、已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围6、求经过点(-5,6)且与直线2x+y-5=0的夹角为 45的直线方程。
二、两直线的位置关系(垂直、平行)的值平行,求实数与直线已知直线a ay x a l ay x l 01)13(:012:.121=---=-+的值平行,求实数与直线已知直线a y a x a l ay x a l 03)2()2(:013)2(:.221=-++-=+++3.求a 为何值时,直线l 1:(a +2)x +(1-a )y -1=0与直线l 2:(a -1)x +(2a +3)y +2=0互相垂直4.求过点P (1,-1),且与直线l 2:2x +3y +1=0垂直的直线方程.5.已知直线l 1:x+y+2=0, l 2:2x-3y-3=0,求经过的交点且与已知直线3x +y -1=0平行的直线l 的方程。
练习:1、已知经过点A (-2,0)和点B (1,3a )的直线1 与经过点P (0,-1)和点Q (a ,-2a )的直线2互相垂直,求实数a 的值。
2、已知两直线1110a x b y ++=和2210a x b y ++=交点是(23)P ,,则过点111()Q a b ,,222()Q a b ,的直线方程为3、已知直线l1:(t+2)x+(1-t)y=1与l2:(t-1)x+(2t+3)y+2=0相互垂直,求t的值。
三、两直线的交点问题1、直线l过过点(30)P,作直线l,使它被两相交直线220x y--=和30x y++=所截得的线段恰好被P 点平分,求点l的方程2.已知直线l1:x+y+2=0, l2:2x-3y-3=0,求经过的交点且与已知直线3x+y-1=0平行的直线l 的方程。
练习:1、直线baxy+=与abxy+=在同一坐标系下可能的图是()2、如果直线0=++cbyax(其中cba,,均不为0)不通过第一象限,那么cba,,应满足的关系是()A.0>abc B.0>ac C.0<ab D.cba,,同号3、两条直线1x ym n-=与1x yn m-=的图象是下图中的()四、点到点、直线的距离1、已知点A(a,-5)与B(0,10)间的距离是17,求a 的值。
2、已知点A(-1,2),B(2,7),在x轴上求一点P,使︱PA︱=︱PB ︱,并求的︱PA︱值。
3、求点A(-2,3)到直线l:3x+4y+3=0的距离d=。
xC4、已知点(a,2)到直线l: x-y+1=0的距离为2,则a= 。
(a <0)练习:1.求过点M (-2,1)且与A (-1,2),B (3,0)两点距离相等的直线方程.2.已知点A (a ,2)(a >0)到直线l :x -y +3=0的距离为1,则a 等于( )B .2-2 -1 +13、已知点P (2,-1),求过P 点且与原点距离为2的直线l 的方程,求过P 点且与原点距离最大的直线l 的方程,最大距离是多少五、两平行直线间的距离1、求平行直线l 1:2x-7y-8=0与l 2:6x-21y-1=0的距离2、两条互相平行的直线分别过点A (6,2)和B (-3,-1),如果两条平行直线间的距离为d ,求:(1)d 的变化范围;(2)当d 取最大值时,两条直线的方程.3、求与直线l :5x -12y +6=0平行,且到l 的距离为2的直线的方程.4、求两平行线1l :3x+4y=10和2l :3x+4y=15的距离。
练习:1、 求过点M (-2,1)且与A (-1,2),B (3,0)两点距离相等的直线方程。
2、 直线1l 过点A (0,1),2l 过点(5,0),如果1//l 2l ,且1l 与2l 的距离为5,求1l 、2l的方程4、直线l 经过点P (2,-5),且与点A (3,-2)和点B (-1,6)的距离之比为1:2,求直线l 的方程六、横过定点问题1、直线3)2(+-=x k y 必过定点,该定点的坐标为( )A .(3,2)B .(2,3)C .(2,–3)D .(–2,3)2、求证:不论t 取何值时,直线(t+2)x-(t-1)y=-6t-3都恒过定点。
(三种方法)练习:1、已知直线5530l ax y a --+=∶,求证:不论a 为何值,直线l 恒过第一象限.2、直线l 的方程为(a -2)y =(3a -1)x -1(a ∈R).求直线l 必过定点;七、利用斜率求解1、已知实数x,y 满足y=,求的最大值和最小值2、若点A (2,–3),B (–3,–2),直线l 过点P (1,1),且与线段AB 相交,则l 的斜率k 的取值范围是( )A .43≥k 或4-≤kB .43≥k 或41-≤kC .434≤≤-kD .443≤≤k3、已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围.练习:1、 已知直线l 过P(-1,2),且与以A(-2,-3)、B(3,0)为端点的线段相交,求直线l 的斜率的取值范围.2、 已知直线l 经过点P (1,1),且与线段MN 相交,又M (2,-3),N (-3,-2),求直线l 的斜率k 的取值范围。
八、点、直线的对称问题1、求点A (2,4)关于点(3,5)对称的点C 的坐标。
2、在直线l:3x-y=0上求一点p,使得 (1)P 到A (4,1),B (0,4)的距离之差最大;(2)P 到A (4,1),C (3,4)的距离之和最小。
3、(直线关于点对称)已知直线l :y=4x+3,求:直线l 关于点A (6,2)的对称直线的方程。
4、(直线关于直线对称)求直线关于1l :2x+y-4=0关于直线l :3x+4y-1=0的对称直线2l的方程。
练习:1、求直线 y=2x+3关于直线l : y=x+1对称的直线方程。
2、已知直线l :求点A (2,2)关于直线2x-4y+9=0的对称点坐标。
3、2x-3y+1=0,点A (-1,-2),求:a. 点A 关于直线l 的对称点A '的坐标b. 直线m :3x-2y-6=0关于直线l 的对称直线m '的方程c. 直线l 关于点A (-1,-2)对称的直线l '的方程4、已知直线l :y=3x+3,求:(1) 点P (4,5)关于l 的对称点坐标;(2) 直线y=x-2关于l 的对称直线的方程;(3) 直线l 关于点A (3,2)的对称直线的方程。
九、直线上动点与已知点距离的最大最小值a. 在直线l 上求一点P 使|PA |+|PB |取得最小值时,若点A 、B 位于直线l 的同侧,则作点A (或点B )关于l的对称点A'(或点B'),连接A B'(或AB')交l于点P,则点P即为所求。
若点A、B位于直线l的异侧,直接连接AB交l于P点,则点P即为所求。
可简记“同侧对称异侧连”。
即两点位于直线的同侧时,作其中一个点的对称点;两点位于直线的异侧时,直接连接两点即可。
b. 在直线l上求一点P使||PA|-|PB||取得最大值时,方法与a恰好相反,即“异侧对称同侧连”。
=,在直线l上求一点P,使|PA|+|PB|最小。
(1)已知两点A(3,-3),B(5,1),直线:l y x||PA|-|PB||最大(2)求一点P,使十、直线与坐标轴围成的图形面积或周长问题1、已知直线l过点P(3,2),且与x轴正半轴、y轴正半轴分别交于A,B两点,求三角形AOB面积的最小值及此时l的方程,求直线l在两坐标轴上截距之和的最小值A-,,且与两坐标轴围成三角形面积为4,求直线l方程.2、直线过定点(23)3、已知点A(1,3),B(3,1),C(-1,0),求△ABC的面积.练习:1、已知直线l经过点P(3,2)且被两平行直线1l:x+y+1=0和2l:x+y+6=0截得的线段长为5,求直线l的方程2、一条光线从A(3,2)发出,经x轴反射,通过点B(-1,6),求入射光线和反射光线所在的直线方程.。