三极管雪崩窄脉冲电路设计

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三极管雪崩窄脉冲电路设计

窄脉冲发射机主要是产生经过调制后的窄脉冲并将信号从天线发射出去,其中关键的是如何产生需要的窄脉冲信号,本文在参考探地雷达脉冲和IR-UWB 产生的基础上,根据现有的和实际的情况,选择了适合的发射电路。

§1.1雪崩三极管窄脉冲产生原理

雪崩晶体三极管是可以用来产生比较高速、大功率窄脉冲的器件,它价格便宜、使用方便,因此得到广泛运用。

CEO

CE

I CBO

图1.1 共发射极输出特性曲线

从图1.1中可以看出,按照晶体管的工作情况,可以把共发射极接法的输出特性曲线分为四个区域:截止区、放大区、饱和区和击穿区。

当发射结反向运用,集电结也反向运用时,晶体管处于截止区。 当发射结正向运用,集电结反向运用时,晶体管处于放大区。 当发射结和集电结都处于正向运用状态时,晶体管处于饱和区。

在放大区工作时,如果将集电极和发射极间的电压CE V 增加到一定程度,就会使集电结发生雪崩击穿,雪崩击穿电压较高,一般6伏,击穿后集电极电流C I 急剧上升。下面分析晶体三极管发生雪崩效应的过程。

集电结反向偏压很大,集电结空间电荷区内电场强度达到发生雪崩倍增效应时,电流通过集电结空间电荷区,由于雪崩倍增,电流增大,因此引进倍增因子M 为电流增大的倍速,M 定义为雪崩区内集电结电流与基结电流的比值,数值上等效于雪崩区域内电流放大系数α与正常工作区域内电流放大系数0α的比值。

6

图1.2 CEO BV 测量原理电路图 图1.3 CBO BV 测量原理电路图 在基极开路的共发射极电路中,外加电压比较小而没有发生雪崩倍增情况下,电路电流关系为:

0(1)

CBO

CEO I I α=

- (1-1)

若外加电压较高,集电结发生雪崩倍增效应,这时的电流放大系数为0M α,基区的电流为CBO MI ,电路电流关系变为:

0(1)

CBO

CEO MI I M α=

- (1-2)

当01M α→,CEO I →∞时,晶体管发生了击穿,当0=1M α时,-C E 间所加的反向电压就是CEO BV 。

实验表明,倍增因子M 与外加反向电压V 的关系为:

1

1()

m

B

M V V =

- (1-3) 其中B V 为集电结雪崩击穿电压,对于基极开路的情况,V 近似等于CEO V ,m 为常数,与晶体管的结构和材料有关[8],具体取值如表1.1:

对于不同的m 值,应用M 值表达式可以仿真出外加电压倍增因子M 与m ,B

V V 三者之间的关系,仿真图如下:

图1.4倍增因子M 与m ,

B

V V 关系

从图1.4中可以看出,在

B

V

V 一定的时候,m 越大,则M 值越小;当外加电压V 一定时,B V 越小,则雪崩电流增加得越大;当B V 一定的情况下,只有增大外加电压V 的值,M 值才会变大,雪崩电流才会显著增加,所以在观察晶体管的雪崩现象时,外加电压要有一定的要求,否则雪崩现象就不会明显[9]。因此在选择雪崩晶体管时,雪崩击穿电压B V 是一个比较重要的标准。

在集电结为雪崩击穿的情况下,设CBO B BV V =,代入M 值表达式,在晶体管发生了雪崩击穿时,0=1M α,V =CEO BV ,于是有:

0m 00=1=11(

)CEO CBO m

CEO CBO

M BV BV BV BV α

ααα=

⇒-- (1-4)

由0

00

1αβα=

-化简CEO BV 得 m

1CBO

CEO BV β+(0β为大电流直流放大系数) (1-5)

由于0β一般情况下大于1,因此CBO BV 总是大于CEO BV ,在知道CEO BV 和0β后可以近似估算出CBO BV ,可以看出0β越大,CBO BV 与CEO BV 的差值就越大,这在给选择雪崩三极管提供了一个重要的依据。

8

§1.2基于三极管雪崩效应的大幅度脉冲电路设计与测试

应用单个晶体三极管可以构成一个基本的雪崩电路,其原理如图1.5所示:

图1.5 晶体管雪崩效应窄脉冲形成电路

从电路图1.5中可以看出,晶体管雪崩电路图与基本的三极管开关电路一样,都是通过三极管结间导通截止从而形成输出波形,所不同的是三极管开关电路工作在饱和、截止区,而雪崩电路工作在雪崩区,两者之间的差别在于所加的电源电压不同,工作点不同。其实从本质上来说,雪崩电路也是一种开关电路,只不过这种电路工作在雪崩区,开关速度非常快,这是由于在导通时电流是雪崩式地成倍增长而流过的缘故。基于图1.5电路,三极管型号为S8085D331,当所加电源低于雪崩电压VCC=24V 时,输出脉冲幅度为4.32V ,脉冲宽度为60ns ,测量到的脉冲波形如下:

图1.6 三极管工作在开关状态输出波形 图1.7 开关管输出波形

从测量的波形可以看出,由于输入端有Cb =100p 电容和Rb =1k Ω构成了微分电路,输入到三极管基极的100kHz ,幅度为2V 的方波被微分了,在上升沿和下降沿形成了脉冲,从图上可以看出,输出的波形为反相的开关电路。

在本次制作中,根据图 1.2和图1.3测量了型号为S8085D331、S9014C331、S9013H311、2N3094四种常见三极管的CBO BV 和CEO BV ,实际测量值如表1.2所示:

应用四种三极管在图1.5中分别做了测试,其中Cb =100p ,Rb =1k Ω,Rc =10k Ω,Co =100p ,Ro =61.5Ω输入外部触发脉冲为100kHz,幅度2V 的方波,改变VCC 值,示波器为泰克TDS2024,采样率为2GS/S ,带宽200MHz ,探头为200MHz ,得到的测试数据如表1.3所示:

从表1.2和表1.3可以看出,为了保证雪崩击穿,电源电压需大于CEO BV ,但为了防止三极管发生二次击穿而损坏三极管,所外加电源电压最好小于CBO BV 。CEO BV 越高的管子要求外加的电压就越大,雪崩效应才比较明显,这与第三节中分析倍增因子与外加电压的关系是一致的。在三极管发生雪崩效应的临界点,输出脉冲的幅度和宽度都有显著的变化,即雪崩前,三极管工作在开关状态,输出的脉冲为触发信号的反向信号,而工作在雪崩区的三极管,开关速度明显更快,集电结电流显著增大。

为了观察负载与储值电容对输出雪崩脉冲的影响,选取S8085D331三极管,在测试条件同上的情况下,改变储值电容和负载值,得到的测试结果如表1.4所示:

相关文档
最新文档