三角函数、正弦定理、余弦定理、不等式

合集下载

数学三角函数公式(超全面的)

数学三角函数公式(超全面的)

定名法则90°的奇数倍+α的三角函数,其绝对值与α三角函数的绝对值互为余函数。

90°的偶数倍+α的三角函数与α的三角函数绝对值相同。

也就是“奇余偶同,奇变偶不变” 定号法则将α看做锐角(注意是“看做”),按所得的角的象限,取三角函数的符号。

也就是“象限定号,符号看象限”。

(或为“奇变偶不变,符号看象限”)。

在Kπ/2中如果K 为偶数时函数名不变,若为奇数时函数名变为相反的函数名。

正负号看原函数中α所在象限的正负号。

关于正负号有可口诀;一全正二正弦,三正切四余弦,即第一象限全部为正,第二象限角正弦为正,第三为正切、余切为正,第四象限余弦为正。

)还可简记为:sin 上cos右tan对角,即sin的正值都在x轴上方,cos的正值都在y轴右方,tan的正值斜着。

比如:90°+α。

定名:90°是90°的奇数倍,所以应取余函数;定号:将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,余弦为负。

所以sin(90°+α)=cosα , cos(90°+α)=-sinα 这个非常神奇,屡试不爽~ 还有一个口诀“纵变横不变,符号看象限”,例如:sin(90°+α),90°的终边在纵轴上,所以函数名变为相反的函数名,即cos,将α看做锐角,那么90°+α是第二象限角,第二象限角的正弦为正,所以sin(90°+α)=cosα三角函数对称轴与对称中心y=sinx 对称轴:x=kπ+π/2(k∈z) 对称中心:(kπ,0)(k∈z) y=cosx 对称轴:x=kπ(k∈z) 对称中心:(kπ+π/2,0)(k∈z) y=tanx 对称轴:无对称中心:(kπ,0)(k∈z)两角和与差的三角函数cos(α+β)=cosα·cosβ-sinα·sinβ cos(α-β)=cosα·cosβ+sinα·sinβ sin(α±β)=sinα·cosβ±cosα·sinβ tan(α+β)=(tanα+tanβ)/(1-tanα·tanβ) tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)和差化积公式sinα+sinβ=2sin[(α+β)/2]cos[(α-β)/2] sinα-sinβ=2cos[(α+β)/2]sin[(α-β)/2] cosα+cosβ=2cos[(α+β)/2]cos[(α-β)/2] cosα-cosβ=-2sin[(α+β)/2]sin[(α-β)/2]积化和差公式sinα·cosβ=(1/2)[sin(α+β)+sin(α-β)] cosα·sinβ=(1/2)[sin(α+β)-sin(α-β)] cosα·cosβ=(1/2)[cos(α+β)+cos(α-β)] sinα·sinβ=-(1/2)[cos(α+β)-cos(α-β)]倍角公式sin(2α)=2sinα·cosα=2/(tanα+cotα) cos(2α)=cos^2α-sin^2;α=2cos^2;α-1=1-2sin^2;αtan(2α)=2tanα/(1-tan^2;α) cot(2α)=(cot^2;α-1)/(2cotα) sec(2α)=sec^2;α/(1-tan^2;α) csc(2α)=1/2*secα·cscα三倍角公式sin(3α) = 3sinα-4sin^3;α = 4sinα·sin(60°+α)sin(60°-α) cos(3α) = 4cos^3;α-3cosα = 4cosα·cos(60°+α)cos(60°-α) tan(3α) = (3tanα-tan^3;α)/(1-3tan^2;α) = t anαtan(π/3+α)tan(π/3-α) cot(3α)=(cot^3;α-3cotα)/(3cotα-1)n倍角公式sin(nα)=ncos^(n-1)α·sinα-C(n,3)cos^(n-3)α·sin^3α+C(n,5)cos^(n-5)α·sin^5α-… cos(nα)=cos^nα-C(n,2)cos^(n-2)α·sin^2α+C(n,4)cos^(n-4)α·sin^4α-…半角公式sin(α/2)=±√((1-cosα)/2) cos(α/2)=±√((1+cosα)/2) tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinαcot(α/2)=±√((1+cosα)/(1-cosα))=(1+cosα)/sinα=sinα/(1-cosα) sec(α/2)=±√((2secα/(secα+1)) csc(α/2)=±√((2secα/(secα-1))辅助角公式Asinα+Bcosα=√(A^2;+B^2;)sin(α+arctan(B/A)) Asinα+Bcosα=√(A^2;+B^2;)cos(α-arctan(A/B))万能公式sin(a)= (2tan(a/2))/(1+tan^2;(a/2)) cos(a)= (1-tan^2;(a/2))/(1+tan^2;(a/2)) tan(a)= (2tan(a/2))/(1-tan^2;(a/2))降幂公式sin^2;α=(1-cos(2α))/2=versin(2α)/2 cos^2;α=(1+cos(2α))/2=covers(2α)/2 tan^2;α=(1-c os(2α))/(1+cos(2α))三角和的三角函数sin(α+β+γ)=sinα·cosβ·cosγ+cosα·sinβ·cosγ+cosα·cosβ·sinγ-sinα·sinβ·sinγ cos(α+β+γ)=cosα·cosβ·cosγ-cosα·sinβ·sinγ-sinα·cosβ·sinγ-sinα·sinβ·cosγtan(α+β+γ)=(tanα+tanβ+tanγ-tanα·tanβ·tanγ)÷(1-tanα·tanβ-tanβ·tanγ-tanγ·tanα)一些常用特殊角的三角函数值正弦余弦正切余切0 0 1 0 不存在π/6 1/2 √3/2 √3/3 √3π/4 √2/2 √2/2 1 1π/3 √3/2 1/2 √3 √3/3π/2 1 0 不存在0π0 -1 0 不存在幂级数c0+c1x+c2x2+...+cnxn+...=∑cnxn (n=0..∞) c0+c1(x-a)+c2(x-a)2+...+cn(x-a)n+...=∑cn(x-a)n (n=0..∞) 它们的各项都是正整数幂的幂函数, 其中c0,c1,c2,...及a都是常数,这种级数称为幂级数。

高三数学函数、三角函数、不等式综合复习

高三数学函数、三角函数、不等式综合复习

函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。

会证明函数的奇偶性,周期性和单调性。

会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。

教学重点:综合应用函数知识和分析问题及解决问题的能力。

教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。

解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。

2.已知函数的反函数为,。

(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。

解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。

3.已知函数是奇函数,当时有最小值2,且。

(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。

若存在,求出这两点的坐标,若不存在说明理由。

解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。

∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x0,y0)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。

4.设函数的定义域为R,对任意实数x1,x2恒有,且,。

(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。

解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。

由,∴,即(3)设,则∵且在上∴,,即时恒有。

设0≤x1<x2≤π,则,∴,∴∴故在上是单减函数。

5.已知函数,x∈R。

琴生不等式高中证明方法

琴生不等式高中证明方法

琴生不等式高中证明方法篇一:琴生不等式是数学中一个重要的不等式,它可以用于证明很多重要的数学定理和结论。

在高中阶段,琴生不等式通常是通过正弦定理和余弦定理来证明的。

以下是一个简单的证明方法:琴生不等式表明,对于任意两个三角形 ABC 和 DEF,满足:sin A / B + sin B / C + sin C / A = cos A / B + cos B / C + cos C / A我们可以将三角形 ABC 和 DEF 分别表示为如下两个三角形:```ABC ==> A = (a, b, c), B = (x, y, z), C = (p, q, r)DEF ==> A = (a, b, c), B = (x, y, z), C = (p, q, r)```其中,a、b、c 分别为三角形 ABC 的三条边,x、y、z 分别为三角形 DEF 的三条边,p、q、r 分别为对应边上的中线。

首先,我们可以通过正弦定理和余弦定理得到:sin A / B = cos (π - B / 2) / sin (π - A / 2)sin B / C = cos (π - C / 2) / sin (π - B / 2)sin C / A = cos (π - A / 2) / sin (π - C / 2)然后,我们可以将上述公式中的 cos 替换为 sin,得到:sin A / B + sin B / C + sin C / A = cos (π - B / 2) / sin (π - A / 2) + cos (π - C / 2) / sin (π - B / 2) + cos (π - A / 2) / sin (π= sin (π - A / 2) / sin (π - B / 2) + sin (π - B / 2) / sin (π- C / 2) + sin (π - C / 2) / sin (π - A / 2)= cos (A - B - C) / sin (A - B) / sin (B - C) + cos (A - B - C) / sin (B - C) / sin (C - A) + cos (A - B - C) / sin (C - A) / sin (A - B) = cos (A - B - C) / (sin (A - B) / sin (B - C) * sin (C - A) / sin (A - B))= cos (A - B - C) * cos (A - B) * cos (C - A) / (sin (A - B) * sin (B - C) * sin (C - A))= cos (A - B - C) * (cos (A - B) + cos (C - A)) / (sin (A - B) * sin (B - C) * sin (C - A))= cos (A - B - C) * (1 - cos (A - B) * cos (C - A)) / (sin (A - B) * sin (B - C) * sin (C - A))= cos (A - B - C) * (1 - 2 cos (A - B) * cos (C - A)) / (sin (A - B) * sin (B - C) * sin (C - A))= cos (A - B - C) * (1 - cos (A - B) * cos (C - A)) / (sin (A - B) * sin (B - C))= cos (A - B - C) * (1 - cos (A - B) * cos (C - A)) / (sin (A - B) * sin (B - C))= cos (A - B - C) * (1 - sin (A - B) * sin (C - A)) / (2 * sin (A - B) * sin (B - C))= cos (A - B - C) * (1 - sin (A - B) * sin (C - A)) / (sin (A - B)琴生不等式是数学中的一个重要不等式,它在许多领域都有广泛的应用,包括几何、三角函数、微积分等等。

三角函数解三角形正弦定理和余弦定理课件理新ppt

三角函数解三角形正弦定理和余弦定理课件理新ppt

正弦定理的应用
01
正弦定理可以应用于求解三角形中的边、角、面积等问题,其中最常用的应用 是求解三角形的三边关系和三角形的面积公式。
02
在求解三角形的三边关系时,可以使用正弦定理得到两边之比的表达式,再结 合余弦定理得到第三边的表达式,从而得到三边之间的关系。
03
在求解三角形的面积公式时,可以使用正弦定理得到三角形的底和高,从而得 到三角形的面积公式。
三角函数解三角形正弦定理和余弦 定理课件理新ppt
xx年xx月xx日
contents
目录
• 引言 • 正弦定理 • 余弦定理 • 案例分析 • 结论与展望 • 参考文献
01
引言
课程背景
1
三角函数是数学中的基础内容之一,具有广泛 的应用价值。
2
解三角形是三角函数应用的重要方面之一,涉 及到很多实际问题。
《三角函数解题方 法与技巧》
《高中数学竞赛教 程》
《三角函数图像与 性质》
THANKS
利用正弦定理和余弦定理解三角形
如何根据三角形的已知信息求解三边长
利用正弦定理求解三角形边长
利用余弦定理求解三角形边长
通过具体案例展示,进行计算
三角形的判定方法
如何判断一个三角形是否为直 角三角形
利用正弦定理和余弦定理进行 三角形判定
通过具体案例展示,进行计算
05
结论与展望
总结正余弦定理在解三角形中的应用
正弦定理:对于任意三角形,已知一边和它的对角 ,无法确定三角形的大小和形状,需要再知道其他
一些信息才能确定三角形的大小和形状.
余弦定理:对于任意三角形,已知三边,可确定这 个三角形的形状和大小;已知两边和其中一边的对

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

高中数学知识点总结(第四章 三角函数、解三角形 第七节 正弦定理和余弦定理)

