第三章 变压器
合集下载
第3章变压器
1.二次绕组电流的折算
根据折算前后磁势保持不变的原则,有:
N1 I 2 N 2 I2
则
N2 I2 I2 I2 N1 K
2.二次绕组电动势的折算
根据折算前后主磁通和漏磁通保持不变的原则,有:
4.44 fN1m E2 N1 K E2 4.44 fN 2m N 2
E1
2
在相位上滞后主磁通 m 90°相角
同理写出二次
绕组感应电动势的有效值
二次绕组感应电势的有效值为:
E 2 =4.44 fN 2m
E 2 在相位上滞后主磁通 m 90°相角
漏磁通1 在一次侧绕组中产生的 漏磁感应电动势为:
L1 定义为漏磁电感 L1
d 1 L di e1 =-N1 = 1 dt dt
K 2 x2 x2
负载阻抗也有同样的关系,即:
2 ZL K ZL
4.二次侧电压的折算
根据二次侧电压平衡方程式,折算后的二次 侧电压值仍应等于折算后的二次绕组的感应 电动势减去折算后二次侧的漏阻抗压降
=E - - U I Z = k ( E I Z )= k U 2 2 2 2 2 2 2 2
S9 型配电变压器(10 kV)
大型油浸电力变压器
大连理工大学电气工程系
干式变压器
大连理工大学电气工程系
附录1 变压器图片
调压器(自耦变压器)
控制变压器
3.1.3 变压器的基本结构
铁心 器身绕组 引线和绝缘 和箱底) 油箱油箱本体(箱盖、箱壁 小车、接地螺栓、铭牌 等) 油箱附件(放油阀门、 变压器调压装置-无励磁分接 开关或有载分接开关 却器 冷却装置-散热器或冷 保护装置-储油柜、油 位计、安全气道、释放 阀、吸湿器、测温 元件、气体继电器等 压套管,电缆出线等 出线装置-高、中、低 变压器油
第三章 变压器
铁芯是变压器磁通的主要通路,又起支撑绕组的作用, 为了提高导磁性能和减小铁芯损耗,变压器的铁芯由彼 此绝缘的硅钢片叠成 “日”形:壳式变压器, 铁芯包围绕组,小容量变压器
铁芯形状
“口”形:芯式变压器, 绕组包围铁芯,大容量变压器
环形变压器,其铁芯由低铁损 冷轧硅钢带绕,具有损耗小、 效率高以及电磁干扰小的特点 在相同的参数下,环形变压器铁芯的体积最小
变压器的冷却:变压器工作时铁芯和绕组都会发热,因此必 须考虑冷却问题
小容量变压器:采用自然风冷,即依靠空气的自然对流 和辐射将热量散发
大容量变压器:采用油冷方式,将变压器浸入变压器油 内,使其产生的热量通过变压器油传给外壳而散发,变 压器油还具有良好的绝缘性能 • 在X线机设备中,高压变压器副绕组输出几十千伏以上的 高压,无论是副绕组对原绕组还是对铁芯等绝缘都有非常 高的要求。 • X线机的高压变压器就采用了油冷方式
(3-4)
Z1 K 2 Z 2
选取适当的变比K,可以把负载阻抗Z2等效变换到原绕组一 侧所需要的阻抗值Z1 在电子电路中,常使用变压器来实现阻抗匹配,以获得较高 的功率输出
四、变压器的主要参数 大型变压器的外壳通常附有铭牌来标明其型号及参数, 它是正确使用变压器的依据
1.原绕组的额定电压U1N:指当变压器按规定工作方式运行时 在原绕组上应加的电源电压值
(a)抽头式
(b)滑动式
(c)混合式
图3-7 x线机控制台的电源变压器
六、变压器绕组的同极性端
变压器的同极性端:变压器不同绕组在同一变化的磁通作用 下,其感应电动势的极性相同端,用符号“·”表示 在实际运用当中,有时需要将变 压器的两个(或多个)绕组连接起来 使用来适应不同的输入电压与满 足不同的输出电压要求
铁芯形状
“口”形:芯式变压器, 绕组包围铁芯,大容量变压器
环形变压器,其铁芯由低铁损 冷轧硅钢带绕,具有损耗小、 效率高以及电磁干扰小的特点 在相同的参数下,环形变压器铁芯的体积最小
变压器的冷却:变压器工作时铁芯和绕组都会发热,因此必 须考虑冷却问题
小容量变压器:采用自然风冷,即依靠空气的自然对流 和辐射将热量散发
大容量变压器:采用油冷方式,将变压器浸入变压器油 内,使其产生的热量通过变压器油传给外壳而散发,变 压器油还具有良好的绝缘性能 • 在X线机设备中,高压变压器副绕组输出几十千伏以上的 高压,无论是副绕组对原绕组还是对铁芯等绝缘都有非常 高的要求。 • X线机的高压变压器就采用了油冷方式
(3-4)
Z1 K 2 Z 2
选取适当的变比K,可以把负载阻抗Z2等效变换到原绕组一 侧所需要的阻抗值Z1 在电子电路中,常使用变压器来实现阻抗匹配,以获得较高 的功率输出
四、变压器的主要参数 大型变压器的外壳通常附有铭牌来标明其型号及参数, 它是正确使用变压器的依据
1.原绕组的额定电压U1N:指当变压器按规定工作方式运行时 在原绕组上应加的电源电压值
(a)抽头式
(b)滑动式
(c)混合式
图3-7 x线机控制台的电源变压器
六、变压器绕组的同极性端
变压器的同极性端:变压器不同绕组在同一变化的磁通作用 下,其感应电动势的极性相同端,用符号“·”表示 在实际运用当中,有时需要将变 压器的两个(或多个)绕组连接起来 使用来适应不同的输入电压与满 足不同的输出电压要求
电机与拖动大学课程 第三章 变压器1
第三章 变压器
变压器是一种静止的电气设备, 通过电磁耦合作用,把 电能或信号从一个电路传递到另一个电路。通常用来改变 电压的大小,故叫变压器,有时用于电气隔离。
分类
本章学 习重点
电力变压器(升压、降压、配电)
按用途
特种变压器(电炉、整流)
仪用互感器(电压、电流互感器、 脉冲变压器,阻抗匹配变压器)
(2)额定电压U1N/U2N U1N为额定运行时原边接线端点间应施加的电压。U2N为原边施
加额定电压时副边出线端间的空载电压。单位为V或者kV。三 相变压器中,额定电压指的是线电压。指有效值。
(3)额定电流I1N/I2N 是变压器在额定容量和额定电压下所应提供的电流,在三相变 压器指线电流。单位为A/kA。指有效值。
考虑漏磁通和原边绕组的电阻时,变压器空载运行时相 量形式表示的电压平衡方程式:
U1 I0R1 (E1 ) (E1) I0R1 jI0 x1 (E1)
I0 (R1 jx1 ) (E1) I0Z1 (E1)
U20 E2
R1:原边绕组电阻;
Z1=R1+jX1σ为原边绕组漏阻抗
五、空载运行的等效电路和相量图
E2m N2m
有效值:
E2 E2m / 2 4.44 f1N2m
相量表示:
E2 j4.44 f1N2m
.
m
.
. E2 E1
变压器中,原、副绕组电动势E1和E2之比称为变压器 的变比k.
k E1 4.44 N1 f1 m N1 E2 4.44 N2 f1 m N2
由于.
U1 E1 U2 E2
变压器原边接在电源上, 副边接上负载的运行情况,称为负载 运行。
一、物理过程
变压器接通负载 副边电流 副边磁势 原边电动势改变 原边电流改变
变压器是一种静止的电气设备, 通过电磁耦合作用,把 电能或信号从一个电路传递到另一个电路。通常用来改变 电压的大小,故叫变压器,有时用于电气隔离。
分类
本章学 习重点
电力变压器(升压、降压、配电)
按用途
特种变压器(电炉、整流)
仪用互感器(电压、电流互感器、 脉冲变压器,阻抗匹配变压器)
(2)额定电压U1N/U2N U1N为额定运行时原边接线端点间应施加的电压。U2N为原边施
加额定电压时副边出线端间的空载电压。单位为V或者kV。三 相变压器中,额定电压指的是线电压。指有效值。
(3)额定电流I1N/I2N 是变压器在额定容量和额定电压下所应提供的电流,在三相变 压器指线电流。单位为A/kA。指有效值。
考虑漏磁通和原边绕组的电阻时,变压器空载运行时相 量形式表示的电压平衡方程式:
U1 I0R1 (E1 ) (E1) I0R1 jI0 x1 (E1)
I0 (R1 jx1 ) (E1) I0Z1 (E1)
U20 E2
R1:原边绕组电阻;
Z1=R1+jX1σ为原边绕组漏阻抗
五、空载运行的等效电路和相量图
E2m N2m
有效值:
E2 E2m / 2 4.44 f1N2m
相量表示:
E2 j4.44 f1N2m
.
m
.
. E2 E1
变压器中,原、副绕组电动势E1和E2之比称为变压器 的变比k.
k E1 4.44 N1 f1 m N1 E2 4.44 N2 f1 m N2
由于.
U1 E1 U2 E2
变压器原边接在电源上, 副边接上负载的运行情况,称为负载 运行。
一、物理过程
变压器接通负载 副边电流 副边磁势 原边电动势改变 原边电流改变
第三章 电力变压器(高压特种电工培训)
2021年4月27日9时0分
二、变压器的结构
中小型油浸电力变压器典型结构如图3-1所示。 1.铁芯 (1)铁芯结构 变压器的铁芯是磁路部分。 由铁芯柱和铁轭两部分组成。铁芯的机构分为
心式和壳式两种。
2021年4月27日9时0分
(2)铁芯材料 由于铁芯为变压器的磁路,所以其材料 要求导磁性能好,导磁性能好,才能使铁损小。
查一次。容量在630kVA以下的变压器,可适当延长巡视周期,但变 压器在每次合闸前及拉闸后应检查一次。 8)有人值班的变配电所,每班都应检查变压器的运行状态。 9)对于强油循环水冷或风冷变压器,不论有无值班,都应每小时巡 视一次。 10) 负荷急剧变化或变压器发生短路故障后,都应增加特殊巡视。
根据变压器的大小分为吊器身式油箱(6300kVA以下) 和吊箱壳式油箱(又称钟罩式油箱,8000kVA以上)两种。
2021年4月27日9时0分
6.冷却装置 变压器冷却装置是起散热作用的。 7.储油柜(又称油枕)主要是当油箱油面降低时给油箱 补油的装置,它通过管道和瓦斯继电继电器与油箱相连。 8.安全气道(又称防爆管,现在被压力释放阀代替) 9.吸湿器(装有变色硅胶,颜色由蓝变白,粉红色) 10.气体继电器 11.高、低压绝缘套管
5.额定容量 变压器的容量为视在功率,单位为 kVA。
单相变压器视在功率为:
S N U1N I1N U 2N I 2N
2021年4月27日9时0分
三相变压器视在功率为:
SN 3U1N I1N 3U 2N I2N
一般容量在630kVA以下的为小型电力变压器; 800~6300kVA的为中型电力变压器; 8000~63000kVA为大型电力变压器; 90000kVA及以上的为特大型电力变压器。
电机学辜承林(第三版)第3变压器
– 而对 e2 有: e2(t) = -N2 d Øm/dt = -wN2 Øm cos wt = wN2 Øm sin(wt-90°) = E2m sin(wt-90°) 所以 e1 和 e2 也按正弦规律变化 磁通与电势的关系(图2-tem1)
主磁通与感与应电动势 e1、e2关系
时间相位上:滞后于 Øm 的电角度是 90° 有效值大小: 相量表达式:
磁通Øm与电势E1、E2 的相量关系(图2-tem2)
2.漏磁通与漏电动势、漏电抗
• 漏电动势:e1s (t) = -N1 dØ1s/dt • 有效值: • 漏磁通与漏电抗
由于漏磁通所通过的途径是非磁性物质,其磁导率 是常数,所以漏磁通的大小与产生此漏磁通的绕组中 的电流成正比关系为:用漏感系数L1s表示二者关系: N1Ø1s∝ Im 即: L1s= N1Ø1s/√ 2 Im
从一个电路向另一个传递能量或传输信号的一种 电气装置。
常用来将一种交流电压的电能转换为同频率的 另一种交流电压的电能。
(一)变压器用途
• 电力系统中实现电能的远距离高效输送、合理配电、安全 用电。如:电力变压器、配电变压器。
• 供给特殊电源用的专用变压器。如:炼钢炉供电 的电炉 变压器、大型电解电镀、直流电力机车供电的整流变压器,
三相芯式变压器示意图
绕组
上铁轭
铁芯柱
下铁轭
铁心结构示意图
铁心结构示意图
铁心结构示意图
(二)绕组
• 1、作用:构成变压器的电路系统。 • 2、构成:绝缘铜线或铝线在绕线模上绕制而成。
3、结构形式:同心式、交叠式。
同心式
结构 同心式绕组的高、低压绕组同心地套装
在心柱上
特点 同心式绕组结构简单、制造方便,国产电力
主磁通与感与应电动势 e1、e2关系
时间相位上:滞后于 Øm 的电角度是 90° 有效值大小: 相量表达式:
磁通Øm与电势E1、E2 的相量关系(图2-tem2)
2.漏磁通与漏电动势、漏电抗
• 漏电动势:e1s (t) = -N1 dØ1s/dt • 有效值: • 漏磁通与漏电抗
由于漏磁通所通过的途径是非磁性物质,其磁导率 是常数,所以漏磁通的大小与产生此漏磁通的绕组中 的电流成正比关系为:用漏感系数L1s表示二者关系: N1Ø1s∝ Im 即: L1s= N1Ø1s/√ 2 Im
从一个电路向另一个传递能量或传输信号的一种 电气装置。
常用来将一种交流电压的电能转换为同频率的 另一种交流电压的电能。
(一)变压器用途
• 电力系统中实现电能的远距离高效输送、合理配电、安全 用电。如:电力变压器、配电变压器。
• 供给特殊电源用的专用变压器。如:炼钢炉供电 的电炉 变压器、大型电解电镀、直流电力机车供电的整流变压器,
三相芯式变压器示意图
绕组
上铁轭
铁芯柱
下铁轭
铁心结构示意图
铁心结构示意图
铁心结构示意图
(二)绕组
• 1、作用:构成变压器的电路系统。 • 2、构成:绝缘铜线或铝线在绕线模上绕制而成。
3、结构形式:同心式、交叠式。
同心式
结构 同心式绕组的高、低压绕组同心地套装
在心柱上
特点 同心式绕组结构简单、制造方便,国产电力
第3章 三相变压器及其他变压器
习 三次谐波分量同相位、同大小。
三次谐波电流在Y联接的原边
学 绕组中无法流通,空载电流接
近正弦波,主磁通为一平顶波。
供 平顶波主磁通分解:除基波 仅 磁通外,还包含三次谐波磁
通F3
17
三相组式结构:
用 F3与F1沿同一磁路闭合, F3大,感应得到的E3可达45~60%。
感应电势称为尖顶波,最大值升高,影响绝缘。因此,三相变压
15
单相变压器
外施电压U1 感应电势E 主磁通F
用 习使 空载电流
学 电流存在许多谐波。
供 在三相变压器中,谐波磁通的路径、电流形状与绕组 仅 的联接方式和结构有关。
16
Y/Y联接的三相变压器
三相三次谐波电流:
I03A = I03m sin 3w t;
用 I03B = I03msin3(w t -1200 ) = I03m sin 3w t; 使 I03C = I03msin3(w t +1200 ) = I03m sin 3w t;
用 使
和低压电压。 Ø用每一绕组的自感系数和各
习
学 绕组间的互感系数作为基本参
数。令L1、L2、L3为各绕组自
供 感系数,M12=M21为1与2绕组 仅 间互感系数;M13=M31为1与3
绕 组 间 互 感 系 数 ; M23=M32 为
绕组2与3间互感系数
29
• 当外施电压为正弦波且稳定运行时,电压方程式:
- U&1
/k
II
Z kI + Z kII
××
= IIL - IC
仅 I&II
=
Z kI Z kI + ZkII
×
I+
第三章 变压器的结构
二、铁心的有关概念
(4)填充系数:又称利用系数,是指由阶梯形组成
的铁心柱的截面积与芯柱外接圆面积之比值。在 一定的直径下,铁心柱的截面积越大,即阶梯级 数越多,则填充系数越大。但阶梯的级数越多, 叠片的规格也越多,从而使铁心的制造工艺复杂化。
三、铁心的装配方法
(1)直接缝 特点:是加工和叠片 都比较方便,搭接面 积大,因此所叠装的 铁心结构强度好、整 体性强、不易变形。 但只能用于热轧硅钢 片。
6、铁心用硅钢片简述
对硅钢片的表面处理 硅钢片涂绝缘漆,其目的是限制涡流回路,使涡流只能在一 片中流动,这样涡流回路阻抗较大,限制了涡流的数值。 对硅钢片的绝缘漆层要求是: 1)涂刷均匀,漆膜光滑不宜过厚(漆膜过厚要降低叠片系 数),附着力强,能抗冲击和弯曲。 2)要求漆膜具有良好的绝缘性、耐热性、防潮性,并且要 求干燥快。 对硅钢片的厚度选用: 通常在0.23~0.5mm左右。ABB公司常用有0.23mm和0.3mm 两种,目的是为了限制硅钢片的涡流损耗以及由此而引起主磁 通的削弱。
4、常用铁心的结构特征及其适用范围
(3)单相二柱旁轭式叠铁心(四柱铁心) 应用:高压和超高压大容量单相电 力变压器。
(4)三相三柱式叠铁心 应用:各种三相变压器。它是三相 变压器最广泛应用的典型结 构。
4、常用铁心的结构特征及其适用范围
(5)三相三柱旁轭式 叠铁心(五柱铁心) 应用:大容量三相电力 变压器。主要是 用来降低铁心的 高度,便于运输
变压器叠片全斜接缝
三、铁心的装配方法
全斜接缝
四、铁心的夹紧
1、夹紧的目的 铁心的夹紧主要是为了能承受器身起吊时 的重力及变压器在发生短路时,绕组作用 到铁心上的电动力; 可以防止变压器在运行中,由于硅钢片松 动而引起的振动噪声。
第三章 变压器
Zk
Uk Ik
Rk
pk
I
2 k
Xk
Z
2 k
Rk2
绕组的电阻时随温度而变的,故经过计算的到的短路参数应 根据国家标准规定折算到参考温度。
三 、相量图
根据T形等效电 路,可以画出相应 的相量图。
四 、近似等效电路图
RK、XK和ZK分别称为短路电阻、短路电抗和短路阻抗。
单相变压器基本方法总结
分析计算变压器运行的方法:
基本方程式:变压器电磁关系的数学表达式。 等效电路:基本方程式的模拟电路。 相量图:基本方程式的图示表示。
三者是统一的,一般定量计算用等效电路,讨论各 物理量之间的相位关系用相量图。
E2 KE2
E2 KE2
U 2 KU 2
(二)电流的归算 电流归算的原则:归算前后二次侧磁动势保持不变。
N2'I2' N2I2
(三)阻抗的归算
I 2
I2 K
阻抗归算的原则:归算前后电阻铜耗及漏感中无功功率不变。
I 22 R2
I
2 2
R2
I22 X 2
I
2 2
X
2
R2
I
2 2
I22
R2
K 2R2
S7-315/10 三相(S)铜芯10KV变压器,容量315KVA,设计序号7为节 能型.
SJL-1000/10 三相油浸自冷式铝线、双线圈电力变压器,额定容量为 1000千伏安、高压侧额定电压为10千伏。
我国生产的各种变压器主要系列产品有:S7、SL7、S9、 SC8等。其中SC8型为环氧树脂浇注干式变压器。
同心式绕组 1—铁心柱 2—铁轭 3—高压线圈 4—低压线圈
交叠式绕组 1—低压绕组 2—高压绕组
第3章 三相变压器
第3章 三相变压器 章
• 3.1 三相变压器的连接组别 • 3.1.1 同极性端 • 从星端“*”指向非星端,高、低压绕组的 电势 , 都滞后磁通 90°,所以 , 始终同相位,如图3.1(c)所示。若不画具体 绕组,如图3.1(d)所示,也可直接确定出 , 同相位。
图3.1 同极性端的确定和电势相位关系
• (2)Y,y连接的心式变压器空载电势波形 • (3)Y,d连接、D,y连接或D,d连接的三相变压 器空载电势波形
• (4)YN,y 连 接 的 降 压 变 压器或Y,yn连接的升压 变压器空载电势波形 • 3.3 变压器并联运行 • 现代发电厂和变电所中, 非常普遍采用变压器并 联运行的方式。所谓并 联运行,就是指两台或 两台以上的变压器一、 二次侧分别接在公共母 线上,共同向负载供电 的运行方式,如图3.11 所示。
图3.20 自耦变压器的结构示意图
• 3.6.2 基本电磁关系 • (1)电流关系 • 自耦变压器的串联绕 组和公共绕组的绕向 必须相同,如图3.21所 示。串联绕组的磁动 势为 (N1-N2),通过右 手螺旋定则可知,串 图3.21 自耦变压器原理接线图 联绕组磁动势与公共 绕组磁动势方向相反, 所以, 公共绕组
• 若已知三相变压器连 接形式、同极性端、 首末端标志时,可通 过做相量图来确定其 连接组别。 • 图 3.6(a) 中 变 压 器 高 压侧按Y连接,低压 侧也按y连接,首端是 异极性端, 与 反 相位。
图3.4 时钟表示法
图3.5 Y,y0连接组
图3.6 Y,y6连接组
图3.7 Y,d11连接组
图3.13 正序等效电路
图3.14 负序等效电路
• 3.4.2 零序阻抗和零序等效电路 • (1)绕组连接方式的影响 • 图3.15、图3.16是YN,y和Y,d连接时的零序 等效电路。图中(a)是零序电流的流通情况; (b)是零序等效电路,Z0 是从该侧看进去的 零序阻抗。
• 3.1 三相变压器的连接组别 • 3.1.1 同极性端 • 从星端“*”指向非星端,高、低压绕组的 电势 , 都滞后磁通 90°,所以 , 始终同相位,如图3.1(c)所示。若不画具体 绕组,如图3.1(d)所示,也可直接确定出 , 同相位。
图3.1 同极性端的确定和电势相位关系
• (2)Y,y连接的心式变压器空载电势波形 • (3)Y,d连接、D,y连接或D,d连接的三相变压 器空载电势波形
• (4)YN,y 连 接 的 降 压 变 压器或Y,yn连接的升压 变压器空载电势波形 • 3.3 变压器并联运行 • 现代发电厂和变电所中, 非常普遍采用变压器并 联运行的方式。所谓并 联运行,就是指两台或 两台以上的变压器一、 二次侧分别接在公共母 线上,共同向负载供电 的运行方式,如图3.11 所示。
图3.20 自耦变压器的结构示意图
• 3.6.2 基本电磁关系 • (1)电流关系 • 自耦变压器的串联绕 组和公共绕组的绕向 必须相同,如图3.21所 示。串联绕组的磁动 势为 (N1-N2),通过右 手螺旋定则可知,串 图3.21 自耦变压器原理接线图 联绕组磁动势与公共 绕组磁动势方向相反, 所以, 公共绕组
• 若已知三相变压器连 接形式、同极性端、 首末端标志时,可通 过做相量图来确定其 连接组别。 • 图 3.6(a) 中 变 压 器 高 压侧按Y连接,低压 侧也按y连接,首端是 异极性端, 与 反 相位。
图3.4 时钟表示法
图3.5 Y,y0连接组
图3.6 Y,y6连接组
图3.7 Y,d11连接组
图3.13 正序等效电路
图3.14 负序等效电路
• 3.4.2 零序阻抗和零序等效电路 • (1)绕组连接方式的影响 • 图3.15、图3.16是YN,y和Y,d连接时的零序 等效电路。图中(a)是零序电流的流通情况; (b)是零序等效电路,Z0 是从该侧看进去的 零序阻抗。
第3章 变压器
(3)交变的磁通在一次、二次侧产生感应电动势; F0产生的磁通分为两部分,大部分以铁心为磁路(主磁路), 同时与一次绕组N1和二次绕组N2交链,并在两个绕组中产生 电势e1和e2,是传递能量的主要媒介,属于工作磁通,称为主 磁通Φ或者Φm。漏磁通Ø 1ó通过铁芯和油/空气闭合的磁通量 (占少量)。主磁通在一次绕组和二次绕组产生感应电动势, 交链一次绕组的漏磁通在一次绕组中感应漏电动势。
3.1 概述
2.变压器的分类
1)按用途分类: 特种变压器(如调压变压器、试验变压器、电炉变压器、整 流变压器、电焊变压器、控制变压器等)
电焊变压器(专用) 给电焊机供电。
3-18
3.1 概述
2.变压器的分类
1)按用途分类: 仪用互感器(电压互感器和电 流互感器) 电子变压器:用在电子线路中
3-19
U1N / U 2 N 35kV / 0.4kV
试求一次、二次绕组的额定电流。
解:
I1N
SN 3U 1N
SN 3U 2 N
160103 3 35 10
160 103 3 0.4 10
3
3
A 2.64A
I 2N
A 230.9 A
3.1.3 本章主要内容
1)本章主要对单相变压器进行分析,所得的基本方程式、等 效电路、相量图以及运行特性分析等方法完全适用于三相变压 器。 2)因为电力系统中三相电压是对 称的,如果三相变压器带对称负载, 则三相变压器的三相原、副边的电 压,电流都是对称的。电力变压器 正常的工作状态基本是对称运行。 但三相变压器也有其特殊的问题需 要研究,例如三相变压器的磁路系 统、三相变压器绕组的连接方法和 联结组等问题。 3)本章只分析变压器的稳态运行, 不考虑过渡过程。
3.1 概述
2.变压器的分类
1)按用途分类: 特种变压器(如调压变压器、试验变压器、电炉变压器、整 流变压器、电焊变压器、控制变压器等)
电焊变压器(专用) 给电焊机供电。
3-18
3.1 概述
2.变压器的分类
1)按用途分类: 仪用互感器(电压互感器和电 流互感器) 电子变压器:用在电子线路中
3-19
U1N / U 2 N 35kV / 0.4kV
试求一次、二次绕组的额定电流。
解:
I1N
SN 3U 1N
SN 3U 2 N
160103 3 35 10
160 103 3 0.4 10
3
3
A 2.64A
I 2N
A 230.9 A
3.1.3 本章主要内容
1)本章主要对单相变压器进行分析,所得的基本方程式、等 效电路、相量图以及运行特性分析等方法完全适用于三相变压 器。 2)因为电力系统中三相电压是对 称的,如果三相变压器带对称负载, 则三相变压器的三相原、副边的电 压,电流都是对称的。电力变压器 正常的工作状态基本是对称运行。 但三相变压器也有其特殊的问题需 要研究,例如三相变压器的磁路系 统、三相变压器绕组的连接方法和 联结组等问题。 3)本章只分析变压器的稳态运行, 不考虑过渡过程。
《电机与拖动》第3章 变压器
(4)按冷却介质和冷却方式分类:分为干式变压器、油浸变压器和 充气式冷却变压器。
19
3.2
变压器的结构和工作原理
二、变压器的基本工作原理
变压器的结构是在一个闭合铁芯上套有两个绕组,其原理如图 3-14所示。 这两个绕组具有不同的匝数且互相绝 缘,两绕组间只有磁的耦合而没有电的联 系。其中,接于电源侧的绕组称为原绕组 或一次绕组,一次绕组各量用下标“1” 表示;用于接负载的绕组称为副绕组或二 次绕组,二次绕组各量用下标“2”表示。 图3-14 变压器工作原理示意图 两个绕组中感应出同频率的电动势e1和e2。
任务3
变压器参数测试
6
任务1
变压器的外形观察与铭牌解读
1、观察变压器的外观
(1)电力变压器
图3-1为干式电力变压器,图3-2为油浸式电力变压器。
图3-1 干式变压器
图3-2 油浸式电力变压器
7
任务1
变压器的外形观察与铭牌解读
(2)特殊变压器
图3-3为自耦变压器,图3-4为电压互感器,图3-5为电流互感器。
1 表示。 或油)穿过而形成闭合磁通,用
28
3.3
单相变压器的运行分析
主磁通和漏磁通的区别:
与
与
呈非线性关系;而漏磁通磁路由非铁磁材料组成,磁路不饱和, I 0 1 呈线性关系。 I
0
(1)在性质上,主磁通磁路由铁磁材料组成,具有饱和特性,
0
(2)在数量上,铁芯的磁导率较大,磁阻小,所以总磁通的绝大
图3-13 变压器交叠式绕组 1-低压绕组 2-高压绕组 3-铁芯 4-铁轭
18
3.2
变压器的结构和工作原理
2.变压器的分类
(1)按用途分类:分为电力变压器和特种变压器两类。 (2)按绕组数目分类:分为单绕组变压器、双绕组变压器、三绕组 变压器。
19
3.2
变压器的结构和工作原理
二、变压器的基本工作原理
变压器的结构是在一个闭合铁芯上套有两个绕组,其原理如图 3-14所示。 这两个绕组具有不同的匝数且互相绝 缘,两绕组间只有磁的耦合而没有电的联 系。其中,接于电源侧的绕组称为原绕组 或一次绕组,一次绕组各量用下标“1” 表示;用于接负载的绕组称为副绕组或二 次绕组,二次绕组各量用下标“2”表示。 图3-14 变压器工作原理示意图 两个绕组中感应出同频率的电动势e1和e2。
任务3
变压器参数测试
6
任务1
变压器的外形观察与铭牌解读
1、观察变压器的外观
(1)电力变压器
图3-1为干式电力变压器,图3-2为油浸式电力变压器。
图3-1 干式变压器
图3-2 油浸式电力变压器
7
任务1
变压器的外形观察与铭牌解读
(2)特殊变压器
图3-3为自耦变压器,图3-4为电压互感器,图3-5为电流互感器。
1 表示。 或油)穿过而形成闭合磁通,用
28
3.3
单相变压器的运行分析
主磁通和漏磁通的区别:
与
与
呈非线性关系;而漏磁通磁路由非铁磁材料组成,磁路不饱和, I 0 1 呈线性关系。 I
0
(1)在性质上,主磁通磁路由铁磁材料组成,具有饱和特性,
0
(2)在数量上,铁芯的磁导率较大,磁阻小,所以总磁通的绝大
图3-13 变压器交叠式绕组 1-低压绕组 2-高压绕组 3-铁芯 4-铁轭
18
3.2
变压器的结构和工作原理
2.变压器的分类
(1)按用途分类:分为电力变压器和特种变压器两类。 (2)按绕组数目分类:分为单绕组变压器、双绕组变压器、三绕组 变压器。
第三章三相变压器_电机学讲解
绕组名称
首端
末端
中性点
高压绕组
A,B,C
X,Y,Z
O
低压绕组
a,b,c
x,y,z
o
三相电力变压器广泛采用星形和三角形联接
2、联接组 单相变压器的高低压绕组都绕在同一个铁心柱
上,它们被同一个主磁通所交链。在高低压绕组 中的感应的电动势的相位关系只有两种可能:
EA (EAX )和Ea (Eax )同相位 或
对于单相变压器而言,由 于磁化曲线的非线性,可 以近似认为:
电流为正弦波时,磁通含 三次谐波;
反之,磁通为正弦波时, 电流含三次谐波。
正弦波电流产生的磁通波形
三、三相变压器绕组联接法和磁路系统对空载 电动势波形的影响
Yy联接的三相变压器 在三相系统中,三相电流的三次谐波在时
间上同相位,在一次侧为Y接的三相绕组中, 三次谐波不能流通,即励磁电流不含有三次谐 波而接近正弦波。
三相变压器
3.7 三相变压器的磁路、联接组、电动势波形
三相变压器的磁路系统 三相变压器的电路系统——联接组 三相变压器绕组联接法和磁路系统对空载电动势波形的影响相变压器的磁路、联接组、电动势波形
一、三相变压器的磁路系统
三相变压器按磁路可分为组式变压器和心式变 压器两类。
A
a
b O
c
C
B
Yd11联接组
4. Dy5联接组(求绕组的联接) (1)作出Dy5联接组的相量图 (2)将高压侧绕组联接成三角形接法 (3)根据相量图,联接低压侧绕组
A
ABC
c
b O
a
C
B
X YZ xyz
abc
Yy联接组号有0、2、4、6、8、10共六个偶数 联接组号,Yd联接法共有1、3、5、7、9、11六个 奇数联接组号。
第三章变压器3
Yd11连接 Yd11连接
3、三相变压器的磁路系统对空载电动势波形的影响
单相变压器空载电流与磁通 空载电动势) (空载电动势)波形的关系
(1)主磁通正弦,则空载电流 主磁通正弦, 为尖顶波,含有较强的3次谐波。 为尖顶波,含有较强的3次谐波。 (2)若空载电流为正弦,磁通 若空载电流为正弦, 和空载电动势为平顶波。 和空载电动势为平顶波。
2、短路试验 、
空载试验直接测量的试验数据
试验侧电压 U k 试验侧电流 试验侧功率
Ik Pk
空载试验可计算的参数
Uk 短路阻抗: 短路阻抗: Z k = Ik
Pk 短路电阻: 短路电阻: Rk = 2 Ik
短路电抗: 短路电抗:
2 2 X k = Z k − Rk
短路试验可以在低压方做,也可以在高压方做, 短路试验可以在低压方做,也可以在高压方做, 所求得的参数是折算到试验方的
2、效率
P2 η = × 100% P1
P1 − ∑ p P1
η=
∑ p × 100% = 1− P +∑ p
2
∑p= p
Fe
+ pcu
(1)以额定电压下的空载损耗作为铁耗,并认为铁耗 以额定电压下的空载损耗作为铁耗, 不随负载变化
(2)以额定电流时的短路损耗作为额定负载时的铜耗, 以额定电流时的短路损耗作为额定负载时的铜耗, 并认为铜耗与负载系数的平方成正比
∆U%= U1N −U'2 U1N ×100%
电压变化率计算公式推导
U 1N − U 2 = ab
'
ab = I 1 Rk cosϕ 2 + I 1 X k sinϕ 2
' U 1N − U 2 ab ∆U % = ≈ U 1N OP
第三章三绕组变压器及特殊变压器
No Image
➢自耦变压器的结构特点
如果保持两个绕组的额定电压和额定电流不变,把原 绕组和副绕组顺极性串联起来作为新的原边。而副绕组还 同时作为副边,它的两个端点接到负载阻抗ZL,便演变成 了一台降压自耦变压器。
No Image
(1)电压关系
U1≈E1=4.44fN1Фm U2=E2=4.44fN2Фm
No
No
Image
Image
个绕组传递功率时
的实际比例
(2)标准联结组: (GB1094-85 ) 三相三绕组电力变压器的标准联结组为:
YN,yn0,d11 和 YN,yn0,y0 。 单相三绕组变压器的标准联结组为 :I, I0, I0 。
三、变比、磁动势平衡方程式、等效电路
1.变比
No
Image
2)发电厂利用三绕组变压器把发出的电压用两种电压 输送到不同的电网。如图 (b)所示。
No Image
一、结构特点
Y
对于升压变压器,如果采用降压的方法 布置,则低压和高压绕组之间的漏磁通较大, 同时附加损耗也显著增加,使变压器可能发 生局部过热和降低效率。
Y
1 32
2 31
12 3
32 1
升压
降压
第三章 三绕组变压器及特殊变压器
31
3.1 三绕组变压器
2
3.2 自耦变压器
3
3.3 分裂绕组变压器
4
3.4 互感器
3.1 三绕组变压器
➢什么是三绕组变压器?
在同一铁心柱上绕上一个原绕组、两个副绕组或两个原绕 组一个副绕组。具有U1/U2/U3三种电压的变压器叫三绕组变压 器。(同心式绕组,铁心为心式ImNaoge结构)
第三章 变压器
不考虑空载损耗时的空载电流
一般变压器铁芯工作在具有一定饱和程度 的状态下,所以当电源电压为正弦波,感应电 势为正弦波,主磁通为正弦波时,磁化电流为 尖顶波,读者可通过平均磁化曲线Φ=ƒ(iμ)和 主磁通曲线Φ=ƒ(ωt),画出磁化电流曲线 iμ=ƒ(ωt),证明磁化电流为尖顶波。
2.考虑空载损耗时的空载电流
电路和相量图等。
思考题:
1.P89 3-1、3-2、3-3
2.试证明磁路饱和条件下,当磁通为正弦波时, 励磁电流为尖顶波。(画图证明)
3-3 单相变压器的负载运行
变压器负载运行是指原边接电源,副边接负载zL 时的工作状态。如下图所示,这时副边有负载电 流运I行2通时过相,同原。边电流为I1,各量正方向规定与空载
式中: E1mN1m
同理可得副边感应电势为:
e 2 N 2d d t N 2 m co t E s 2 m sit n 9 ) ( (0 1-22)
用相量式表示为:
E1
j
N1 m
2
j4.44fN1 m
E2
j
N2 m
2
j4.44fN2
m
(1-13) (1-25)
可见,感应电势的大小与匝数和主磁通幅值成
主磁通产生的电抗。这样,变压器原方的电动势
方程可写成
•
•
•
•
U1 E1ImZ1Im(ZmZ1)
等值电路
励磁参数
它们可通过实验测得,由于铁芯有饱和现 象,rm和xm不是常数,是随铁芯饱和程度增 大而减小的参数,但实际上,电源电压可近 似认为稳定,故励磁参数也可近似认为常数。
课后复习要点与思考题
复习要点: 变压器空载运行时电磁关系、工作原理、等值
第三章-三相变压器
低压绕组—— y或yn(有中性点引出) ③ 相量图:电动势参考正向:由首端指向末端。
星形接法(丫联结)
特点: 重合在一起的各点是等电位点; △ABC是等边三角形,三个
顶点在相量图中排列顺时针方向转动(电源为正相序)
① 绕组联结:A→X→C→Z→B→Y顺序联结成三角形。 ② 代表符号:高压绕组—— D
+6。
A
AAΒιβλιοθήκη B CBC
B
C
3.3 三相变压器空载电动势波形
三相变压器的三次谐波电流表达式为
i03A i03m sin 3t i03B i03m sin 3(t 120 ) i03m sin 3t i03C i03m sin 3(t 120 ) i03m sin 3t
我国配电变压器就采用心式铁心结构、Y,yn0联接组(n表示 低压方有中性点引出线)。由于三次谐波磁通通过油箱壁或其它 铁构件时,将在这些构件中产生涡流损耗,从而使变压器效率 降低,因此变压器容量不大于1600kVA才采用这种联接组。
Y,y连接的三相变压器
原副边无三次
主磁通为
基波磁通
谐波电流
非正弦波
联结组标号×30°为低压绕组电动势(或电压)滞后于高压绕组对应 电动势(或电压)的相位差。
Y—真实 △----假定
例如: Y,yn0高压绕组为星形接法,低压绕组为有中性点引出线的星形接法, 高低压绕组对应线电动势(或线电压)同相位。 Y,d11高压绕组为星形接法,低压绕组为三角形接法,低压绕组滞后 于高压绕组对应线电动势(或线电压)的相位角为330 °。
低压绕组—— d ③ 相量图:电动势参考正向:由首端指向末端。
三角形接法(D联结)
见图3-4
极性:指瞬时极性——同名端 由线圈的绕向和首末端标志决定
星形接法(丫联结)
特点: 重合在一起的各点是等电位点; △ABC是等边三角形,三个
顶点在相量图中排列顺时针方向转动(电源为正相序)
① 绕组联结:A→X→C→Z→B→Y顺序联结成三角形。 ② 代表符号:高压绕组—— D
+6。
A
AAΒιβλιοθήκη B CBC
B
C
3.3 三相变压器空载电动势波形
三相变压器的三次谐波电流表达式为
i03A i03m sin 3t i03B i03m sin 3(t 120 ) i03m sin 3t i03C i03m sin 3(t 120 ) i03m sin 3t
我国配电变压器就采用心式铁心结构、Y,yn0联接组(n表示 低压方有中性点引出线)。由于三次谐波磁通通过油箱壁或其它 铁构件时,将在这些构件中产生涡流损耗,从而使变压器效率 降低,因此变压器容量不大于1600kVA才采用这种联接组。
Y,y连接的三相变压器
原副边无三次
主磁通为
基波磁通
谐波电流
非正弦波
联结组标号×30°为低压绕组电动势(或电压)滞后于高压绕组对应 电动势(或电压)的相位差。
Y—真实 △----假定
例如: Y,yn0高压绕组为星形接法,低压绕组为有中性点引出线的星形接法, 高低压绕组对应线电动势(或线电压)同相位。 Y,d11高压绕组为星形接法,低压绕组为三角形接法,低压绕组滞后 于高压绕组对应线电动势(或线电压)的相位角为330 °。
低压绕组—— d ③ 相量图:电动势参考正向:由首端指向末端。
三角形接法(D联结)
见图3-4
极性:指瞬时极性——同名端 由线圈的绕向和首末端标志决定
第三章 变压器的基本运行原理
e1的有效值为: E1 E1m / 2 N1m / 2 2 fN1m 2 即 E1 4.44 fN1m 式(3-3)
E1 j 4.44 fN1 m
式(3-6)
11
(2)由主磁通φ将在二次磁绕组上产生的感应电势
d e2 N 2 N 2m cos t dt
19
(3)空载运行时铁耗较铜耗大很多,所以励磁电阻较一 次绕组的电阻大很多;由于主磁通也远大于一次绕组的漏 磁通,所以励磁阻抗远大于漏电抗。则在对变压器分析时, 可以忽略一次绕组的阻抗。 (4)从等效电路可知,空载励磁电流的大小主要取决于 励磁阻抗。从变压器运行的角度,希望其励磁电流小一些, 所以要求采用高磁导率的铁心材料,以增大励磁阻抗。励 磁电流减小,可提高变压器的效率和功率因数。
图3-6 变压器空载 运行时的相量图
可得U1的正方向。 注意:一次绕组电阻压降i0rl与i0同 相位,一次漏抗压降i0x1σ(此项实 际很小,夸大以便作图)超前i090°;
21
?例3-1 一台三相变压器(还没讲到)
22
第二节
变压器的负载运行
变压器一次绕组接交流电源,二次绕组接有负载的运 行方式,为变压器的负载运行方式。如图3-7所示(可与 图3-1空载运行示意图对比看一看)。
式(3-22)
式中,i1L= -i2/K 被称为一次侧绕组励磁电流的负载分 量,其大小随负载变化而变化。显然,空载时,一次侧的 电流i1=i0 ,负载时,一次侧的电流i1>i0 。
25
*讨论: 变压器空载时,二次绕组电流为零,二次侧输出功率为 零;一次绕组电流为空载电流很小,变压器从电源吸收很 小的功率提供空载损耗。 负载时,二次侧电流不为零,有功率输出,一次电流发 生变化,在一、二次侧电压基本一定时,如果二次绕组电 流增大,表明二次输出功率增大,则一次电流也增大,变 压器从电源吸收的功率增加。一、二次绕组之间没有电的 直接联系,但由于两个绕组共用一个磁路,共同交链一个 主磁通,借助于主磁通的变化,通过电磁感应作用,实现 了一、二次绕组间的电压变换和功率传递。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(ABB瑞士苏黎世, SIEMENS西门子,SCHEINEADIN施耐德法 国吕埃)
第三章
变压器
3.1.2 基本结构 一、铁心 变压器的主磁路,为了提高导磁性能和减少铁损,用厚为 0.35-0.5mm、表面涂有绝缘漆的硅钢片叠成。 二、绕组 变压器的电路,一般用绝缘铜线或铝线绕制而成。 三、绝缘套管 将线圈的高、低压引线引到箱外,是引线对地的绝缘,担负 着固定的作用。 四、油箱 油浸式变压器的器身浸在变压器油的油箱中。油是冷却介质, 又是绝缘介质。油箱侧壁有冷却用的管子(散热器或冷却器)。 此外,还有储油柜、吸湿器、安全气道、净油器和气体继电器。
Rm=1386.8Ω, Xm=14361.39Ω
求(1)变压器的一次绕组的额定电流I1N 及空载电 流百分比;(2)一次绕组每相的额定相电压U1Np及 每相电动势E1Np
12A,0.24/12=2%, 6/sqrt(3)=3464,3462.8
第三章
空载运行小结
变压器
(1)一次侧主电动势与漏阻抗压降总是与外施电压平衡,若忽 略漏阻抗压降,则一次主电势的大小由外施电压决定. (2)主磁通大小由电源电压、电源频率和一次线圈匝数决定, 与磁路所用的材质及几何尺寸基本无关。 (3)空载电流大小与主磁通、线圈匝数及磁路的磁阻有关,铁 心所用材料的导磁性能越好,空载电流越小。 (4)电抗是交变磁通所感应的电动势与产生该磁通的电流的比 值,线性磁路中,电抗为常数,非线性电路中,电抗的大小随 磁路的饱和而减小。
强调:磁通与产生它的电流之间符合右手螺旋定则;电动势与感
应它的磁通之间符合右手螺旋定则。
第三章
1. 作用与组成
变压器
3.2.2 空载电流和空载损耗 一、空载电流
,也称无功分 包含两个分量,一个是励磁分量 I 空载电流 I 0r 0 量作用是建立磁场,相位与主磁通相同;另一个是铁损耗分 ,也称有功分量,主要作用是提供铁损耗。 量 I 0a
第三章
变压器
变压器是一种静止电器,它通过线圈间的电磁感应, 将一种电压等级的交流电能转换成同频率的另一种电压 等级的交流电能.
3.1 变压器的基本工作原理和结构 3.2 单相变压器的空载运行
3.3 单相变压器的负载运行
3.4 变压器的参数测定
3.5 标么值 3.6 变压器的运行特性
3.7 三相变压器
j 4.44 fN E 2 2 m
第三章
变压器
2.漏磁通感应的电动势——漏电动势 根据主电动势的分析方法,同样有 E1σ 4.44 fN1Φ1σ
E1σ j 4.44 fN1Φ1σm
漏电动势也可以用漏抗压降来表示,即
E1σ jωL1σ I0 jI0 X1
变压器
当磁通按正弦规律 变化时,空载电流呈尖 顶波形。
t
i0
3
2
1 1 2
当空载电流按正弦规律变 化时,主磁通呈平顶波形。
i0
3
实际空载电流为非正弦波,但为了分析、计算和测量的方便,在 相量图和计算式中常用正弦的电流代替实际的空载电流。
第三章
二、空载损耗
变压器
变 压 器 空 载 时 一 次 侧电 从源 吸 收 少 量 有 功 功P 率 0 ,供 给 铁 损 2 耗PFe 和 绕 组 铜 损 耗 I0 R1。 由 于I 0和R1均 很 小 , 所 以P0 PFe, 即 空 载 损 耗 近 似 为 铁耗 损。
第三章
主磁通与漏磁通的区别
变压器
1 与 I 0 成线性关系; 1)性质上: 0与 I 0 成非线性关系;
1 仅占1%以下; 2)数量上: 0占99%以上,
3)作用上: 0起传递能量的作用, 1 起漏抗压降作用。 二、各电磁量参考方向的规定 一次侧遵循负载惯例,二次侧遵循电源惯例。
第三章
=I +I I 0 Fe
变压器
流过电感元件 电流 I
流过电阻元件 电流 I Fe
I Z I (r jx ) E 1 0 m 0 m m
E I Z U 1 1 0 1 ( R jX ) I ( Rm jX m ) I 0 1 1 0
第三章
变压器
U 1
2. 根据前面所列的方程,可作出变压器空载时的相量图 (1)以 为参考相量
X jI 0 1
0 与 同相, =I +I I 90 (2)I 超前 ,I Fe 0 Fe
R1I0
E 1
; ,E 滞后 90 , E (3)E 1 1 2
压器一、二次侧绕组的额定电压和额定电流。
思考: 若变压器的接法改为D,yn11接法,结果又怎样 呢?
(1) 36.37A/909.33A;(2) 5773/220V, 36.37A/909.33A 思考(1) 36.37A/909.33A;(2) 10,000/220V, 21A/909.33A
第三章
第三章
变压器
返回
连接发电机与电网的升压变压器 连接发电机的 封闭母线
与电网相连 的高压出线端
第三章
三相干式变压器
变压器
接触调压器
第三章
变压器
电源变压器
环形变压器
控制变压器
第三章
变压器
3.1.3 型号与额定值 一、型号 型号表示一台变压器的结构、额定容量、电压等级、冷却方 式等内容,表示方法为
变压器
1.主磁通感应的电动势——主电动势 设 则
Φ Φm sin ωt dΦ e1 N 1 2 πfN 1Φm sin(ωt -900 ) E1 m sin(ω t 900 ) dt
有效值 E1 4.44 fN1Φm 相量
E1 j 4.44 fN1Φm
可见,当主磁通按正弦规律变化时,所产生的一次主电动 势也按正弦规律变化,时间相位上滞后主磁通 900 。主电动势 的大小与电源频率、绕组匝数及主磁通的最大值成正比。 类似的,二次主电动势为
由于漏磁通主要经过非铁磁路径,磁路不饱和,故磁阻很大且为 常数,所以漏电抗 X 1 很小且为常数,它不随电源电压负载情况 而变.
第三章
一、电动势平衡方程和变比
变压器
3.2.3 空载时的电动势方程、等效电路和相量图
1、电动势平衡平衡方程
(1)一次侧电动势平衡方程
U1 E1 E1σ I0 R1 E1 I0 R1 jI0 X1 E1 Z1 I0
0
I 0 I Fe
m
, jI X (4)R1I 0 0 1
U (5) 1
E 2
I
E 1
第三章
变压器
课堂训练一台S11-125/6型三相电力变压器,已知 额定容量SN=125KVA, U1N /U2N =6/0.4KV, Y,yn0连接,每相参数R1=2.09Ω, X1=5.39Ω,
如OSFPSZ-250000/220表明自耦三相强迫油循环风冷三绕组铜线 有载调压,额定容量250000kVA,高压额定电压220kV电力变压器
第三章
变压器
额定值
• 额定容量SN:指铭牌规定的额定使用条件下所能 输出的视在功率(KVA)。 • 额定电压U1N /U2N : U1N是指变压器正常运行时 一次侧所加的额定电压, U2N是指一次侧加额定 电压时二次侧的开路电压。在三相变压器中额定 电压为线电压。 • 额定电流I1N /I2N :指在额定容量下,允许长期通 过的电流。在三相变压器中指的是线电流
小结
变压器
(1)变压器一次和二次绕组之间没有电的联系(特 殊的自偶变压器除外)通过此耦合传递能量。 (2)对三相变压器而言,变压器名牌上标注的额定 电压与额定电流为线电压和线电流,变压器绕组 的电流(相电流)与绕组接法有关
第三章
变压器
3.2 单相变压器的空载运行
• 空载运行时的电磁关系
• 空载电流和空载损耗
对三相变压器,变比为一、二次侧的相电动势之比,近似 为额定相电压之比,具体为 U1 N Y,d接线 k 3 U2N
D,y接线
3 U1 N k U2 N
第三章
• 课堂讨论
变压器
如果感应电动势的正方向规定与按右手定则规定 的方向相反,则感应电动势的表达式和上面讲的 会有怎样的区别?
第三章
1、等效电路
忽略很小的漏阻抗压降,并写成有效值形式,有
U1 E1 4.44 fN1Φm
则
E1 U1 Φm 4.44 fN1 4.44 fN1
重要公式
可见,影响主磁通大小的因素有电源电压和频率,以及 一次线圈的匝数。
第三章
E U 20 2
2、变比 定义
变压器
(2)二次侧电动势平衡方程
E1 N1 U1 U1 N k E2 N 2 U 20 U 2 N
对于已制成变压器,铁损与磁通密度幅值的平方成正比, 与电流频率的1.3次方成正比,即
2 PFe Bm f 1.3
空载损耗约占额定容量的0.2%~1%,而且随变压器容量的 增大而下降。为减少空载损耗,改进设计结构的方向是采用优 质铁磁材料:优质硅钢片、激光化硅钢片或应用非晶态合金。
第三章
三、感应电动势分析
• 空载运行时的电动势方程式等值电路和相 量图
第三章
一、物理情况
U1
变压器
0
3.2.1 空载运行时电磁关系
I0
E 1
(I2 )
1
u1
U 1
U2
E 2
U 20
u2
E 1σ
U 1
I 0
I N F 0 0 1
Φ0
Φ1σ
E 1
E 1σ R I 0 1