以太网分层架构

合集下载

以太网简要教程

以太网简要教程

以太网简要教程一、概述通常我们所说的以太网主要是指以下三种不同的局域网技术:以太网/IEEE 802.3—采用同轴电缆作为网络媒体,传输速率达到10Mbps;100Mbps以太网—又称为快速以太网,采用双绞线作为网络媒体,传输速率达到100Mbps;1000Mbps以太网—又称为千兆以太网,采用光缆或双绞线作为网络媒体,传输速率达到1000Mbps(1Gbps)以太网以其高度灵活,相对简单,易于实现的特点,成为当今最重要的一种局域网建网技术。

虽然其它网络技术也曾经被认为可以取代以太网的地位,但是绝大多数的网络管理人员仍然把将以太网作为首选的网络解决方案。

为了使以太网更加完善,解决所面临的各种问题和局限,一些业界主导厂商和标准制定组织不断的对以太网规范做出修订和改进。

也许,有的人会认为以太网的扩展性能相对较差,但是以太网所采用的传输机制仍然是目前网络数据传输的重要基础。

二、以太网工作原理以太网是由Xeros公司开发的一种基带局域网技术,使用同轴电缆作为网络媒体,采用载波多路访问和碰撞检测(CSMA/CD)机制,数据传输速率达到10Mbps。

虽然以太网是由Xeros公司早在70年代最先研制成功,但是如今以太网一词更多的被用来指各种采用CSMA/CD技术的局域网。

以太网被设计用来满足非持续性网络数据传输的需要,而IEEE802.3规范则是基于最初的以太网技术于1980年制定。

以太网版本2.0由Digital Equipment Corporation、Intel、和Xeros三家公司联合开发,与IEEE 802.3规范相互兼容。

太网结构示意图如下:以太网/IEEE 802.3通常使用专门的网络接口卡或通过系统主电路板上的电路实现。

以太网使用收发器与网络媒体进行连接。

收发器可以完成多种物理层功能,其中包括对网络碰撞进行检测。

收发器可以作为独立的设备通过电缆与终端站连接,也可以直接被集成到终端站的网卡当中。

全调度以太网技术架构

全调度以太网技术架构

全调度以太网技术架构白皮书1缩略语列表缩略语英文全名中文解释AI Artificial Intelligence人工智能AIGC AI-Generated Content人工智能生产内容CPU Central Processing Unit中央处理器DPU Data Processing Unit数据处理单元ECMP Equal Cost Multi Path等价多路径路由ECN Explicit Congestion Notification显式拥塞通告FC Fibre Channel光纤通道GPU Graphics Processing Unit图形处理器GSF Global Scheduling Fabirc全调度交换网络GSOS Global Scheduling Operating System全调度操作系统GSP Global Scheduling Processor全调度网络处理节点HoL Head-of-line blocking队首阻塞JCT Job Completion Time任务完成时间ML Machine Learning机器学习PFC Priority-based Flow Control基于优先级的流量控制PHY Physical端口物理层PKTC Packet Container报文容器RDMA Remote Direct Memory Access远程直接内存访问RoCE RDMA over Converged Ethernet融合以太网承载RDMA VOQ Virtual Output Queue虚拟输出队列DGSQ Dynamic Global Scheduling Queue动态全局调度队列1.背景与需求目前,AIGC(AI-Generated Content,人工智能生产内容)发展迅猛,迭代速度呈现指数级增长,全球范围内经济价值预计将达到数万亿美元。

在中国市场,AIGC的应用规模有望在2025年突破2000亿元,这一巨大的潜力吸引着业内领军企业竞相推出千亿、万亿级参数量的大模型,底层GPU算力部署规模也达到万卡级别。

以太网规范及体系结构

以太网规范及体系结构

使用的传输介质 50Ω粗同轴电缆 50Ω细同轴电缆 75Ω同轴电缆 双绞线 光纤(与 FOIRL 协同工作/纯单段光纤) 光纤 无源光纤
有效距离 500m 180m 3.8km 100m 1000/2000m 2000m 500m
快速以太网采用 IEEE802.3u 标准,采用的传输介质为双绞线(5 类或超五类屏 蔽双绞线或者非屏蔽双绞线),其对应表如下:
万兆以太网规范 10GBase-SR 10GBase-LR 10GBase-LRM 10GBase-ER 10GBase-ZR 10GBase-LX4 10GBase-CX4 10GBase-T 10GBase-KX4 10GBase-KR 10GBase-SW 10GBase-LW 10GBase-EW 10GBase-ZW
使用的传输介质 850nm 多模光纤,50um 的 OM3 光纤 1310nm 单模光纤 62.5um 多模光纤,OM3 光纤 1550nm 单模光纤 1550nm 单模光纤 1300nm 单模光纤或多模光纤 屏蔽双绞线 6 类,6a 类双绞线 铜线(并行接口) 铜线(串行接口) 850nm 多模光纤,50um 的 OM3 光纤 1310nm 单模光纤 1550nm 单模光纤 1550nm 单模光纤
标准以太网
快速以太网
千兆以太网
万兆以太网
标准以太网采用了 IEEE802.3,IEEE802.3A,IEEE802.3B,IEEE802.3I, IEEE802.3J 等标准,采用的传输介质有同轴电缆,光纤,双绞线,其对应表如 下:
标准以太网规范 10Base5 10Base2 10Broad36 10Base-T 10Base-FL 10Base-FB 10Base-FP
有效距离 300m 10km 260m 40km 80km 300m(多模)10km(单模) 15m 55m(6 类线)100m(6a 类线) 1m 1m 300m 10km 40km 80km

网络的三层架构

网络的三层架构

================================================================ =网络的三层架构:1.接入层: 提供网络接入点,相应的设备端口相对密集. 主要设备:交换机,集线器.2.汇聚层: 接入层的汇聚点,能够提供路由决策.实现安全过滤,流量控制.远程接入. 主要设备:路由器.3.核心层: 提供更快的传输速度, 不会对数据包做任何的操作============================================================== ===OSI七层网络模型: Protocol data unit1.物理层: 速率,电压,针脚接口类型 Bit2.数据链路层: 数据检错,物理地址MAC Frame3.网络层: 路由(路径选择),逻辑的地址(IP) Packet4.传输层: 可靠与不可靠传输服务, 重传机制. Segment5.会话层: 区分不同的应用程序的数据.操作系统工作在这一层 DATA6.表示层: 实现数据编码, 加密. DATA7.应用层: 用户接口 DATABit, Frame, Packet, Segment 都统一称为: PDU(Protocol Data Unit) ============================================================== ===物理层:1.介质类型: 双绞线, 同轴电缆, 光纤2.连接器类型: BNC接口, AUI接口, RJ45接口, SC/ST接口3.双绞线传输距离是100米.4.HUB集线器: 一个广播域,一个冲突域.泛洪转发. 共享带宽.直通线: 主机与交换机或HUB连接交叉线: 交换机与交换机,交换机与HUB连接全反线(Rollback): 用于对CISCO的网络设备进行管理用.============================================================== ===数据链路层:1. 交换机与网桥2. 交换机与网桥有多少个段(端口)就有多少的冲突域.3. 交换机与网桥所有的段(端口)在相同的广播域============================================================== ===网络层:1. 路由器2. 路由实现路径的选择(路由决策).Routing Table3. 广域网接入.4. 路由器广播域的划分(隔断).============================================================== ===传输层:1.TCP(传输控制协议),面向连接,拥有重传机制,可靠传输2.UDP(用户报文协议),无连接,无重传机制,不可靠传输3.端口号:提供给会话层去区分不用应用程序的数据.标识服务.============================================================== ===show hosts 显示当前的主机名配置show sessions 显示当前的外出TELNET会话clear line XXX 清除线路<ctrl>+<z> 直接返回到特权模式<ctrl>+<shift>+<6> + x============================================================== ===enable 进入特权模式disable 从特权模式返回到用户模式configure terminal 进入到全局配置模式interface ethernet 0/1 进入到slot 0的编号为1的以太网口exit 返回上层模式end 直接返回到特权模式============================================================== ===1.当CISCO CATALYST系列交换机,在初始化时,没有发现"用户配置"文件时,会自动载入Default Settings(默认配置)文件,进行交换机初始化.以确保交换机正常工作.2.CISCO Router在初始化时,没有发现"用户配置"文件时,系统会自动进入到"初始化配置模式"(系统配置对话模式,SETUP模式, STEP BY STEP CONFIG模式, 待机模式),不能正常工作!============================================================== ===1.CONSOLE PORT(管理控制台接口): 距离上限制,独占的方式.2.AUX port(辅助管理接口): 可以挂接MODEM实现远程管理,独占的方式.3.Telnet:多人远程管理(决定于性能, VTY线路数量).不安全.============================================================== ===立即执行,立即生效============================================================== ===hostname 配置主机本地标识r6(config)#interface ethernet 0r6(config-if)#ip address 1.1.1.1 255.255.255.0show version 观察IOS版本设备工作时间相关接口列表show running-config 查看当前生效的配置此配置文件存储在RAMshow interface ethernet 0/1 查看以太网接口的状态工作状态等等等...============================================================== ===reload 重新加载Router(重启)setup 手工进入setup配置模式show history 查看历史命令(最近刚用过的命令)terminal history size <0-256> 设置命令缓冲区大小 0 : 代表不缓存copy running-config startup-config 保存当前配置概念:nvram : 非易失性内存,断电信息不会丢失 <-- 用户配置 <-- startup-configram : 随机存储器,断电信息全部丢失 <-- 当前生效配置 <-- running-configstartup-config 在每次路由器或是交换机启动时候,会主动加载============================================================== ===banner motd [char c] 同时要以[char c]另起一行结束description 描述接口注释( <ctrl>+<shift>+<6> ) + x为console口配置密码:line conosle 0 进入到consolo 0password cisco 设置一个密码为"cisco"login 设置login时使用密码enable password <string> 设置明文的enable密码enable secret <string> 设置暗文的enable密码(优先于明文被使用)service password-encryption 加密系统所有明文密码(较弱)设置vtp线路密码(Telnet)line vty 0 ?password ciscologin============================================================== ===配置虚拟回环接口(回环接口默认为UP状态)inerface loopback ? 创建一个回环接口ip address 1.1.1.1 255.0.0.0 配置接口的IP地址end 退出该接口ping 1.1.1.1 检测该接口有效性no * 做配置的反向操作DCE/DTE 仅存在广域网中show controllers serial 0 用于查看DCE与DTE的属性DCE的Router需要配置时钟频率clock rate ? 配置DCE接口的时钟频率(系统指定频率)============================================================== ===Serial1 is administratively down, Line protocol is down没有使用no shutdown命令激活端口Serial1 is down, Line protocol is down1.对方没有no shutdown激活端口2.线路损坏,接口没有任何连接线缆Serial1 is up, line protocol is down1.对方没有配置相同的二层协议 serial接口default encapsulation: HDLC2.可能没有配置时钟频率Serial1 is up, line protocol is up接口工作正常============================================================== ===show cdp neighbors 查看CDP的邻居(不含IP)show cdp neighbors detail 查看CDP的邻居(包含三层的IP地址) show cdp entry * 查看CDP的邻居(包含三层的IP地址)r1(config)#no cdp run 在全局配置模式关闭CDP协议(影响所有的接口)r1(config-if)#no cdp enable 在接口下关闭CDP协议(仅仅影响指定的接口)clear cdp table 清除CDP邻居表show cdp interface serial 1 查看接口的CDP信息============================================================== ===Sending CDP packets every 60 seconds(每60秒发送cdp数据包)HoldTime 180 seconds(每个CDP的信息会保存180秒)============================================================== ===ip host <name> <ip> 设置静态的主机名映射============================================================== ================================================================= ===Telnet *.*.*.* 被telnet的设备,需要设置line vty的密码,如果需要进入特权模式需要配置enable密码show users 查看 "谁" 登录到本地show sessions 查看 "我" telnet外出的会话clear line * 强制中断 "telnet到本地" 的会话disconnect * 强制中断 "telnet外出" 的会话============================================================== ===show flash: 查看flash中的IOS文件copy running-config tftp: 将running-config复制到tftp服务上copy tftp: running-configcopy startup-config tftp:copy tftp: startup-configcopy flash: tftp:copy tftp: flash:copy flash: tftp://1.1.1.1/c2500-ik8os-l.122-31.bin=================================================================ROM : Rom monitor 比Mini IOS还要低级os系统,类似于BIOS Mini IOS(2500 serial Router) 也称为boot模式,可以用于IOS的升级nvRam : Startup-config 启动配置文件,或称为用户配置文件Configuration register 启动配置键值, 修改它会影响Router 的启动顺序show version 查看router的configuration register0x0 指出router要进入Rom monitor模式0x1 Router将会去加载mini ios软件,进入BOOT模式0x2 Router会加载Flash中的IOS软件.(Default config regcode)0x2142 绕过加载startup-config 的过程, 或是:不加载启动配置,直接进入setup mode0x2102 router默认配置键值, 执行正常的启动顺序.config-register 0x2142 修改启动配置键值============================================================== ===交换机 function:1.地址学习 Address learing2.转发/过滤决策 Forward/Filter Decision3.环路避免 Loop avoidance=================================================================交换机的三种转发模式:1.直通转发: 速度快,但不能确保转发的帧的正确性.2.存贮转发: 速度慢,确保被转发的帧的正确性.3.自由碎片转发(cisco私有技术): 介于直通转发与存贮转发性能之间.存贮转发,会重新计算帧的FCS与帧的原始FCS进行比较,以决定转发还是丢弃.自由碎片转发,仅检测帧的前64字节,判断帧的完整性.自由碎片转发机制, 仅能够在CISCO的设备上实现.CISCO 1900 系列的交换机默认采用自由碎片转发此转发方式============================================================== ========交换机的地址学习、转发过滤等:1.交换机会先缓存帧源地址2.当目标地址未知时,交换机会泛洪该数据帧(目标地址已知时, 帧不会被泛洪)3.对于广播帧与多播数据帧,交换机默认采用泛洪的方式进行转发4.如数据帧的源地址与目标地址均来自相同的端口,交换机默认会丢弃该数据帧.======================================================================show ip route 查看当前路由表配置静态路由:ip route (Destnation Network IP) (NetMask) [NextHopIP | LocalInterface]Destnation Network IP: 目标网络IPNetMask: 目标网络子网掩码NextHopIP: 下一跳IPLocalInterface: 本地接口1.0.0.02.0.0.03.0.0.04.0.0.0----- s1 RA s0 >-------- s1 RB s0 --------- s1 RC s0 ------1 12 12 1RA:ip route 4.0.0.0 255.0.0.0 2.0.0.2ip route 4.0.0.0 255.0.0.0 s0============================================================== ====自治系统:IGPs : 内部网关路由协议, 在一个自治系统内部去维护路由RIPv1, RIPv2, IGRP, EIGRP, OSPF, ISISEGPs : 外部网关路由协议, 在维护自治系统间路由BGP============================================================== ====管理距离:决定何种路由协议生成的路由会被路由器采纳.管理距离越低越容易被路由器采纳.============================================================== ====选择路由的度量:RIP: 是跳数做为选择最佳路由的度量值会错误选择次佳的路由IGRP: 根据带宽、延迟、可靠度、负载、MTU(最大传输单元)============================================================== ====距离矢量型路由协议:1.通告的内容: 路由表的副本(copy)2.通告的时间: 周期性 3.通告的对象: 直接连接的邻居路由器4.通告的方式: 广播(RIPv1,IGRP)规则机制:1.定义最大数2.水平分隔3.路由毒化,毒性逆转4.沉默计时器5.触发更新============================================================== ====rip : Router information protocolRip V1 采用广播通告广播地址: 255.255.255.2551.以跳数作为度量2.最多支持6条路径的均分负载(default set to 4)3.周期性通告时间: 30sRouter rip 选择rip作为路由协议network *.*.*.* 宣告接口宣告接口:1. 将此接口加入到rip进程中2. 向其它的路由器通告此接口的网络show ip protocols 查看RIP的相关信息rip的管理距离:120debug ip rip 调试RIP路由clear ip route * 清除route表============================================================== ====Rip Version 2 :ripv2使用是多播方式去通告网络, 多播地址:224.0.0.9router ripversion 2 配置rip版本为version 2no auto-summary 关闭掉自动的汇总Ripv2 的认证 :A(config)#key chain A 配置钥匙链 AA(config-keychain)#key 1 配置钥匙 1A(config-keychain-key)#key-string cisco 定义密码A(config-keychain-key)#exitA(config-keychain)#exitA(config)#inte s 1 进入s 1的接口A(config-if)#ip rip authentication key-chain A 选择A的钥匙链 A(config-if)#ip rip authentication mode md5 密文认证============================================================== ===RIP 补充:passive-interface <inte number> 配置相应的接口不发送任何通告neighbor <ip> 指出具体的邻居如果neighbor和passive-interface同时配置,那么neighbor会不受passive-interface限制.============================================================== ===IGRP是CISCO私有路由选择协议,仅能够在CISCO的路由器上去实现和部署.IGRP是使用复合型的度量值去选择最佳的路由.1.带宽2.延迟3.可靠性4.负载5.MTUIGRP 支持等价均分负载,同时也支持不等价的均分负载.IGRP 在配置的时候,需要注意自治系统号.在相同的自治系统中的路由器才能够相互的学习通告相关的路由.IGRP 属于距离矢量型路由协议, 会做自动的路由汇总.而且没有办法关闭此特性.IGRP 使用得是24bit度量值.============================================================== ===IGRP 配置router igrp <as number> as number为自治系统编号(自主域)network <primary ip network> 主类网络号A B C的编号debug ip igrp events 调试igrp的相关事件debug ip igrp transactions 调试igrp的事件内容============================================================== ===链路状态型路由协议:1.通告的内容: 增量更新(OSPF lsa)2.通告的时间: 触发式3.通告的对象: 具有邻居关系路由器4.通告的方式: 单播&多播============================================================== ===EIGRP度量值是32位长,K值不相等,不能创建邻居关系,AS自治系统不同,也不能创建邻居关系,在高于T1的速率上,会每隔5s发送hello packet,在低于T1的速率上,会每隔60s发送hello packet。

以太网工业交换机软件架构设计

以太网工业交换机软件架构设计

以太网交换机采用是上海兆越独有的MOS操作系统平台,系统采用分层设计,分为硬件适配层、操作系统和任务接口、IP转发及路由策略管理、路由应用层、业务应用层、系统管理和配置服务。

平台化:抽象的软件体系结构,专为网络设计优化的通讯产品操作平台。

组件化:集成二三层交换技术、QoS服务技术、安全技术等通信要件。

所有业务以组件的形式添加到MOS平台,组件与组件之间通讯采用标准内部接口,保证基于产品应用,可裁剪和伸缩,能快速推出产品。

为多种产品提供一致的网络界面、用户界面、管理界面,提供灵活丰富的应用解决方案。

数据承载网络系统软件,具有冗余、容错、防病毒的功能。

软件的工程开发遵循ISO9001、EN50128、EN50159-1、EN50159-2等相关系列的软件质量及安全保证体系,具有完善的软件文档管理。

MOS平台分管理、控制、支撑、数据四个平面。

管理平面向用户提供平台的配置和管理功能,提供命令行、WEB、SNMP 三种管理方式,可根据产品需要增减。

其中命令行采用类Cisco风格。

MOS平台将控制平面的各功能模块抽象定义统一的接口和数据结构,命令行、WEB、SNMP等管理模块通过统一接口和数据结构,配置管理各功能模块。

采用这种设计,所有模块遵守预先定义好的数据结构和接口,能方便地增加一种新的配置工具,以满足产品多样性,如增加PON设备的CTC及OMCI管理功能。

各管理模块并行执行,采用消息机制,管理各业务功能模块。

数据流图如下所示控制平面SSM:System Service Module,MOS平台微内核,提供基本二、三层服务、接口管理、配置管理、系统服务等;RM(Route Manager):实现OSPF、BGP、IS-IS、RIP、PIM DM/SM 等多种单播和多播路由协议,支持路由迭代、路由策略、ECMP等丰富的路由特性;Service Application:业务应用模块,包括AAA、DHCP、PTP、VRRP、QoS等。

工业以太网协议

工业以太网协议

工业以太网协议简介工业以太网协议是一种用于工业自动化领域的网络协议,它基于以太网技术,并进行了针对工业环境的优化。

相比于传统的以太网协议,工业以太网协议具有更高的稳定性、可靠性和实时性,能够满足工业自动化系统对数据传输的要求。

适用范围工业以太网协议广泛应用于工业自动化领域,包括制造业、能源领域、交通运输等。

它适用于各种工业设备之间的通信,包括传感器、执行器、控制器等。

协议架构工业以太网协议采用分层的架构,包括物理层、数据链路层、网络层和应用层。

物理层物理层负责定义电气和机械特性,包括传输介质、接口和连接器等。

常用的传输介质包括双绞线、光纤和无线电波。

数据链路层数据链路层负责将数据分割为帧,并进行差错校验和流量控制等功能。

它定义了数据帧的格式和传输方式,确保数据的可靠传输。

网络层网络层负责数据的路由和转发,保证数据能够准确地传送到目标设备。

它使用IP地址和子网掩码进行设备的寻址和标识。

应用层应用层是工业以太网协议的最上层,负责定义应用数据的格式和交互方式。

常见的应用层协议包括MODBUS、Profibus和EtherNet/IP等。

工业以太网协议的特点相比于传统的以太网协议,工业以太网协议具有以下特点:实时性工业自动化系统对数据传输的实时性要求较高,工业以太网协议通过优化协议栈和网络设备,提供了较低的延迟和较高的带宽,满足了实时性的需求。

可靠性工业环境中存在噪声、干扰和抖动等因素,工业以太网协议通过采用冗余机制和差错校验等技术,提高了数据传输的可靠性。

网络管理工业以太网协议支持网络管理功能,包括设备的配置、监控和故障诊断等。

管理员可以通过网络管理系统对工业以太网进行集中管理和控制。

扩展性工业以太网协议支持灵活的拓扑结构,可以适应不同规模和复杂度的工业自动化系统。

它可以通过增加网络设备和调整网络配置来满足系统的扩展需求。

应用案例工业以太网协议在实际应用中具有广泛的应用,下面以一个典型的应用案例进行介绍。

三层架构详细的介绍了三层架构

三层架构详细的介绍了三层架构

三层架构详细的介绍了三层架构
三层架构是当前计算机网络技术中一种常用的模型,它将整个网络系
统分成三个不同的层次:应用层、传输层和网络层。

三层架构的设计概念
是“分而治之”,即把整个网络的工作任务分解成若干个独立的层,每个
层对下面一层只有非常有限的了解,而且不用理会其他层的活动情况,只
负责和本层有直接关系的活动,从而使网络的复杂性降低,操作用户也更
加容易掌握。

下面将详细介绍三层架构的每一层内容。

(一)应用层
应用层是计算机网络中最高的一层,它的主要功能是负责为用户提供
服务,为用户实现与网络的交互和通信,并且能够完成数据传输的功能。

应用层的技术包括:FTP(文件传输协议)、SMTP(简单邮件传输协议)、HTTP(超文本传输协议)、TELNET(网络终端协议)、SNMP(简单网络管
理协议)等协议,都是在应用层完成其功能。

(二)传输层
传输层是一个中间层,它的主要功能是完成数据的传输、控制和检验
操作,并且能够在发送端和接收端之间建立可靠的数据传输链路。

网络三层架构(修正)

网络三层架构(修正)
20XX
网络三层架构
2024/7/4
-
核心层 分布层 接入层
2
网络三层架构
网络三层架构是一种常见的网络设计模式,它将网络 划分为三个主要层次:核心层、汇聚层和接入层
x
每个层次都有其特定的功能和职责,使得网络设计更 加清晰和有效
Part 1
核心层
核心层
核心层是网络的最顶层,负责高速数据传输和主要网络流量的路由。它连接着各个汇 聚层设备,提供高速数据传输路径,并负责将数据流量从一个区域传输到另一个区域 。核心层设备通常为高性能路由器或交换机,具有高吞吐量、低延迟和高度冗余的特 点 在核心层,路由器和交换机之间的连接通常采用光纤或高速铜缆,以确保高带宽和低延迟 的数据传输。此外,核心层还应具备较高的容错性和可扩展性,以便在增加新设备或扩展 网络时能够保持性能和稳定性
02 提供较低的成本和灵活的网络连 接方式:以满足不同用户的需求
03 提供用户管理和安全控制功能:确 保网络的稳定性和安全性
12
接入层
总结:网络三层架构将 网络划分为核心层、分 布层和接入层三个层次 ,每个层次都有其特定 的职责和功能
这种架构有助于实现清 晰的网络设计和高效的 流量管理,提高网络的 性能和可靠性
04
提供高可靠性和稳定性:确保 数据的可靠传输和网络的稳定

03
提供较高的带宽和处理能力: 以支持大量数据流量的处理
Part 3
接入层
接入层
接入层是网络的底层,负责将用户设备(如计算机、服务器、打印机等)连接到网络。它为 用户设备提供网络连接和数据传输服务,并负责管理用户的访问和身份验证。接入层设备 通常为交换机、路由器或无线接入点(AP),具有较低的成本和较低的性能要求

计算机网络协议二从二层到三层

计算机网络协议二从二层到三层

计算机网络协议二从二层到三层计算机网络协议二:从二层到三层计算机网络协议是计算机网络中实现通信和数据传输的规则和标准。

它们分为不同的层次,每个层次负责不同的功能。

在网络协议的体系结构中,二层和三层协议在网络通信中扮演了重要的角色。

本文将介绍从二层到三层协议的转变,并探讨其在网络通信中的作用和重要性。

一、二层协议二层协议,也称为数据链路层协议,主要用于在物理链路上进行数据传输和通信。

它负责将原始数据转换为数据帧,并通过物理介质进行传输。

常见的二层协议有以太网协议、无线局域网协议等。

以太网协议是一种广泛应用的二层协议,它定义了数据帧的结构以及数据的传输方式。

以太网协议使用物理地址(MAC地址)来标识网络中的设备,并通过冲突检测机制来确保数据的可靠传输。

它适用于局域网环境,速度高、传输可靠。

二层协议通过物理地址进行通信,只负责相邻节点之间的数据传输,无法进行跨网络的通信。

由于局限性,二层协议在大型网络中的应用有所限制。

二、三层协议三层协议,也称为网络层协议,负责在不同网络之间进行数据传输和通信。

它实现了逻辑上的地址转发和路由选择,将数据包从源节点传输到目标节点。

常见的三层协议有IP协议、ICMP协议等。

IP协议是互联网上最为重要的三层协议,定义了数据包的格式和传输规则。

IP协议使用IP地址来标识网络中的设备,并根据路由表进行路径选择。

它支持跨网络的通信,可以在不同的网络中进行数据传输。

除了IP协议,还有其他的三层协议用于网络通信。

ICMP协议用于在IP网络上进行错误报告和网络状态探测,ARP协议用于将IP地址转换为物理地址。

三层协议通过IP地址进行通信,能够实现跨网络的通信和数据传输。

它提供了灵活性和可扩展性,适用于大型网络的构建和管理。

三、从二层到三层的转变从二层到三层的转变是计算机网络发展的一个重要阶段。

随着网络规模的不断扩大,二层协议的局限性逐渐显现。

在大型网络中,二层广播会导致网络拥塞和性能下降,同时也带来了安全性和管理上的挑战。

以太网详解

以太网详解

以太网详解1.以太网是什么?以太网(Ethernet)最早是由Xerox(施乐)公司创建的局域网组网规范,1980年DEC、Intel和Xeox三家公司联合开发了初版Ethernet规范—DIX 1.0,1982年这三家公司又推出了修改版本DIX 2.0,并将其提交给EEE 802工作组,经IEEEE成员修改并通过后,成为IEEE的正式标准,并编号为IEEE 802.3。

虽然Ethernet规范和IEEE 802.3规范并不完全相同,但一般认为Ethernet和正IEEE 802.3是兼容的。

以太网是应用最广泛的局域网技术。

根据传输速率的不同,以太网分为标准以太网(10Mbit/s)、快速以太网(100Mbis)千兆以太网(1000Mbs)和万兆以太网(10Gbit/s),这些以太网都符合IEEE 802.3是兼容的。

2、标准以太网标准以太网是最早期的以太网,其传输速率为10Mbts,也称为传统以太网。

此种以太网的组网方式非常灵活,既可以使用粗、细缆组成总线网络,也可以使用双绞线组成星状网络,还可以同时使用同轴电缆和双绞线组成混合网络。

这些网络都符合EE8023标准,EEE8023中规定的一些传统以太网物理层标准如下。

①10 Base-2:使用细同轴电缆,最大网段长度为185m。

②10 Base-5:使用粗同轴电缆,最大网段长度为500m。

③10 Base-T:使用双纹线,最大网段长度为100m。

④10 Boad-36:使用同轴电缆,最大网段长度为3600m。

⑤10 Base-F:使用光纤,最大网段长度为2000m,传输速率为10Mb/s。

以土标准中首部的数字代表传输速率,单位为Mbis;末尾的数字代表单段网线长度(基准单位为100m);Base表示基带传输,Broad表示宽带传输。

3、快速以太网随着网络的发展和各项网络技术的普及,标准以太网技术已难以满足人们对网络数据流量和速率的需求。

1993年10月以前,人们只能选择价格昂贵、基于100Mbs光缆的FDD技术组建高标准网络,1993年10月,Grand Junction 公司推出了世界上第一台快速以太网集线器FastSwitch10/100和百兆网络接口卡Fast NIC 100,快速以太网技术正式得到应用。

以太网的介绍

以太网的介绍

以太网的介绍以太网,属网络低层协议,通常在OSI模型的物理层和数据链路层操作。

接下来小编为大家整理了以太网的介绍,希望对你有帮助哦!以太网(Ethernet)是一种计算机局域网组网技术。

IEEE制定的IEEE 802.3标准给出了以太网的技术标准。

它规定了包括物理层的连线、电信号和介质访问层协议的内容。

以太网是当前应用最普遍的局域网技术。

它很大程度上取代了其他局域网标准,如令牌环网、FDDI 和ARCNET。

以太网的标准拓扑结构为总线型拓扑,但目前的快速以太网(100BASE-T、1000BASE-T标准)为了最大程度的减少冲突,最大程度的提高网络速度和使用效率,使用交换机(Switch)来进行网络连接和组织,这样,以太网的拓扑结构就成了星型,但在逻辑上,以太网仍然使用总线型拓扑和CSMA/CD(Carrier Sense Multiple Access/Collision Derect 即带冲突检测的载波监听多路访问) 的总线争用技术。

历史以太网技术的最初进展来自于施乐帕洛阿尔托研究中心(Xerox PARC)的许多先锋技术项目中的一个。

人们通常认为以太网发明于1973年,当年罗伯特.梅特卡夫(Robert Metcalfe)给他PARC的老板写了一篇有关以太网潜力的备忘录。

但是梅特卡夫本人认为以太网是之后几年才出现的。

在1976年,梅特卡夫和他的助手David Boggs 发表了一篇名为《以太网:局域计算机网络的分布式包交换技术》的文章。

1979年,梅特卡夫为了开发个人电脑和局域网(LANs)离开了施乐,成立了3Com公司。

3com对DEC, Intel, 和施乐进行游说,希望与他们一起将以太网标准化、规范化。

这个通用的以太网标准于1980年9月30日出台。

当时业界有两个流行的非公有网络标准令牌环网(token ring)和ARCNET,在以太网大潮的冲击下他们很快萎缩并被取代。

而在此过程中,3Com也成了一个国际化的大公司。

以太网结构介绍

以太网结构介绍

网卡
主板中可以安装网卡 的PCI插槽
集线器
集线器(HUB):又称集中器,把来自于 不同计算机网络设备的电缆集中配置于 一体,是多个网络电缆的中间转接设备 ,广泛应用于星形结构的网络中作为中 心节点。集线器有利于故障的检测和提 高网络的可靠性,能自动指示有故障的 工作站,并切除其与网络的通信,不让 出问题的区段影响整个网络的正常运行 。但应当注意,利用集线器所构建起来 的网络是共享带宽式的,其带宽由它的 端口平均分配,如总带宽为100Mb/s的集 线器,连接4台工作站同时上网时,每台 工作站平均带宽仅为100/4=25Mb/s。
网络数据传输速率100Mb/s 基带输速率100Mbps基带传输
采用了FDDI的PMD协议,但价格比FDDI便宜 100BASE-T的标准由IEEE802.3制定。与10BASE-T采用相 同的媒体访问技术、类似的步线规则和相同的引出线, 易于与10BASE-T集成。 每个网段只允许两个中继器,最大网络跨度为210米。 快速以太网有四种基本的实现方式:100Base-TX、100Base FX、100Base-T4和100Base-T2。每一种规范除了接口电路外 都是相同的,接口电路决定了它们使用哪种类型的电缆。为 了实现时钟/数据恢复(CDR)功能,100Base-T使用4B/5B曼 彻斯特编码机制。
路由器以太网拓扑结构中的连接线主机网卡mdi路由器以太口mdi交换机集线器接入口mdix交换机集线器级连口mdi主机网卡mdi交叉线交叉线直连线路由器以太口mdi交叉线交叉线直连线交换机集线器接入口mdix直连线直连线交叉线直连线交换机集线器级连口mdi直连线交叉线同类接口互连用交叉线异类接口互连用直连线h3c以太网交换机支持mdimdix自适应不必考虑连线类型交叉与直连网线连接顺序交叉式rj45接头100baset以太网工作原理工作原理以太网采用带冲突检测的载波帧听多路访问csmacd机制

以太网简史

以太网简史

第一部分以太网络简史以太网络最早是在1973年后在加州帕拉阿图的全(Xerox)公司实验室中构思和实际作出来。

由Robert Metcalfe博士(一般称他为“以太网之父”)所发展的﹐以太网络是以2.94Mb/s(Million bits per second,每秒百万比特速度)(3Mb/s)的速度运作。

在1983年6月IEEE (标准委员会国际电子电极工程师协会)批准了第一个IEEE802.3的标准。

由双绞线的以太网络(Ethernet-twisted-pair)(10BASE-T)的标准在1960年9月被IEEE批准﹐因此很快的就变成了办公自动化应用之以太网络介质中较受欢迎的选择。

以太网络是在办公室﹑家中最常见的内部网络﹐其传输速率已由1983年初见时的10Mbps﹐进展至目前常见的1Gbps﹐速率在短短的几年内增加了一百倍。

目前正在发展以太网络的最新传输速率则是10Gbps﹐详细的标准规范将会制定在IEEE802.3标准﹐此标准已在2002年第二季度完成制定。

并使目前主要是为传送SONET/SDH数据框架的暗光纤(Dark Fiber)可传送资料框架﹐以太网络跨入都会网络﹑广域网络的领域。

第二部分以太网络2-1 传统以太网络(Ethernet)二十世纪八十年﹐IEEE的一个委员会意识到许多单位存在着这样的需求﹕即在现有的非屏蔽双绞线的基础上以10Mbit/s的运行速率在以太网上传输信息。

尽管有几个厂商已经开始了使用UTP电缆传输以太网信号的设备﹐但这类设备都是专用设备﹐不具有互操作性。

因此﹐IEEE的一个新的任务就是开发一种运行于10Mbit/s且使用UTP电缆的802.3网络标准。

IEEE在1990年9月作为802.3i通过了这一标准﹐但这一标准通常被称为10BASE-T﹐其中T代表使用双绞线。

10BASE-T标准支持10Mbit/s的运行速率﹐在不使用中继器的情况下使用双绞线传输的距离最大可达100米。

网络三层核心层汇聚层接入层的作用

网络三层核心层汇聚层接入层的作用

网络三层核心层汇聚层接入层的作用网络的三层设计是指核心层(Core Layer)、汇聚层(Distribution Layer)和接入层(Access Layer),它们在网络架构中扮演了不同的角色和具有不同的功能。

下面将详细介绍每一层的作用。

1. 核心层(Core Layer):核心层是网络架构的顶层,主要负责高速数据传输和路由的功能。

它通常由高性能的设备组成,用于连接各个汇聚层设备以及向外部网络提供连接。

核心层的主要功能有:1.1.高速数据传输:核心层设备通常具有高性能和高带宽的特点,能够提供大量的流量传输。

它们通过高速的数据链路,将来自汇聚层的数据传输至目标设备或外部网络。

1.2.数据路由:核心层设备用于将不同的数据流量从汇聚层设备传递到相应的目标设备或外部网络。

它们使用路由协议来确定传输的路径,以保证数据的快速有效传递。

1.3.冗余和容错:核心层设备通常采用冗余设计来保证网络的可靠性和可用性。

通过使用冗余设备和链路,当一个设备或链路发生故障时,数据可以绕过故障点,保证网络的连通性。

2. 汇聚层(Distribution Layer):汇聚层位于网络架构的中间层,主要负责实现不同子网、子域之间的互联和流量控制。

它起到了数据的聚集、过滤和路由的作用。

汇聚层的主要功能有:2.1.高效的网络聚合:汇聚层设备通过聚合各个接入层设备的数据流量,将它们汇集到一起,从而实现数据的集中管理和控制。

这样可以减少核心层的负载和传输压力。

2.2.子网和子域之间的路由:汇聚层设备充当子网和子域之间的桥梁,负责将数据从一个子网或子域传递到另一个子网或子域。

它使用路由协议进行数据的选择性传递,以保证数据在不同网络之间的高效传输。

2.3.多协议支持:汇聚层设备通常具有多协议的支持能力,能够处理不同类型的数据和协议。

这样可以使不同种类的设备能够互相通信,提高网络的通用性和兼容性。

3. 接入层(Access Layer):接入层是网络中最底层的一层,主要负责将用户设备连接到网络。

以太网标准体系

以太网标准体系

以太网标准体系
结构
以太网体系结构的层次结构分别为:
1.物理层:定义了物理接口和传输介质的物理特性,包括传输介质的长度、宽度和频率等,还提供了电气层接口标准。

2.数据链路层:定义了访问和实现物理层服务的标准,允许计算机之间检测、确认和前向帧。

3.网络层:定义了两个计算机之间的通信过程和数据组装的格式。

它确定了如何在网络中发送数据包。

4.传输层:定义了实际连接两台计算机之间的基础标准,并且在两台计算机之间同步和控制服务。

5.会话层:定义了管理两台计算机之间的会话的标准,确保正常的会话建立、维护和终止。

6.表示层:定义了如何进行数据格式化、数据表示以及数据编码的标准。

7.应用层:提供了网络用户可以用来查看和发送网络信息的标准和服务。

InfiniBand与Omni-Path架构浅析

InfiniBand与Omni-Path架构浅析

InfiniBand与Omni-Path架构浅析IntelOmni-PathArchitecture(OPA)是一种与InfiniBand相似的网络架构。

可以用来避免以下PCI总线一些缺陷:1、由于采用了基于总线的共享传输模式,在PCI总线上不可能同时传送两组以上的数据,当一个PCI设备占用总线时,其他设备只能等待;2、随着总线频率从33MHz提高到66MHz,甚至133MHz(PCI-X),信号线之间的相互干扰变得越来越严重,在一块主板上布设多条总线的难度也就越来越大;3、由于PCI设备采用了内存映射I/O地址的方式建立与内存的联系,热添加PCI设备变成了一件非常困难的工作。

目前的做法是在内存中为每一个PCI设备划出一块50M到100M的区域,这段空间用户是不能使用的,因此如果一块主板上支持的热插拔PCI接口越多,用户损失的内存就越多;4、PCI的总线上虽然有buffer作为数据的缓冲区,但是它不具备纠错的功能,如果在传输的过程中发生了数据丢失或损坏的情况,控制器只能触发一个NMI中断通知操作系统在PCI总线上发生了错误;Infiniband的协议层次与网络结构Infiniband的协议采用分层结构,各个层次之间相互独立,下层为上层提供服务。

其中,物理层定义了在线路上如何将比特信号组成符号,然后再组成帧、数据符号以及包之间的数据填充等,详细说明了构建有效包的信令协议等;链路层定义了数据包的格式以及数据包操作的协议,如流控、路由选择、编码、解码等;网络层通过在数据包上添加一个40字节的全局的路由报头(GlobalRouteHeader,GRH)来进行路由的选择,对数据进行转发。

在转发的过程中,路由器仅仅进行可变的CRC校验,这样就保证了端到端的数据传输的完整性;传输层再将数据包传送到某个指定的队列偶(QueuePair,QP)中,并指示QP如何处理该数据包以及当信息的数据净核部分大于通道的最大传输单元MTU时,对数据进行分段和重组。

以太网工作原理

以太网工作原理

以太网工作原理
以太网是一种常用的局域网技术,用于在计算机之间传输数据。

它的工作原理基于一系列标准和协议,涉及物理层、数据链路层和网络层。

物理层是以太网中最底层的一层,它定义了电缆、连接器和信号传输规范。

通常使用双绞线作为传输介质,其中包括Cat 5、Cat 6等类型。

数据通过基带信号传输,即将1和0表示为不
同的电压。

此外,以太网还支持光纤和无线传输方式。

数据链路层负责将数据划分为各种数据帧,并在物理介质上进行传输。

每个数据帧包括目标地址、源地址和数据部分。

以太网使用MAC地址来标识设备,以确定数据帧的目标设备。


数据帧从一个设备传输到另一个设备时,它们会通过交换机进行传输,交换机会根据MAC地址来转发数据帧。

网络层负责将数据帧从源设备发送到目标设备。

它使用IP地
址标识设备,并通过路由器进行数据传输。

路由器根据目标
IP地址将数据帧发送到下一个网络。

当设备连接到以太网时,会通过一系列握手和配置过程进行识别和连接。

首先,设备会向局域网发送广播消息,以了解网络中的其他设备。

然后,设备会获取动态主机配置协议(DHCP)服务器分配的IP地址、子网掩码和默认网关。

一旦设备配置
完成,它就可以通过以太网与其他设备进行通信。

总结而言,以太网的工作原理涉及物理层、数据链路层和网络
层的协作。

它使用MAC地址在数据链路层进行设备识别和数据传输,使用IP地址和路由器在网络层进行数据路由。

这种基于标准和协议的工作方式使得以太网成为一种高效可靠的局域网技术。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
– 10Base5 粗缆 500m max distance – 10Base2 细缆 200m max distance – 10BaseT Twisted Pair – 10BaseFL 光纤
Fall 2006
Байду номын сангаас
College of Information Engineering, Shenzhen University
College of Information Engineering, Shenzhen University 7
传统以太网传统以太网-IEEE 802.3
Fall 2006
College of Information Engineering, Shenzhen University
8
传统以太网传统以太网-IEEE 802.3
– LLC Sublayer 逻辑链路控制-与网络层通信,
对于所有的以太网,LLC子层是统一的.(由 IEEE 802.1定义) – MAC Sublayer介质访问控制子层.不同的以 太网传输介质不同, MAC子层也不同
Fall 2006 College of Information Engineering, Shenzhen University 2
Fall 2006 College of Information Engineering, Shenzhen University 3
IEEE 802标准系列 802标准系列
IEEE 802.11 无线局域网 Recommended Materials:
– Stalling, "Local and Metropolitan Area
么样的twisted pair?) – 采用光纤的以太网—10Base-F 最大区间长度2000m,极好的 抗干扰性
IEEE 802.4 ---令牌总线(Token Bus) IEEE 802.5 ---令牌环 IEEE 802.6 ---分布队列双路总线(DQDB)---适用于 MAN,160km, T3 rate(44.736 mb/s)
6
传统以太网传统以太网-IEEE 802.3
以太网通过网桥实现互联 网桥工作原理的出发点
– 在链路层解决互连的"合""分"需求 – 链路层是负责相连节点间通信 – 通过网桥互连的节点间会认为他们是"相连"的
网桥采用的基本技术
– – – –
Fall 2006
存储转发 避免了让人头疼的速率匹配,信号转换等问题 可以连接不同类型的以太网 提高带宽,隔离冲突域(p.235)
高速以太网(1000Mbps) 高速以太网(1000Mbps)
千兆以太网
– 速率:1000mbps(1Gbps) – 采用光纤 – 通常作为主干网来连接快速以太网 – 包括1000Base –LX,1000Base--
SX,1000Base—CX,1000Base--T – 采用特殊的编码方式(8B/10B) – CSMA半双工 或 非CSMA全双工
Fall 2006 College of Information Engineering, Shenzhen University 11

交换式以太网(Switched Ethernet)是用交 换机来分隔不同的局域网(Fig.14.18) 全双工交换式以太网 不需要CSMA/CD了---点到点
Fall 2006
College of Information Engineering, Shenzhen University
9
快速以太网(100Mbps) 快速以太网(100Mbps)
Chapter 14 Ethernet
以太网分层架构 传统以太网 高速以太网 千兆以太网
Fall 2006
College of Information Engineering, Shenzhen University
1
以太网分层架构
Fig.14.1 (P.229) 按照IEEE 802系列标准的约定,数据链路 层分为两个子层
– 可以通过IPCONFIG查看 – 单播/多播/广播地址,注意全网广播地址为
全1
Fall 2006 College of Information Engineering, Shenzhen University 5
传统以太网传统以太网-IEEE 802.3
物理层接口特性:p.232 物理层实现---与传输介质相关
100Base -T4 双绞线 UTP-3 每根电缆4 对双绞线(采用3元信号,非Manchester 编码) 100Base –TX 双绞线 UTP-5 100Base –F 光纤 注意它们仍然属于802.3系列标准,即采 用CSMA/CD
Fall 2006 College of Information Engineering, Shenzhen University 10
Networks", 4th ed.
Fall 2006
College of Information Engineering, Shenzhen University
4
传统以太网传统以太网-IEEE 802.3
MAC Sublayer---CSMA/CD 帧结构(P.230)—注意最短帧长为46字节, 那么最大帧长呢?(取决于以太网最大覆盖 ?( 范围) ) 地址: 6 Bytes/48bits
IEEE 802标准系列 802标准系列
IEEE 802.1 ---解决LAN与MAN的网际互连问题 IEEE 802.2 ---LLC,提供与网络层的统一的接口 IEEE 802.3 ---适用于1-持续的CSMA/CD局域网
– 粗缆以太网--10Base5 最大区间长度500m – 细缆以太网—10Base2 最大区间长度200m – 采用双绞线的以太网---10Base-T 最大区间长度90m ( ---10Base-T 90m (联想:什
相关文档
最新文档