空调温度控制系统设计-精品
基于PLC的中央空调温度控制系统设计毕业设计论文
摘要中央空调已经广泛应用于商用与民用建筑中,用于保持整栋建筑温度恒定。
传统的设计中,无论季节、昼夜和用户负荷的怎样变化,各电机都长期固定在工频状态下全速运行,所以会造成极大的的能源浪费。
本设计采用变频器、PLC、温度传感器等器件的有机结合,构成温差闭环自动控制系统,自动调节水泵的输出流量达到节能目的。
该系统采用西门子的S7—200PLC作为主控制单元,利用传统PID控制算法,通过西门子MM440变频器控制水泵运转速度,保证系统根据实际负荷的情况调整流量,实现恒温控制,从而最大程度的解决能源浪费问题。
本设计通过采用基于USS 协议的RS-485总线通讯的网络,通过西门子TD200文本显示器实现人机界面的设计,使用MCGS工控组态软件,对系统进行理论分析。
通过分析该设计,验证了该设计的可靠性,可以解决中央空调的能源浪费问题。
关键词:中央空调,PLC,PID,变频器ABSTRACTThe central air conditioning has been widely used in commercial and civil buildings, which are used to maintain constant temperature of the building. In traditional design, regardless of the season, day and night, and how the user load changes, the motor is fixed to run at full speed for a long time in the condition of power frequency. It will cause great waste of energy.This design is developed based on the combination of frequency converter, PLC, temperature sensor. It makes up a temperature difference closed-loop automatic control system and automatically adjust the output flow of pump to achieve energy saving. The system adopts the Siemens S7-200 PLC as the main control unit, using the traditional PID to control algorithm, using Siemens MM440 inverter to control of pump speed, to guarantee system adjust load flow according to actual situation. All of these will bring out constant temperature control, so as to solve the problem of energy waste to a great extent.This design use RS - 485 bus communication networks which is based on USS protocol and using the Siemens TD200 to realize the human-computer interface design, and using the software made from MCGS, to carries on the theoretical analysis to the system. Verified the reliability of the design, the design can solve the problem of central air conditioning energy waste through the analysis of the design.KEY WORDS: The central air conditioning, PLC, PID, frequency converter目录摘要 (I)ABSTRACT (II)第1章绪论 (1)1.1 中央空调的发展 (1)1.1.1 中央空调现在状况 (1)1.1.2 中央空调发展趋势 (1)1.2 本设计的意义 (1)1.2.1 设计的主要内容 (1)1.2.2 设计的意义 (2)第2章中央空调系统介绍 (3)2.1 中央空调结构 (3)2.1.1 中央空调概述 (3)2.1.2 中央空调结构 (3)2.2 中央空调系统工作原理 (4)2.2.1 制冷原理 (4)2.2.2 工作原理 (4)2.2.3 中央空调的控制原理 (4)2.3 中央空调的评价 (5)2.4 本章小结 (5)第3章中央空调控制系统的硬件设计 (6)3.1 变频器 (6)3.1.1 变频器的介绍 (6)3.1.2 变频调速的原理 (6)3.1.3 变频器的选择 (9)3.1.4 使用注意的问题 (10)3.2 电机的软启动原理及应用 (11)3.2.1 软启动的介绍 (11)3.2.2 软启动工作原理 (11)3.2.3 软启动的优点 (11)3.2.4 软启动与变频器的对比 (12)3.3 PLC选型 (12)3.3.1 PLC的工作原理 (12)3.3.2 西门子S7—200介绍 (13)3.4 温度传感器 (14)3.5 温度变送器 (15)3.6 人机界面选型方案 (15)3.7 总体硬件设计 (16)3.8 本章小结 (19)第4章软件设计 (20)4.1 PID控制 (20)4.1.1 PID控制简介 (20)4.1.2 PID参数整定 (20)4.1.3 对中央空调的PID控制 (21)4.2 应用软件STEP7 (21)4.3 plc编程 (22)4.3.1 程序流程图 (22)4.3.2 中央空调控制系统的I/O分配表 (24)4.3.3 程序中使用的存储器及其功能 (25)4.3.4 中央空调温度控制系统程序 (25)4.4 设备通讯 (26)4.4.1 RS-485介绍 (26)4.4.2 USS协议软件与S7—200间的通讯 (26)4.5 MCGS组态软件 (27)4.5.1 MCGS组态软件简介 (27)4.5.1 MCGS组态画面 (27)4.6 本章小结 (29)第5章结论 (30)致谢 (31)参考文献 (32)附录 (33)第1章绪论1.1 中央空调的发展1.1.1 中央空调现在状况中央空调行业现在存在着巨大的竞争,这种竞争是产品革新所产生的,产品革新主要围绕低碳环保进行,低碳环保在这个时代有着很重大的意义。
基于单片机的 空调机的温度控制系统设计(含完整程序)
成都理工大学工程技术学院毕业论文空调机的温度控制系统设计空调机的温度控制系统设计摘要本设计以AT89S51单片机为核心的温度控制系统的工作原理和设计方法。
温度信号由温度芯片DS18B20采集,并以数字信号的方式传送给单片机。
文中介绍了该控制系统的硬件部分,包括:温度检测电路、温度控制电路、PC机与单片机串口通讯电路和一些接口电路。
单片机通过对信号进行相应处理,从而实现温度控制的目的。
文中还着重介绍了软件设计部分,在这里采用模块化结构,主要模块有:数码管显示程序、键盘扫描及按键处理程序、温度信号处理程序、继电器控制程序、超温报警程序。
空调机的温度控制对于工业和日常生活等工程都具有广阔的应用前景。
本文将传统控制理论与智能控制理论相结合应用于温度控制的实际工程中。
首先,设计出系统的硬件构成,然后,从热力学的角度对温度对象的特性做了较深入的分析,从理论上推导出温度对象的常用的一阶带纯滞后的近似数学模型,并给出了数学模型中各参数的含义。
在此基拙上,本文分析了现有空调机控制方法的利弊,并针对它们各自的优、缺点,对具有纯滞后特性的温度对象提出一种改进的模糊控制方法。
该方法将模糊控制、PID控制结合起来。
通过数字仿真表明该方法对空调机温度的控制具有超调小(可达到无超调)、调节时间短、鲁棒性好等优点。
在此基拙上,用阶跃信号做激励,辨识出系统的数学模型。
本文的最后,通过对实物实验结果可以看出,本文所提出的改进的模糊控制算法对非线性、具纯滞后环节对象的控制是很有效的。
温度控制系统的软件采用汇编语言编制,控制算法部分采用C与汇编混合编程。
该软件基于Windows20000/xp平台,人机界面友好,易于用户操作。
具有在线修改采样时间、控制算法、控制参数、图形显示及数据保存和打印功能。
设计的空调机温度控制的精确性,使用方便,功能齐全。
空调机的温度控制系统关键词:PWM控制模型辨识模糊控制 PID控制AbstractThe thesis studies the Plant of temperature. Firstly,the systeml5 designed and realized. Then the characteristics of temperature of Plant are analyzed inall details from thermodynamics. The approximate mathematics model of temperature plant with one order and dead time is reduced and the meaning of every parameter of this model are expressed, Which is used often and practically in the paper. In addition tot his, we identify the model of the system and the result demonstrated the method is effective for it.Secondly we analyzed advantages and disadvantages of present control method of temperature. One kind of improved Fuzz-Dahlin control method is presented for Temperature Plant with long dead time and non-linearity. The Dahlin control method, The fuzzy control method are combined in this improved method It is demon strated By digital simulation that the improved Fuzzy-Dahlin makes the extra-regulation more small(even zero), the regulation time more short, and the robustness better for the temperature controlled Plant. It is demonstrated by physical experimentation that improved Fuzzy-Dahlin method presented in this Paper is effective for temperature plant with dead time and non-linearity.The control software is compiled with visualc++ and matlab .It's easy to use and friendly to the interface of person and machine on the basis of window2000/xpplatform.There are some functions as modify sample time or modify controller's parameters online, display and copy data of temperature curve, and so on. The control hardware is easy to use and its functions are self contained.Keywords:Intelligent control, model identify, Dahlin control, Fuzzy control, PID control目录摘要 (I)Abstract................................................................................................... - 3 - 目录........................................................................................................... - 4 - 前言........................................................................................................... - 5 - 1MCS-51单片机简介.............................................................................. - 8 -1.1芯片的引脚描述.......................................................................... - 8 -1.2 MSC-51单片机中央处理器..................................................... - 15 -2 温度控制系统的实现......................................................................... - 17 -2.1总体设计.................................................................................... - 17 -2.2信号采样电路设计.................................................................... - 18 -2.2.1温度采样电路设计.......................................................... - 18 -2.2.2单片机最小系统的设计.................................................. - 20 -2.3 A/D转换电路设计.................................................................... - 22 -2.3.1 A/D转换的常用方法...................................................... - 22 -2.3.2 A/D转换器的主要技术指标........................................... - 23 -2.3.3 ADC0809的主要特性和内部结构.................................. - 23 -2.3.4 ADC0809管脚功能及定义.............................................. - 24 -2.3.5 ADC0809与8031的接口电路........................................ - 26 -2.4软件系统的初始化程序............................................................ - 26 -2.5软件程序的主循环框架............................................................ - 27 -2.6校准程序.................................................................................... - 29 -3 控制算法的研究................................................................................. - 31 -3.1 PID算法的研究......................................................................... - 31 -3.2模糊控制系统设计.................................................................... - 31 -3.2.1模糊控制算法.................................................................. - 32 -3.2.2模糊控制的基本概念...................................................... - 33 -3.2.3模糊控制过程.................................................................. - 34 - 总结......................................................................................................... - 39 - 致谢......................................................................................................... - 52 - 参考文献................................................................................................. - 53 -空调机的温度控制系统前言控制菌种生长环境的设施和设备由功能简单、单一的气候箱发展成现在控制复的人工气候室,这对于研究在人工模拟自然生态环境中生长因素对菌种生长的提供了必要的条件和能够继续深入研究的基础。
课程设计报告空调温度控制系统设计Word
课程设计课程设计名称:空调温度控制系统设计专业班级:学生姓名:学号:指导教师:课程设计地点:课程设计时间: 2008.12.29-01.04计算机控制技术课程设计任务书摘要近几年,随着人民生活水平的逐步提高,居住条件也越来越宽敞;另一方面,环境保护运动的蓬勃发展,也要求进一步提高制冷和空调系统的利用率。
此外,人们对舒适的生活品质与环境愈来愈重视,要求也愈来愈高,不仅对室内温、湿度提出了较高的要求,也希望室内环境趋于自然环境。
综观空调器的发展过程,有三个主要的发展阶段:(1)从异步电机的定频控制发展到变频控制。
(2)从异步电机变频控制发展到无刷直流电机的变频控制。
(3)控制方法从简单的开关控制向智能控制转变。
随着对变频空调器研究的日渐深入,控制目标逐渐从单一的室温控制向温湿度控制、舒适度控制转移;控制方法从简单的开关控制向PID控制、神经网络控制、专家系统控制等智能控制方向发展。
由于神经网络控制和专家系统控制实现难度较大而且效果不一定很理想,因此本设计采用PID控制算法。
本设计从硬件和软件两方面完成了空调的温度控制系统,主要是以PIC系列单片机为核心的控制系统设计,采用PID控制算法,即通过A/D转换器将温度传感器采集来的温度数据送入单片机,单片机将采集的数据与设定温度相比较决定压缩机的工作状态,单片机通过对制冷压缩机的控制,调节压缩机的转速,实现了空调的制冷。
空调的硬件电路只是起到支持作用,因为作为自动化控制的大部分功能,只能采取软件程序来实现,而且软件程序的优点是显而易见的。
它既经济又灵活方便,而且易于模块化和标准化。
同时,软件程序所占用的空间和时间相对来说比硬件电路的开销要小得多。
同时,与硬件不同,软件有不致磨损、复制容易、易于更新或改造等特点,但由于它所要处理的问题往往远较硬件复杂,因而软件的设计、开发、调试及维护往往要花费巨大的经历及时间。
对比软件和硬件的优缺点,本设计采用软硬件结合的办法设计。
毕业论文-基于AT89C51单片机的空调控制系统设计 精品
毕业论文-基于AT89C51单片机的空调控制系统设计精品1总体方案设计随着人们生活水平的提高,人们对空调的舒适性和空气品质的要求越来越高,分体式空调已不能满足人们的要求,户式中央空调得到了迅猛的发展。
就室内居住环境而言,恒温环境并非是卫生和舒适的。
因为除了温度外,还有湿度、空气流速、空气洁净度等诸多因素影响到舒适的程度。
而传统的中央空调靠设置机械温控开关来实现房间的恒温控制。
这种控制方法,一方面操作不方便;另一方面温度波动范围大,不但影响人的舒适感,而且会造成一定的能量损耗。
采用单片机温度控制系统控制的户式中央空调系统,可以根据室内的环境因素,调节风机的转速,为人们创造一个舒适的室内环境,同时又节省电。
随着电子技术的发展,特别是随着大规模集成电路的产生,给人们的生活带来了根本性的变化,如果说微型计算机的出现使现代的科学研究得到了质的飞跃,那么单片机技术的出现则是给现代工业控制测控领域带来了一次新的革命。
目前,单片机在工业控制系统诸多领域得到了极为广泛的应用。
特别是其中的C51系列的单片机[3]的出现,具有更好的稳定性,更快和更准确的运算精度,推动了工业生产,影响着人们的工作和学习。
而本次设计就是要通过以C51系列单片机为控制核心,实现空调机温度控制系统的设计。
1.1方案一选用AT89C51单片机为中央处理器,通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温系统对空气进行处理,从而模拟实现空调温度控制单元的工作情况。
在整个设计中,涉及到温度检测电路、驱动控制电路、显示电路、键盘电路以及电源的设计等电路。
其中单片机的控制程序是起到各个电路之间的相互协调,控制各个电路正常工作的至关重要的作用。
其方框图如下:图1-1 方案一设计图框该图控制简单,思路清晰,各单元模块的相互衔接较简单,同时成本低廉,用的各种器件都是常用器件,更具有使用性。
基于单片机的空调温度控制系统设计
基于单片机的空调温度控制系统设计作者姓名:杨耀武专业名称:信息工程指导教师:黄宇讲师摘要在自动控制领域中,温度检测与控制占有很重要地位。
温度测控系统在工农业生产、科学研究和在人们的生活领域,也得到了广泛应用。
因此,温度传感器的应用数量居各种传感器之首。
目前,温度传感器正从模拟式向数字集成式方向飞速发展。
本论文概述了温控器的发展及基本原理,介绍了温度传感器的原理及特性。
分析了DS18B20温度传感器的优劣。
在此基础上描述了系统研制的理论基础,温度采集等部分的电路设计,并对测温系统的一些主要参数进行了讨论。
同时在介绍温度控制系统功能的基础上,提出了系统的总体构成。
针对测温系统温度采集、接收、处理、显示部分的总体设计方案进行了论证,进一步介绍了单片机在系统中的应用,分析了系统各部分的硬件及软件实现。
利用Proteus7.6进行了可行性的仿真,利用单片机开发板验证在实际电路中能起到的效果。
试验证明,这套温度控制器具有较强的可操作性,很好的可拓展性,控制简单方便。
课题初步计划是在普通环境下的测温,系统的设计及器件的选择也正是在这个基础上进行的。
关键词:DS18B20 单片机温度控制 1602液晶显示AbstractIn the automatic control area,temperature monitoring and controling have a very important position. The temperature monitoring system has a wildly applying in industry, agriculture, science reasearching and daily life of people. Therefore, the number of applying of the temperature monitoring comes first of all kinds of sensor. At present, the temperature monitoring is transformed from analog type to digital integrated type with a very fast speed.This paper introduces the developing and fundamental of the temperature monitoring, including the character of this kind of sensor. It also analyses the advantage and disadvantage of the temperature monitoring which named DS18B20. On that basis, the paper also has a further analysis of the theoretical basis of the system developing and the circuit design of temperature monitoring. Besides, some discussions about the important parameters also took on desk. At the same time, the auther of this paper also puts forward the composition of totality about this system, which including the different function of the thermometer system. Then a detailed analysis which is about the applying of Microcontrollers and the applying of different parts made by different hardwares and softwares in the system. In order to check the maneuverability and the expansibility of the Microcontrollers system, the auther used Proteus 7.6 to do the testing and got a pretty good result.This system puts the temperature measured in normal situation as a confirm condition. All design and selection of页脚内容component is also based on this suppose.keywords: DS18B20, Microcontrollers, Temeperature Controling, 1602 Liquid Crystal Display页脚内容目录摘要 (I)Abstract (II)目录 (IV)前言 (1)1 系统总体设计方案及功能 (2)1.1 温度传感器产品分类与选择 (2)1.1.1 常用的测温方法 (2)1.1.2 温度传感器产品分类 (2)1.1.3 温度传感器的选择 (4)1.2 总体方案的确定 (6)1.3 系统实现框图 (7)2 系统单元电路设计 (7)2.1 系统工作原理 (7)2.2 系统相关硬件及模块介绍 (8)页脚内容2.2.1 温度采集电路 (8)2.2.2 信号处理与控制电路 (9)2.2.3 温度显示电路 (10)2.2.4 按键功能设置电路 (11)2.2.5 继电器控制电路 (12)2.2.6 存储数据电路 (13)2.2.7 报警、音乐电路 (13)2.2.8 电动机电路 (14)3 仿真软件介绍 (15)3.1 Keil uVision2软件 (15)3.2 Proteus软件 (16)4 系统硬件设计 (18)5 系统软件设计 (20)5.1 DS18B20数据通信概述 (20)5.2 LCD1602液晶数据显示概述 (23)5.2.1 接口信号说明 (23)5.2.2 控制器接口说明 (24)页脚内容5.2.3 控制接口时序说明 (26)5.3 存储器24C02数据存储概述 (26)5.3.1 I2C 总线的定义 (26)5.3.2 I2C 总线的时序 (27)5.3.3 数据传送 (28)5.4 软件程序设计 (28)6 仿真及实验结果 (31)6.1 程序调试过程中遇到的问题及解决办法 (31)6.2 调试结果 (31)总结 (34)致谢 (35)参考文献 (36)附件1 系统硬件电路图 (37)附件2 系统软件程序 (38)页脚内容前言现代信息技术的三大基础是信息采集控制(即温度控制器技术)、信息传输(通信技术)和信息处理(计算机技术)。
温湿度独立控制空调系统设计方法
温湿度独立控制空调系统设计方法随着科技的发展和人们生活水平的提高,空调已成为现代建筑中不可或缺的重要组成部分。
然而,传统的空调系统在调节温度和湿度时往往存在一定的局限性。
为了更好地满足人们对舒适度和节能的需求,本文将介绍一种温湿度独立控制空调系统设计方法。
在温湿度独立控制空调系统中,温度和湿度是两个独立的控制变量。
这种设计方法具有以下优势:提高了舒适度:由于温度和湿度可以独立控制,因此可以将湿度维持在人体感觉较为舒适的范围内,从而提高人体的舒适度。
节能性:温湿度独立控制空调系统通过将湿度控制和温度控制分开,可以避免传统空调系统在调节温度和湿度时出现的能源浪费问题,从而有效地节约能源。
灵活性:这种设计方法具有更加灵活的控制策略,可以满足不同场合和不同人群的需求。
确定系统结构在温湿度独立控制空调系统中,通常采用双级制冷剂系统,其中包括一级制冷剂和二级制冷剂。
