催化精馏技术研究进展(DOC)
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图2-3 CR&L 公司开发的催化剂捆包结构
Fig.2-3 Structure of catalyst bales licensed by CR&L
作为对催化剂捆包的改进,许多研究单位相继开发出规整填料,如 1992 年Koch公司推出的 Katamax 型规整填料[8],1999 年,Sulzer 公司推出的 Katapak-S 型规整填料[9]。这种填料将催化剂颗粒夹在两层金属丝网波纹中,然后制备成立方形或圆柱形的规整结构。规整填料结构如图2-4 所示。装填时需要相邻两层催化剂床层的金属波纹丝网走向相互错开以保证气液分布均匀。规整填料可以使液固两相接触充分,从而提高了催化剂的效率。规整填料是最有应用前景的催化剂装填方式[10],但存在加工困难的缺点。
2、催化精馏塔及其填料方式
2.1催化精馏塔
催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。
图2-1 催化精馏塔示意图
Fig.2-1 Schematic diagram of catalytic distillation column
目前国外研究开发了多种催化精馏塔结构,如已取得成功应用的 CR&L 结构、IFP结构和 Chevron 结构等[2]。国内齐鲁石化研究院等科研单位在这方面也进行了大量的工作,并取得了较大进展。
图2-4 规整填料结构
Fig.2-4 Structure of structured catalytic packing
2.2.3散装式
散装装填方式的催化剂填料是采用乳液聚合和沉降聚合等方法将离子交换树脂催化剂直接加工成环形或鞍形[11]。散装催化剂填料具有比表面积大、容易装卸、单位体积催化精馏塔效率高、成本低等优点,但存在加工困难、热稳定性差、挤压时易破碎等缺点。
图2-2 板式塔装填方式的气液流动状态
Fig.2-2 Vapour-liquid flowing state in trayed columns
2.2.2填充式
填充式装填方式是应用较普遍的填充方式,它将催化剂包裹在不锈钢丝网等多孔介质制成的小袋中,然后再卷成圆柱状的催化剂捆包后装填进催化精馏塔中。最具代表性的催化剂捆包是由 CR&L 公司开发的[7],其结构如图2-3 所示。由于催化剂颗粒被多孔介质包裹,催化剂捆包内传质阻力大,不能充分发挥催化剂的效率。
最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research&Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。
催化精馏技术应用研究进展
摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。
1、引言
反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。
2.2.1板式塔式
板式塔式装填方式采用类似固定床催化反应器中催化剂的装填方式,直接将催化剂颗粒散堆在塔的某一区域。一种方法是堆放在塔板上的筛网上[3],其气液流动状态如图2-2 中图(a)所示。催化剂在塔板上呈流化状态,从而能有效地发挥催化剂的催化效率,但床层压降大,而且容易造成催化剂破损。另一种方法是将催化剂放在降液管中[4],其气液流动状态如图2-2 中图百度文库b)所示。这种方法虽然克服了前一种方法压降大的缺点,但催化剂的装填量受限于降液管的有限空间,从而不适用于停留时间较长的体系,而且催化剂更换困难。CR&L 公司和 IFP(法国石油研究院)各开发了一种复合塔板装填方式[5,6],其气液流动状态如图2-2 中图(c)所示。这种方法将反应段分成若干床层,两床层之间安装分离塔盘,催化剂散装在塔盘上,并在其中央留有气体通道,这样既可以调节塔板上的持液量以保证液相与催化剂充分接触,又可以避免气体通过催化剂,从而克服了压降过大的问题。齐鲁石化研究院也开发了类似的复合塔板装填方式,并且在国内多套 MTBE 生产装置上取得了成功应用。
2.2催化剂及其装填方式
催化剂及其装填方式是催化精馏技术的核心。为了使催化精馏塔过程中的催化反应和精馏分离最佳地结合在一起,要求所用的催化剂不仅具有较高的催化效率,还要有较好的分离效果,能有效地促进气液传质与传热。目前,催化精馏中应用的催化剂主要是离子交换树脂等固体酸催化剂。对于大部分催化反应,由于催化剂比表面积与催化剂颗粒成反比,从而催化剂颗粒越小,反应速率越快,但相应地会伴随催化剂床层阻力过大以及气液接触不良等问题。再加上催化剂自身强度的限制,使得催化精馏的催化剂研究工作主要集中于在满足反应和精馏的基本要求时如何把催化剂颗粒装填到催化精馏塔的反应段中。目前,催化精馏塔中催化剂主要有下述四种类型的装填方式:
Fig.2-3 Structure of catalyst bales licensed by CR&L
作为对催化剂捆包的改进,许多研究单位相继开发出规整填料,如 1992 年Koch公司推出的 Katamax 型规整填料[8],1999 年,Sulzer 公司推出的 Katapak-S 型规整填料[9]。这种填料将催化剂颗粒夹在两层金属丝网波纹中,然后制备成立方形或圆柱形的规整结构。规整填料结构如图2-4 所示。装填时需要相邻两层催化剂床层的金属波纹丝网走向相互错开以保证气液分布均匀。规整填料可以使液固两相接触充分,从而提高了催化剂的效率。规整填料是最有应用前景的催化剂装填方式[10],但存在加工困难的缺点。