第七节 正弦定理和余弦定理一、基础知识 1.正弦定理a sin A =b sin B =c sin C=2R (R 为△ABC 外接圆的半径).正弦定理的常见变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ; (2)sin A =a 2R ,sin B =b 2R ,sin C =c 2R; (3)a ∶b ∶c =sin A ∶sin B ∶sin C ; (4)a +b +c sin A +sin B +sin C =a sin A. 2.余弦定理a 2=b 2+c 2-2bc cos A ; b 2=c 2+a 2-2ca cos B ; c 2=a 2+b 2-2ab cos C . 3.三角形的面积公式(1)S △ABC =12ah a (h a 为边a 上的高);(2)S △ABC =12ab sin C =12bc sin A =12ac sin B ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).二、常用结论汇总——规律多一点 1.三角形内角和定理在△ABC 中,A +B +C =π;变形:A +B 2=π2-C2.2.三角形中的三角函数关系(1)sin(A +B )=sin C ;(2)cos(A +B )=-cos C ; (3)sin A +B 2=cos C 2;(4)cos A +B 2=sin C2.3.三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B . 4.用余弦定理判断三角形的形状在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,当b 2+c 2-a 2>0时,可知A 为锐角;当b 2+c 2-a 2=0时,可知A 为直角;当b 2+c 2-a 2<0时,可知A 为钝角.第一课时 正弦定理和余弦定理(一) 考点一 利用正、余弦定理解三角形考法(一) 正弦定理解三角形[典例] (1)(2019·江西重点中学联考)在△ABC 中,a =3,b =2,A =30°,则cos B =________.(2)设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .若a =3,sin B =12,C =π6,则b =________.[解析] (1)由正弦定理可得sin B =b sin A a =2×sin 30°3=13,∵a =3>b =2,∴B <A ,即B为锐角,∴cos B =1-sin 2B =223. (2)∵sin B =12且B ∈(0,π),∴B =π6或B =5π6,又∵C =π6,∴B =π6,A =π-B -C =2π3.又a =3,由正弦定理得a sin A =bsin B ,即3sin 2π3=b sinπ6,解得b =1. [答案] (1)223 (2)1考法(二) 余弦定理解三角形[典例] (1)(2019·山西五校联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若b cos A +a cos B =c 2,a =b =2,则△ABC 的周长为( )A .7.5B .7C .6D .5(2)(2018·泰安二模)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且c -b2c -a=sin Asin B +sin C,则角B =________.[解析](1)∵b cos A +a cos B =c 2,∴由余弦定理可得b ·b 2+c 2-a 22bc +a ·a 2+c 2-b 22ac=c 2,整理可得2c 2=2c 3,解得c =1,则△ABC 的周长为a +b +c =2+2+1=5.(2)由正弦定理可得c -b 2c -a =sin A sin B +sin C =ab +c, ∴c 2-b 2=2ac -a 2,∴c 2+a 2-b 2=2ac ,∴cos B =a 2+c 2-b 22ac =22,∵0<B <π,∴B =π4.[答案] (1)D (2)π4[题组训练]1.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若b 2=ac ,c =2a ,则cos C =( ) A.24B .-24C.34D .-34解析:选B 由题意得,b 2=ac =2a 2,即b =2a ,∴cos C =a 2+b 2-c 22ab =a 2+2a 2-4a 22a ×2a=-24.2.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知sin B +sin A (sin C -cos C )=0,a =2,c =2,则C =( )A.π12 B.π6C.π4D.π3解析:选B 因为sin B +sin A (sin C -cos C )=0, 所以sin(A +C )+sin A sin C -sin A cos C =0,所以sin A cos C +cos A sin C +sin A sin C -sin A cos C =0,整理得sin C (sin A +cos A )=0.因为sin C ≠0,所以sin A +cos A =0,所以t a n A =-1, 因为A ∈(0,π),所以A =3π4,由正弦定理得sin C =c ·sin Aa =2×222=12, 又0<C <π4,所以C =π6.3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知sin 2B +sin 2C =sin 2A +sin B sin C .(1)求角A 的大小;(2)若cos B =13,a =3,求c 的值.解:(1)由正弦定理可得b 2+c 2=a 2+bc ,由余弦定理得cos A =b 2+c 2-a 22bc =12,因为A ∈(0,π),所以A =π3.(2)由(1)可知sin A =32, 因为cos B =13,B 为△ABC 的内角,所以sin B =223,故sin C =sin(A +B )=sin A cos B +cos A sin B =32×13+12×223=3+226. 由正弦定理a sin A =c sin C 得c =a sin C sin A=3×3+2232×6=1+263.考点二 判定三角形的形状[典例] (1)设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,若b cos C +c cos B =a sin A ,则△ABC 的形状为( )A .锐角三角形B .直角三角形C .钝角三角形D .不确定(2)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ,则△ABC 的形状为( )A .直角三角形B .等腰非等边三角形C .等边三角形D .钝角三角形[解析] (1)法一:因为b cos C +c cos B =a sin A , 由正弦定理知sin B cos C +sin C cos B =sin A sin A , 得sin(B +C )=sin A sin A .又sin(B +C )=sin A ,得sin A =1, 即A =π2,因此△ABC 是直角三角形.法二:因为b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·a 2+c 2-b 22ac =2a 22a =a ,所以a sin A =a ,即sin A =1,故A =π2,因此△ABC 是直角三角形.(2)因为sin A sin B =a c ,所以a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc , 所以cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.[答案] (1)B (2)C[变透练清] 1.变条件若本例(1)条件改为“a sin A +b sin B <c sin C ”,那么△ABC 的形状为________.解析:根据正弦定理可得a 2+b 2<c 2,由余弦定理得cos C =a 2+b 2-c 22ab <0,故C 是钝角,所以△ABC 是钝角三角形. 答案:钝角三角形 2.变条件若本例(1)条件改为“c -a cos B =(2a -b )cos A ”,那么△ABC 的形状为________.解析:因为c -a cos B =(2a -b )cos A , C =π-(A +B ),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B ·cos A , 所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A , 所以cos A (sin B -sin A )=0, 所以cos A =0或sin B =sin A , 所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰或直角三角形. 答案:等腰或直角三角形 3.变条件若本例(2)条件改为“cos A cos B =ba=2”,那么△ABC 的形状为________.解析:因为cos A cos B =b a ,由正弦定理得cos A cos B =sin B sin A ,所以sin 2A =sin 2B .由ba =2,可知a ≠b ,所以A ≠B .又因为A ,B ∈(0,π),所以2A =π-2B ,即A +B =π2,所以C =π2,于是△ABC是直角三角形.答案:直角三角形[课时跟踪检测]A 级1.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若sin A a =cos Bb ,则B 的大小为( )A .30°B .45°C .60°D .90°解析:选B 由正弦定理知,sin A sin A =cos Bsin B ,∴sin B =cos B ,∴B =45°.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知b =40,c =20,C =60°,则此三角形的解的情况是( )A .有一解B .有两解C .无解D .有解但解的个数不确定解析:选C 由正弦定理得b sin B =c sin C, ∴sin B =b sin Cc =40×3220=3>1.∴角B 不存在,即满足条件的三角形不存在.3.(2018·重庆六校联考)在△ABC 中,cos B =ac (a ,b ,c 分别为角A ,B ,C 的对边),则△ABC 的形状为( )A .直角三角形B .等边三角形C .等腰三角形D .等腰三角形或直角三角形解析:选A 因为cos B =ac ,由余弦定理得a 2+c 2-b 22ac =a c ,整理得b 2+a 2=c 2,即C 为直角,则△ABC 为直角三角形.4.在△ABC 中,a ,b ,c 分别是内角A ,B ,C 的对边.若b sin A =3c sin B ,a =3, cos B =23,则b =( )A .14B .6 C.14D.6解析:选D ∵b sin A =3c sin B ⇒ab =3bc ⇒a =3c ⇒c =1,∴b 2=a 2+c 2-2ac cos B =9+1-2×3×1×23=6,∴b = 6.5.(2019·莆田调研)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若a sin B cos C+c sin B cos A =12b ,且a >b ,则B =( )A.π6B.π3C.2π3D.5π6解析:选A ∵a sin B cos C +c sin B cos A =12b ,∴根据正弦定理可得sin A sin B cos C +sin C sin B cos A =12sin B ,即sin B (sin A cos C +sin C cos A )=12sin B .∵sin B ≠0,∴sin(A +C )=12,即sin B =12.∵a >b ,∴A >B ,即B 为锐角,∴B =π6. 6.(2019·山西大同联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若2(b cos A +a cos B )=c 2,b =3,3cos A =1,则a =( )A.5 B .3 C.10D .4解析:选B 由正弦定理可得2(sin B cos A +sin A cos B )=c sin C , ∵2(sin B cos A +sin A cos B )=2sin(A +B )=2sin C ,∴2sin C =c sin C ,∵sin C >0,∴c =2,由余弦定理得a 2=b 2+c 2-2bc cos A =32+22-2×3×2×13=9,∴a =3.7.在△ABC 中,AB =6,A =75°,B =45°,则AC =________. 解析:C =180°-75°-45°=60°, 由正弦定理得AB sin C =ACsin B ,即6sin 60°=AC sin 45°,解得AC =2. 答案:28.设△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2,cos C =-14,3sin A =2sinB ,则c =________.解析:∵3sin A =2sin B ,∴3a =2b . 又∵a =2,∴b =3.由余弦定理可知c 2=a 2+b 2-2ab cos C , ∴c 2=22+32-2×2×3×⎝⎛⎭⎫-14=16,∴c =4. 答案:49.(2018·浙江高考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .若a =7,b =2,A =60°,则sinB =________,c =________.解析:由正弦定理a sin A =bsin B ,得sin B =b a ·sin A =27×32=217.由余弦定理a 2=b 2+c 2-2bc cos A , 得7=4+c 2-4c ×cos 60°,即c 2-2c -3=0,解得c =3或c =-1(舍去). 答案:2173 10.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,sin A ,sin B ,sin C 成等差数列,且a =2c ,则cos A =________.解析:因为sin A ,sin B ,sin C 成等差数列,所以2sin B =sin A +sin C .由正弦定理得a +c =2b ,又因为a =2c ,可得b =32c ,所以cos A =b 2+c 2-a 22bc=94c 2+c 2-4c 22×32c 2=-14.答案:-1411.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且A =2B . (1)求证:a =2b cos B ; (2)若b =2,c =4,求B 的值.解:(1)证明:因为A =2B ,所以由正弦定理a sin A =b sin B ,得a sin 2B =bsin B ,所以a =2b cos B .(2)由余弦定理,a 2=b 2+c 2-2bc cos A , 因为b =2,c =4,A =2B ,所以16c os 2B =4+16-16cos 2B ,所以c os 2B =34,因为A +B =2B +B <π,所以B <π3,所以cos B =32,所以B =π6.12.(2019·绵阳模拟)在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解:(1)由已知,结合正弦定理,得2a 2=(2b +c )b +(2c +b )c ,即a 2=b 2+c 2+bc . 又由余弦定理,得a 2=b 2+c 2-2bc cos A , 所以bc =-2bc cos A ,即cos A =-12.由于A 为△ABC 的内角,所以A =2π3.(2)由已知2a sin A =(2b +c )sin B +(2c +b )sin C ,结合正弦定理,得2sin 2A =(2sin B +sin C )sin B +(2sin C +sin B )sin C , 即sin 2A =sin 2B +sin 2C +sin B sin C =sin 22π3=34.又由sin B +sin C =1,得sin 2B +sin 2C +2sin B sin C =1,所以sin B sin C =14,结合sin B +sin C =1,解得sin B =sin C =12.因为B +C =π-A =π3,所以B =C =π6,所以△ABC 是等腰三角形.B 级1.(2019·郑州质量预测)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .若2c os 2A +B2-cos 2C =1,4sin B =3sin A ,a -b =1,则c 的值为( )A.13B.7C.37D .6解析:选A 由2c os 2A +B2-cos 2C =1,得1+c os(A +B )-(2c os 2C -1)=2-2c os 2C -cos C =1,即2c os 2C +cos C -1=0,解得cos C =12或cos C =-1(舍去).由4sin B =3sin A及正弦定理,得4b =3a ,结合a -b =1,得a =4,b =3.由余弦定理,知c 2=a 2+b 2-2ab cos C =42+32-2×4×3×12=13,所以c =13.2.(2019·长春模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且c =3,2sin A a =t a n Cc,若sin(A -B )+sin C =2sin 2B ,则a +b =________. 解析:∵2sin A a =t a n C c =sin C c cos C ,且由正弦定理可得a =2R sin A ,c =2R sin C (R 为△ABC的外接圆的半径),∴cos C =12.∵C ∈(0,π),∴C =π3.∵sin(A -B )+sin C =2sin 2B ,sin C =sin(A +B ),∴2sin A cos B =4sin B cos B .当cos B =0时,B =π2,则A =π6,∵c =3, ∴a =1,b =2,则a +b =3.当cos B ≠0时,sin A =2sin B ,即a =2b .∵cos C =a 2+b 2-c 22ab =12,∴b 2=1,即b =1,∴a =2,则a +b =3.综上,a +b =3.答案:33.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且2a cos C -c =2b . (1)求角A 的大小;(2)若c =2,角B 的平分线BD =3,求a .解:(1)2a cos C -c =2b ⇒2sin A cos C -sin C =2sin B ⇒2sin A cos C -sin C =2sin(A +C )=2sin A cos C +2cos A sin C ,∴-sin C =2cos A sin C , ∵sin C ≠0,∴cos A =-12,又A ∈(0,π),∴A =2π3.(2)在△ABD 中,由正弦定理得,AB sin ∠ADB =BDsin A ,∴sin ∠ADB =AB sin A BD =22.又∠ADB ∈(0,π),A =2π3,∴∠ADB =π4,∴∠ABC =π6,∠ACB =π6,b =c =2,由余弦定理,得a 2=c 2+b 2-2c ·b ·cos A =(2)2+(2)2-2×2×2c os 2π3=6,∴a = 6.第二课时 正弦定理和余弦定理(二) 考点一 有关三角形面积的计算[典例] (1)(2019·广州调研)△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,已知b =7,c =4,cos B =34,则△ABC 的面积等于( )A .37 B.372C .9D.92(2)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .若△ABC 的面积为34(a 2+c 2-b 2),则B =________.[解析] (1)法一:由余弦定理b 2=a 2+c 2-2ac cos B ,代入数据,得a =3,又cos B =34,B ∈(0,π),所以sin B =74,所以S △ABC =12ac sin B =372. 法二:由cos B =34,B ∈(0,π),得sin B =74,由正弦定理b sin B =csin C 及b =7,c =4,可得sin C =1,所以C =π2,所以sin A =cos B =34,所以S △ABC =12bc sin A =372.(2)由余弦定理得cos B =a 2+c 2-b 22ac ,∴a 2+c 2-b 2=2ac cos B . 又∵S =34(a 2+c 2-b 2),∴12ac sin B =34×2ac cos B , ∴t a n B =3,∵B ∈()0,π,∴B =π3.[答案] (1)B (2)π3[变透练清] 1.变条件本例(1)的条件变为:若c =4,sin C =2sin A ,sin B =154,则S △ABC =________. 解析:因为sin C =2sin A ,所以c =2a ,所以a =2,所以S △ABC =12ac sin B =12×2×4×154=15.答案:15 2.变结论本例(2)的条件不变,则C 为钝角时,ca的取值范围是________.解析:∵B =π3且C 为钝角,∴C =2π3-A >π2,∴0<A <π6 .由正弦定理得ca =sin ⎝⎛⎭⎫2π3-A sin A=32cos A +12sin A sin A =12+32·1t a n A.∵0<t a n A <33,∴1t a n A>3, ∴c a >12+32×3=2,即ca >2. 答案:(2,+∞)3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,(2b -a )cos C =c cos A . (1)求角C 的大小;(2)若c =3,△ABC 的面积S =433,求△ABC 的周长.解:(1)由已知及正弦定理得(2sin B -sin A )cos C =sin C cos A , 即2sin B cos C =sin A cos C +sin C cos A =sin(A +C )=sin B , ∵B ∈(0,π),∴sin B >0,∴cos C =12,∵C ∈(0,π),∴C =π3.(2)由(1)知,C =π3,故S =12ab sin C =12ab sin π3=433,解得ab =163.由余弦定理可得c 2=a 2+b 2-2ab cos C =a 2+b 2-ab =(a +b )2-3ab , 又c =3,∴(a +b )2=c 2+3ab =32+3×163=25,得a +b =5.∴△ABC 的周长为a +b +c =5+3=8.[解题技法]1.求三角形面积的方法(1)若三角形中已知一个角(角的大小或该角的正、余弦值),结合题意求解这个角的两边或该角的两边之积,代入公式求面积.(2)若已知三角形的三边,可先求其一个角的余弦值,再求其正弦值,代入公式求面积.总之,结合图形恰当选择面积公式是解题的关键.2.已知三角形面积求边、角的方法(1)若求角,就寻求夹这个角的两边的关系,利用面积公式列方程求解. (2)若求边,就寻求与该边(或两边)有关联的角,利用面积公式列方程求解. 考点二 平面图形中的计算问题[典例] (2018·广东佛山质检)如图,在平面四边形ABCD 中,∠ABC =3π4,AB ⊥AD ,AB =1. (1)若AC =5,求△ABC 的面积; (2)若∠ADC =π6,CD =4,求sin ∠CAD .[解] (1)在△ABC 中,由余弦定理得,AC 2=AB 2+BC 2-2AB ·BC ·c os ∠ABC , 即5=1+BC 2+2BC ,解得BC =2,所以△ABC 的面积S △ABC =12AB ·BC ·sin ∠ABC =12×1×2×22=12.(2)设∠CAD =θ,在△ACD 中,由正弦定理得AC sin ∠ADC =CDsin ∠CAD ,即AC sin π6=4sin θ, ① 在△ABC 中,∠BAC =π2-θ,∠BCA =π-3π4-⎝⎛⎭⎫π2-θ=θ-π4, 由正弦定理得AC sin ∠ABC =ABsin ∠BCA ,即AC sin 3π4=1sin ⎝⎛⎭⎫θ-π4,② ①②两式相除,得sin 3π4sin π6=4sin ⎝⎛⎭⎫θ-π4sin θ,即4⎝⎛⎭⎫22sin θ-22cos θ=2sin θ,整理得sin θ=2cos θ. 又因为sin 2θ+c os 2θ=1,所以sin θ=255,即sin ∠CAD =255.[解题技法]与平面图形有关的解三角形问题的关键及思路求解平面图形中的计算问题,关键是梳理条件和所求问题的类型,然后将数据化归到三角形中,利用正弦定理或余弦定理建立已知和所求的关系.具体解题思路如下:(1)把所提供的平面图形拆分成若干个三角形,然后在各个三角形内利用正弦、余弦定理求解;(2)寻找各个三角形之间的联系,交叉使用公共条件,求出结果.[提醒] 做题过程中,要用到平面几何中的一些知识点,如相似三角形的边角关系、平行四边形的一些性质,要把这些性质与正弦、余弦定理有机结合,才能顺利解决问题.[题组训练]1.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值为________.解析:设AB =a ,∵AB =AD,2AB =3BD ,BC =2BD ,∴AD =a ,BD =2a 3,BC =4a 3. 在△ABD 中,c os ∠ADB =a 2+4a 23-a22a ×2a 3=33,∴sin ∠ADB =63,∴sin ∠BDC =63. 在△BDC 中,BD sin C =BCsin ∠BDC, ∴sin C =BD ·sin ∠BDC BC =66.答案:662.如图,在平面四边形ABCD 中,DA ⊥AB ,DE =1,EC =7,EA =2,∠ADC =2π3,且∠CBE ,∠BEC ,∠BCE 成等差数列.(1)求sin ∠CED ; (2)求BE 的长. 解:设∠CED =α.因为∠CBE ,∠BEC ,∠BCE 成等差数列, 所以2∠BEC =∠CBE +∠BCE ,又∠CBE +∠BEC +∠BCE =π,所以∠BEC =π3.(1)在△CDE 中,由余弦定理得EC 2=CD 2+DE 2-2CD ·DE ·c os ∠EDC , 即7=CD 2+1+CD ,即CD 2+CD -6=0, 解得CD =2(CD =-3舍去). 在△CDE 中,由正弦定理得EC sin ∠EDC =CDsin α,于是sin α=CD ·sin 2π3EC =2×327=217,即sin ∠CED =217.(2)由题设知0<α<π3,由(1)知cos α=1-sin 2α=1-2149=277,又∠AEB =π-∠BEC -α=2π3-α,所以c os ∠AEB =c os ⎝⎛⎭⎫2π3-α=c os 2π3cos α+sin 2π3sin α=-12×277+32×217=714. 在Rt △EAB 中,c os ∠AEB =EA BE =2BE =714,所以BE =47.考点三 三角形中的最值、范围问题[典例] (1)在△ABC 中,内角A ,B ,C 对应的边分别为a ,b ,c ,A ≠π2,sin C +sin(B -A )=2sin 2A ,则角A 的取值范围为( )A.⎝⎛⎦⎤0,π6 B.⎝⎛⎦⎤0,π4 C.⎣⎡⎦⎤π6,π4D.⎣⎡⎦⎤π6,π3(2)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且cos 2A +cos 2B =2cos 2C ,则cos C 的最小值为( )A.32B.22C.12D .-12[解析] (1)在△ABC 中,C =π-(A +B ),所以sin(A +B )+sin(B -A )=2sin 2A ,即2sin B cos A =22sin A cos A ,因为A ≠π2,所以cos A ≠0,所以sin B =2sin A ,由正弦定理得,b=2a ,所以A 为锐角.又因为sin B =2sin A ∈(0,1],所以sin A ∈⎝⎛⎦⎤0,22,所以A ∈⎝⎛⎦⎤0,π4. (2)因为cos 2A +cos 2B =2cos 2C ,所以1-2sin 2A +1-2sin 2B =2-4sin 2C ,得a 2+b 2=2c 2,cos C =a 2+b 2-c 22ab =a 2+b 24ab ≥2ab 4ab =12,当且仅当a =b 时等号成立,故选C. [答案] (1)B (2)C[解题技法]1.三角形中的最值、范围问题的解题策略解与三角形中边角有关的量的取值范围时,主要是利用已知条件和有关定理,将所求的量用三角形的某个内角或某条边表示出来,结合三角形边角取值范围等求解即可.2.求解三角形中的最值、范围问题的注意点(1)涉及求范围的问题,一定要搞清已知变量的范围,利用已知的范围进行求解, 已知边的范围求角的范围时可以利用余弦定理进行转化.(2)注意题目中的隐含条件,如A +B +C =π,0<A <π,b -c <a <b +c ,三角形中大边对大角等.[题组训练]1.在钝角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,B 为钝角,若a cos A = b sin A ,则sin A +sin C 的最大值为( )A.2B.98C .1D.78解析:选B ∵a cos A =b sin A ,由正弦定理可得,sin A cos A =sin B sin A ,∵sin A ≠0,∴cos A =sin B ,又B 为钝角,∴B =A +π2,sin A +sin C =sin A +sin(A +B )=sin A +cos 2A =sin A +1-2sin 2A =-2⎝⎛⎭⎫sin A -142+98,∴sin A +sin C 的最大值为98. 2.(2018·哈尔滨三中二模)在△ABC 中,已知c =2,若sin 2A +sin 2B -sin A sin B =sin 2C ,则a +b 的取值范围为________.解析:∵sin 2A +sin 2B -sin A sin B =sin 2C ,∴a 2+b 2-ab =c 2,∴cos C =a 2+b 2-c 22ab =12,又∵C ∈(0,π),∴C =π3.由正弦定理可得a sin A =b sin B =2sin π3=433,∴a =433sin A ,b =433sin B .又∵B =2π3-A ,∴a +b =433sin A +433sin B =433sin A +433sin ⎝⎛⎭⎫2π3-A =4sin ⎝⎛⎭⎫A +π6.又∵A ∈⎝⎛⎭⎫0,2π3,∴A +π6∈⎝⎛⎭⎫π6,5π6,∴sin ⎝⎛⎭⎫A +π6∈⎝⎛⎦⎤12,1,∴a +b ∈(2,4]. 答案:(2,4]3.已知在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且cos B b +cos C c =sin A 3sin C .(1)求b 的值;(2)若cos B +3sin B =2,求△ABC 面积的最大值.解:(1)由题意及正、余弦定理得a 2+c 2-b 22abc +a 2+b 2-c 22abc =3a 3c ,整理得2a 22abc =3a3c ,所以b = 3.(2)由题意得cos B +3sin B =2sin ⎝⎛⎭⎫B +π6=2, 所以sin ⎝⎛⎭⎫B +π6=1, 因为B ∈(0,π),所以B +π6=π2,所以B =π3.由余弦定理得b 2=a 2+c 2-2ac cos B , 所以3=a 2+c 2-ac ≥2ac -ac =ac , 即ac ≤3,当且仅当a =c =3时等号成立. 所以△ABC 的面积S △ABC =12ac sin B =34ac ≤334,当且仅当a =c =3时等号成立.故△ABC 面积的最大值为334.考点四 解三角形与三角函数的综合应用考法(一) 正、余弦定理与三角恒等变换[典例] (2018·天津高考)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知 b sin A =ac os ⎝⎛⎭⎫B -π6. (1)求角B 的大小;(2)设a =2,c =3,求b 和sin(2A -B )的值. [解] (1)在△ABC 中,由正弦定理a sin A =b sin B ,可得b sin A =a sin B .又因为b sin A =ac os ⎝⎛⎭⎫B -π6, 所以a sin B =ac os ⎝⎛⎭⎫B -π6, 即sin B =32cos B +12sin B , 所以t a n B = 3.因为B ∈(0,π),所以B =π3.(2)在△ABC 中,由余弦定理及a =2,c =3,B =π3,得b 2=a 2+c 2-2ac cos B =7,故b =7. 由b sin A =ac os ⎝⎛⎭⎫B -π6,可得sin A =37. 因为a <c ,所以cos A =27. 所以sin 2A =2sin A cos A =437,cos 2A =2c os 2A -1=17.所以sin(2A -B )=sin 2A cos B -cos 2A sin B =437×12-17×32=3314. 考法(二) 正、余弦定理与三角函数的性质[典例] (2018·辽宁五校联考)已知函数f (x )=c os 2x +3sin(π-x )c os(π+x )-12.(1)求函数f (x )在[0,π]上的单调递减区间;(2)在锐角△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,已知f (A )=-1,a =2,b sin C =a sin A ,求△ABC 的面积.[解] (1)f (x )=c os 2x -3sin x cos x -12=1+cos 2x 2-32sin 2x -12=-sin ⎝⎛⎭⎫2x -π6, 令2k π-π2≤2x -π6≤2k π+π2,k ∈Z ,得k π-π6≤x ≤k π+π3,k ∈Z ,又∵x ∈[0,π],∴函数f (x )在[0,π]上的单调递减区间为⎣⎡⎦⎤0,π3和⎣⎡⎦⎤5π6,π. (2)由(1)知f (x )=-sin ⎝⎛⎭⎫2x -π6, ∴f (A )=-sin ⎝⎛⎭⎫2A -π6=-1, ∵△ABC 为锐角三角形,∴0<A <π2,∴-π6<2A -π6<5π6,∴2A -π6=π2,即A =π3.又∵b sin C =a sin A ,∴bc =a 2=4, ∴S △ABC =12bc sin A = 3.[对点训练]在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,(2a -c )cos B -b cos C =0. (1)求角B 的大小;(2)设函数f (x )=2sin x cos x cos B -32cos 2x ,求函数f (x )的最大值及当f (x )取得最大值时x 的值.解:(1)因为(2a -c )cos B -b cos C =0, 所以2a cos B -c cos B -b cos C =0, 由正弦定理得2sin A cos B -sin C cos B -cos C sin B =0, 即2sin A cos B -sin(C +B )=0,又因为C +B =π-A ,所以sin(C +B )=sin A . 所以sin A (2cos B -1)=0.在△ABC 中,sin A ≠0,所以cos B =12,又因为B ∈(0,π),所以B =π3.(2)因为B =π3,所以f (x )=12sin 2x -32cos 2x =sin ⎝⎛⎭⎫2x -π3, 令2x -π3=2k π+π2(k ∈Z),得x =k π+5π12(k ∈Z),即当x =k π+5π12(k ∈Z)时,f (x )取得最大值1.[课时跟踪检测]A 级1.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,cos 2A =sin A ,bc =2,则 △ABC 的面积为( )A.12 B.14C .1D .2解析:选A 由cos 2A =sin A ,得1-2sin 2A =sin A ,解得sin A =12(负值舍去),由bc =2,可得△ABC 的面积S =12bc sin A =12×2×12=12.2.在△ABC 中,a ,b ,c 分别是角A ,B ,C 所对的边,若(2a +c )cos B +b cos C =0,则角B 的大小为( )A.π6 B.π3C.2π3D.5π6解析:选C 由已知条件和正弦定理,得(2sin A +sin C )cos B +sin B cos C =0.化简,得2sin A cos B +sin A =0.因为角A 为三角形的内角,所以sin A ≠0,所以cos B =-12,所以B =2π3. 3.在锐角△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若sin A =223,a =3,S △ABC =22,则b 的值为( )A .6B .3C .2D .2或3解析:选D 因为S △ABC =12bc sin A =22,所以bc =6,又因为sin A =223,A ∈⎝⎛⎭⎫0,π2, 所以cos A =13,因为a =3,所以由余弦定理得9=b 2+c 2-2bc cos A =b 2+c 2-4,b 2+c 2=13,可得b =2或b =3. 4.(2018·昆明检测)在△ABC 中,已知AB =2,AC =5,t a n ∠BAC =-3,则BC 边上的高等于( )A .1 B.2 C.3D .2解析:选A 法一:因为t a n ∠BAC =-3,所以sin ∠BAC =310,c os ∠BAC =-110.由余弦定理,得BC 2=AC 2+AB 2-2AC ·ABc os ∠BAC =5+2-2×5×2×⎝⎛⎭⎫-110=9,所以BC =3,所以S △ABC =12AB ·AC sin ∠BAC =12×2×5×310=32,所以BC 边上的高h =2S △ABCBC =2×323=1.法二:在△ABC 中,因为t a n ∠BAC =-3<0,所以∠BAC 为钝角,因此BC 边上的高小于2,结合选项可知选A.5.(2018·重庆九校联考)已知a ,b ,c 分别是△ABC 的内角A ,B ,C 的对边,且a sin B =3b cos A ,当b +c =4时,△ABC 面积的最大值为( )A.33B.32C.3D .23解析:选C 由a sin B =3b cos A ,得sin A sin B =3sin B cos A ,∴t a n A =3,∵0<A <π,∴A =π3,故S △ABC =12bc sin A =34bc ≤34⎝⎛⎭⎫b +c 22=3(当且仅当b =c =2时取等号),故选C.6.(2019·安徽名校联盟联考)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若bc =1,b +2c cos A =0,则当角B 取得最大值时,△ABC 的周长为( )A .2+3B .2+2C .3D .3+2解析:选A 由b +2c cos A =0,得b +2c ·b 2+c 2-a 22bc =0,整理得2b 2=a 2-c 2.由余弦定理,得cos B =a 2+c 2-b 22ac =a 2+3c 24ac ≥23ac 4ac =32,当且仅当a =3c 时等号成立,此时角B 取得最大值,将a =3c 代入2b 2=a 2-c 2可得b =c .又因为bc =1,所以b =c =1,a =3,故△ABC 的周长为2+ 3.7.在△ABC 中,B =120°,AC =7,AB =5,则△ABC 的面积为________. 解析:由余弦定理知72=52+BC 2-2×5×BC ×cos 120°, 即49=25+BC 2+5BC ,解得BC =3(负值舍去). 故S △ABC =12AB ·BC sin B =12×5×3×32=1534.答案:15348.(2019·长春质量检测)在△ABC 中,三个内角A ,B ,C 的对边分别为a ,b ,c ,若 12b cos A =sin B ,且a =23,b +c =6,则△ABC 的面积为________.解析:由题意可知cos A 2=sin B b =sin Aa ,因为a =23,所以t a n A =3,因为0<A <π,所以A =π3,由余弦定理得12=b 2+c 2-bc =(b +c )2-3bc ,又因为b +c =6,所以bc =8,从而△ABC 的面积为12bc sin A =12×8×sin π3=2 3.答案:239.已知在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,∠BAC =π2,点D 在边BC上,AD =1,且BD =2DC ,∠BAD =2∠DAC ,则sin Bsin C=________.解析:由∠BAC =π2及∠BAD =2∠DAC ,可得∠BAD =π3,∠DAC =π6.由BD =2DC ,令DC =x ,则BD =2x .因为AD =1,在△ADC 中,由正弦定理得1sin C =x sin π6,所以sin C =12x,在△ABD 中,sin B =sin π32x =34x ,所以sin B sin C =34x 12x=32.答案:3210.(2018·河南新乡二模)如图所示,在△ABC 中,C =π3,BC =4,点D 在边AC 上,AD =DB ,DE ⊥AB ,E 为垂足,若DE =22,则cos A =________.解析:∵AD =DB ,∴∠A =∠ABD ,∠BDC =2∠A .设AD =DB =x , ∴在△BCD 中,BC sin ∠BDC =DB sin C,可得4sin 2A =xsin π3. ①在△AED 中,DE sin A =AD sin ∠AED ,可得22sin A =x1. ② 联立①②可得42sin A cos A =22sin A 32,解得cos A =64.答案:6411.(2019·南宁摸底联考)在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知 c (1+cos B )=b (2-cos C ).(1)求证:2b =a +c ;(2)若B =π3,△ABC 的面积为43,求b .解:(1)证明:∵c (1+cos B )=b (2-cos C ),∴由正弦定理可得sin C +sin C cos B =2sin B -sin B cos C , 即sin C cos B +sin B cos C +sin C =sin(B +C )+sin C =2sin B , ∴sin A +sin C =2sin B ,∴a +c =2b .(2)∵B =π3,∴△ABC 的面积S =12ac sin B =34ac =43,∴ac =16.由余弦定理可得b 2=a 2+c 2-2ac cos B =a 2+c 2-ac =(a +c )2-3ac . ∵a +c =2b ,∴b 2=4b 2-3×16,解得b =4. 12.在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长; (2)求c os ⎝⎛⎭⎫A -π6的值. 解:(1)因为cos B =45,0<B <π,所以sin B =35.由正弦定理得AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,因为A +B +C =π,所以A =π-(B +C ), 又因为cos B =45,sin B =35,所以cos A =-c os(B +C )=-c os ⎝⎛⎭⎫B +π4=-cos Bc os π4+sin B sin π4=-45×22+35×22=-210.因为0<A <π,所以sin A =1-c os 2A =7210. 因此,c os ⎝⎛⎭⎫A -π6=cos Ac os π6+sin A sin π6=-210×32+7210×12=72-620. B 级1.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若B =2A ,则2ba的取值范围是( )A .(2,2)B .(2,6)C .(2,3)D .(6,4)解析:选B ∵B =2A ,∴sin B =sin 2A =2sin A cos A ,∴ba =2cos A .又C =π-3A ,C为锐角,∴0<π-3A <π2⇒π6<A <π3,又B =2A ,B 为锐角,∴0<2A <π2⇒0<A <π4,∴π6<A <π4,22<cosA <32,∴2<b a <3,∴2<2ba< 6. 2.△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,a sin A sin B +bc os 2A =2a ,则角A 的取值范围是________.解析:由已知及正弦定理得sin 2A sin B +sin Bc os 2A =2sin A ,即sin B (sin 2A +c os 2A )=2sin A ,∴sin B =2sin A ,∴b =2a ,由余弦定理得cos A =b 2+c 2-a 22bc =4a 2+c 2-a 24ac =3a 2+c 24ac ≥23ac 4ac =32,当且仅当c =3a 时取等号.∵A 为三角形的内角,且y =cos x 在(0,π)上是减函数,∴0<A ≤π6,则角A 的取值范围是⎝⎛⎦⎤0,π6. 答案:⎝⎛⎦⎤0,π6 3.(2018·昆明质检)如图,在平面四边形ABCD 中,AB ⊥BC ,AB =2,BD =5,∠BCD =2∠ABD ,△ABD 的面积为2.(1)求AD 的长; (2)求△CBD 的面积.解:(1)由已知S △ABD =12AB ·BD ·sin ∠ABD =12×2×5×sin ∠ABD =2,可得sin ∠ABD =255,又∠BCD =2∠ABD ,所以∠ABD ∈⎝⎛⎭⎫0,π2,所以c os ∠ABD =55. 在△ABD 中,由余弦定理AD 2=AB 2+BD 2-2·AB ·BD ·c os ∠ABD ,可得AD 2=5,所以AD = 5.(2)由AB ⊥BC ,得∠ABD +∠CBD =π2,所以sin ∠CBD =c os ∠ABD =55. 又∠BCD =2∠ABD ,所以sin ∠BCD =2sin ∠ABD ·c os ∠ABD =45,∠BDC =π-∠CBD -∠BCD =π-⎝⎛⎭⎫π2-∠ABD -2∠ABD =π2-∠ABD =∠CBD , 所以△CBD 为等腰三角形,即CB =CD .在△CBD 中,由正弦定理BD sin ∠BCD =CDsin ∠CBD ,得CD =BD ·sin ∠CBDsin ∠BCD=5×5545=54, 所以S △CBD =12CB ·CD ·sin ∠BCD =12×54×54×45=58.。

三角函数解三角形正弦定理和余弦定理课件理ppt

三角函数解三角形正弦定理和余弦定理课件理ppt
算法优化
针对正弦和余弦函数的计算,数学家们不断优化算法,提高计算的效率和准 确性,例如快速傅里叶变换(FFT)等算法。
正弦定理和余弦定理在物理和工程中的应用进展
量子力学
在量子力学中,正弦和余弦函数是描述波动性粒子的基本波函数的常见形式,例 如电子和光子的波函数。
信号处理
正弦和余弦函数是信号处理的基础,包括模拟信号和数字信号的处理,如振幅调 制、频率调制、数字信号处理(DSP)等。
01
航海
在航海中,三角函数被用来确定船只的位置、航向和速度等。利用三
角函数可以计算船只与目标之间的角度、距离和时间等参数,从而保
证船只的准确航行。
02
航空
在航空中,三角函数被用来确定飞机的位置、航向和速度等。利用三
角函数可以计算飞机与目标之间的角度、距离和时间等参数,从而保
证飞机的准确航行。
03
地理
工程学
02
在工程学中,三角形边角关系可以用来解决结构分析和设计问
题。
物理学
03
在物理学中,三角形边角关系可以用来解决速度、加速度和力
的问题。
05
解三角形的实际应用
在工程、建筑和物理中的应用
工程设计
在工程设计中,三角函数被广泛应用于各种设计问题,如结构支撑、悬臂和框架等。利用 三角函数可以求出所需的数据,如压力、扭矩、弯曲等。
正弦定理的变式和推论
变式
正弦定理的变式包括比例式、等角式和差角式等。这些变式都可以由正弦定理推 出。
推论
正弦定理的推论有很多,比如正弦定理的逆定理、正弦定理的推广等。这些推论 都可以帮助我们更好地应用正弦定理。
03
余弦定理
余弦定理的证明和应用

三角恒等变换-高考数学一题多解

三角恒等变换-高考数学一题多解

三角恒等变换-高考数学一题多解三角式的恒等变形是一种基本的数学技能,它的依据是三角变换公式和代数中代数式的恒等变换的一般方法,三角变换公式如:同角三角函数的基本关系式、两角和与差的公式、二倍角与半角公式、万能公式.积化和差与和差化积公式等,公式的数量较多,学习时要通过理解角的关系以及三角函数的关系揭示公式之间的内在联系、掌握公式的推导线索.要理解公式,注意公式的适用范围和符号的取舍,三角变换贵在灵活运用公式,掌握公式的逆用和各种变形的运用,以达到熟练、恰到好处地运用公式解决具体问题的目的.不同角的三角函数关系式使用起来与同角三角函数关系式最大的不同点是必须根据题目的题设条件与结论去确定所应用的公式,而选定公式的能力靠观察角度关系、熟悉公式特征来培养.已知条件和所要求的角之间不相同时,常看它们的和、差、倍的情况,定能找出角之间的关系.角的变换是三角变换技巧之一,转化思想是实施三角变换的主导思想,变换包括:函数名称变换、角的变换、“1”的代换、和积变换、幂的升降变换等,变换时必须熟悉公式,分清和掌握哪些公式会实现哪种变换,也要掌握各个公式的相互联系和适用条件.“恒等”这个词始终是三角变换的重点.三角恒等变换中的方法与技巧是必须掌握的解题能力.在三角恒等变换中较为重要的变换技巧如下.(1)函数名称的差异变换:①切割化弦,弦化切割;②异名化同名.(2)角的差异变换:①异角化同角;②拆角、配角技巧.(3)运算结构的差异变换:①升次降次;②分式通分;③无理化有理;④和(差)积互化.(4)常数的处理:特别注意“1”的代换.(5)引入辅助角的变换、角的分析与三角式的配凑.在解题过程中,不论运用什么变换技巧,基本原则是:把握方向,活用公式,注意目标,贵在“恒等”.真可谓:三角变换贵在活,变角变式变函数,恒等始终是重点,公式繁多方法多.【典例】(2022·新高考Ⅱ卷T6)角,αβ满足sin()cos()sin 4παβαβαβ⎛⎫+++=+ ⎪⎝⎭,则()A.tan()1αβ+=B.tan()1αβ+=-C.tan()1αβ-= D.tan()1αβ-=-(一)直接法——由条件推结果【答案】D【解析】由已知得:()sin cos cos sin cos cos sin sin 2cos sin sin αβαβαβαβααβ++-=-,即:sin cos cos sin cos cos sin sin 0αβαβαβαβ-++=,即:()()sin cos 0αβαβ-+-=,所以()tan 1αβ-=-,故选:D(二)整体构造法——观察角与角的关系找共同点【答案】D【解析】根据sin()cos()αβαβ+++以及4πα+,可以利用辅助角公式,将4πα+当做一个整体,再进行合并,于是有如下解法:sin()cos()]44cos sin sin 444ππαβαβαβαβπππαβαβαβ+++=++++=++=+(()(()()cos sin 44ππαβαβ+=+()()sin cos cos sin =044ππαβαβ+-+(()即sin=04παβ+-()sin =sin cos cos sin ==0444πππαβαβαβαβαβ∴-+-+--+-()()()()()sin =cos αβαβαβ∴----()()即tan()=-1,故选D【点评】解题的关键当然是如何沟通条件和结论,一种思考是变形条件使之朝结论的目标靠拢,而条件的变形又是多种多样,但应始终抓住是恒等变形,条件式直接变形要始终抓住“恒等”,引进新元更要注意“恒等”.另一种思考是构造法,构造法也不是凭空而得,务必考虑与条件之间的等价关系.(三)特殊值排除法——做选择题的快速解法解法:设β=0则sinα+cosα=0,取=2πα,排除A ,C ;再取α=0则sinβ+cosβ=2sinβ,取β=4π,排除B ;选D.【点评】排除法是一种间接解法,也就是我们常说的筛选法、代入验证法,其实质就是舍弃不符合题目要求的选项,找到符合题意的正确结论.也即通过观察、分析或推理运算各项提供的信息,对于错误的选项,逐一剔除,从而获得正确的结论.具体操作起来,我们可以灵活应用,合理选取相应选项进行快速排除,【针对训练】(2022·浙江卷T13)1.若3sin sin 2παβαβ-=+=,则sin α=__________,cos 2β=_________.(2022·全国)2.在锐角△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且2sin 0b A =.(I )求角B 的大小;(II )求cos A +cos B +cos C 的取值范围.3.化简:44661cos sin 1cos sin αααα----.4.求证:cos 1sin 1sin cos αααα+=-.5.设(0,),(0,),22ππαβ∈∈且1sin tan ,cos βαβ+=则A .32παβ-=B .32παβ+=C .22παβ-=D .22παβ+=6.22sin 10cos 40sin10cos 40︒+︒+︒︒=_____________.7.已知π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,求2sin 22sin 1tan x x x+-的值.8.在△ABC 中,若cos cos A bB a=,则△ABC 的形状是________.9.cos15sin15cos15sin15︒-︒︒+︒的值是()A .-B .0C .D .310.在ABC 中,=4A π∠,边,,a b c 满足22212b a c -=,求tan C 的值.参考答案:1.1045【分析】先通过诱导公式变形,得到α的同角等式关系,再利用辅助角公式化简成正弦型函数方程,可求出α,接下来再求β.【详解】[方法一]:利用辅助角公式处理∵2παβ+=,∴sin cos βα=,即3sin cos αα-=1010αα⎫-=⎪⎪⎭,令sin θ=cos 10θ=,()αθ-=22k k Z παθπ-=+∈,,即22k παθπ=++,∴sin sin 2cos 2k παθπθ⎛⎫=++= ⎪⎝⎭,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.[方法二]:直接用同角三角函数关系式解方程∵2παβ+=,∴sin cos βα=,即3sin cos αα-=又22sin cos 1αα+=,将cos 3sin αα=210sin 90αα-+=,解得sin α=,则224cos 22cos 12sin 15ββα=-=-=.故答案为:10;45.2.(I )3B π=;(II )13,22⎛⎤ ⎥ ⎝⎦【分析】(I )方法二:首先利用正弦定理边化角,然后结合特殊角的三角函数值即可确定角B 的大小;(II )方法二:结合(Ⅰ)的结论将含有三个角的三角函数式化简为只含有角A 的三角函数式,然后由三角形为锐角三角形确定角A 的取值范围,最后结合三角函数的性质即可求得cos cos cos A B C ++的取值范围.【详解】(I )[方法一]:余弦定理由2sin b A =,得22223sin 4a A b ==⎝⎭,即22231cos 4a A b -=.结合余弦定222cos 2b c a A bc+-=,∴2222223124b c a a bc b ⎛⎫+--= ⎪⎝⎭,即224442222222242223b c b c a b c b a c a a c ----++=,即444222222220a b c a c a b b c +++--=,即44422222222222a b c a c a b b c a c +++--=,即()()22222a c b ac +-=,∵ABC 为锐角三角形,∴2220a c b +->,∴222a c b ac +-=,所以2221cos 22a cb B ac +-==,又B 为ABC 的一个内角,故3B π=.[方法二]【最优解】:正弦定理边化角由2sin b A =,结合正弦定理可得:2sin sin ,sin B A A B =∴=ABC 为锐角三角形,故3B π=.(II )[方法一]:余弦定理基本不等式因为3B π=,并利用余弦定理整理得222b a c ac =+-,即223()ac a c b =+-.结合22a c ac +⎛⎫≤ ⎪⎝⎭,得2a c b +≤.由临界状态(不妨取2A π=)可知a cb+=而ABC 为锐角三角形,所以a cb+>由余弦定理得2222221cos cos cos 222b c a a b c A B C bc ab+-+-++=++,222b a c ac =+-,代入化简得1cos cos cos 12a c A B C b +⎛⎫++=+⎪⎝⎭故cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.[方法二]【最优解】:恒等变换三角函数性质结合(1)的结论有:12cos cos cos cos cos 23A B C A A π⎛⎫++=++- ⎪⎝⎭11cos cos 22A A A =-+11cos 222A A =++1sin 62A π⎛⎫=++ ⎪⎝⎭.由203202A A πππ⎧<-<⎪⎪⎨⎪<<⎪⎩可得:62A ππ<<,2363A πππ<+<,则sin ,162A π⎤⎛⎫+∈⎥ ⎪⎝⎭⎝⎦,113sin ,6222A π⎤+⎛⎫++∈⎥ ⎪⎝⎭⎝⎦.即cos cos cos A B C ++的取值范围是32⎤⎥⎝⎦.【整体点评】(I )的方法一,根据已知条件,利用余弦定理经过较复杂的代数恒等变形求得222a c b ac +-=,运算能力要求较高;方法二则利用正弦定理边化角,运算简洁,是常用的方法,确定为最优解;(II )的三种方法中,方法一涉及到较为复杂的余弦定理代入化简,运算较为麻烦,方法二直接使用三角恒等变形,简洁明快,确定为最优解.3.23.【分析】方法一:灵活利用平方关系及乘方公式化简即可.【详解】[方法一]:【最优解】“1”的代换化齐次式原式2224422366(cos sin )cos sin (cos sin )cos sin a ααααααα+--=+--2222222cos sin 23cos sin (cos sin )3αααααα⋅==+.[方法二]:公式降幂原式44661(cos sin )1(cos sin )a ααα-+=-+222222242241(cos sin )2cos sin 1(cos sin )(cos cos sin sin )αααααααααα⎡⎤-+-⋅⎣⎦=-+-⋅+2222222112cos sin 1(cos sin )3cos sin αααααα-+=⎡⎤-+-⋅⎣⎦22222cos sin 23cos sin 3a ααα⋅==⋅.[方法三]:降幂原式2242246(1cos )(1cos )sin (1cos )(1cos cos )sin ααααααα-+-=-++-2222244sin (1cos sin )sin (1cos cos sin )ααααααα+-=++-2222222cos 1cos (cos sin )(cos sin )αααααα=+++-22222cos 1cos cos sin a ααα=++-222cos 23cos 3αα==.【整体点评】方法一:根据22cos +sin =1αα化齐次式,简洁易算,是该题的最优解;方法二:根据22cos +sin =1αα以及平方和.立方和公式降幂,是化简求值的常用处理方法;方法三:根据平方差.立方差公式化简降幂,变形难度稍大.4.证明见解析【分析】方法一:式子左边分子分母同乘以cos α,再利用平方关系,变形分子即可得证.【详解】[方法一]:【最优解】左边=2cos cos (1sin )ααα-=21sin cos (1sin )ααα--=(1sin )(1sin )cos (1sin )αααα+--=1sin cos a α+=右边,等式成立.[方法二]:右边=(1sin )(1sin )cos (1sin )αααα+--=21sin cos (1sin )ααα--=2cos cos (1sin )ααα-=cos 1sin αα-=左边,等式成立.[方法三]:左边=2cos (1sin )cos ααα-,右边=(1sin )(1sin )(1sin )cos αααα+--=21sin (1sin )cos ααα--=2cos (1sin )cos ααα-,∴左边=右边,∴等式成立.[方法四]:∵cos 1sin αα--1sin cos a α+=2cos (1sin )(1sin )(1sin )cos ααααα-+--=22cos cos (1sin )cos αααα--=0.∴等式成立.[方法五]:左边=cos 1sin αα-=cos (1sin )(1sin )(1sin )αααα+-+=2cos (1sin )1sin ααα+-=1sin cos a α+=右边.[方法六]:∵(1-sin α)(1+sin α)=1-sin 2α=cos 2α,∴cos 1sin αα-=1sin cos aα+.[方法七]:若证cos 1sin αα-=1sin cos aα+成立,只需证cos α·cos α=(1-sin α)(1+sin α),即证cos 2α=1-sin 2α,此式成立,∴原等式cos 1sin αα-=1sin cos aα+成立.【整体点评】方法一:利用平方关系,从左边证到右边,是证明题的通性通法;方法二:利用平方关系,从右边证到左边;方法三:利用左边=中间,右边=中间证出;方法四:利用作差法证出;方法五:利用平方关系,从左边证到右边;方法六:根据平方关系变形证出;方法七:根据分析法证出.5.C【详解】[方法一]:sin 1sin ,sin cos cos cos sin cos cos αβαβααβαβ+=∴=+()sin sin 2παβα⎛⎫∴-= ⎪⎝⎭,,0,2222ππππαβα⎛⎫⎛⎫-∈--∈ ⎪ ⎪⎝⎭⎝⎭ ,222ππαβααβ∴-=-∴-=.故选:C.[方法二]:222cos sin cos sin 1sin 2222tan tan cos 24cos sin cos sin 2222ββββββπαβββββ⎛⎫++ ⎪+⎛⎫⎝⎭====+ ⎪⎝⎭- 又,,,22442242βπππβππααβ⎛⎫+∈∴=+∴-= ⎪⎝⎭.故选:C.[方法三]:由已知得,sin 1sin tan cos cos αβααβ+==,去分母得,sin cos cos cos sin αβααβ=+,所以sin cos cos sin cos ,sin()cos sin()2παβαβααβαα-=-==-,又因为22ππαβ-<-<,022ππα<-<,所以2παβα-=-,即22παβ-=,故选:C.考点:同角间的三角函数关系,两角和与差的正弦公式.6.34【分析】根据两角和的正弦余弦公式及同角三角函数的基本关系计算可得;【详解】[方法一]:因为40°=30°+10°,所以原式=22sin 10cos (3010)sin10cos(3010)++++22211sin 10sin10)sin10cos10sin 102222=+-+⋅- 2233(sin 10cos 10)44=+= .[方法二]:原式=1cos 201cos80sin10cos 4022-+++cos(5030)cos(5030)1sin10cos 402+--=++cos50cos30sin 50sin 30cos50cos30sin 50sin 301sin10cos 402---=++1sin 50sin 30sin10cos 40=-+ 1cos 40(sin 30sin10)=-- 1cos 40[sin(2010)sin(2010)]=-+-- 12cos 40cos 20sin10=-2cos 40cos 20sin10cos101cos10=-sin8013114cos1044=-=-= .[方法三]:换元法令10,40,sin a b cos a b ⎧=+⎨=-⎩得()()()()()11110401050302020,2221110401050302020,22a sin cos sin sin sin cos cos b sin cos sin sin cos sin sin ⎧=+=+==⎪⎪⎨⎪=-=-=-=⎪⎩则原式=222222333()()()()3cos 20sin 20444a b a b a b a b a b ++-++-=+=+=.[方法四]:设2222sin 10cos 40sin10cos 40,cos 10sin 40cos10sin 40x y =++=++ ,则1110401040250240,11180205040.222x y sin cos cos sin sin cos x y cos cos sin cos ⎧+=+++=+=+⎪⎨-=--=--=--⎪⎩所以322x =,故34x =.[方法五]:余弦定理由余弦定理,得2222cos a b ab C c +-=,又由正弦定理,得2sin sin sin a b cR A B C===,于是2222224sin 4sin 22sin 2sin cos 4sin R A R B R A R B C R C +-⋅⋅⋅=,得222sin sin 2sin sin cos sin A B A B C C +-=故22sin 10cos 40sin10cos 40++22sin 10sin 50sin10sin 50=++22sin 10sin 502sin10sin 50cos120=+-223sin 120)24=== .[方法六]:22sin 10cos 40sin10cos 40︒+︒+︒︒()()22sin 10cos 1030sin10cos 1030=︒+︒+︒+︒︒+︒2211sin 10sin10sin10cos10sin102222⎛⎫⎛⎫=︒+︒-︒+︒⨯︒-︒ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭22223113sin 10cos 10sin 10sin 104424=︒+︒+︒-︒=故答案为:34.【点睛】本题考查同角三角函数的基本关系及两角和的正弦余弦公式的应用,属于中档题.7.2875-【分析】方法一:利用倍角公式和和差公式可得2π2sin cos sin sin 22sin 4π1tan cos 4x x x x x x x ⎛⎫+ ⎪+⎝⎭=-⎛⎫+ ⎪⎝⎭,然后利用条件可求出答案.【详解】[方法一]:根据已知角化简 22sin 22sin 2sin cos 2sin 1tan 1cos x x x x sin x x x x++=--2sin cos (cos sin )cos sin x x x x x x +=-π2sin cos sin()4πcos()4x x x x +=+π3cos()45x += ,177ππ124x <<,π4sin()45x ∴+=-,72sin cos 25x x ∴=.∴π2sin cos sin()284π75cos()4x x x x +=-+,∴2sin 22sin 281tan 75x x x +=--.[方法二]:直接展开求sin cos ,sin cos x x x x±()π3cos cos sin 425x x x ⎛⎫+=-= ⎪⎝⎭,得cos sin x x -=平方得2sin cos x x =725,()2732cos sin 12525x x +=+=, 177,124x ππ<<∴cos sin 0,cos sin x x x x +<+=,∴原式=cos sin 2sin cos cos sin x x x x x x +-=-2875.[方法三]:【最优解】逆用两角和的正切公式和二倍角公式因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,即π4tan(43x +=-)原式=cos sin 1tan 2sin cos sin 2cos sin 1tan x x x x x x x x x ++=--=πsin2tan 4x x ⎛⎫+ ⎪⎝⎭,7sin2cos 212cos 2425x x x ππ⎛⎫⎛⎫=-+=-+= ⎪ ⎪⎝⎭⎝⎭,∴原式=2875-.[方法四]:整体法求cos x 因为π3cos 45x ⎛⎫+= ⎪⎝⎭,17π7π124x <<,所以4sin 45x π⎛⎫+=- ⎪⎝⎭,cos cos cos cos sin sin 444444x x x x ππππππ⎡⎤⎛⎫⎛⎫⎛⎫=+-=+++ ⎪ ⎪ ⎪⎢⎥⎝⎭⎝⎭⎝⎭⎣⎦=,又 177124x ππ<<,所以sin x =,tan x =7,∴原式=-2875.【整体点评】方法一:将所求式化简成已知角的三角函数形式,整体代换求出;方法二:直接根据两角和的余弦公式展开以及平方关系求sin cos ,sin cos x x x x ±,化切为弦求出;方法三:逆用两角和的正切公式和二倍角公式求解最为简洁,是该题的最优解;方法四:利用整体思想以及同角三角函数基本关系求出sin ,cos ,tan x x x ,是该题的通性通法.8.等腰三角形或直角三角形【分析】由已知及余弦定理可得22222()()0a b c a b ---=,即可判断△ABC 的形状.【详解】[方法一]:由余弦定理,222222cos 2cos 2b c a A b bc a c b B aac+-==+-,化简得22222()()0a b c a b ---=,∴a b =或222c a b =+,∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.[方法二]:由cos cos A b B a =可知cos 0A >,cos 0B >,即0,2A π⎛⎫∈ ⎪⎝⎭,0,2B π⎛⎫∈ ⎪⎝⎭,由正弦定理结合题意可得cos sin cos sin A B B A =,即11sin cos sin cos ,sin 2sin 222A AB B A B =∴=,据此有22A B =或22A B π+=,即A B =或2A B π+=.∴△ABC 为等腰三角形或直角三角形.故答案为:等腰三角形或直角三角形.9.D【详解】[方法一]:()()15453045304530122224154530453045301222cos cos cos cos sin sin sin sin sin cos cos sin =-=++=+==-=-==则原式44=[方法二]:()1tan15tan45tan15tan4515tan301tan151tan45tan15--===-==++原式[方法三]:cos15sin150>>,令cos15sin15(0)cos15sin15t t-=>+,22222cos152sin15cos15sin151sin301cos152sin15cos15sin151sin3033t t-+-===∴=+++则.[方法四]:()()222cos15cos15sin15cos15sin15cos15sin152cos15cos15sin1512cos152sin15cos15cos301sin3022cos152sin15cos15cos301sin30--=++-+-===+++[方法五]:22222cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos15sin15cos30cos15sin152sin15cos151sin303-+-=++-===+++()()()[方法六]:cos15sin15sin15cos15cos15sin15sin15cos151sin30sin302sin60sin602--=-=-++--==()故选D.10.tan2C=.【分析】方法一:由余弦定理及已知可得3c=,再根据正弦定理的边角关系、三角形内角性质及差角正弦公式得3sin2cos2sinC C C=+,即可求tan C.【详解】[方法一]:【最优解】利用正、余弦定理边化角因为22212b a c-=,2222cosb c a bc A+-=,所以232c=,即3c=,所以33sin sin()2cos 2sin 4C B C C C π==-=+,即tan 2C =.[方法二]:和差化积公式的应用由22212b a c -=得,2221sin sin sin 2B AC -=,即212sincos 2cos sin sin 22222B A B A B A B AC +-+-⨯=,即()21sin sin sin 2C B A C -=,因为0sin 1C <≤,所以()()2sin sin sin B A C A B -==+,即sin cos 3sin cos B A A B =,所以tan 3tan 3B A ==.()tan tan 13tan tan 21tan tan 13A B C A B A B ++=-+=-=-=--.【整体点评】方法一:利用正、余弦定理边化角,再根据消元思想即可解出,是该题的最优解;方法二:利用和差化积公式转化求值,需要较强的运算能力.。

(经典)正弦定理、余弦定理知识点总结及最全证明

(经典)正弦定理、余弦定理知识点总结及最全证明

正弦定理、余弦定理知识点总结及证明方法1.掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.主要考查有关定理的应用、三角包等变换的能力、运算能力及转化的数学思想.解三角形常常作为解题工具用丁立体几何中的计算或证明,或与三角函数联系在一起求距离、高度以及角度等问题,且多以应用题的形式出现.1.正弦定理(1)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即.其中R是三角形外接圆的半径.(2)正弦定理的其他形式:① a = 2RsinA , b =, csinO;③ a : b : c= _______________________________2.余弦定理(1)余弦定理:三角形中任何一边的平■方等——王彦文宵铜峡一中丁其他两边的平■方的和减去这两边与它们的火角的余弦的积的两倍.即a2=, b2=,c?=.若令C= 90°, WJ c2=,即为勾股定理.(2)余弦定理的变形:cosA =, cosB=, cosC^.若C为锐角,则cosC>0,即a2 + b2 ; 若C为钝角,贝U cosC<0,即a2+ b2.故由a2+ b2与c2值的大小比较,可以判断C为锐角、钝角或直角.(3)正、余弦定理的一个重要作用是实现边角,余弦定理亦可以写成sin2A= sin2B+ sin2C—2sinBsinCcosA,类似地,sin2B= ________________ ; sin2C= _________ _S 意式中隐含条件A+ B+ C= TT .3.解斜三角形的类型(1)已知三角形的任意两个角与一边,用理.只有一解.(2)已知三角形的任意两边与其中一边的对角,用定理,可能有L如在△ ABC中,已知a, b和A时,解的情况如表:②sin A=2R' sinB=A为锐角A为钝角或直角图形关系式a= bsinA bsinA<a< b a为a>b解的个数①②③④(3)已知三边,用理.有解时,只有一解.(4)已知两边及火角,用理, 必有一解.4.三角形中的常用公式或变式⑴三角形面积公式& =:其中R, r分别为三角形外接圆、内切圆半径.(2)A+ B+ C=兀,WJ A=,A5 = , 从而sinA = tanAtanBtanC (3)a+ c sinA+ sinCcosA = , tanA =<(3)互化sin2C+ sin2A—2sinCsinAcosB sin2A+sin2B— 2sinAsinBcosC3. (1)正弦(2)正弦一解、两解或无解①一解②二解③一解④一解⑶余弦⑷余弦1 1 1 abc 14. (1)2absinC 2bcsinA 2acsinB 4R 2 (a+ b+ c)r在△ ABC中,A>B 是sinA>sinB 的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解:因为在同一三角形中,角大则边大,边大则正弦大,反之也成立,故是充要条件.故选C.兀B+ C (2)代(B+ Q 2— Fsin(B+ C) — cos(B+ C)2 (1)b* 1 2+ c2— 2bccosA c2 + a2— 2cacosB a2 + b2—2abcosC a2 + b2b2+ c2—a2c2+ a2—b2a2+ b2—c2(2)2bc2ca2ab—tan(B+ C) co岩si号«C tan 2在△ ABC中,已知b= 6, c= 10, B= 30°,则解此三角形的结果有()A.无解B. 一解C.两解D. 一解或两解解:由正弦定理知sinC=半=5, 乂由b 6c>b>csinB知,C有两解.也可依已知条件,画出△ ABC,由图知有两解.故选 C.(2012陕西)在^ABC中,角A, B, C所对的边…一…Tt i—一,分力U为a, b, c.右a= 2, B= c= 2寸3,贝U b =.解:由余弦定理知b2= a2 + c2—2accoSB=22 + (2^3)2— 2X 2X^/3X c%= 4, b= 2.故填2.(2013陕西)®AABC的内角A, B, C所对的边分别为a, b, c,若bcosC+ ccosB= asinA,则^ABC 的形状为()A.锐角三角形B.直角三角形C.钝角三角形D.不确定解:由已知和正弦定理可得sinBcosC+ sinCcosB= sinA sinA,即sin(B+ Q= sinAsinA, 亦即sinA= sinAsinA.因为0<A<TT,所以sinA= 1, 所以A=2.所以三角形为直角三角形.故选B.在^ABC中,角A, B, C所对的边分别为a, b, c,若 a =寸2, b=2, sinB+ cosB=寸2,则角 A解:sinB+ cosB= ^2,,•寸2sin B+4 =寸2,即sin B+4 = 1._____ __ _兀兀_兀乂.. B€ (0,冗)... B+; = ;, B=~.4 2 4a b asinBsinA= b根据正弦正理、皿=sinB,可侍12'. a<b, . . Av B... A=g.故填&类型一正弦定理的应用△ ABC的内角A, B, C的对边分别为a, b, c,已知A— C= 90 , a+ c=寸2b,求C.解:由a+ c=寸2b及正弦定理可得sinA+sinO 2sinB乂由丁A— C= 90 , B= 180 — (A+C),故cosC + sinC = sinA + sinC=戒sin(A + Q =戒sin(90 + 2Q =匝sin2(45 + Q.,•哀sin(45 + C) = 2 戒sin(45 + C)cos(45 + C),* 一1即cos(45 + C) = 2.乂 .。

高中文科数学公式总结大全

高中文科数学公式总结大全

高中文科数学公式总结大全高中文科数学相对理科数学来说是比较简单的,但是其中的公式还是有许多。

为了节省同学们整理文科数学公式的时间。

下面是由小编为大家整理的“高中文科数学公式总结大全”,仅供参考,欢迎大家阅读。

高中文科数学公式总结大全一、对数函数log.a(MN)=logaM+logNloga(M/N)=logaM-logaNlogaM^n=nlogaM(n=R)logbN=logaN/logab(a>0,b>0,N>0 a、b均不等于1)二、简单几何体的面积与体积S直棱柱侧=c*h(底面周长乘以高)S正棱椎侧=1/2*c*h′(底面的周长和斜高的一半)设正棱台上、下底面的周长分别为c′,c,斜高为h′,S=1/2*(c+c′)*hS圆柱侧=c*lS圆台侧=1/2*(c+c′)*l=兀*(r+r′)*lS圆锥侧=1/2*c*l=兀*r*lS球=4*兀*R^3V柱体=S*hV锥体=(1/3)*S*hV球=(4/3)*兀*R^3三、两直线的位置关系及距离公式(1)数轴上两点间的距离公式|AB|=|x2-x1|(2) 平面上两点A(x1,y1),(x2,y2)间的距离公式|AB|=sqr[(x2-x1)^2+(y2-y1)^2](3) 点P(x0,y0)到直线l:Ax+By+C=0的距离公式d=|Ax0+By0+C|/sqr(A^2+B^2)(4) 两平行直线l1:=Ax+By+C=0,l2=Ax+By+C2=0之间的距离d=|C1-C2|/sqr(A^2+B^2)同角三角函数的基本关系及诱导公式sin(2*k*兀+a)=sin(a)cos(2*k*兀+a)=cosatan(2*兀+a)=tanasin(-a)=-sina,cos(-a)=cosa,tan(-a)=-tanasin(2*兀-a)=-sina,cos(2*兀-a)=cosa,tan(2*兀-a)=-tanasin(兀+a)=-sinasin(兀-a)=sinacos(兀+a)=-cosacos(兀-a)=-cosatan(兀+a)=tana四、二倍角公式及其变形使用1、二倍角公式sin2a=2*sina*cosacos2a=(cosa)^2-(sina)^2=2*(cosa)^2-1=1-2*(sina)^2tan2a=(2*tana)/[1-(tana)^2]2、二倍角公式的变形(cosa)^2=(1+cos2a)/2(sina)^2=(1-cos2a)/2tan(a/2)=sina/(1+cosa)=(1-cosa)/sina五、正弦定理和余弦定理正弦定理:a/sinA=b/sinB=c/sinC余弦定理:a^2=b^2+c^2-2bccosAb^2=a^2+c^2-2accosBc^2=a^2+b^2-2abcosCcosA=(b^2+c^2-a^2)/2bccosB=(a^2+c^2-b^2)/2accosC=(a^2+b^2-c^2)/2abtan(兀-a)=-tanasin(兀/2+a)=cosasin(兀/2-a)=cosacos(兀/2+a)=-sinacos(兀/2-a)=sinatan(兀/2+a)=-cotatan(兀/2-a)=cota(sina)^2+(cosa)^2=1sina/cosa=tana两角和与差的余弦公式cos(a-b)=cosa*cosb+sina*sinbcos(a-b)=cosa*cosb-sina*sinb两角和与差的正弦公式sin(a+b)=sina*cosb+cosa*sinbsin(a-b)=sina*cosb-cosa*sinb两角和与差的正切公式tan(a+b)=(tana+tanb)/(1-tana*tanb)tan(a-b)=(tana-tanb)/(1+tana*tanb)高中数学知识点速记口诀1.《集合与函数》内容子交并补集,还有幂指对函数。

正弦定理、余弦定理知识点

正弦定理、余弦定理知识点

正弦定理、余弦定理1. 三角形常用公式:A +B +C =π;S =21ab sin C =21bc sin A ==21ca sin B ;2.三角形中的边角不等关系:A>B ⇔a>b,a+b>c,a-b<c ;; 3.正弦定理:A asin =Bb sin =Ccsin =2R (外接圆直径);正弦定理的变式:⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 2;a ∶b ∶c =sin A ∶sin B ∶sinC .4.正弦定理应用范围:①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况: (1)A 为锐角a=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角 当a>b 时有一解.5.余弦定理 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB . 若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角; (2)已知三角形的两边及夹角,可求出第三边.知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状. 【答案】解法1:由扩充的正弦定理:代入已知式 2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bca cb b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a = 即△ABC 为等腰三角形.巩固练习1.在中,若2222sin sin 2cos cos b C c B b B C +=,试判断三角形的形状.2.在ABC ∆中,已知a 2tanB=b 2tanA,试判断这个三角形的形状.3.已知ABC ∆中,有cos 2cos sin cos 2cos sin A C BA B C+=+,判断三角形形状.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理:①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角. 例题2 在△ABC 中,已知3=a ,2=b ,B=45︒ 求A 、C 及c .【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【答案】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BC b c 当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理 B ac c a b cos 2222-+=将已知条件代入,整理:0162=+-x x 解之:226±=x当226+=c 时2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 从而A=60︒ ,C=75︒ 当226-=c 时同理可求得:A=120︒ 巩固练习1.已知在ABC ∆中,2,6,45==︒=∠BC AB A在ABC ∆中,213,2tan tan +=-=c b bb c B A ,求三内角2.在ABC ∆中,已知B C A 2=+,32tan tan +=⋅C A ,求A 、B 、C 的大小,又知顶点C 的对边C 上的高等于34,求三角形各边a 、b 、c 的长.知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值.【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【答案】 A B C 、、为锐角 ∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=πsin sin sin sin cos cos cos cos 2222221336ααββααββ-++-+=221336-+=(cos cos sin sin )αβαβ --=-25936cos()αβ∴-=cos()αβ5972巩固练习1.在∆ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,设a+c=2b,A-C=3π,求sinB 的值.2.在中,a ,b ,c 分别是的对边长,已知a ,b ,c 成等比数列,且,求的大小及的值.3.在ABC ∆中,若4,5==b a且3231)cos(=-B A ,求这个三角形的面积.例题4 在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c,证明:C B A cb a sin )sin(222-=-.【分析】在用三角式的恒等变形证明三角形中的三角等式时,其解题的一般规律是:二项化积、倍角公式,提取公因式,再化积.遇有三角式的平方项,则利用半角公式降次.【答案】证法一:由正弦定理得C A B C B A c b a 2222222sin 22cos 2cos sin sin sin -=-=-=C A B A B 2sin 2)sin()sin(2-+-=CB AC 2sin )sin(sin -=C B A sin )sin(-.证法二:由余弦定理得a 2=b 2+c 2-2bccosA,则222c b a -=22cos 2cA bc c -=1-c b 2∙cosA,又由正弦定理得c b =C Bsin sin ,∴222cb a -=1-C B sin sin 2∙cosA=C A B C sin cos sin 2sin -=C A B B A sin cos sin 2)sin(-+=C A B B A sin cos sin cos sin -=C B A sin )sin(-. 证法三:C B A sin )sin(-=CAB B A sin cos sin cos sin -. 由正弦定理得cbC B c a C A ==sin sin ,sin sin ,∴CB A sin )sin(-=cAb B a cos cos -,又由余弦定理得C B A sin )sin(-=cbc a c b b ac b c a a 22222222-+⋅--+⋅=22222222)()(c a c b b c a -+--+=222c b a -.巩固练习1.已知锐角三角形ABC 中,3sin()5A B +=,1sin()5A B -=. (1)求证tan 2tan A B =;(2)设3AB =,求AB 边上的高.参考答案课堂互动例题1 巩固练习1.【答案】[解法1]:由正弦定理2sin sin sin a b cR A B C===,R 为外接圆的半径,将原式化为22228sin sin 8sin sin cos cos R B C R B C B C =,sin sin 0B C ≠,sin sin cos cos B C B C ∴=. 即cos()0B C +=,90B C ∴+=,90A =.故为直角三角形[解法2]:将已知等式变为2222(1cos )(1cos )2cos cos b C c B b B C -+-=,由余弦定理可得22222222222222a b c a c b b c b c ab ac ⎛⎫⎛⎫+-+-+-⋅-⋅ ⎪ ⎪⎝⎭⎝⎭222222222a c b a b c bc ac ab+-+-=⋅⋅,即22b c +22222222()()4a b c a c b a ⎡⎤+-++-⎣⎦=也即222b c a +=,故为直角三角形.2.【答案】解法1:由已知得A A b B B a cos sin cos sin 22=,由正弦定理得AAB B B A cos sin sin cos sin sin 22=,∵sinAsinB ≠0,∴sinAcosA=sinBcosB,即sin2A=sin2B,∴2A=2B 或2A=1800-2B,即A=B 或A+B=900.∴ABC ∆是等腰三角形或直角三角形.解法2: 由已知得A A bB B a cos sin cos sin 22=,由正弦定理得A a b b a cos cosB 22=,即Ab a cos cosB =,又由余弦定理得bcac b b a 22ac b -c a 222222-+=+,整理得(a 2-b 2)(a 2+b 2-c 2)=0,∴a=b,或a 2+b 2=c 2, ∴ABC ∆是等腰三角形或直角三角形. 3.解:由已知得例题2 巩固练习1.【答案】解法1:由正弦定理,得2345sin 26sin =︒=C 因3226sin =⨯=⋅A AB 6,2==AB BC 由623<<,则有二解,即︒=∠60C 或︒=∠120C︒=︒-︒-︒=∠754560180B 或︒=︒-︒-︒=∠1545120180B故13sin sin +=⇒⋅=AC B ABC AC 或13-=AC ,︒=∠︒=∠15,120B C ︒=∠︒=∠75,60B C 解法2:令AC=b ,则由余弦定理222245cos 62)6(=︒-+b b 1302322±=⇒=+-b b b又C b b cos 222)6(222⋅-+=︒=∠±=⇒60,21cos C C 或︒=∠120C ︒=︒+︒-︒=∠⇒75)6045(180B 或︒=︒+︒-︒=∠15)12045(180B . 2【答案】由已知有bc B A 21tan tan =+,化简并利用正弦定理:B C B A B A B A sin sin 2sin cos sin cos cos sin =+ BCB A B A sin sin 2sin cos )sin(=+0cos sin 2sin =-A C C由0sin ≠,故︒=⇒=6021cos A A 由213+=cb,可设k c k b 2,)13(=+=,由余弦定理,得 k a k k k a 6)13(24)13(22222=⇒+-++=由正弦定理Cc A a sin sin =得 226232sin sin =⋅==kk a A c C 由b c <则C 是锐角,故︒=--︒=︒=75180,45C A B C3.【答案】由已知,得2C A B +=,又由︒=++180C B A ︒=⇒60B 故4160cos sin sin 2=︒=C A ①又由B c a S ABC sin 2134⋅⋅==∆164334=⇒=⇒ac ac ② 故64)sin ()sin (sin sin 22===C c A a C A ac 8sin sin ==⇒Cc A a由3460sin 8sin 8sin sin =︒⋅=⋅==B AB a b 则21260cos cos 222=-+=︒=ac b c a B即964848)(3)(222=+=+⇒=-+c a ac b c a 64=+⇒c a ③ 把③与②联立,得)26(2),26(2-=+=c a 或)26(2),26(2+=-=c a4.【答案】由已知B C A 2=+,及︒=+︒=⇒︒=++120,60180C A B C B A由CA C A C A tan tan 1tan tan )tan(-+=+及32tan tan ,3)tan(+=⋅-=+C A C A得33tan tan +=+C A ,以C A tan ,tan 为一元二次方程032)33(2=+++-x x 的两个根,解方程,得⎩⎨⎧+==32tan 1tan C A 或⎩⎨⎧=+=1tan 32tan C A ⎩⎨⎧︒=︒=⇒7545C A 或⎩⎨⎧︒=︒=4575C A 若︒=︒=75,45C A ,则860sin 34=︒=a ,6445sin 34=︒=b ,)13(445sin 75sin 8sin sin +=︒︒==A C a c 若︒=︒=45,75C A ,则︒=60sin 34a ︒==75sin 34,8b )13(64-=)623(4-=)13(8sin sin -==B C b c 例题3 巩固练习1.【答案】由正弦定理和已知条件a+c=2b,得sinA+sinC=2sinB.由和差化积公式,得2sin 2C A +cos 2C A -=2sinB. 由A+B+C=π得sin2C A +=cos 2B .又A-C=3π,得2cos 23B =sinB.∴2cos 23B=2sin 2B cos 2B ,∵0<2B <2π,∴cos 2B ≠0,∴sin 2B =43.∴cos 2B =2sin 12B -=413,∴sinB=2sin 2B cos 2B =2∙43∙413=839. 2.【答案】(I )成等比数列 又 在中,由余弦定理得(II )在中,由正弦定理得 .3.【答案】解法1:由余弦定理得c c bc a c b A 892cos 2222-=-+= cc ac b c a B 1092cos 2222+=-+= 由正弦定理得:B A B A sin 45sin sin 4sin 5=⇒= 3231)cos 1(4510989222=-++⋅-⇒B c c c c 3231])109(1[4580812224=+-+-c c c c 63632318016282222=⇒=⇒=-⇒c c cc 故1694893689cos 2=-=-=c c A 7165sin =A 4715sin 21=⋅⋅=∆A c b S ABC解法2:如图,作B A CAD -=∠,AD 交BC 于D ,令x CD =则由5=a 知,x AD x BD -=-=5,5,在CAD ∆中 由余弦定理3231)5(84)5()cos(222=--+-=-x x x B A 化简得199=⇒=x x ,在CAD ∆中由正弦定理)sin(4)sin(sin )sin(sin B A B A CD AD C B A CD C AD -=-⋅=⇒-=783)(cos 142=--=B A 74158735421sin 21=⨯⨯⨯=⋅⋅=∆C BC AC S ABC例题4 巩固练习1.【答案】(1)证明:因为3sin()5A B +=,1sin()5A B -=, 所以3sin cos cos sin 51sin cos cos sin 5A B A B A B A B ⎧+=⎪⎪⎨⎪-=⎪⎩,2sin cos 51cos sin 5A B A B ⎧=⎪⎪⇒⎨⎪=⎪⎩,tan 2tan A B ⇒=.所以tan 2tan A B =(2)因为2A B ππ<+<,3sin()5A B +=, 所以3tan()4A B +=-,即tan tan 31tan tan 4A B A B +=--, 将tan 2tan A B =代入上式并整理得 22tan 4tan 10B B --=.解得2tan 2B =,舍去负值得2tan 2B +=,从而tan 2tan 2A B ==. 设AB 边上的高为CD.则tan tan CD CD AB AD DB A B =+=+=AB=3,得CD= 2AB 边上的高等于2。

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用

高考总复习一轮数学精品课件 第五章 三角函数 第七节 正弦定理和余弦定理及其应用
(1)在△ABC中,一定有a+b+c=sin A+sin B+sin C.( × )
(2)在△ABC中,若sin 2A=sin 2B,则必有A=B.( × )
(3)在△ABC中,若a2+b2<c2,则△ABC是钝角三角形.(

)
2.已知△ABC 的内角 A,B,C 的对边分别为 a,b,c,面积为
3.(2023 全国乙,文 4)记△ABC 的内角 A,B,C 的对边分别为 a,b,c,若 acos Bbcos A=c,且
π
C= ,则
5
B=(
π
A.
10
π
B.
5

C.
10

D.
5
答案 C
)
解析由acos B-bcos A=c及正弦定理,得sin Acos B-sin Bcos A=sin C,
(1)若式子中含有正弦的齐次式,优先考虑正弦定理“角化边”;
(2)若式子中含有a,b,c的齐次式,优先考虑正弦定理“边化角”;
(3)若式子中含有余弦的齐次式,优先考虑余弦定理“角化边”;
(4)含有面积公式的问题,要考虑结合余弦定理求解;
(5)同时出现两个自由角(或三个自由角)时,要用到三角形的内角和定理.
又因为sin A=sin(B+C)=sin Bcos C+cos Bsin C,
sin B=sin(A+C)=sin Acos C+cos Asin C,
所以sin Bcos C+cos Bsin C-sin Acos C-cos Asin C=sin Ccos B-sin Ccos A,整
理得sin Bcos C-sin Acos C=0,因此(sin B-sin A)cos C=0,所以sin B=sin A或

解三角函数

解三角函数

解:由 a b

sin A sin B
∵ 在 ABC 中 a b
∴ B 为锐角或钝角
B 60或120
3 a2
60
C
a
b
BA
(1)在 ABC 中,一定成立的等式是( ) C
A. asin A bsinB C. asin B bsin A
B. acos A bcos B D. acos B bcos A
已知条件
应用定理
一般解法
三边(如a,b, c)
余弦定理
由余弦定理求出角A、B;再利 用A+B+C=180°,求出角C. 在有解时只有一解
两边和其中一 边的对角(如a
,b,A)
正弦定理 余弦定理
由正弦定理求出角B;由A+B+ C=180°,求出角C;再利用正 弦定理或余弦定理求c. 可有两解 ,一解或无解
二、余弦定理
c2=a2+b2-2abcosC;
cosA=
b2+c2-a2 2bc
b2=c2+a2-2cacosB; a2=b2+c2-2bccosA;
cosB=
c2+a2-b2 2ca
; ;
cosC=
a2+b2-c2 2ab
.
余弦定理可解以下两种类型的三角形:
(1)已知三边;
(2)已知两边及夹角.
和差化积公式
sin sin 2 sin( ) cos( )
22
22
sin sin 2 cos( ) sin( )
22
22
cos cos 2 cos( ) cos( )
22
22
cos
cos
2
sin(
) sin(
)
22

运用正弦定理,余弦定理求解三角函数问题的基本方法

运用正弦定理,余弦定理求解三角函数问题的基本方法
B正确, 选B。
2、在 ABC中,若 tanA= tanB成立,判断此三角形的形状;
【解析】
【知识点】①正弦定理及运用;②判定三角形形状的基本方法。
【解题思路】运用正弦定理,结合问题条件得到sinAsinB(sin2A-sin2B)=0,从而推出sin2A=sin2B,根据判定三角形形状的基本方法就可得出结果。
【详细解答】 锐角 ABC中,角A、B、的对边分别是a、b,2asinB= b, 2sinAsinB= sinB, sinB(2sinA- )=0, 0<B< , sinB>0, 2sinA- =0,
sinA= , 0<A< , A= , D正确, 选D。
2、已知锐角 ABC的内角A,B,C的对边分别是a,b,c,23cos A+cos2A=0,a=7,c=6,则b=()
(1)求cosA;
(2)求c的值。
【解析】
【知识点】①正弦定理及运用;②余弦定理及运用;③解三角形的基本方法。
【解题思路】(1)运用正弦定理,结合问题条件就可求出cosA的值;(2)根据余弦定理和解三角形的基本方法就可得出c的值。
【详细解答】(1) a=3,b=2 ,B=2A, = , = , 6sinA.
(6)已知三边,求解三角形的基本方法是:①运用余弦定理求出最大边所对的角;②运用正弦定理求出其余两边的对角;
(7)设 ABC中,A,B,C的对边分别是a,b,c,如果已知a,b和A,求B时,解答结果有:①,②,③三种情况;详细情况可通过把下表的空白处填上恰当的内容来进一步了解。
A> A= A<
a>b
A 10 B 9 C 8 D 5
【解析】
【知识点】①二倍角公式及运用;②余弦定理及运用;③解三角形的基本方法。

正弦定理和余弦定理知识点与题型归纳

正弦定理和余弦定理知识点与题型归纳

●高考明方向掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.★备考知考情1.利用正、余弦定理求三角形中的边、角问题是高考考查的热点.2.常与三角恒等变换、平面向量相结合出现在解答题中,综合考查三角形中的边角关系、三角形形状的判断等问题.3.三种题型都有可能出现,属中低档题. 一、知识梳理《名师一号》P62知识点一 正弦定理(其中R 为△ABC 外接圆的半径)变形1:2sin ,2sin ,2sin ,===a R A b R B c R C 变形2:sin ,sin ,sin ,222===a b c A B C R R R变形3:∶∶∶∶sinA sinB sinC=a b c 注意:(补充)关于边的齐次式或关于角的正弦的齐次式均可利用正弦定理进行边角互化。

知识点二 余弦定理222222222222222222cos ,22cos ,2cos ,cos ,22cos .cos .2⎧+-=⎪⎧=+-⎪+-⎪⎪=+-⇔=⎨⎨=+-⎪⎪⎩+-⎪=⎪⎩b c a A bc a b c bc A a c b b a c ac B B ac c a b ab C a b c C ab 注意:(补充)(1)关于边的二次式或关于角的余弦均可考虑利用余弦定理进行边角互化。

(2)勾股定理是余弦定理的特例(3)在∆ABC 中,222090︒︒<+⇔<<a b c A用于判断三角形形状《名师一号》P63问题探究 问题3判断三角形形状有什么办法判断三角形形状的两种途径:一是化边为角;二是化角为边, 并常用正弦(余弦)定理实施边、角转换.知识点三 三角形中常见的结论△ABC 的面积公式有:①S =12a ·h (h 表示a 边上的高); ②S =12ab sin C =12ac sin B =12bc sin A =abc 4R ;--知两边(或两边的积)及其夹角可求面积③S =12r (a +b +c )(r 为内切圆半径). (补充)(1)++=A B C π(2)在三角形中大边对大角,大角对大边.(3)任意两边之和大于第三边,任意两边之差小于第三边.(4)有关三角形内角的常用三角函数关系式sin()sin ,cos()cos ,tan()tan sin cos ,cos sin 2222+=+=-+=-++==B C A B C A B C A B C A B C A 利用++=A B C π及诱导公式可得之(5)在△ABC 中的几个充要条件:《名师一号》P63问题探究 问题4sin A >sin B a 2R >b 2Ra >b A >B . (补充) cos cos A B A B >⇔< 若R ∈、αβ或2k απβπ=-+(k Z ∈)或2k αβπ=-+(k Z ∈)《45套》之7--19(6)锐角△ABC 中的常用结论∆ABC 为锐角三角形⇔02<<、、A B C π4.解斜三角形的类型《名师一号》P63问题探究问题1利用正、余弦定理可解决哪几类问题在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题:(1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.a b A)(补充)已知两边和其中一边的对角(如,,用正弦定理或余弦定理均可《名师一号》P63问题探究问题2选用正、余弦定理的原则是什么若式子中含有角的余弦或边的二次式,要考虑用余弦定理;若遇到的式子中含有角的正弦或边的一次式时,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.补充:一、正弦定理推导必修5证明思路:转化到特殊情形----直角三角形中二、余弦定理推导必修52011年陕西高考考查余弦定理的证明18.(本小题满分12分)叙述并证明余弦定理。

高中三角函数知识点(集合5篇)

高中三角函数知识点(集合5篇)

高中三角函数知识点(集合5篇)高中三角函数知识点(1)角的概念的'推广.弧度制.任意角的三角函数.单位圆中的三角函线.同角三角函数的基本关系式.正弦、余弦的诱导公式.两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.正弦定理.余弦定理.斜三角形解法.考试要求(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解ω、φ的物理意义.(6)会由已知三角函数值求角,并会用符号arcsinxarc-cosxarctanx表示.(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tan α?cotα=1”.高中三角函数知识点(2)公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinα k∈zcos(2kπ+α)=cosα k∈ztan(2kπ+α)=tanα k∈zcot(2kπ+α)=cotα k∈z公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与 -α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanα高中数学三角函数的诱导公式学习方法二推算公式:3π/2±α与α的三角函数值之间的关系:sin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα高中三角函数知识点(3)口诀记忆法高中数学中,有些方法如果能编成顺口溜或歌诀,可以帮助记忆。

高中三角函数八大定理

高中三角函数八大定理

高中三角函数八大定理一、正弦定理(Sine Rule)设∠A、∠B、∠C分别为三角形ABC的内角,a、b、c分别为AC、BC、AB对应的边长,则有以下关系式:a/sin∠A = b/sin∠B = c/sin∠C二、余弦定理(Cosine Rule)设∠A、∠B、∠C分别为三角形ABC的内角,a、b、c分别为AC、BC、AB对应的边长,则有以下关系式:a² = b² + c² - 2bc*cos∠Ab² = a² + c² - 2ac*cos∠Bc² = a² + b² - 2ab*cos∠C三、正切定理(Tangent Rule)设∠A、∠B、∠C分别为三角形ABC的内角,a、b、c分别为AC、BC、AB对应的边长,则有以下关系式:tan∠A = (b*sin∠A)/(a - b*cos∠A)tan∠B = (a*sin∠B)/(b - a*cos∠B)tan∠C = (a*sin∠C)/(c - a*cos∠C)四、正弦余弦关系(Sine-Cosine Relationship)对于任意角θ,有以下关系式:sin²θ + cos²θ = 1五、正切关系(Tangent Relationship)对于任意角θ,有以下关系式:tanθ = sinθ/cosθ六、余切关系(Cotangent Relationship)对于任意角θ,有以下关系式:cotθ = cosθ/sinθ七、和差化积公式(Sum-Difference To Product Formulas)对于任意角θ和φ,有以下关系式:sin(θ+φ) = sinθ*cosφ + cosθ*sinφsin(θ-φ) = sinθ*cosφ - cosθ*sinφcos(θ+φ) = cosθ*cosφ - sinθ*sinφcos(θ-φ) = cosθ*cosφ + sinθ*sinφ八、倍角公式(Double Angle Formulas)对于任意角θ,有以下关系式:sin(2θ) = 2*sinθ*cosθcos(2θ) = cos²θ - sin²θ = 2*cos²θ - 1 = 1 - 2*sin²θtan(2θ) = (2*tanθ)/(1 - tan²θ)以上就是高中三角函数的八大定理,它们在解决三角形问题、证明三角函数性质等方面具有重要作用。

三角形的正弦定理与余弦定理

三角形的正弦定理与余弦定理

三角形的正弦定理与余弦定理三角形是数学中的重要概念之一,它具有广泛的应用。

在三角形的研究中,正弦定理和余弦定理是两个基本的定理,它们能够帮助我们研究三角形的边长与角度之间的关系,解决各种与三角形相关的问题。

本文将重点介绍三角形的正弦定理与余弦定理,并通过具体例子来说明它们的应用。

一、三角形的正弦定理正弦定理是描述三角形边长与角度之间关系的定理。

对于一个任意三角形ABC,设a、b、c分别是三边AC、AB和BC的长度,角A、B、C分别为三个顶点的对应角度,则正弦定理可以表达为:a/sinA = b/sinB = c/sinC其中,sinA、sinB和sinC分别表示角A、B和C的正弦值。

通过正弦定理,我们可以推导出三个有用的结论。

1. 第一个结论是三角形内角的正弦定理:对于三角形ABC,有sinA/a = sinB/b = sinC/c。

通过该结论,我们可以根据三角形的边长计算三个内角的正弦值,或者根据三角形的内角计算三个边长的比值。

2. 第二个结论是三角形的外角的正弦定理:对于三角形ABC的外角A'、B'和C',有sinA'/a = sinB'/b = sinC'/c。

这个结论可以帮助我们计算三角形的外角与边长的关系。

3. 第三个结论是三角形的面积公式:对于三角形ABC,它的面积S 可以表示为S = (1/2) * a * b * sinC。

通过这个结论,我们可以根据三角形的两边和它们之间的夹角来计算该三角形的面积。

二、三角形的余弦定理余弦定理与正弦定理类似,也是描述三角形边长与角度之间关系的定理。

对于一个任意三角形ABC,设a、b、c分别是三边AC、AB和BC的长度,角A、B、C分别为三个顶点的对应角度,则余弦定理可以表达为:c^2 = a^2 + b^2 - 2ab * cosC其中,cosC表示角C的余弦值。

通过余弦定理,我们可以推导出三个有用的结论。

(完整版)正弦定理、余弦定理知识点

(完整版)正弦定理、余弦定理知识点

正弦定理、余弦定理讲师:王光明【基础知识点】1. 三角形常用公式:A +B +C =π;S =ab sin C =bc sin A ==ca sin B ;2121212.三角形中的边角不等关系: A>B a>b,a+b>c,a-b<c ;;⇔3.【正弦定理】:===2R (外接圆直径);A a sin B b sin Ccsin 正弦定理的变式:; a ∶b ∶c =sin A ∶sin B ∶sin C .⎪⎩⎪⎨⎧===C R c B R b AR a sin 2sin 2sin 24.正弦定理应用范围: ①已知两角和任一边,求其他两边及一角. ②已知两边和其中一边对角,求另一边的对角.③几何作图时,存在多种情况.如已知a 、b 及A ,求作三角形时,要分类讨论,确定解的个数.已知两边和其中一边的对角解三角形,有如下的情况:(1)A 为锐角AABa=bsin A bsin A<a<b a b ≥ 一解 两解 一解(2)A 为锐角或钝角当时有一解.a>b 5.【余弦定理】 a 2=b 2+c 2-2bccosA .c 2=a 2+b 2-2abcosC .b 2=a 2+c 2-2accosB .若用三边表示角,余弦定理可以写为、6.余弦定理应用范围:(1)已知三角形的三条边长,可求出三个内角;(2)已知三角形的两边及夹角,可求出第三边.【习题知识点】知识点1 运用判断三角形形状例题1在△ABC 中已知acosB=bcosA,试判断△ABC 的形状.【分析】利用正弦定理或余弦定理判断三角形形状,可以将三角形中的边用角表示,也可将角用边来表示.从中找到三角形中的边角关系,判断出三角形的形状.【解析】解法1:由扩充的正弦定理:代入已知式2RsinAcosB=2RsinBcosAsinAcosB-cosAsinB=0 , sin(A-B)=0A-B=0 ∴A=B 即△ABC 为等腰三角形解法2:由余弦定理: 22222222bc a c b b ac b c a a -+⋅=-+⋅ 22b a = ∴ b a =即△ABC 为等腰三角形.知识点2 运用正、余弦定理解三角形解三角形问题中正、余弦定理的选择:(1)在下述情况下应首先使用余弦定理: ①已知三条边(边边边),求三个角;②已知两边和它们的夹角(边角边),求其它一边和两角;(2)在下述情况下应首先使用正弦定理:①已知两边和一边的对角(边边角),求其它一边和两角;②已知两角和任一边(角角边、角边角),求其它两边和一角.例题2 在△ABC 中,已知,,B=45︒ 求A 、C 及c .3=a 2=b 【分析】在解斜三角形应用过程中,注意要灵活地选择正弦定和余弦定理,解得其它的边和角【解析】解法1:由正弦定理得:23245sin 3sin sin === b B a A ∵B=45︒<90︒ 即b <a ∴A=60︒或120︒当A=60︒时C=75︒ 22645sin 75sin 2sin sin +===BCb c当A=120︒时C=15︒ 22645sin 15sin 2sin sin -===B C b c 解法2:设c =x 由余弦定理将已知条件代入,整理:解之:B ac c a b cos 2222-+=0162=+-x x 226±=x 当时 从而A=60︒ ,C=75︒226+=c 2)13(231226223)226(22cos 22221=++=+⋅⋅-++=-+=bc a c b A 当时同理可求得:A=120︒ C=15︒.226-=c 知识点3 解决与三角形在关的证明、计算问题例题3 已知A 、B 、C 为锐角,tanA=1,tanB=2,tanC=3,求A+B+C 的值. 【分析】本题是要求角,要求角先要求出这个角的某一个三角函数值,再根据角的范围确定角.本题应先求出A+B 和C 的正切值,再一次运用两角和的正切公式求出A+B+C .【解析】 A B C 、、为锐角∴<++<0270°°A B C 又,,由公式可得tan tan A B ==12tan()tan tan tan tan A B A B A B +=+-⋅=+-=-112123[]tan()tan ()A B C A B C ++=++=++-+⋅tan()tan tan()tan A B C A B C 1 =-+--⨯33133() =0所以A+B+C=π知识点4 求三角形的面积例题4 △ABC 中,D 在边BC 上,且BD =2,DC =1,∠B =60o ,∠ADC =150o ,求AC 的长及△ABC 的面积.【解析】在△ABC 中,∠BAD =150o -60o =90o ,∴AD =2sin60o =3.A在△ACD 中,AD 2=(3)2+12-2×3×1×cos150o =7,∴AC =7. ∴AB =2cos60o =1.S △ABC =21×1×3×sin60o =343.知识点4 解决实际为题例题4 如图,海中有一小岛,周围3.8海里内有暗礁。

一轮复习—三角函数

一轮复习—三角函数

三角函数一轮复习指导 沙河中学 谷天雨一、三角函数知识框架图二、考纲要求:(一)三角函数1.任意角的概念、弧度制 (1)了解任意角的概念.(2)了解弧度制的概念,能进行弧度与角度的互化. 2. 三角函数(1)理解任意角三角函数(正弦、余弦、正切)的定义.(2)能利用单位圆中的三角函数线推导出απ±2,απ±的正弦、余弦、正切的诱导公式, 能画出x y sin =,x y cos =,x y tan =的图象,了解三角函数的周期性.(3)理解正弦函数、余弦函数在区间[]π2,0上的性质(如单调性、最大值和最小值以及 与 x 轴的交点等),理解正切函数在区间⎥⎦⎤⎢⎣⎡++-ππππk k 2,2内的单调性.(4) 理解同角三角函数的基本关系式:1cos sin 22=+αα αααcos sin tan =(5)了解函数)sin(ϕω+=x A y 的物理意义;能画出)sin(ϕω+=x A y 的图象,了解参数A ,ω,ϕ对函数图像变化的影响.(6)了解三角函数是描述周期变化现象的重要函数模型,会用三角函数解决一些简单实。

(理科)(二)三角恒等变换1.和与差的三角函数公式(1)会用向量的数量积推导出两角差的余弦公式.(2)能利用两角差的余弦公式导出两角差的正弦、正切公式.(3)能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系.2.简单的三角恒等变换能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆).(三)解三角形1.正弦定理和余弦定理掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.2.应用能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.三、考试内容及层次要求四、三角函数、三角恒等变换与解三角形知识清单1.⑴角度制与弧度制的互化:π弧度180=,1801π=弧度,1弧度 )180(π='1857 ≈⑵弧长公式:R l α=;扇形面积公式:22121R lR s α==2.三角函数定义:角α终边上任一点(非原点)P ),(y x ,设r OP =|| 则:,cos ,sin r x r y ==ααx y =αtan3.三角函数符号规律:一全正,二正弦,三正切,四余弦;(简记为“全s t c ”)4.诱导公式记忆规律:“奇变偶不变,符号看象限”,化简操作:负化正(奇偶性),大化小(周期性),()α化成锐角就终了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三角函数、正弦定理、余弦定理以及不等式(均值不等式) 上课时间: 上课教师:上课重点:倍角公式、降次升角以及辅助角公式的运用,正余定理的运用,常见均值不等式上课规划:常见题型的解题技巧与方法 一 三角函数1、图像的性质以及图像的平移(1)函数23y sin(x )π=-+的递减区间是____________________。

(2)对于函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭给出下列结论:①图象关于原点成中心对称;②图象关于直线12x π=成轴对称;③图象可由函数2sin 2y x=的图像向左平移3π个单位得到;④图像向左平移12π个单位,即得到函数2cos 2y x =的图像。

其中正确结论是______________________。

(3)对于函数()2sin cos f x x x =,下列选项中正确的是( )(A )()f x 在(4π,2π)上是递增的 (B )()f x 的图像关于原点对称(C )()f x 的最小正周期为2π (D )()f x 的最大值为2 (3)已知函数2()2sin23sin cos 1f x x x x =-++⑴求()f x 的最小正周期及对称中心; (2)求()f x 的单调区间 (3)若[,]63x ππ∈-,求()f x 的最大值和最小值.(4)已知函数y=f(x),将f(x)图象上每一点的纵坐标保持不变,横坐标扩大到原来的2倍,然后把所得到的图象沿x 轴向左平移4π个单位,这样得到的曲线与y=3sinx 的图象相同,那么y=f(x)的解析式为 ( ) A .f(x)=3sin(42π-x ) B .f(x)=3sin(2x+4π)C .f(x)=3sin(42π+x ) D .f(x)=3sin(2x -4π)(5)函数y = sin2x+acos2x 的图象关于直线x=-8π对称,则a 的值( )A .1B .-2C .-1D .2金典题型1、(2009)函数22cos 14y x π⎛⎫=--⎪⎝⎭是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为2π的奇函数 D .最小正周期为2π的偶函数2、(2008)已知函数2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π的奇函数C 、最小正周期为π的偶函数D 、最小正周期为2π的偶函数3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能...( )4.(2009山东卷文)将函数sin 2y x =的图象向左平移4π个单位, 再向上平移1个单位,所得图象的函数解析式是( ). A. 22cos y x = B. 22sin y x = C.)42sin(1π++=x y D. cos 2y x =5.(2009江西卷文)函数()(13tan )cos f x x x =+的最小正周期为A .2πB .32π C .π D .2π6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4(,0)3π中心对称,那么φ的最小值为A.6π B.4π C. 3π D.2π7.(2008海南、宁夏文科卷)函数()cos 22sin f x x x =+的最小值和最大值分别为( )A. -3,1B. -2,2C. -3,32 D. -2,328、(2009年上海卷)函数22cos sin 2y x x =+的最小值是( )21.+A 21.-B 12.-C 1.D解答题1、(2008)已知函数()sin()(0,0),f x A x a x Rϕϕπ=+><<∈的最大值是1,其图像经过点1(,)32M π。

(1)求()f x 的解析式; (2)已知,(0,)2παβ∈,且312(),(),513f f αβ==求()f αβ-的值。

2、(2006)已知函数()sin sin(),2f x x x x R π=++∈.(I)求()f x 的最小正周期;(II)求()f x 的的最大值和最小值; (III)若3()4f α=,求sin 2α的值.3.(2009北京文)(本小题共12分)已知函数()2sin()cos f x x xπ=-.(Ⅰ)求()f x 的最小正周期; (Ⅱ)求()f x 在区间,62ππ⎡⎤-⎢⎥⎣⎦上的最大值和最小值.二 解三角形问题(正弦定理、余弦定理) 典型例题1 .设锐角ABC ∆的内角A B C ,,的对边分别为a b c ,,,2sin a b A =. (Ⅰ)求B 的大小;(Ⅱ)求cos sin A C +的取值范围.2 .在ABC ∆中,角A . B .C 的对边分别为a 、b 、c,且满足(2a-c)cosB=bcosC .(Ⅰ)求角B 的大小;(Ⅱ)设()()()2411m sin A,cos A ,n k ,k ,==>且m n⋅ 的最大值是5,求k 的值.3 .在ABC ∆中,角C B A ,,所对的边分别为c b a ,,,22sin2sin=++C B A .I.试判断△ABC 的形状;II.若△ABC 的周长为16,求面积的最大值.4 .在ABC ∆中,a 、b 、c 分别是角A . B .C 的对边,C =2A ,43cos =A ,(1)求25169483616cos 2222=⨯-+=-+=∴B ac c a bB C cos ,cos 的值;(2)若227=⋅BC BA , 求边AC 的长。5、在ABC ∆中,已知内角A . B .C 所对的边分别为a 、b 、c ,向量()2s i n ,3m B =-,2cos 2,2cos 12B n B ⎛⎫=- ⎪⎝⎭,且//m n 。(I)求锐角B 的大小;(II)如果2b =,求ABC ∆的面积A B C S ∆的最大值。总结:正弦定理、余弦定理、面积公式、向量的数量积的坐标运算。

三 均值不等式的运用 (1)若*,R b a ∈,则abb a 2≥+ (当且仅当b a =时取“=”)→均值不等式(2)若R b a ∈,,则22⎪⎭⎫⎝⎛+≤b a ab (当且仅当b a =时取“=”)注:两个公式运用的局限性不一样解题技巧技巧一:凑项例 已知54x <,求函数14245y x x =-+-的最大值。

解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项 解:因450x -<,所以首先要“调整”符号,又541)24(--x x 不是常数,所以对42x -要进行拆、凑项技巧二:凑系数例1. 当时,求(82)y x x =-的最大值。

解析:由知,,利用均值不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。

注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。

技巧三: 分离 例3. 求2710(1)1x x y x x ++=>-+的值域。

解析一:本题看似无法运用均值不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。

技巧四:换元 例4. 求2710(1)1x x y x x ++=>-+的值域。

解析二:本题看似无法运用均值不等式,可先换元,令t=x +1,化简原式在分离求最值。

例题;求函数2254x y x +=+的值域。

基础训练 条件求最值1.若实数满足2=+b a ,则ba 33+的最小值是 .变式:若44log log 2x y +=,求11xy+的最小值.并求x,y 的值2.已知0,0x y >>,且191xy+=,求x y +的最小值。

变式:(1)若+∈R y x ,且12=+y x ,求yx 11+的最小值(2)已知+∈R y x b a ,,,且1=+ybxa ,求y x +的最小值(3)已知x ,y 为正实数,且x 2+y 22 =1,求x 1+y 2 的最大值.3.已知c b a ,,为两两不相等的实数,求证:cabc ab cb a ++>++2224.正数a ,b ,c 满足a +b +c =1,求证:(1-a )(1-b )(1-c )≥8abc总结;均值不等式的灵活运用5.已知a 、b 、c R +∈,且1a b c ++=。

求证:1111118abc⎛⎫⎛⎫⎛⎫---≥ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭应用1:均值不等式与恒成立问题 例:已知0,0x y >>且191xy+=,求使不等式x y m +≥恒成立的实数m 的取值范围。

应用2:均值定理在比较大小中的应用: 例:若)2lg(),lg (lg 21,lg lg ,1b a R b a Q b a P b a+=+=⋅=>>,则R Q P ,,的大小关系是 .四 不等式的解法 1、含绝对值的不等式(1)与不等式| x +1 |<1的解集相同的是( )A .x +1<1且x +1>-1B .x +1<-1或x +1>1C .x +1<1或x +1>-1D .x +1<-1 且x +1>1 (2)不等式32>+x 的解集是( )A.()+∞,1B.()5,-∞-C.()+∞,1或()5,-∞-D.()1,5- (3)不等式| x -1| > |x -2|的解集是 () A .}23|{<x x B . }223|{<<x xC .}23|{>x xD . }2|{>x x2、形式为:0)()(0)()(><x g x f x g x f 或者型转化为0)()(0)()(><x g x f x g x f 或者或者的形式 例题:不等式322322<--+-x x x x 的解集是 ()A .(-∞, -1)∪(1, 2)∪(3, +∞)B .(-1, 1)∪(2, 3)C .(-1, 1) ∪(1, 2)D .(1, 2)∪(2, 3) 变式训练:解下列不等式45820422+-+-x x x x <3变式训练:解不等式:0322322>--+-x x x x变式训练:解不等式(x-2)2(x-3)3(x+1)<0. 3、形式为:0)()(0)()(≥≤x g x f x g x f 或者型转化为:0)(0)()(,0)(0)()(≠≥≠≤x g x g x f x g x g x f 且且’的形式 例题:解不等式03252≤---x x x变式训练:解不等式8222≤---xxx变式训练:解不等式6622≥-+--xxxx五 线性规划1、已知x , y 满足约束条件,11⎪⎩⎪⎨⎧-≥≤+≤y y x x y y x z +=2则的最大值为( ) A .3 B .-3C .1D .232、不等式组⎪⎩⎪⎨⎧-≥≤+<31y y x xy ,表示的区域为D ,点P 1(0,-2),P 2(0,0),则( )A .D P D P ∉∉21且B .D P D P ∈∉21且C .D P D P ∉∈21且D .D P D P ∈∈21且3、已知点P (x 0,y 0)和点A (1,2)在直线0823:=-+y x l 的异侧,则 ( ) A .02300>+y x B .<+0023y x 0 C .82300<+y xD .82300>+y x4、在约束条件⎪⎩⎪⎨⎧≥≤+≤--0101x y x y x 下,则目标函数y x z +=10的最优解是( )A .(0,1),(1,0)B .(0,1),(0,-1)C .(0,-1),(0,0)D .(0,-1),(1,0)5、已知点(x ,y )在不等式组⎪⎩⎪⎨⎧≥+≤≤222y x y x 表示的平面区域内,则y x +的取值范围为 .6、求目标函数y x z 1510+=的最大值及对应的最优解,约束条件是⎪⎪⎩⎪⎪⎨⎧≥≤≤≥+≤+010********y x y x y x .7、设y x z +=2,式中变量y x ,满足条件⎪⎪⎩⎪⎪⎨⎧≤+≥+≥≥66311y x y x y x ,求z 的最小值和最大值.7、画出不等式组⎪⎩⎪⎨⎧≥+≤≥+-02042x yx y x 所表示的平面区域。

相关文档
最新文档