一级制冷剂用于降低空气温度,而二级制冷剂则用于除湿。
同时,为了确保系统的稳定性,需要加入传感器和控制器等控制部件。
确定设计参数在设计温湿度独立控制空调系统时,需要确定环境温度、相对湿度、空调负荷等参数。
这些参数的确定需要考虑当地的气候条件、室内人员数量、室内外环境等多种因素。
设定控制策略温湿度独立控制空调系统的控制策略包括温度控制、湿度控制、两联供控制等。
在温度控制方面,需要确保室内温度维持在设定范围内;在湿度控制方面,需要将相对湿度维持在人体感觉较为舒适的范围内;在两联供控制方面,需要确保一级制冷剂和二级制冷剂的供应和需求平衡。
编写控制程序在电脑上进行模拟仿真,并编写控制程序。
控制程序需要包括传感器信号处理、控制器算法、执行器控制等模块。
同时,需要采用合适的控制算法,如PID控制、模糊控制等,以实现精确的温度和湿度控制。
安装和调试系统按照一定的步骤和要求,安装和调试好温湿度独立控制空调系统。
在安装过程中,需要注意管路布置、设备安装位置等问题;在调试过程中,需要对系统进行优化和调整,确保系统的稳定性和性能达到预期要求。
空调自控系统设计方案(江森自控)
空调自控系统设计方案(江森自控)HVAC暖通空调自控系统技术方案设计书一、总体设计方案重庆博腾精细化工楼宇自控系统项目要求较高的智能化程度。
该项目包含大量的暖通空调机电设备,需要将它们有机地结合起来,实现集中监测和控制,提高设备无故障时间,为投资者带来明显的经济效益。
此外,需要使这些设备经济地运行,既能节能,又能满足工作要求,并在运行中尽快地体现效益。
最重要的是,需要将现代化的计算机技术应用于管理中,提高综合物业管理水平和效率。
该项目的暖通空调楼宇自动化控制系统的监测和控制主要包括冷站系统和空调机组系统。
本设计方案的主体思想是根据招标文件和设计图纸为准。
1.1 冷站系统1)控制设备内容根据项目标书要求,暖通自控系统将会对以下冷站系统设备进行监控:冷却水塔(2台):启停控制、运行状态、故障报警、手/自动状态。
冷却水泵(2台):启停控制、运行状态、故障报警、手/自动状态、水流开关状态。
冷却水供回水管路。
冷水机组(2台):供水温度、回水温度、启停控制、运行状态、故障报警、手/自动状态。
冷冻水泵(2台):启停控制、运行状态、故障报警、手/自动状态、水流开关状态。
冷冻水供回水管路。
分集水器。
膨胀水箱:供水温度、回水温度、回水流量。
分水器压力、集水器压力、压差旁通阀调节。
高、低液位检测。
有关系统的详细点位情况可参照所附的系统监控点表。
2)控制说明本自控系统针对冷站主要监控功能如下:冷负荷需求计算:根据冷冻水供、回水温度和回水流量测量值,自动计算建筑空调实际所需冷负荷量。
机组台数控制:根据建筑所需冷负荷自动调整冷水机组运行台数,达到最佳节能目的。
机组联锁控制:独立空调区域负荷计算根据Q=C*M*(T1-T2),其中T1为分回水管温度,T2为分供水总管温度,M为分回水管回水流量。
当负荷大于一台机组的15%时,第二台机组开始运行。
冷却水温度控制。
水泵保护控制。
机组定时启停控制。
机组运行状态监测。
以上是冷站系统的控制说明。
基于AT89S52的空调温度控制系统的设计
路、 温度 采 集 电路 ( S 8 2 ) 按 键 、 示 电路 、 制 电路 及 其他 辅 助 电路 等 部 分 组成 , 件 采 用 8 5 C D 1B 0 、 显 控 软 0 1 语 言 编 程 。 该 系 统 可 以 完 成 温 度 显 示 、 度 设 定 、 调 控 制 及 限 温 报 警 等 多 项 功 能 , 现 代 生 产 生 活 温 空 在
庭 不 可 或 缺 的 家 用 电 器 设 备 , 们 也 对 空 调 的舒 适 性 和 人
空气 品 质 提 出 了 更 高 的 要 求 。 度 控 制 系 统 是 家用 空 调 温
键输 = 盘 入}
显 I 示
控 制 系 统 的 重 要 组 成 部 分 , 设 计 的 好 坏 决 定 着 空 调 温 其 度 控 制 的灵 敏 度 。 文 设 计 了一 种 家 用 空 调 温 度 控 制 系 本 统 , 将 外 部 温 度 信 号 经 D 1B 0 将 输 入 的模 拟 信 号 转 它 S82 换 成 8位 的 数 字 信 号 , 过 并 口 传 送 到 单 片 机 系 统 。 单 通 片 机 系 统 将 接 收 的 数 字 信 号 译 码 处 理 ,通 过 L D1 0 C 62 将 温 度 显 示 出来 , 时 将 处 理 的 温 度 信 号 与 系 统制 空 调 制 冷 、 热 与 停 止 工 形 制 作 3种 工 作 状 态 , 而 实 现 空 调 的 智 能 化 。 本 系 统 具 有 从
鳆 :声 报 电 l = f光 警 路l = > 晶时 = 片 振 序} 机 =I 度 感 >温 传 器l
复 电 }: 位 路 二 = > 二 继 器 制 统 = 电 控 系
d s n f t e o v r r c r ut c n ipa a d nt l a in h tmp rt r , gv n lr e i o h c n e t i i a ds ly n ii a i t t e e e a u e g e c i z o ie a aa m o i t tmp r t r ec o t a f l e e au e t .S i mi h s a b o d a pi ain p o p c s ra p l t rse t. c o
基于单片机和DS18B20的空调温控系统毕业设计
目录第一章绪论11.1 课题研究背景11.1.1 空调的工作原理11.1.2 空调的功能21.2 控制技术介绍21.3 总体方案设计3第二章空调温度控制系统硬件设计52.1 单片机的选择52.1.1 AT89S52单片机简介52.1.2 AT89S52单片机引脚介绍52.1.3 AT89S52单片机的外围电路62.2 温度传感器的选择72.3 键盘的设计82.3.1 行列式键盘和独立键盘的接口设计82.3.2 矩阵键盘和独立键盘的工作原理92.4 液晶显示的设计92.4.1液晶1602的接口电路92.4.2 液晶1602工作原理92.4.3 液晶1602的其他参数102.5 DA转换电路设计112.5.1 DA转换器的选择112.5.2 DAC0832简介122.5.3 DAC0832结构12第三章空调温度控制设计133.1 PID调节器控制原理133.2 位置式PID算法143.3 数字PID参数的整定143.3.1 采样周期选择的原则153.3.2 PID参数对系统性能的影响153.3.3 PID计算程序17第四章空调温度控制系统软件设计204.1 系统部件的软件设计方案204.2 系统软件设计框图204.3 主程序和子程序流程图设计214.3.1 主程序流程图214.3.2 液晶1602流程图224.3.3 温度转换子程序流程图224.3.4 键盘处理子程序流程图23结束语24 参考文献26第一章绪论1.1 课题研究背景温度是一个和人们生活环境有着密切关系的物理量,也是一种在生产、科研、生活中需要测量和控制的重要物理量,是国际单位制七个基本量之一。
温度的变化会给我们的生活、工作、生产等带来重大影响,因此对温度的测量至关重要。
其测量控制一般使用各式各样形态的温度传感器。
随着现代计算机和自动化技术的发展,作为各种信息的感知、采集、转换、传输相处理的功能器件,温度传感器的作用日显突出,已成为自动检测、自动控制系统和计量测试中不可缺少的重要技术工具,其应用已遍与工农业生产和日常生活的各个领域。
基于SOPC的空调智能温度控制器的设计
基于SOPC的空调智能温度控制器的设计相关专题:电子应用时间:2008-12-11 06:54 来源:icbuy亿芯网1 引言智能控制是控制界新兴的研究领域,是一门边缘交叉学科。
智能控制的一种定义为:应用人工智能的理论和技术及运筹学的优化方法同控制理论方法与技术结合,在未知环境下,仿效人类的智能,实现对系统的控制。
微电子技术界各大芯片生产厂家均推出了专用的神经网络芯片和模糊芯片,采用这种高速的专用芯片,大大方便了智能控制应用系统的实现。
本文采用现场可编程门阵列(FPGA)技术,对智能控制器的设计和实现进行研究。
2 控制器硬件设计图1 硬件体系结构控制器主芯片采用ALTERA公司的型号为APEX系列的FPGA芯片,芯片型号为EP20K200EFC484-2X。
APEX20K系列器件是一个具有多核结构的PLD 器件系列,支持可编程单芯片系统SOPC。
该型号拥有20万可用门资源,13KB的内部存储空间,382个用户可用引脚,1.8V/2.5V I/O。
主处理器采用ALTERA公司的32位NIOS处理器软核,系统总线采用AVALON总线,外围扩展:片内存储器(9KB),RS232串行通讯口,智能控制算法加速器单元,模拟量输入端口,数字量/开关量输出端口,键盘PIO,LED显示PIO等,硬件体系结构框图如图1所示。
2.1 Nios软核处理器NIOS CPU是一种采用流水线技术,单指令流的RISC处理器,具有分离的指令和数据存储器端口(Harvard存储器结构)。
本文处理器主频为33.333MHz。
NIOS CPU中的内部寄存器包括:一个通用寄存器文件,多个内部控制寄存器,一个程序计数器,以及一个用于前缀指令的K寄存器。
NIOS3.0 CPU允许用户取消对陷阱指令、硬中断或内部异常的支持,以把NIOS系统配置成一个最简单的控制系统(不运行复杂软件)。
NIOS处理器有一个可选的片上JTAG调试模块,用于实现调试工具和NIOS CPU的通讯。
暖通空调温湿度控制系统设计
暖通空调温湿度控制系统设计摘要:现如今,随着人们生活越来越富足,在室内环境中对暖通空调的使用愈发频繁,因而使得建筑物中采用的暖通系统越来越科技化。
空调可以为人们营造出舒适的体感环境,实现温度平衡、室内外空气置换、粉(灰)尘过滤等功能,是减少室内空气污染的最佳电气设备。
目前,为了能够提高空调系统的使用性能,设计人员一定要注重针对控制系统的优化,结合当下使用大环境,使得暖通空调在温度湿度控制上得到更好发展。
关键词:暖通空调;温度湿度;控制系统;设计前言:对于暖通空调温度湿度控制,成为当下设计人员研究重点问题之一,特别是恒温恒湿的精度控制范围,以满足不同场合要求为最终目的。
因而随着社会大环境的不断发展,设计人员尽可能依靠自动化对温湿度实现控制作用,在理论与实践有效结合的基础上,实现全过程节能降耗管理。
1暖通空调温湿度控制系统设计现状综合分析目前我国暖通空调控制系统设计现状,其具有更大发展空间的现实条件,因而在此前景下,设计人员需要深度考虑更多设计问题,以防对环境空气产生不可挽回伤害。
根据暖通空调发展方向的研究,不管是从设计还是施工,都需要以节能环保为第一要义,同时考虑社会可持续发展的保障能力,从而将新技术有效运用在设计中。
2015年我国对于公共建筑的节能设计下达新规定,其中包含对供暖通风与空气调节的标准化设计,采取更为有利的设计方案,减少施工成本的同时能够达到多方共赢的最终目标。
除了传统建筑物需要暖通空调进行温度调节,现在很多精品车间也需要用到该控制系统,能够更好地达到室内环境的恒温恒湿。
不仅如此,制造车间的暖通空调可以对超净空气进行处理,主要优势在于对温度能够准确把控,同时设备所需要的运行成本相对较低。
目前,我国所使用的恒温恒湿空调大都通过一次回风设计,其次辅助再热热源对其进行控制,能够做到快速反应和逻辑简单的模式。
总之,从设计上控制系统的温度与湿度,并进一步降低空调能耗,是当下行业内需要研究的重点内容。
高职毕业设计——基于PLC的室内空调温度控制设计-精品
基于PLC的室内空调温度控制设计【摘要】本设计是将温度传感器采集到的室内温度转换为电阻的变化,再通过变送器将其转化为模拟的输入电流或电压的变化,然后经过温度模块FX0N-3A把采集到的模拟量转换成数字量送给PLC主模块,经过CPU的处理然后输出控制信号,控制两台压缩机和报警灯。
当温度低于25度时,压缩机不工作,空调不启动;当温度高于30度时,启动一台机组Y0,空调开始制冷;当温度高于36时再启动一台Y1,制冷效果加强,当温度减低到30度时;停止Y0,制冷下降,降到26度时两台都停止,空调此时相当于一台风扇,没有制冷效果;当温度低于23度时,Y2会发出报警,并能利用上位机实现实时监控,并且能够控制下位机。
【关键词】:温度传感器,PLC,压缩机ABSTRACTThis design is using temperature sensor PT - 100 acquisition indoor temperature conversion for resistance changes, another transmitter transform and then into module to the input current, voltage or change FX0N - after temperature module and the gathering to triple-a analog conversion into the digital quantity of PLC, after the main module for the processing and CPU output control signal, control two compressors and alarm lamp.When the temperature is below 25 degrees is compressor doesn't work namely air conditioning don't start, when temperature higher than 30 degrees to start a unit Y0, air conditioning refrigeration and when temperature higher than start when restarting a 36 Y1, refrigeration effect strengthening, when the temperature reduced to 30 degrees to stop Y0, refrigeration down, down to 26 degrees, air conditioning stop at two equivalent of a fan, no refrigeration effect, and when temperature is below when 23 degrees issued a warning, and may Y2 could use PC realize real-time monitoring, and can control a machine.【KEY WORD】:temperature sensor, PLC, compressor目录引言 (1)一、PLC基础 (1)(一)PLC的定义 (1)(二)PLC的特点 (1)(三)PLC的功能与选项 (2)二、PT00使用说明 (3)(一)热电阻的工作原理 (3)(二)pt100温度与阻值对照 (3)三、fx0n-3A简介 (4)四、变频器原理及简介 (4)五、MCGS简介 (5)六、温度采集辅助放大电路 (6)七、温度采集与监控系统PLC设计 (6)(一)系统的组成与工作过程 (6)(二)系统工艺要求 (7)(三)控制要求 (7)(四)流程图 (7)(五)元器件使用说明 (7)(六)输入\输出分配 (7)(七)硬件连接图 (8)(八)主电路图 (9)八、系统各个部分的设计分析 (9)(一)FX0N-3A功能模块设计 (9)(二)启停程序设计 (10)(三)PLC主模块采集处理程序 (10)九、温度采集与监控系统的组态监控界面 (11)总结 (13)附录一完整梯形图 (14)附录二指令表 (18)参考文献 (21)致谢 (22)引言目前空调机已经广泛地应用于生产、生活中。
《基于PLC的空调控制系统设计》
基于PLC的空调控制系统设计1引言 (1)2交流变频智能中央空调结构系统及功能 (2)3PLC基础理论概述 (3)4PLC控制的交流变频空调的系统设计 (3)4.1中央空调使用PLC、变频的简易原理 (3)4.2系统总体设计方案 (5)4.3主程序设计 (6)4.4PLC控制的交流变频空调的功能设置 (7)5结论 (8)参考文献 (9)1引言随着社会的不断发展,人们的越来越重视生活的质量,尤其是在温度方面的要求也越来越理想化,无论是在商品琳琅的商场,还是工作舒适的办公室,无论是旅行居住的宾馆,还是创造劳动成果的工厂,理想温度适中、四季如春的环境都越来越离不开空调对于温度的调节,在这些现代化的大型建筑里更加离不开中央空调。
而随着科技的发展,中央空调的智能化越来越受到人们的重视,成为一种必然的发展趋势。
中央空调的工作原理是集中制冷后,将经过处理的冷量分别发送,调节各个空调房间的温度、湿度、清洁度及流动速度,达到适中。
传统的空调采用的是阀门、风门调节水量、风量,能量消耗大,温度调节理想度不高,这些都是传统空调的弊端。
而智能化交流变频中央空调的诞生,能量消耗低,温度调节更适宜,人们带来极大的方便。
智能化交流变频空调通过交流变频技术智能化控制调节中央空调的末端空调风机箱、冷冻水/冷却水水泵、冷却塔风机等,使空调各子系统按照负荷的具体情况智能化的调节风量、水流量等负荷工况参数,这样不仅能够改善系统的温度调节品质,超越传统阀门、风门节/回流调节方式的调节性能。
智能化交流变频中央空调不仅使空调的舒适性得到改善,提高了其调节品质,还降低了电能消耗,减小了噪声影响,延长了设备寿命,因此不仅增加了经济收益,还能节约能源消耗、保护环境,创造了更多的社会效益。
本文主要针对阐述基于PLC控制系统的智能化中央空调的工作原理。
2交流变频智能中央空调结构系统及功能智能化交流变频中央空调系统基本构成,由制冷系统、冷却水循环系、冷冻水循环系统、供风系统,组成。
空调温度控制系统的设计
空调温度控制系统的设计作者:聂荣顺来源:《中国科技纵横》2013年第06期【摘要】基于单片机的温度监控系统较传统的温度控制系统具有更高的智能性,并且系统的功能更加易于扩展和升级,是一种低成本的温度检测、控制方案。
本设计详细研究单片机的温度控制的各个部分内容,设计单片机及其外围电路,给出了一套合理的基于单片机的温度控制器软硬件解决方案。
【关键词】数字显示继电器可调温度控制1 方案设计思路本方案设想是采用AT89C2051单片机结合DS18B20温度传感器控制温度的设计,DS18B20是一种新型的可编程温度传感器,能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。
2 方案可行性论证(1)从技术性角度来看,该系统所用技术均为现代新技术,具有很高技术含量,本系统完成的主要任务如下:1)测定并显示当前环境温度值。
2)设定一个上限温度值并保存在DS18B20。
3)当环境温度高于设定温度,继电器被驱动吸合,外电路中的降温风扇开始工作并发出警报。
4)当环境温度低于设定温度后,继电器自动断开,风扇停止工作,警报解除。
(2)本系统的主要技术指标如下:1)温度显示范围:-55— +125摄氏度。
2)压缩机输出节点容量:10A/240V AC。
3)LED灯闪烁报警。
(3)从系统的性能来看,所采用的DS18B20是一种新型的可编程温度传感器,能直接与单片机完成数据采集和处理,实现方便、精度高,可根据不同需要用于各种场合。
综上所述,该系统具有良好的开发价值,具有广阔的应用前景。
3 方案设计3.1 系统的总体设计单片机的温度控制系统需要完成温度的采集,显示当前温度值,并通过按键设定上限温度,实现当温度超过设定的温度值时,继电器导通,使连接继电器的风扇转动,使温度下降,同时发光二极管发光。
系统包括单片机最小系统电路和按键电路、LED显示电路、温度检测部分、发光二极管和控制输出等主要部分,系统地总体设计如下图所示:图1 系统整体设计框图3.2 系统的主要硬件设备3.2.1 微处理器AT89C2051AT89C2051是低电压、高性能CMOS 8位单片机,片内含2K bytes的可反复擦写的只读程序存储器(PEROM)和128bytes的随机数据存储器(RAM),器件采用ATMEL公司的高密度、非易失性存储技术生产,兼容标准MCS-51指令系统,片内置通用8位中央处理器和Flash存储单元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
题目:空调温度控制系统设计空调温度控制系统设计摘要空调温度控制过去一直依赖温控电动阀,电动阀可与温控器配套使用,实现对供暖通风和空调系统中冷热水的开关控制。
由于我国工业水质很多是含Ca2+、Mg2+、Coo2-等离子浓度很高的硬水,在温度变化的空调管道中极易结垢,造成电动阀早期即失效损坏。
另外,人们还常采用三速风机盘管代替温控电动阀进行调温,它是通过手动开关调整风机的风速来实现调温,不能自动控温,这就不可避免的发生低负荷时出现温度超调而造成能源的浪费。
本次设计的空调温度控制系统中,首先通过温度传感器DS18B20对空气进行温度采集,将采集到的温度信号传输给单片机AT89C51,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温程序对空气进行处理,从而模拟实现空调温度控制单元的工作情况。
关键词:空调温度控制系统;温控电动阀;单片机Air-conditioning Temperature Control System DesignAbstractAir-conditioning temperature control has been depended on electric valve, electric valve can be used with matching Thermostat realize heating ventilation and air conditioning systems in hot and cold water control switch. Because many of China's industrial water containing Ca2 +, Mg2 +, Coo2-such as the hard water ions in high concentrations in the temperature of the air-conditioning pipes vulnerable to scaling, resulting in the early stage of electrical failure damaged valve. In addition, it is also often used in place of three-speed fan coil thermostat temperature control for electric valve, which is adjusted by manually switch the fan speed to achieve the thermostat can not be automatic temperature control, which inevitably occurs when low-load temperature overshoot caused by the waste of energy.The design of air-conditioning temperature control system, first of all through the temperature sensor DS18B20 collection of air temperature, the temperature will be collected to the single-chip signal transmission AT89C51, controlled by the single-chip display, and compare the collected temperature and set temperature is line, and then drive the heating or air conditioning to cool the air to deal with procedures, which simulate the temperature control unit for air conditioning work.Key words:Air-conditioning temperature control system; Temperature-controlled electric valve; Single-chip目录摘要 (I)Abstract (II)第一章引言 (1)1.1 前言 (1)1.2 空调的工作原理 (1)1.3 空调的发展史 (3)1.4 空调的发展趋势 (4)1.5 总结 (5)第二章总体方案设计和选择 (6)2.1 总体方案设计 (6)2.1.1 方案一 (6)2.1.2 方案二 (6)2.1.3 方案三 (7)2.2 总体方案选择及实现 (8)第三章硬件设计 (9)3.1 硬件各单元方案设计与选择 (9)3.1.1 温度传感部分 (9)3.1.2 数字显示部分 (10)3.1.3 加热降温驱动控制电路 (11)3.1.4 键盘输入部分 (12)3.2 单元电路设计 (13)3.2.1 温度采集电路 (13)3.2.2 LED显示电路 (14)3.2.3 驱动控制电路 (18)3.2.4 键盘设置电路 (19)3.2.5 电源电路 (21)3.2.6 外部晶振电路 (22)3.3 元器件的选择 (24)3.3.1 AT89C51简介 (24)3.3.2 译码器CD4511 (27)3.4 特殊器件的介绍 (29)3.4.1 传感器的介绍 (29)3.4.2 光电耦合器 (36)第四章软件设计 (39)4.1 软件设计原理及设计所用工具 (39)4.2 部分程序的流程图 (40)4.2.1 主程序流程图 (40)4.2.2 DS18B20的温度采样程序流程图 (40)4.2.3 LED显示部分程序流程图 (41)总结体会 (43)参考文献 (45)附录 (47)附录A:电路原理图 (47)附录B:部分程序清单 (48)致谢 (63)第一章引言1.1前言中央空调房间的温度控制过去一直依赖温控电动阀,电动阀可与温控器配套使用,实现对供暖通风和空调系统中冷热水的开关控制。
根据我们多年来对电动阀使用情况的调查,真正能正常使用至设计寿命的电动阀极少,大多数在1~3年内就已失效,这是因为我国的工业水质很多是含Ca2+、Mg2+、Coo2-等离子浓度很高的硬水,在温度变化的空调管道中极易结垢,造成电动阀早期即失效损坏。
另外,人们还常采用三速风机盘管代替温控电动阀进行调温,它是通过手动开关调整风机的风速来实现调温,不能自动控温,这就不可避免的发生低负荷时出现温度超调而造成能源的浪费。
本文是以DS18B20为采集器、AT89C51为处理器、空调机相应电路为执行器来完成设计任务提出的温度控制要求。
设计一个空调机的温度控制系统,在该系统中,首先通过温度传感器对空气进行温度采集,将采集到的温度信号传输给单片机,由单片机控制显示器,并比较采集温度与设定温度是否一致,然后驱动空调机的加热或降温系统对空气进行处理,从而模拟实现空调温度控制单元的工作情况。
1.2空调的工作原理空调制热、制冷主要是移动热量。
空调分为室内和室外两个部分,制热时,将室外的热量移到室内;制冷时,将室内的热量移至室外。
空调制热、制冷的原理,是利用氟利昂冷凝液化放热,蒸发气化吸热的特性,以提高、降低室内空气的温度。
空调制冷时,气体氟利昂被压缩机加压,成为高温高压气体,进入室外机的换热器(此时为冷凝器),冷凝液化放热,成为液体,同时热量向大气释放。
液体氟利昂经节流装置减压,进入室内机的换热器(此时为蒸发器),蒸发气化吸热,成为气体,同时吸取室内空气的热量,从而达到降低室内温度的目的。
成为气体的氟利昂再次进入压缩机开始下一个循环。
图1.1 空调制冷原理图空调制热时,气体氟利昂被压缩机加压,成为高温高压气体,进入室内机的换热器(此时为冷凝器),冷凝液化放热,成为液体,同时将室内空气加热,从而达到提高室内温度的目的。
液体氟利昂经节流装置减压,进入室外机的换热器(此时为蒸发器),蒸发气化吸热,成为气体,同时吸取室外空气的热量(室外空气变得更冷)。
成为气体的氟利昂再次进入压缩机开始下一个循环。
图1.2 空调制热原理图通过以上氟利昂的液化和气化的过程,热量在蒸发器处吸取,转移到冷凝器处释放,从而实现热量的转移,达到制热、制冷的目的。
1.3空调的发展史在19世纪,美国的奥利维尔、约翰·戈里,法国的费迪南,瑞士的拉乌尔·皮克泰和德国的卡尔·冯·林德等人先后发现了空气压缩制冷的原理,并发明了以乙醚、二氧化硫、氨等为制冷剂的冷冻机,用于制冰机和食品冷藏库、冷藏船等,虽然当时还没人用上述发明制造建筑物的空气调节设备,但已为空调器的诞生准备了技术基础。
1881年7月,美国总统菲尔德在华盛顿车站遇刺爱重伤,时值盛夏,闷热难耐,病床上的总统生命垂危。
医生提出,只有降低室温才能为总统实施手术,挽救他的生命,美国政府把研制室内降温设备任务交给了工程师谢多。
谢多曾在矿山工作过,接触过当时应用还不广泛的制冷设备,了解空气压缩制冷的原理,于是他用工业制冷用的空气压缩机成功地使总统病房的温度从37℃降到了25℃。
虽然这还不是产品化的空调器,但人们一般认为谢多是世界上第一台空调器的发明者。
1902年,美国的发明家威利斯·开利在研究中发现,人体的冷热感觉不仅与温度有关,而且与空气中的湿度有密切关系。
同样的温度,在湿度高时就感到热,而湿度低时就感到凉爽。
用冰使空气降温,空气中所含的水蒸气因冷却而呈饱和状态,凝结成水,即使温度又升高,也因空气干燥而使身体感到凉爽。
同年,威利斯·开利最先取得了“空气调节机”专利,并创办了开利公司,开始制造调节温度与湿度的空调设备。
20世纪初,建筑物内装置空气调节设备还仅被认为是在热天里保持室内凉爽的一种方法,随着技术的改进,空气调节器已是维持空气温度、控制湿度,除去空气中的灰尘、花粉及其它微粒以保持空气流通的设备。
中央空调系统可使100层办公大楼变得凉爽或温暖,小型空调器可使单个房间温度宜人。
1.4空调的发展趋势市场需求是决定空调发展的主要动力,根据目前的市场需求来看,在空调技术方面有两大主流方向:一为变频技术,一为健康技术。
变频空调是目前空调消费的流行趋势,它与一般空调相比,有着高性能运转、舒适静音、节能环保、能耗低的显著特点,它的出现改善了人们的生活质量。
“变频空调”采用了比较先进的技术,启动时电压较小,可在低电压和低温条件下启动,这对于某些地区由于电压不稳或冬天室外温度较低而空调难以启动的情况,有一定的改善作用。