2、催化精馏塔及其填料方式
2.1催化精馏塔
催化精馏塔是催化精馏过程的主要设备,常见的催化精馏塔结构如图2-1 所示。催化精馏塔从上到下分为三个部分,依次为精馏段、反应段和提馏段,原料送入到反应段后先进行反应,反应后的混合物中的轻重组分再分别进入精馏段和提馏段进行精馏和提浓。进料位置根据物料的挥发度不同可设置在反应段的上端或下端,对于原料组成不同的可以从不同位置同时进料。反应段的位置和高度以及操作压力、回流比等操作条件取决于进料的组成、组分的物性和产品的纯度要求等因素[1]。
图2-1 催化精馏塔示意图
Fig.2-1 Schematic diagram of catalytic distillation column
目前国外研究开发了多种催化精馏塔结构,如已取得成功应用的 CR&L 结构、IFP结构和 Chevron 结构等[2]。国内齐鲁石化研究院等科研单位在这方面也进行了大量的工作,并取得了较大进展。
图2-4 规整填料结构
Fig.2-4 Structure of structured catalytic packing
2.2.3散装式
散装装填方式的催化剂填料是采用乳液聚合和沉降聚合等方法将离子交换树脂催化剂直接加工成环形或鞍形[11]。散装催化剂填料具有比表面积大、容易装卸、单位体积催化精馏塔效率高、成本低等优点,但存在加工困难、热稳定性差、挤压时易破碎等缺点。
图2-2 板式塔装填方式的气液流动状态
Fig.2-2 Vapour-liquid flowing state in trayed columns
2.2.2填充式
填充式装填方式是应用较普遍的填充方式,它将催化剂包裹在不锈钢丝网等多孔介质制成的小袋中,然后再卷成圆柱状的催化剂捆包后装填进催化精馏塔中。最具代表性的催化剂捆包是由 CR&L 公司开发的[7],其结构如图2-3 所示。由于催化剂颗粒被多孔介质包裹,催化剂捆包内传质阻力大,不能充分发挥催化剂的效率。
最早工业化的催化精馏工艺是甲基叔丁基醚的合成,该工艺由美国Chemical Research&Licensing公司于1978年开发,1981年在美国休斯敦炼厂工业化应用。1985年CR&L公司开始研究将催化精馏用于芳烃的烷基化反应,如用丙烯使苯烷基化制异丙苯。日本旭化成公司也于1984年开发成功了甲醛和甲醇催化精馏合成甲缩醛的技术,建立了工业装置。由于催化精馏技术的诸多优势,国内外学者在该领域已取得了长足发展。
催化精馏技术应用研究进展
摘要:本文从催化精馏的发展史开始说起,进而介绍了催化精馏塔的内部件及其催化剂的装填方式。综述了国内催化精馏技术在醚化、酯化、加氢、烷基化、酯交换、水解等反应中的新应用与研究进展。指出探索出具有更高活性和选择性、更寿命的催化剂仍是催化精馏技术中的一个重要课题。
1、引言
反应精馏是化学反应与蒸馏技术相耦合的化工过程。最早的反应精馏研究始于1921年,之后,随着对反应精馏研究的不断深入和扩展,到20世纪70年代后期,反应精馏研究突破了均相体系,扩大到非均相体系,即出现了所谓的“催化精馏”工艺。催化精馏的特点是将催化剂引入精馏塔,固体催化剂在催化精馏工艺中既作为催化剂加速化学反应,又作为填料或塔内件提供传质表面。由于催化反应和精馏过程的高度耦合,反应过程中可以连续移出反应产物,使得催化精馏工艺具有高选择性,高生产能力、高收率、低耗能和低投资等优点。
2.2.1板式塔式
板式塔式装填方式采用类似固定床催化反应器中催化剂的装填方式,直接将催化剂颗粒散堆在塔的某一区域。一种方法是堆放在塔板上的筛网上[3],其气液流动状态如图2-2 中图(a)所示。催化剂在塔板上呈流化状态,从而能有效地发挥催化剂的催化效率,但床层压降大,而且容易造成催化剂破损。另一种方法是将催化剂放在降液管中[4],其气液流动状态如图2-2 中图百度文库b)所示。这种方法虽然克服了前一种方法压降大的缺点,但催化剂的装填量受限于降液管的有限空间,从而不适用于停留时间较长的体系,而且催化剂更换困难。CR&L 公司和 IFP(法国石油研究院)各开发了一种复合塔板装填方式[5,6],其气液流动状态如图2-2 中图(c)所示。这种方法将反应段分成若干床层,两床层之间安装分离塔盘,催化剂散装在塔盘上,并在其中央留有气体通道,这样既可以调节塔板上的持液量以保证液相与催化剂充分接触,又可以避免气体通过催化剂,从而克服了压降过大的问题。齐鲁石化研究院也开发了类似的复合塔板装填方式,并且在国内多套 MTBE 生产装置上取得了成功应用。
2.2催化剂及其装填方式
催化剂及其装填方式是催化精馏技术的核心。为了使催化精馏塔过程中的催化反应和精馏分离最佳地结合在一起,要求所用的催化剂不仅具有较高的催化效率,还要有较好的分离效果,能有效地促进气液传质与传热。目前,催化精馏中应用的催化剂主要是离子交换树脂等固体酸催化剂。对于大部分催化反应,由于催化剂比表面积与催化剂颗粒成反比,从而催化剂颗粒越小,反应速率越快,但相应地会伴随催化剂床层阻力过大以及气液接触不良等问题。再加上催化剂自身强度的限制,使得催化精馏的催化剂研究工作主要集中于在满足反应和精馏的基本要求时如何把催化剂颗粒装填到催化精馏塔的反应段中。目前,催化精馏塔中催化剂主要有下述四种类型的装填方式: