数学文卷·2015届四川省成都市高三摸底(零诊)考试word版

合集下载

四川省成都市高三数学摸底(零诊)考试试题 理(含解析)

四川省成都市高三数学摸底(零诊)考试试题 理(含解析)

四川省成都市2015届高三摸底(零诊)数学(理)试题【试卷综析】本试卷是高三摸底试卷,考查了高中全部内容.以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:数列、三角、概率、导数、圆锥曲线、立体几何综合问题、程序框图、平面向量、基本不等式、函数等;考查学生解决实际问题的综合能力。

是份非常好的试卷.第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=(5,-3),b=(-6,4),则a+b= (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 【知识点】向量的坐标运算【答案解析】D 解析:解:由向量的坐标运算得a+b=(5,-3)+(-6,4)=(-1,1),所以选D.【思路点拨】本题主要考查的是向量加法的坐标运算,可直接结合向量加法的运算法则计算. 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(UðS )T 等于(A ){2,4} (B ){4} (C )∅ (D ){1,3,4} 【知识点】集合的运算 【答案解析】A 解析:解:因为UðS={2,4},所以(UðS )T={2,4},选A.【思路点拨】本题主要考查的是集合的基本运算,可先结合补集的含义求S 在U 中的补集,再结合并集的含义求S 的补集与T 的并集. 3.已知命题p :x ∀∈R ,2x=5,则⌝p 为 (A )x ∀∉R,2x=5 (B )x ∀∈R,2x≠5 (C )x ∃∈R ,2x =5 (D )x ∃∈R ,2x ≠5【知识点】全称命题及其否定【答案解析】D 解析:解:结合全称命题的含义及其否定的格式:全称变特称,结论改否定,即可得⌝p 为x ∃∈R ,2x ≠5,所以选D.【思路点拨】全称命题与特称命题的否定有固定格式,掌握其固定格式即可快速判断其否定. 4.计算21og63 +log64的结果是(A )log62 (B )2 (C )log63 (D )3 【知识点】对数的运算【答案解析】B 解析:解:21og63 +log64=1og69+log64=1og636=2,所以选B.【思路点拨】在进行对数运算时,结合对数的运算法则,一般先把对数化成同底的系数相同的对数的和与差再进行运算,注意熟记常用的对数的运算性质.5.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 【知识点】简单的线性规划 【答案解析】B 解析:解:作出不等式组表示的平面区域为如图中的三角形AOB 对应的区域,平移直线4x+y=0,经过点B 时得最大值,将点B 坐标(2,0)代入目标函数得最大值为8,选B.【思路点拨】对于线性规划问题,通常先作出其可行域,再对目标函数进行平行移动找出使其取得最大值的点,或者把各顶点坐标代入寻求最值点.6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是(A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α 【知识点】线面平行的判定、线面垂直的性质【答案解析】C 解析:解:A 选项中直线a 还可能在平面α内,所以错误,B 选项直线a 与b 可能平行还可能异面,所以错误,C 选项由直线与平面垂直的性质可知正确,因为正确的选项只有一个,所以选C 【思路点拨】在判断直线与平面平行时要正确的理解直线与平面平行的判定定理,应特别注意定理中的“平面外一条直线与平面内的一条直线平行”,在判断位置关系时能用定理判断的可直接用定理判断,不能直接用定理判断的可考虑用反例排除.7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,一般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m3)则下列说法正确的是(A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,乙的较大 (C )这10日内乙监测站读数的众数与中位数相等 (D )这10日内甲、乙监测站读数的平均数相等 【知识点】茎叶图、中位数、众数、平均数【答案解析】C 解析:解:因为甲、乙监测站读数的极差分别为55,57,所以A 选项错误,10日内甲、乙监测站读数的中位数分别为74,68,所以B 选项错误,10日内乙监测站读数的众数与中位数都是68,所以C 正确,而正确的选项只有一个,因此选C.【思路点拨】结合所给的茎叶图正确读取数据是解题的关键,同时要理解中位数、众数、平均数各自的含义及求法.8.已知函数f (x )cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于π,则f (x )的单调递减区间是(A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z (C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 【知识点】函数y=Asin(ωx+φ)的图象与性质【答案解析】A 解析:解:因为()2sin 6f x x πω⎛⎫=+ ⎪⎝⎭,则图象与直线y= -2的两个相邻公共点之间的距离等于一个周期,所以2ππω=,得ω=2,由()3222,262k x k k Z πππππ+≤+≤+∈,得()263k x k k Z ππππ+≤≤+∈,所以其单调递减区间是2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z 选A. 【思路点拨】注意该题中直线y=-2的特殊性:-2正好为函数的最小值,所以其与函数的两个相邻公共点之间的距离等于函数的最小正周期9.已知定义在R 上的偶函数f (x )满足f (4-x )=f (x ),且当x ∈(]1,3-时,f (x )=(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩则g (x )=f (x )-|1gx|的零点个数是(A )7 (B )8 (C )9 (D )10 【知识点】函数的图象、偶函数、函数的周期性【答案解析】D 解析:解:由函数f (x )满足f (4-x )=f (x ),可知函数f (x )的图象关于直线x=2对称.先画出函数f (x )当x ∈(-1,3]时的图象,再画出x ∈[0,10]图象.画出y=|lgx|的图象.可得g (x )在x≥0时零点的个数为10, 故选D【思路点拨】由函数f (x )满足f (4-x )=f (x ),可知函数f (x )的图象关于直线x=2对称,先画出函数f (x )当x ∈(-1,3]时的图象,再画出x ∈[0,10]图象,可得g (x )在x≥0时零点的个数.10.如图,已知椭圆Cl :211x +y2=1,双曲线C2:2222x y a b -=1(a>0,b>0),若以C1的长轴为直径的圆与C2的一条渐近线相交于A ,B 两点,且C1与该渐近线的两交点将线段AB 三等分,则C2的离心率为 (A )5 (B(C(D)7【知识点】椭圆、双曲线性质的应用【答案解析】C 解析:解:因为AB 方程为b y xa =,与椭圆方程联立得渐进线与椭圆在第一象限的交点横坐标x =,因为且C1与该渐近线的两交点将线段AB 三等分,由椭圆的对称性知该点到原点的距离为16⨯16=⨯,整理得224b a =,得2222222215c a b b e a a a +===+=,得e = C【思路点拨】一般求离心率问题就是通过已知条件得到关于a ,b ,c 的关系式,再求ca 即可,本题注意抓住AB 长为圆的直径,直线AB 与椭圆在第一象限的交点到原点的距离等于直径的16,即可建立a ,b ,c 关系.第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

成都市2015级高中毕业班摸底测试文科数学试题(含答案)

成都市2015级高中毕业班摸底测试文科数学试题(含答案)

又 E, F 分别是 A1B , A C1 的中点 ,
������������������������2 分
∴E F ⊥ 平面 A B B1A1 . ∵E F ⊂ 平面 A E F, ∴ 平面 A E F ⊥ 平面 A B B1A1 .
������������������������4 分
1 ( Ⅱ) VF-ABC = S△ABC ������ h, h 为点 F 到底面 A B C 的距离 . 3 ∵A B⊥B C, A A B=2 B C=4, 1A=2 ∴S△ABC =2. ∵F 是 A1 C 的中点 , 1 ∴ h= AA1 =2. 2
∧ ∧ ∧
∧ 1 1 ∴ 所求线性回归方程为 y= x- . 2 2
1 . 2
������ ������x -5 x
2 i


高三数学 ( 文科 ) 摸底测试参考答案第 共 4页) 1 页(
( 根据列表 , 设 1 号至 5 号 小 白 鼠 依 次 为 a1 , 则在这5只小白鼠中 Ⅱ) a2 , a3 , a4 , a5 . 共1 a2 a3 a4 , a2 a3 a5 , a2 a4 a5 , a3 a4 a5 , 0种. ������������������������9 分
������=7, ������=3. ( 解: 由题意 , 可得 x 1 8. Ⅰ) y
2 ������x 1 0, ������x 5 5, b= i i =1 i =2 y 5 5 ∧
i=1
������ ������ y ������x x i i -5 y
i=1

i=1
i=1
������- ������. , ∵, a= b x ∴ a=- y

四川省成都市高考数学零诊试卷

四川省成都市高考数学零诊试卷

2015年四川省成都市高考数学零诊试卷(理科)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出得四个选项中,只有一项就是符合题目要求得.1.(5分)(2014•成都模拟)已知向量=(5,﹣3),=(﹣6,4),则+=()A。

(1,1) B.(﹣1,﹣1)ﻩC。

(1,﹣1)ﻩD。

(﹣1,1)2.(5分)(2014•成都模拟)设全集U={1,2,3,4},集合S={l,3},T={4},则(∁U S)∪T 等于()A.{2,4}B.{4} C.∅ﻩD.{1,3,4}3。

(5分)(2014•成都模拟)已知命题p:∀x∈R,2x=5,则¬p为( )A。

∀x∉R,2x=5 B.∀x∈R,2x≠5 C.∃x0∈R,2=5 D.∃x0∈R,2≠54。

(5分)(2014•成都模拟)计算21og63+log64得结果就是()A.log62 B。

2ﻩC.log63ﻩD.35.(5分)(2015•青岛模拟)已知实数x,y满足,则z=4x+y得最大值为()A.10B.8ﻩC.2D.06。

(5分)(2014•成都模拟)关于空间两条不重合得直线a、b与平面α,下列命题正确得就是( )A.若a∥b,b⊂α,则a∥αﻩB.若a∥α,b⊂α,则a∥bC。

若a∥α,b∥α,则a∥bﻩD.若a⊥α,b⊥α,则a∥b7.(5分)(2014•成都模拟)PM2、5就是指大气中直径小于或等于2、5微米得颗粒物,也称为可A肺颗粒物,般情况下PM2、5浓度越大,大气环境质量越差,茎叶图表示得就是成都市区甲、乙两个监测站某10日内每天得PM2、5浓度读数(单位:μg/m3)则下列说法正确得就是()A.这l0日内甲、乙监测站读数得极差相等B.这10日内甲、乙监测站读数得中位数中,乙得较大C.这10日内乙监测站读数得众数与中位数相等D.这10日内甲、乙监测站读数得平均数相等8.(5分)(2014•成都模拟)已知函数f(x)=sinωx+cosωx(ω>0)得图象与直线y=﹣2得两个相邻公共点之间得距离等于π,则f(x)得单调递减区间就是()A。

四川省成都七中实验学校2015届高三零诊模拟训练数学试题 Word版

四川省成都七中实验学校2015届高三零诊模拟训练数学试题 Word版

四川省成都七中实验学校2015届高三零诊模拟训练数学试题第Ⅰ卷(选择题),第Ⅱ卷(非选择题),满分150分,考试时间120分钟.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,只有一项是符合题目要求的.1.已知集合{}210A x x =-≥,集合{}10B x x =-≤,则()U C A B =I ( ) A .{}1x x ≥ B .{}11x x -<< C .{}11x x <-<≤ D .{}1x x <- 解析:{}210A x x =-≥={}11x x x 或≥≤-,∴U C A ={}11x x -<<, 又{}10B x x =-≤={}1x x ≤,∴ ()U C A B =I {}11x x -<< 答案B 2. 下列四种说法中,正确的是 ( C ) A .}{1,0A =-的子集有3个;B .“若22,am bm a b <<则”的逆命题为真;C .“命题p q ∨为真”是“命题p q ∧为真”的必要不充分条件;D .命题“x R ∀∈,均有2320x x --≥”的否定是 “,x R ∃∈使得2320x x --≤ 3.某几何体的三视图如图所示,则该几何体的表面积是( ) A .244π+ B .166π+C .242π+D .164π+由三视图知,该几何体是由两个半径为1的半球和一个棱长为2正方体组成,表面积为42262242S πππ=+⨯⨯-=+,选C .4. 阅读如图所示的程序框图,运行相应的程序,输出的结果k =( B )A. 4B. 5C. 6D. 75.函数3,0(),0-+<⎧=⎨≥⎩x x a x f x a x (01)a a >≠且是R 上的减函数,则a 的取值范围是( B )A .()0,1B .1[,1)3C .1(0,]3D .2(0,]3解:据单调性定义,()f x 为减函数应满足:0013a a a <<⎧⎨≥⎩即113a ≤<. 答案B 6. 已知向量()()ABC BC AB ∆︒︒=︒︒=则,45sin ,30cos ,120sin ,120cos 的形状为 ( C )A .直角三角形B .等腰三角形C . 钝角三角形D .锐角三角形()()cos120,sin120cos30,sin 45=cos120cos30+sin120sin 45AB BC ⋅=︒︒⋅︒︒︒︒︒︒1=02->,所以ABC ∠为钝角 答案C7. 设,m n 为空间的两条不同的直线,,αβ为空间的两个不同的平面,给出下列命题:①若m ∥α,m ∥β,则α∥β; ②若,m m αβ⊥⊥,则α∥β; ③若m ∥α,n ∥α,则m ∥n ; ④若,m n αα⊥⊥,则m ∥n . 上述命题中,所有真命题的序号是 ( D )A. ①②B. ③④C. ①③D. ②④8.某企业拟生产甲、乙两种产品,已知每件甲产品的利润为3万元,每件乙产品的利润为2万元,且甲、乙两种产品都需要在A 、B 两种设备上加工.在每台设备A 、每台设备B 上加工1件甲产品所需工时分别为1h 和2h ,加工1件乙产品所需工时分别为2h 和1h ,A 设备每天使用时间不超过4h ,B 设备每天使用时间不超过5h ,则通过合理安排生产计划,该企业在一天内的最大利润是 ( D )A .18万元B . 12万元C . 10万元D .8万元9. 若()sin(2)f x x b ϕ=++, 对任意实数x 都有()()3f x f x π+=-,2()13f π=-,则实数b 的值为 ( A )A .2-或0B .0或1C .1±D .2±解:由()3f x f x π⎛⎫+=- ⎪⎝⎭可得()f x 关于直线6x π=对称,因为213f π⎛⎫=-⎪⎝⎭且函数周期为π,所以21163f f b ππ⎛⎫⎛⎫=-==±+ ⎪ ⎪⎝⎭⎝⎭,所以2b =-或0b =10. 我们把焦点相同,且离心率互为倒数的椭圆和双曲线称为一对“相关曲线”.已知1F 、2F 是一对相关曲线的焦点,P 是它们在第一象限的交点,当 6021=∠PF F 时,这一对相关曲线中双曲线的离心率是( A )A .3 B.2 C.332 D.2 解:设椭圆的半长轴为1a ,椭圆的离心率为1e ,则1111,c ce a a e ==.双曲线的实半轴为a ,双曲线的离心率为e ,,c ce a a e==.12,,(0)PF x PF y x y ==>>,则由余弦定理得2222242cos 60c x y xy x y xy =+-=+-,当点P 看做是椭圆上的点时,有22214()343c x y xy a xy =+-=-,当点P 看做是双曲线上的点时,有2224()4c x y xy a xy =-+=+,两式联立消去xy 得222143c a a =+,即22214()3()c cc e e=+,所以22111()3()4e e +=,又因为11e e =,所以22134e e +=,整理得42430e e-+=,解得23e =,所以e ,,选A.第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5题,每小题5分,共25分.答案填在答题卡上. 11. 设{}n a 是公差不为零的等差数列,12a =且136,,a a a 成等比数列,则2014a =22017=n a 12. 已知a b>,且1ab =,则221a b a b++-的最小值是 . 13.有一个内接于球的四棱锥P ABCD -,若PA ABCD ⊥底面,2BCD π∠=,2ABC π∠≠,BC =3,CD =4,PA =5,则该球的表面积为________.解: 由∠BCD =90°知BD 为底面ABCD 外接圆的直径,则2r =32+42=5.又∠DAB =90°⇒PA ⊥AB ,PA ⊥AD ,BA ⊥AD .从而把PA ,AB ,AD 看作长方体的三条棱,设外接球半径为R ,则(2R )2=52+(2r )2=52+52, ∴4R 2=50,∴S 球=4πR 2=50π.14.已知函数221,(20)()3,(0)ax x x f x ax x ⎧⎪⎨⎪⎩++-<≤=->有3个零点,则实数a 的取值范围是 .解:因为二次函数最多有两个零点,所以函数必有一个零点,从而0a >,所以函数3(0)y ax x =->221(20)y ax x x =++-< 必有两个零点,故需要()()22022000440a f f a ìïï-<-<ïïïïï->íïï>ïïïï=->ïîV ,解得34a < 答案 3(,)4+∞15.下列命题正确的有___________.①已知A,B 是椭圆+=22134x y 的左右两顶点, P 是该椭圆上异于A,B 的任一点,则⋅=-34AP BP k k .②已知双曲线-=2213y x 的左顶点为1A ,右焦点为2F ,P 为双曲线右支上一点,则⋅12PA PF 的最小值为-2.③若抛物线C :=24x y 的焦点为F ,抛物线上一点(2,1)Q 和抛物线内一点(2,)R m >(1)m ,过点Q 作抛物线的切线1l ,直线2l 过点Q 且与1l 垂直,则2l 平分∠RQF ;④已知函数()f x 是定义在R 上的奇函数,'=->>(1)0,()()0(0)f xf x f x x , 则不等式>()0f x 的解集是-+∞(1,0)(1,).答案 (2) (3) (4)三、解答题:本大题共6小题,共75分.解答应写出文字说明,证明过程或演算步骤.16.(本小题满分12分)在△ABC 中,角A 、B 、C 所对的边分别是a 、b 、c ,且222823ABC b c a S ∆+-=(其中ABC S ∆为△ABC 的面积).(1)求2sin cos 22B CA ++;(2)若2b =,△ABC 的面积为3,求a .解析:(1)由已知得A bc A bc sin 21382cos 2⨯=即0sin 4cos 3>=A A 53sin =∴A 54cos =A212cos cos 22cos 2cos 12cos 2sin 22-+=++=++A A A A A C B50592152425162=-⨯+⨯=………………6分 (2)由(Ⅰ)知53sin =A 2,3sin 21===∆b A bc S ABC ,A b c a c cos 265222++==∴ 又13545222542=⨯⨯⨯-+=∴a13=∴a ……………………………………12分17.(本小题满分12分)已知数列{}n a ,其前n 项和为n S ,点(),n n S 在抛物线23122y x x =+上;各项都为正数的等比数列{}n b 满足13511,1632==b b b .(1)求数列{}n a ,{}n b 的通项公式;(2)记n n n c a b =,求数列{}n c 的前n 项和n T . 解:(1)23122n S n n =+Q 当1n =时,2a S ==∴数列n a 是首项为2,公差为3的等差数列,31n a n ∴=- 又各项都为正数的等比数列{}n b 满足13511,432b b b ==解得1,22b q ==,()2n n b ∴= ……………………5分(2)由题得1(31)()2n n c n =-①②①-②得2311111113()()()(31)()22222n n n T n +⎡⎤=++++--⎢⎥L52n n T ∴=- ………………………………………………12分18. (本小题满分12分)已知函数3221()(1)3f x x a x b x =--+,其中,a b 为常数. (1)当6,3a b ==时,求函数()f x 的单调递增区间;(2)若任取[0,4],[0,3]a b ∈∈,求函数()f x 在R 上是增函数的概率.19. (本小题满分12分)如图,已知平面ABCD ⊥平面BCEF ,且四边形ABCD 为矩形,四边形BCEF 为直角梯形, 090CBF ∠=,//BF CE ,BC CE ⊥,4DC CE ==, 2BC BF ==.(1)作出这个几何体的三视图(不要求写作法).(2)设,P DF AG Q =⋂是直线DC 上的动点,判断并证明直线PQ 与直线EF 的位置关系.(3)求直线EF 与平面ADE 所成角的余弦值.19.(1)如右图. (2)垂直.(3)220.(本小题满分13分)平面内两定点12,A A 的坐标分别为(2,0),(2,0)-,P 为平面一个动点,且P 点的横坐标()2,2x ∈-. 过点P 作PQ 垂直于直线12A A ,垂足为Q ,并满足21234PQ AQ A Q =⋅. (1)求动点P 的轨迹方程.(2)当动点P 的轨迹加上12,A A 两点构成的曲线为C . 一条直线l 与以点(1,0) 为圆心,半径为2的圆M 相交于,A B 两点. 若圆M 与x 轴的左交点为F ,且6FA FB ⋅=. 求证:直线l 与曲线C 只有一个公共点.解:(1)设(),P x y ,()2,2x ∈-则:2212,2,2PQ y AQ x A Q x ==+=- 所以:23(2)(2)4y x x =-+,即:22143x y +=,()2,2x ∈- -----4分 (2)由(1)知曲线C 的方程为22143x y +=,圆M 的方程为()2214x y -+=,则()1,0F - 设()()1122,,,A x y B x y①当直线l 斜率不存在时,设l 的方程为:0x x =,则:12012,x x x y y ===-,()()01021,,1,FA x y FB x y =+=+因为6FA FB ⋅=,所以:()201216x y y ++=,即:()220116x y +-=因为点A 在圆M 上,所以:()220114x y -+=代入上式得:02x =±所以直线l 的方程为:2=+x (经检验x=-2不合题意舍去), 与曲线C 只有一个公共点. ------5分 经检验x=-2不合题意舍去所以 x=2 -------6分②当直线l 斜率存在时,设l 的方程为:y kx m =+,联立直线与圆的方程:()2214y kx mx y =+⎧⎪⎨-+=⎪⎩,消去x 得: 222(1)2(1)30k x km x m ++-+-=所以:12221222(1)131km x x k m x x k -⎧+=⎪⎪+⎨-⎪=⎪+⎩------------8分 因为:()()11221,,1,FA x y FB x y =+=+,且6FA FB ⋅=所以:121212()5x x x x y y +++=又因为:1122y kx my kx m =+⎧⎨=+⎩,所以:()()2212121212()y y kx m kx m k x x km x x m =++=+++代入得:221212(1)(1)()5k x x km x x m +++++=, 化简得:2243m k -=--------10分 联立直线l 与曲线C 的方程:22143y kx m x y =+⎧⎪⎨+=⎪⎩,消去x 得:222(34)84120k x kmx m +++-= 22222(8)4(34)(412)48(43)km k m k m ∆=-+-=-+ ----12分 因为:2243m k -=,所以0∆=,即直线l 与曲线C 只有一个公共点21.(本小题满分14分) (文科)已知函数()1xaf x x e =-+(a R ∈,e 为自然对数的底数). (1)若曲线()y f x =在点(1,(1))f 处的切线平行于x 轴,求a 的值; (2)求函数()f x 的极值;(3)当1a =的值时,若直线:1l y kx =-与曲线()y f x =没有公共点,求k 的最大值.解:(Ⅰ)由()1x a f x x e =-+,得 ()1xaf x e '=-. 又曲线()y f x =在点()()1,1f 处的切线平行于x 轴, 得()10f '=,即10ae-=,解得a e =.(Ⅱ)()1xa f x e '=-, ①当0a ≤时,()0f x '>,()f x 为(),-∞+∞上的增函数,所以函数()f x 无极值. ②当0a >时,令()0f x '=,得x e a =,ln x a =.(),ln x a ∈-∞,()0f x '<;()ln ,x a ∈+∞,()0f x '>.所以()f x 在(),ln a -∞上单调递减,在()ln ,a +∞上单调递增,故()f x 在ln x a =处取得极小值,且极小值为()ln ln f a a =,无极大值.综上,当0a ≤时,函数()f x 无极小值;当0a >,()f x 在ln x a =处取得极小值ln a ,无极大值.(Ⅲ)当1a =时,()11x f x x e=-+令()()()()111xg x f x kx k x e =--=-+, 则直线l :1y kx =-与曲线()y f x =没有公共点,等价于方程()0g x =在R 上没有实数解. 假设1k >,此时()010g =>,1111101k g k e -⎛⎫=-+<⎪-⎝⎭, 又函数()g x 的图象连续不断,由零点存在定理,可知()0g x =在R 上至少有一解, 与“方程()0g x =在R 上没有实数解”矛盾,故1k ≤.又1k =时,()10x g x e=>,知方程()0g x =在R 上没有实数解. 所以k 的最大值为1.另解(Ⅲ)当1a =时,()11x f x x e=-+.直线l :1y kx =-与曲线()y f x =没有公共点, 等价于关于x 的方程111xkx x e -=-+在R 上没有实数解,即关于x 的方程: ()11xk x e -=(*)在R 上没有实数解.①当1k =时,方程(*)可化为10x e =,在R 上没有实数解. ②当1k ≠时,方程(*)化为11x xe k =-.令()xg x xe =,则有()()1xg x x e '=+.令()0g x '=,得1x =-,当x 变化时,()g x '的变化情况如下表:当1x =-时,()min g x e=-, 同时当x 趋于+∞时,()g x 趋于+∞, 从而()g x 的取值范围为1,e ⎡⎫-+∞⎪⎢⎣⎭.所以当11,1k e ⎛⎫∈-∞- ⎪-⎝⎭时,方程(*)无实数解, 解得k 的取值范围是()1,1e -. 综上,得k 的最大值为1.(理科)已知函数2()ln f x x x =+.(1)若函数()()g x f x ax =-在定义域内为增函数,求实数a 的取值范围;(2)在(1)的条件下,若1a >,3()3x xh x e ae =-,[0,ln 2]x ∈,求()h x 的极小值;(3)设2()2()3()F x f x x kx k R =--∈,若函数()F x 存在两个零点,m n<<(0)m n ,且满足02x m n =+,问:函数()F x 在00(,())x F x 处的切线能 否平行于x 轴?若能,求出该切线方程,若不能,请说明理由.解:(Ⅰ)21()()ln ,()2.g x f x ax x x ax g x x a x'=-=+-=+-由题意,知()0,(0,)g x x '≥∈+∞恒成立,即min 1(2)a x x≤+…… 2分又10,2x x x>+≥x =时等号成立.故min 1(2)x x+=a ≤……4分(Ⅱ)由(Ⅰ)知,1a <≤ 令x e t =,则[1,2]t ∈,则3()()3.h x H t t at ==-2()333(H t t a t t '=-=+……5分由()0H t '=,得t =或t =(舍去),34(1,2[1,2]a ∈,①若1t <≤()0,()H t H t '<单调递减;()h x在也单调递减; 2t <≤,则()0,()H t H t '>单调递增. ()h x 在2]也单调递增;故()h x的极小值为(ln 2h =-……8分(Ⅲ)设()F x 在00(,())x F x 的切线平行于x 轴,其中2()2ln .F x x x kx =-- 结合题意,有220002ln 0,2ln 0,2,220,m m km n n kn m n x x k x ⎧--=⎪--=⎪⎪+=⎨⎪⎪--=⎪⎩ ……10分①—②得2ln ()()().m m n m n k m n n -+-=-,所以02ln 2.m n k x m n =-- 由④得0022.k x x =- 所以2(1)2()ln .1m m m n n m n m n n--==++⑤ ……11分 设(0,1)m u n =∈,⑤式变为2(1)ln 0((0,1)).1u u u u --=∈+ 设2(1)ln ((0,1))1u y u u u -=-∈+, 2222212(1)2(1)(1)4(1)0,(1)(1)(1)u u u u u y u u u u u u +--+--'=-==>+++ 所以函数2(1)ln 1u y u u -=-+在(0,1)上单调递增,因此,1|0u y y =<=, 即2(1)ln 0.1u u u --<+ 也就是,2(1)ln 1m m n m n n-<+,此式与⑤矛盾. 所以()F x 在00(,())x F x 处的切线不能平行于x 轴.……14分① ② ③④。

四川省成都市龙泉驿区2015届高三0.5诊断数学(理)试题 Word版含答案

四川省成都市龙泉驿区2015届高三0.5诊断数学(理)试题 Word版含答案

成都市龙泉驿区高2015届诊断性考试数学(理科)试题第Ⅰ卷 (选择题部分 共50分)一.选择题:1. 设全集{}1,2,3,02U =---,,集合{}{}1,2,0,3,02A B =--=-,,则()U C A B ⋂=( ) A.{}0 B.{}3,2- C.{}1,3-- D.φ2.某校数学教研组为了解学生学习数学的情况,采用分层抽样的方法从高一600人、高二780人、高三n 人中,抽取35人进行问卷调查,已知高二被抽取的人数为13人,则n 等于( ) A 、660 B 、720 C 、780 D 、8003.如图所示,半径为3的圆中有一封闭曲线围成的阴影区域,在圆中随机撒一粒豆子,它落在阴影区域内的概率是13,则阴影部分的面积是 A .3πB .πC .2πD .3π 4. 已知110a b<<,则下列结论错误的是( )A.22b a <B.2b a a b+> C.2b ab > D.2lg lg a ab <5.某流程图如图所示,现输入如下四个函数,则可以输出的函数是 A . B . C.6.下列命题的说法错误..的是( ) A .命题“若错误!未找到引用源。

则 ”的逆否命题为:“若, 则错误!未找到引用源。

”.B.若q p ∧错误!未找到引用源。

为假命题,则q p ,错误!未找到引用源。

均为假命题. C .“”是“错误!未找到引用源。

”的充分不必要条件.D .对于命题错误!未找到引用源。

错误!未找到引用源。

则错误!未找到引用源。

错误!未找到引用源。

7.某城市有3个演习点同时进行消防演习,现将4个消防队分配到这3个演习点,若每个演习点至少安排1个消防队,则不同的分配方案种数为( ). A .12 B .36 C .72 D .108 8.函数的图象大致是( )1=x ()sin f x x =()cos f x x =2()f x x =1=x 1≠x 22xy x =-9.定义12nnp +p ++p …为n 个正数n p p p ,,,21 的“均倒数”.若已知数列{}n a 的前n 项的“均倒数”为121n +,又14n n a b +=,则12231011111+b b b b b b ++…=( ) A .111B .910C .1011D .111210.设长方形ABCD 边长分别是AD=1,AB=2(如图所示),点P 在∆BCD 内部和边界上运动,设AP AB AD αβ=⋅+⋅(,αβ都是实数),则2αβ+的取值范围是( )A .[1,2]B .[1,3]C .[2,3]D .[0,2]第Ⅱ卷 (非选择题部分 共100分)注意事项:1.用黑色字迹的签字笔或钢笔将答案写在答题纸上,不能答在试题卷上.2.在答题纸上作图,可先使用2B 铅笔,确定后必须使用黑色字迹的签字笔或钢笔描黑.二.填空题:本大题共5小题,每小题5分,共25分.11.已知复数满足,则____________. 12.在()621x x +的展开式中,含4x 项的系数是_________.13. 平面向量,,,若,∥,则与的夹角为 .14.某校运动会开幕式上举行升旗仪式,在坡度为15°的看台上,同一列上的第一排和最后一排测得旗杆顶部的仰角分别为60°和30°,第一排和最后一排的距离为(如图),则旗杆的高度为_____________.15.已知函数是定义在R 上的偶函数,对于任意都成立;当,且时,都有①; ②直线是函数图象的一条对称轴; ③函数在上为增函数; ④函数在上有335个零点. 其中正确命题的是________________.c b ()a c +b ()a b c ⊥-(1,)c y =(2,1)b =-(,3)a x =-]2014,0[)(x f y =]6,9[--)(x f y =)(x f y =6-=x 0)3(=f 21x x ≠]3,0[,21∈x x )3()()6(f x f x f +=+R x ∈)(x f y ==z 25)43(=+z i z三.解答题:本大题共6小题,共75分,解答应写出文字说明、证明过程或演算步骤.16.(本小题满分12分)(1)(x f 的值域; (2)在△ABC 中,角A ,B,C 所对的边分别为a ,b ,c .已知c=1,13)(+=C f ,且△ABCa 和b 的长.17.(本小题满分12分)某品牌汽车4s 店对最近100位采用分期付款的购车者进行统计,统计结果如表所示:已知分3期付款的频率为0.2,4s 店经销一辆该品牌的汽车,顾客分1期付款,其利润为1万元,分2期或3期付款其利润为1.5万元,分4期或5期付款,其利润为2万元,用Y 表示经销一辆汽车的利润.(1)求上表中a ,b 的值.(2)若以频率作为概率,求事件A :“购买该品牌汽车的3位顾客中,至多有一位采用3期付款”的概率P (A )(3)求Y 的分布列及数学期望EY.18.(本小题满分12分)如图,四棱锥P-ABCD 的底面是正方形,PD ⊥面ABCD ,E 是PD 上一点.(1)求证:AC ⊥BE.(2)若PD=AD=1,且P C E ∠的余弦值为求三棱锥E-PBC 的体积. (3)在(2)的条件下,求二面角B-AC-E 的余弦值。

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷

四川省成都市2015届高三第一次诊断适应性考试数学(理)试卷一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,4 4、执行上图所示的程序框图,则输出的结果是( ) A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( ) A 、若m α⊥,//m n ,//n β,则αβ⊥ B 、若αβ⊥,m α⊄,m β⊥,则//m α C 、若m β⊥,m α⊂,则αβ⊥ D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥6、二项式102)2(x x +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则 OA OM+的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( ) A 、54 B 、53 C 、43 D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.)11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。

2015届四川省成都市高三摸底(零诊)数学(文)试题

2015届四川省成都市高三摸底(零诊)数学(文)试题

2015届四川省成都市高三摸底(零诊)数学(文)试题本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟. 注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用椽皮撵擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=(5,-3),b=(-6,4),则a+b= (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(U ðS )T 等于(A ){2,4} (B ){4}(C )∅(D ){1,3,4}3.已知命题p :x ∀∈R ,2=5,则⌝p 为(A )x ∀∉R,2=5 (B )x ∀∈R,2≠5 (C )0x ∃∈R ,2x =5(D )0x ∃∈R ,20x ≠54.计算21og 63 +log 64的结果是 (A )log 62 (B )2(C )log 63(D )35.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是 (A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m 3)则下列说法正确的是 (A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,己的较大 (C )这10日内乙监测站读数的众数与中位散相等 (D )这10日内甲、乙监测站读数的平均数相等8.已知函数f (x )cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于x ,则f(x )的单调递减区间是 (A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z (C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 9.已知双曲线22221x y a b-=(a>0,b>0)的一条渐近线与圆(x -3)2+y 2=9相交于A,B 两点,若|AB|=2,则该双曲线曲离心率为 (A )8(B)(C )3(D )3210.已知定义在R 上的函数f (x)的周期为4,且当x ∈(-1,3]时,f (x) =(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩,则函数g (x )=f (x )-1og 6x 的零点个数为(A)4 (B)5(C)6 (D)7第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

四川省成都市2015届第一次诊断适应性考试数学理科试题含答案

四川省成都市2015届第一次诊断适应性考试数学理科试题含答案

2015届成都市第一次诊断适应性考试数 学(理)一、选择题:(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、设集合}021|{≤-+=x x x M ,}212|{>=x x N ,则M N =( )A 、),1(+∞-B 、)2,1[-C 、)2,1(-D 、]2,1[- 2、下列有关命题的说法正确的是( )A 、命题“若21x =,则1x =”的否命题为:“若21x =,则1x ≠”.B 、“1x =-” 是“2560x x --=”的必要不充分条件.C 、命题“若x y =,则sin sin x y =”的逆否命题为真命题.D 、命题“x ∃∈R 使得210x x ++<”的否定是:“x ∀∈R 均有210x x ++<”. 3、方程()()2ln 10,0x x x+-=>的根存在的大致区间是( ) A 、()0,1 B 、()1,2 C 、()2,e D 、()3,44、执行上图所示的程序框图,则输出的结果是( )A 、5B 、7C 、9D 、115、设m n 、是两条不同的直线, αβ、是两个不同的平面,下列命题中错误的是( )A 、若m α⊥,//m n ,//n β,则αβ⊥B 、若αβ⊥,m α⊄,m β⊥,则//m αC 、若m β⊥,m α⊂,则αβ⊥D 、若αβ⊥,m α⊂,n β⊂,则m n ⊥ 6、二项式102)2(xx +展开式中的常数项是( ) A 、180 B 、90 C 、45 D 、360 7、设a 、b 都是非零向量,下列四个条件中,一定能使0||||a b a b +=成立的是( )A 、2a b =B 、//a bC 、13a b =- D 、a b ⊥8、已知O 是坐标原点,点()1,0A -,若()y x M ,为平面区域⎪⎩⎪⎨⎧≤≤≥+212y x y x 上的一个动点,则OA OM +的取值范围是( )A 、[]51,B 、[]52,C 、[]21,D 、[]50, 9、已知抛物线C :x 2=4y 的焦点为F ,直线x-2y+4=0与C 交于A 、B 两点,则sin ∠AFB=( )A 、54B 、53C 、43D 、5510、已知函数)(x f y =是定义在R 上的偶函数,对于任意R x ∈都)3()()6(f x f x f +=+成立;当]3,0[,21∈x x ,且21x x ≠时,都有0)()(2121>--x x x f x f .给出下列四个命题:①0)3(=f ;②直线6-=x 是函数)(x f y =图象的一条对称轴;③函数)(x f y =在]6,9[--上为增函数;④函数)(x f y =在]2014,0[上有335个零点.其中正确命题的个数为( )A .1B .2C .3D .4 二、填空题:(本大题共5小题,每小题5分,共25分.) 11、若复数z 满足(34)43i z i -=+,则z 的虚部为 ; 12、已知某四棱锥,底面是边长为2的正方形,且俯视图如右图所示. 若该四棱锥的侧视图为直角三角形,则它的体积为 ;13、各大学在高考录取时采取专业志愿优先的录取原则.一考生从某大学所给的7个专业中,选择3个作为自己的第一、二、三专业志愿,其中甲、乙两个专业不能同时兼报,则该考生不同的填报专业志愿的方法有 种。

四川省成都七中2015届高三零诊模拟数学(理)试题 Word版含答案

四川省成都七中2015届高三零诊模拟数学(理)试题 Word版含答案

成都七中2015届零诊模拟考试数学试卷(理科)考试时间:120分钟 命题:张祥艳 审题:廖学军一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题“0||,2≥+∈∀x x R x ”的否定是( )A.0||,2<+∈∀x x R xB. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R x D. 0||,2000≥+∈∃x x R x 2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则AB =( )A .[0,2] B. [1,3) C. (1,3) D.(1,4) 3.在极坐标系中,过点22(,)π且与极轴平行的直线方程是( )A .2ρ= B.2θπ=C. cos 2ρθ=D.sin =2ρθ 4.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( )A .33x y > B. sin sin x y > C. 22ln(1)ln(1)x y +>+D.221111x y >++ 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为( )A .1B .2C .3D .46. 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是 ( ) A . ()cos(1)f x x =+B.()f x =C.()tan f x x = D.3()f x x =7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( )A. 4B. 5C. 6D. 7俯视图侧(左)视图正(主)视图8.设x,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( )A.10B.8C.3D.29. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( ) A .4个 B.6个 C. 10个 D.14个10.设函数()x f x π=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( )A. ()(),66,-∞-⋃∞B. ()(),22,-∞-⋃∞C. ()(),44,-∞-⋃∞D.()(),14,-∞-⋃∞二、填空题:本大题共5小题,每小题5分,共25分.11.设向量,a b满足|a b |+|a b |-=则a b ⋅=12.设△ABC 的内角A B C 、、 的对边分别为a b c 、、,且1cos 4a b C ==1,=2,, 则sin B =13. 已知抛物线)1)0(22m M p px y ,(上一点>=到其焦点的距离为5,双曲线122=-ay x 的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a =14.随机地向半圆0y <<a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于4π的概率为 .15、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ;BADC. PD CBAP③xe x x xf )54()(2+=-; ④12)(2++=x xx x f其中具有性质)2(ω的函数三、解答题:(本大题共6小题,共75分.16-19题每小题12分,20题13分,21题14分) 16. 已知函数sin 2(sin cos )()cos x x x f x x-=.(Ⅰ)求函数f (x )的定义域及最大值;(Ⅱ)求使()f x ≥0成立的x 的取值集合.17. 成都市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4,5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.18.在四棱锥P A B C D -中,PD ⊥平面A B C D ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.19.已知等差数列{}n a 为递增数列,且25,a a 是方程212270x x -+=的两根,数列{}n b 的前n 项和11;2n n T b =-(1)求数列{}{}n n a b 和的通项公式; (2)若13n nn n n b c a a +⋅=⋅,求数列{}n c 的前n 项和.n S20.巳知椭圆222210:()x y M a b a b +=>>的长轴长为22124x y +=第(17)题图有相同的离心率. (I )求椭圆M 的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与M 有两个交点A 、B ,且OA OB ⊥?若存在,写出该圆的方程,并求||AB 的取值范围,若不存在,说明理由.21. 已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x l n ()ex x-=.这里,e 为自然对数的底数.(1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围;(2)如果当x ≥1时,不等式()1kf x x ≥+恒成立,求实数k 的取值范围;(3)试判断 1ln 1n +与122231n n n ⎛⎫+++- ⎪+⎝⎭的大小关系,这里*n N ∈,并加以证明.成都七中2015届零诊模拟考试数学试卷(理科)考试时间:120分钟 命题:张祥艳 审题:廖学军一、选择题:本大题共10小题,每小题5分,共50分.在每小题列出的四个选项中,选出符合题目要求的一项.1.命题“0||,2≥+∈∀x x R x ”的否定是( C )B.0||,2<+∈∀x x R x B. 0||,2≤+∈∀x x R xC. 0||,2000<+∈∃x x R x D.0||,2000≥+∈∃x x R x2.设集合{||1|2}A x x =-<,{|2,[0,2]}x B y y x ==∈,则A B =( B )(A )[0,2](B )[1,3)(C )(1,3)(D )(1,4) 3.在极坐标系中,过点22(,)π且与极轴平行的直线方程是(D )(A )2ρ=(B )2θπ=(C )cos 2ρθ=(D )sin =2ρθ 4.已知实数,x y 满足(01)x y a a a <<<,则下列关系式恒成立的是( A ) (A) 33x y >(B) sin sin x y >(C) 22ln(1)ln(1)x y +>+(D)221111x y >++ 5.已知一个三棱锥的三视图如图所示,其中三个视图都是直角三角形,则在该三棱锥的四个面中,直角三角形的个数为(D )A .1B .2C .3D .46. 对于函数()f x ,若存在常数0a ≠,使得x 取定义域内的每一个值,都有()(2)f x f a x =-,则称()f x 为准偶函数,下列函数中是准偶函数的是 ( A ) (A) ()cos(1)f x x =+(B) ()f x =(C) ()tan f x x =(D) 3()f x x =7.执行右图程序框图,如果输入的x ,t 均为2,则输出的S= ( D ) A. 4 B. 5 C. 6 D. 7俯视图侧(左)视图正(主)视图8.设x,y 满足约束条件70310350x y x y x y +-≤⎧⎪-+≤⎨⎪--≥⎩,则2z x y =-的最大值为( B )A.10B.8C.3D.29. 如图,设P 为正四面体A BCD -表面(含棱)上与顶点不重合的一点,由点P 到四个顶点的距离组成的集合记为M ,如果集合M 中有且只有2个元素,那么符合条件的点P 有( C ) (A )4个(B )6个(C )10个(D )14个10.设函数()s i n x f x mπ=.若存在()f x 的极值点0x 满足()22200x f x m +<⎡⎤⎣⎦,则m 的取值范围是( B )A. ()(),66,-∞-⋃∞B. ()(),22,-∞-⋃∞C. ()(),44,-∞-⋃∞D.()(),14,-∞-⋃∞13. 已知抛物线)1)0(22m M p px y ,(上一点>=到其焦点的距离为5,双曲线122=-ay x 的左顶点为A ,若双曲线一条渐近线与直线AM 垂直,则实数a = 1414.随机地向半圆0y <<a 为正常数)内掷一点,点落在半圆内任何区域的概率与区域的面积成正比,则原点与该点的连线与x 轴的夹角小于4π的概率为 .112π+15、设函数)(x f 在其定义域D 上的导函数为)(/x f ,如果存在实数a 和函数)(x h ,其中)(x h 对任意的D x ∈,都有0)(>x h ,使得),1)(()(2/+=ax x x h x f -则称函数)(x f 具有性质BADC. P)(a ω,给出下列四个函数:①131)(23++=x x x x f -; ②14ln )(++=x x x f ; ③xe x x xf )54()(2+=-; ④12)(2++=x xx x f其中具有性质)2(ω的函数 ①② ③三、解答题:(本大题共6小题,共75分.16-19题每小题12分,20题13分,21题14分) 16. 已知函数sin 2(sin cos )()cos x x x f x x-=.(Ⅰ)求函数f (x )的定义域及最大值; (Ⅱ)求使()f x ≥0成立的x 的取值集合.解:(Ⅰ) cos x ≠0知x 2k pp?,k ∈Z , 即函数f (x )的定义域为{x |x ∈R ,且x ≠kπ,k ∈Z }.………………………3分 又∵ x xx x x x x x x x x f 2sin 22cos 12cos sin 2sin 2cos )cos (sin cos sin 2)(2--⨯=-=-=)2cos 2(sin 1x x +-= )42sin(21π+-=x ,∴ 21)(max +=x f .……………………………………………………………8分(II )由题意得1)4πx +≥0,即sin(2)4πx +解得324πk π+≤24πx +≤924πk π+,k ∈Z ,整理得4πk π+≤x ≤k ππ+,k ∈Z .结合x ≠kπ,k ∈Z 知满足f (x )≥0的x 的取值集合为{x |4πk π+≤x ≤k ππ+且x 2k p p?,k ∈Z }.………………………………………………12分17. 成都市为增强市民的环保意识,面向全市征召义务宣传志愿者.现从符合条件的志愿者中随机抽取100名按年龄分组:第1组[)20,25,第2组[)25,30,第3组[)30,35,第4组[)35,40,第5组[40,45],得到的频率分布直方图如图所示.(Ⅰ)若从第3,4,5组中用分层抽样的方法抽取6名志愿者参广场的宣传活动,应从第3,4, 5组各抽取多少名志愿者?(Ⅱ)在(Ⅰ)的条件下,决定在这6名志愿者中随机抽取2名志愿者介绍宣传经验,求第4组至少有一名志愿者被抽中的概率.解:(1)第3组的人数为0.3×100=30, 第4组的人数为0.2×100=20,第5组的人数为0.1×100=10. …………3分因为第3,4,5组共有60名志愿者,所以利用分层抽样的方法在60名志愿者中抽取6名志愿者,每组抽取的人数分别为:第3组:3060×6=3; 第4组:2060×6=2; 第5组:1060×6=1.所以应从第3,4,5组中分别抽取3人,2人,1人. …………6分(2)记第3组的3名志愿者为A1,A2,A3,第4组的2名志愿者为B1,B2,第5组的1名志愿者为C1.则从6名志愿者中抽取2名志愿者有:(A1,A2),(A1,A3),(A1,B1),(A1,B2),(A1,C1),(A2,A3),(A2,B1),( A2,B2),(A2,C1),(A3,B1),(A3,B2),(A3,C1),(B1,B2),(B1,C1),(B2,C1),共有15种. …………8分其中第4组的2名志愿者B1,B2至少有一名志愿者被抽中的有:(A1,B1), (A1,B2), (A2,B1), (A2,B2), (A3,B1), (A3, B2), (B1,B2), (B1,C1), (B2,C1),共有9种,………10分所以第4组至少有一名志愿者被抽中的概率为93.155=…………12分yD CBAP18.在四棱锥P ABCD -中,PD ⊥平面A B C ,2PD CD BC AD ===,//,90AD BC BCD ∠=︒.(Ⅰ)求证:BC PC ⊥;(Ⅱ)求PA 与平面PBC 所成角的正弦值;(Ⅲ)线段PB 上是否存在点E ,使AE ⊥平面PBC ?说明理由.证明:(Ⅰ)在四棱锥P ABCD -中,因为PD ⊥平面ABCD ,BC ⊂平面ABCD ,所以PD BC ⊥. 因为90BCD ∠=︒, 所以BC CD ⊥.因为PDDC D =, 所以BC ⊥平面PCD .因为PC ⊂平面PCD ,所以BC PC ⊥. ………4分 (Ⅱ) 如图,以D 为原点建立空间直角坐标系-D xyz . 不妨设1=AD ,则2===PD CD BC .则(0,0,0),(1,0,0),(2,2,0),(0,2,0),(0,0,2)D A B C P .所以(1,0,2)=-PA u u r ,(2,2,2),(0,2,2)=-=-PB PC u u r u u u r.设平面PBC 的法向量(,,)=x y z n .所以 0,⎧⋅=⎪⎨⋅=⎪⎩uu r uu u r PB PC n n .即2220,220x y z y z +-=⎧⎨-=⎩. 令1y =,则0,1x z ==.所以(0,1,1)=n所以cos ,<>==uu rPA n 所以PA 与平面PBC所成角的正弦值为5. ………8分所以DF PC ⊥. 因为BC ⊥平面PCD , 所以DF BC ⊥.因为=PC BC C I , 所以DF ⊥平面PBC . 所以AE ⊥平面PBC .即在线段PB 上存在点E ,使AE ⊥平面PBC .(法二)设在线段PB 上存在点E ,当(01)=<<u u r u u rPE PB λλ时,AE ⊥平面PBC .设000(,,)E x y z ,则000(,,2)=-PE x y z uur.所以000(,,2)(2,2,2)x y z λ-=-.即0002,2,22x y z λλλ===-+.所以(2,2,22)E λλλ-+.所以(21,2,22)=--+AE λλλu u u r.由(Ⅱ)可知平面PBC 的法向量(0,1,1)=n . 若AE ⊥平面PBC ,则//u u u r AE n .即=u u u r AE μn .解得1,12λμ==.所以当12=PE PB uur uu r,即E 为PB 中点时,AE ⊥平面PBC . ………12分19.已知等差数列{}n a 为递增数列,且25,a a 是方程212270x x -+=的两根,数列{}n b 的前n 项和11;2n n T b =-(1)求数列{}{}n n a b 和的通项公式;(2)若13n nn n n b c a a +⋅=⋅,求数列{}n c 的前n 项和.n S20.巳知椭圆的长轴长为,且与椭圆有相同的离心率.(I )求椭圆M的方程;(II)是否存在圆心在原点的圆,使得该圆的任意一条切线与M有两个交点A、B,且?若存在,写出该圆的方程,并求的取值范围,若不存在,说明理由.21.(本小题满分12分)已知函数()f x 是奇函数,()f x 的定义域为(,)-∞+∞.当0x <时,()f x ln()ex x-=.这里,e 为自然对数的底数. (1)若函数()f x 在区间1(,)(0)3a a a +>上存在极值点,求实数a 的取值范围; (2)如果当x ≥1时,不等式()1k f x x ≥+恒成立,求实数k 的取值范围; (3)试判断 1ln 1n +与122231n n n ⎛⎫+++- ⎪+⎝⎭的大小关系,这里*n N ∈,并加以证明. 解:x>0时,ln()1ln ()()ex x f x f x x x+=--== ………2分(1)当x>0时,有221(1ln )1ln ()x x x x f x x x ⋅-+⋅'==- ()0ln 001f x x x '>⇔<⇔<<;()0ln 01f x x x '<⇔>⇔> 所以()f x 在(0,1)上单调递增,在(1,)∞上单调递减,函数()f x 在1x =处取得唯一的极值.由题意0a >,且113a a <<+,解得所求实数a 的取值范围为213a << …4分(2)当1x ≥时,1ln (1)(1ln )()11k x k x x f x k x x x x+++≥⇔≥⇔≤++ 令(1)(1l n )()(1)x x g x x x++=≥,由题意,()k g x ≤在[)1,+∞上恒成立 []22(1)(1ln )(1)(1ln )ln ()x x x x x x x x g x x x ''++⋅-++⋅-'== 令()l n (1)h x x x x =-≥,则1()10h x x'=-≥,当且仅当1x =时取等号. 所以()l n h x x x =-在[)1,+∞上单调递增,()(1)10h x h ≥=>.……6分 因此,2()()0h x g x x '=> ()g x 在[)1,+∞上单调递增,m i n ()(1)2g x g ==.所以2k ≤.所求实数k 的取值范围为(],2-∞ …………………8分(3)(方法一)由(2),当1x ≥时,即12)(+≥x x f ,即12ln 1+≥+x x x . 从而x x x 21121ln ->+-≥.………..10分 令1(1,2,,)k x k n k +==,得,22112ln -> 322ln123⋅>-, ……12ln 11n n n n +⋅>-+将以上不等式两端分别相加,得123ln(1)2()2341n n n n +>-+++++ 1123ln 2()12341n n n n ∴<++++-++ ………………………14分 (方法二)1=n 时,2ln 11ln -=+n < 011132212=-=-⎪⎭⎫ ⎝⎛++++n n n 猜想11ln +n n n n -⎪⎭⎫ ⎝⎛++++<132212 对一切*N n ∈成立。

2015届四川成都市高中毕业班第一次诊断性检测数学理(2014.12)word版

2015届四川成都市高中毕业班第一次诊断性检测数学理(2014.12)word版

成都市2015届高中毕业班第一次诊断性检测数学试题(理科)一、选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.设全集{|0}=≥U x x,集合{1}=P,则UP=ð(A)[0,1)(1,)+∞(B)(,1)-∞(C)(,1)(1,)-∞+∞(D)(1,)+∞2.若一个几何体的正视图和侧视图是两个全等的正方形,则这个几何体的俯视图不可能是(A)(B)(C)(D)3.已知复数z43i=--(i是虚数单位),则下列说法正确的是(A)复数z的虚部为3i-(B)复数z的虚部为3(C)复数z的共轭复数为z43i=+(D)复数z的模为54.函数31,0()1(),03xx xf xx⎧+<⎪=⎨≥⎪⎩的图象大致为(A)(B)(C)(D)5.已知命题p:“若22≥+x a b,则2≥x ab”,则下列说法正确的是(A)命题p的逆命题是“若22<+x a b,则2<x ab”(B)命题p的逆命题是“若2<x ab,则22<+x a b”(C)命题p的否命题是“若22<+x a b,则2<x ab”(D)命题p的否命题是“若22x a b≥+,则2<x ab”6.若关于x的方程240+-=x ax在区间[2,4]上有实数根,则实数a的取值范围是G FEHPACBDA 1B 1C 1D 1(A )(3,)-+∞ (B )[3,0]- (C )(0,)+∞ (D )[0,3]7.已知F 是椭圆22221+=x y a b(0>>a b )的左焦点,A 为右顶点,P 是椭圆上一点,⊥PF x 轴.若14=PF AF ,则该椭圆的离心率是 (A )14(B )34 (C )12(D 8.已知m ,n 是两条不同直线,α,β是两个不同的平面,且//m α,n ⊂β,则下列叙述正确的是(A )若//αβ,则//m n (B )若//m n ,则//αβ(C )若n α⊥,则m β⊥ (D )若m β⊥,则αβ⊥9.若552sin =α,1010)sin(=-αβ,且],4[ππα∈,]23,[ππβ∈,则αβ+的值是 (A )74π (B )94π (C )54π或74π (D )54π或94π 10.如图,已知正方体1111ABCD A B C D -棱长为4,点H 在棱1AA 上,且11HA =.在侧面11BCC B 内作边长为1的正方形1EFGC ,P 是侧面11BCC B 内一动点,且点P 到平面11CDD C 距离等于线段PF 的长.则当点P 运动时, 2HP 的最小值是(A )21(B )22 (C )23 (D )25二、填空题:本大题共5小题,每小题5分,共25分.11.若非零向量a ,b 满足a b a b +=-,则a ,b 的夹角的大小为__________. 12.二项式261()x x-的展开式中含3x 的项的系数是__________.(用数字作答)13.在∆ABC 中,内角,,A B C 的对边分别为,,a b c ,若2=c a ,4=b ,1cos 4=B ,则∆ABC 的面积=S __________.14.已知定义在R 上的奇函数()f x ,当0x ≥时,3()log (1)=+f x x .若关于x 的不等式2[(2)](22)f x a a f ax x ++≤+的解集为A ,函数()f x 在[8,8]-上的值域为B ,若“x A ∈”是“x B ∈”的充分不必要条件,则实数a 的取值范围是__________.15.已知曲线C :22y x a =+在点nP (n (0,a n >∈N )处的切线n l 的斜率为n k ,直线n l 交x 轴,y 轴分别于点(,0)n n A x ,(0,)n n B y ,且00=x y .给出以下结论: ①1a =;②当*n ∈N 时,n y 的最小值为54; ③当*n ∈N时,n k <; ④当*n ∈N 时,记数列{}n k 的前n 项和为n S,则1)<n S .其中,正确的结论有 (写出所有正确结论的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤. 16.(本小题满分12分)口袋中装有除颜色,编号不同外,其余完全相同的2个红球,4个黑球.现从中同时取出3个球.(Ⅰ)求恰有一个黑球的概率;(Ⅱ)记取出红球的个数为随机变量X ,求X 的分布列和数学期望()E X .17.(本小题满分12分)如图,ABC ∆为正三角形,EC ⊥平面ABC ,//DB EC ,F 为EA 的中点,2EC AC ==,1BD =.(Ⅰ)求证:DF //平面ABC ;(Ⅱ)求平面DEA 与平面ABC 所成的锐二面角的余弦值.已知数列{}n a 的前n 项和为n S ,且22n n S a =-;数列{}n b 满足11b =,12n n b b +=+.*n ∈N .(Ⅰ)求数列{}n a ,{}n b 的通项公式;(Ⅱ)记n n n c a b =,*n ∈N .求数列{}n c 的前n 项和n T . 19.(本小题满分12分)某大型企业一天中不同时刻的用电量y (单位:万千瓦时)关于时间t (024t ≤≤,单位:小时)的函数()y f t =近似地满足()sin()(0,0,0)f t A t B A ωϕωϕπ=++>><<,下图是该企业一天中在0点至12点时间段用电量y 与时间t 的大致图象. (Ⅰ)根据图象,求A ,ω,ϕ,B 的值; (Ⅱ)若某日的供电量()g t (万千瓦时)与时间t (小时)近似满足函数关系式205.1)(+-=t t g (012t ≤≤).当该日内供电量小于该企业的用电量时,企业就必须停产.请用二分法计算该企业当日停产的大致时刻(精确度0.1). 参考数据:已知椭圆Γ:12222=+by a x (0>>b a )的右焦点为)0,22(,且椭圆Γ上一点M 到其两焦点12,F F 的距离之和为(Ⅰ)求椭圆Γ的标准方程;(Ⅱ)设直线:(l y x m m =+∈R)与椭圆Γ交于不同两点A ,B ,且AB =点0(,2)P x 满足=PA PB ,求0x 的值. 21.(本小题满分14分)已知函数2()ln mx f x x =-,2()emx mx g x m =-,其中m ∈R 且0m ≠.e 2.71828=为自然对数的底数.(Ⅰ)当0m <时,求函数()f x 的单调区间和极小值;(Ⅱ)当0m >时,若函数()g x 存在,,a b c 三个零点,且a b c <<,试证明:10e a b c -<<<<<;(Ⅲ)是否存在负数m ,对1(1,)x ∀∈+∞,2(,0)x ∀∈-∞,都有12()()f x g x >成立?若存在,求出m 的取值范围;若不存在,请说明理由.数学(理科)参考答案及评分意见第Ⅰ卷(选择题,共50分)一、选择题:(本大题共10个小题,每小题5分,共50分)1.A ; 2.C ; 3.D ;4.A ;5.C ;6.B ;7.B ;8.D ;9.A ;10.B .第Ⅱ卷(非选择题,共100分)二、填空题:(本大题共5个小题,每小题5分,共25分)11.90︒ 12.20- 1314.[2,0]- 15.①③④ 三、解答题:(本大题共6个小题,共75分) 16.(本小题满分12分) 解:(Ⅰ)记“恰有一个黑球”为事件A ,则21243641()205⋅===C C P A C .………………………………………………………4分 (Ⅱ)X 的可能取值为0,1,2,则343641(0)205====C P X C …………………………………………………………2分122436123(1)205⋅====C C P X C …………………………………………………2分 1(2)()5===P X P A ………………………………………………………2分 ∴X 的分布列为∴X 的数学期望1310121555=⨯+⨯+⨯=EX .………………………………2分 17.(本小题满分12分)(Ⅰ)证明:作AC 的中点O ,连结BO .在∆AEC 中,//=FO 12EC ,又据题意知,//=BD 12EC .∴//=FO BD ,∴四边形FOBD 为平行四边形. ∴//DF OB ,又⊄DF 平面ABC ,⊂OB 平面ABC .∴//DF 平面ABC .……………………………………4分 (Ⅱ)∵//FO EC ,∴⊥FO 平面ABC .在正∆ABC 中,⊥BO AC ,∴,,OA OB OF 三线两两垂直.分别以,,OA OB OF 为,,z x y 轴,建系如图. 则(1,0,0)A ,(1,0,2)-E,D . ∴(2,0,2)=-AE,(1=-AD . 设平面ADE 的一个法向量为1(,,z)=x y n ,则110⎧⋅=⎪⎨⋅=⎪⎩AE AD n n,即2200-+=⎧⎪⎨-++=⎪⎩x z x z ,令1=x ,则1,0==z y .∴平面ADE 的一个法向量为1(1,0,1)=n . 又平面ABC 的一个法向量为2(0,0,1)=n .∴121212,2⋅>===cos <n n n n n n . ∴平面DEA 与平面ABC.…………………………8分 18.(本小题满分12分) 解:(Ⅰ)∵22n n S a =- ①当2≥n 时,1122--=-n n S a ②①-②得,122-=-n n n a a a ,即12-=n n a a (2≥n ). 又当1≥n 时,1122=-S a ,得12=a .∴数列{}n a 是以2为首项,公比为2的等比数列,∴数列{}n a 的通项公式为1222-=⋅=n n n a .……………………………………4分 又由题意知,11b =,12n n b b +=+,即12+-=n n b b ∴数列{}n b 是首项为1,公差为2的等差数列,∴数列{}n b 的通项公式为1(1)221=+-⨯=-n b n n .…………………………2分 (Ⅱ)(Ⅱ)由(Ⅰ)知,(21)2=-nn c n ……………………………………………1分 ∴231123252(23)2(21)2-=⨯+⨯+⨯++-⋅+-⋅n n n T n n ③231121232(25)2(23)2(21)2-+=⨯+⨯++-⋅+-⋅+-⋅n n n n T n n n ④由 -④得2311222222222(21)2-+-=+⨯+⨯++⋅+⋅--⋅n n n n T n ………………1分23112(12222)(21)2-+-=++++--⋅n n n n T n∴12222(21)212+-⋅-=⨯--⋅-n n n T n ………………………………………………1分∴111224222+++-=⋅--⋅+n n n n T n 即1(32)24+-=-⋅-n n T n ∴1(23)24+=-+n n T n∴数列{}n c 的前n 项和1(23)24+=-+n n T n ……………………………………3分 19.(本小题满分12分) 解:(Ⅰ)由图知12T =,6πω=.………………………………………………………1分2125.15.22m i n m a x =-=-=y y A ,225.15.22min max =+=+=y y B .……………2分 ∴0.5sin()26y x πϕ=++.又函数0.5sin()26y x πϕ=++过点(0,2.5).代入,得22k πϕπ=+,又0ϕπ<<,∴2πϕ=.…………………………………2分综上,21=A ,6πω=,2πϕ=,21=B . ………………………………………1分即2)26sin(21)(++=ππt t f . (Ⅱ)令)()()(t g t f t h -=,设0)(0=t h ,则0t 为该企业的停产时间. 由0)11()11()11(<-=g f h ,0)12()12()12(>-=g f h ,则)12,11(0∈t . 又0)5.11()5.11()5.11(<-=g f h ,则)12,5.11(0∈t . 又0)75.11()75.11()75.11(>-=g f h ,则)75.11,5.11(0∈t . 又0)625.11()625.11()625.11(<-=g f h ,则)75.11,625.11(0∈t .又0)6875.11()6875.11()6875.11(>-=g f h ,则)6875.11,625.11(0∈t .…4分……………………………………………1分 ∴应该在11.625时停产.……………………………………………………………1分(也可直接由)625.11()625.11()625.11(<-=g f h ,0)6875.11()6875.11()6875.11(>-=g f h ,得出)6875.11,625.11(0∈t ;答案在11.625—11.6875之间都是正确的;若换算成时间应为11点37分到11点41分停产) 20.(本小题满分13分)(Ⅰ)由已知2=a得=a=c ∴2224=-=b a c .∴椭圆Γ的方程为141222=+y x .…………………………………………………4分 (Ⅱ)由⎪⎩⎪⎨⎧=++=,1412,22y x m x y 得01236422=-++m mx x ① ………………………1分∵直线l 与椭圆Γ交于不同两点A 、B ,∴△0)123(163622>--=m m , 得216<m .设),(11y x A ,),(22y x B ,则1x ,2x 是方程①的两根,则2321mx x -=+, 2123124-⋅=m x x .∴12=-==AB x又由AB =231294-+=m ,解之2m =±.……………………………3分 据题意知,点P 为线段AB 的中垂线与直线2=y 的交点. 设AB 的中点为),(00y x E ,则432210m x x x -=+=,400mm x y =+=, ①当2m =时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x -=-+,即1y x =--. 令2=y ,得03x =-.…………………………………………………………………2分 ②当2m =-时,31(,)22E -∴此时,线段AB 的中垂线方程为13()22y x +=--,即1y x =-+. 令2=y ,得01x =-.………………………………………………………………2分 综上所述,0x 的值为3-或1-. 21.(本小题满分14分)解:(Ⅰ)2222)(ln )ln 21()(ln ln 2)(ln 1ln 2)(x x mx x x x x m x x x x x mx f -⋅=-=⋅--='(0>x 且1≠x ).∴由0)(>'x f ,得21e x >;由0)(<'xf ,得210e x <<,且1≠x .……………………1分∴函数)(x f的单调递减区间是(0,1),(1,单调递增区间是),(+∞e .………………2分∴me e f x f 2)()(-==极小值.………………………………………………………………1分(Ⅱ)222(2)(),(0)mx mx mx mxmxe mx e m mx mx g x m e e--'=-=>. ∴()g x 在(,0)-∞上单调递增,2(0,)m上单调递减,2(,)m +∞上单调递增. ∵函数()g x 存在三个零点.∴20(0)02402()00>⎧>⎧⎪⎪⎪⇒⇒<<⎨⎨<⎪⎪-<⎩⎪⎩m g m e g m m m e . ∴02<<me …………………………………………………………………………………3分 由(1)(1)0-=-=-<mmg m me m e .∴22()(1)0=-=-<em em me e g e m m e e.……………………………………………………1分综上可知,()0,(0)0,(1)0<>-<g e g g ,结合函数()g x 单调性及a b c <<可得:(1,0),(0,),(,)a b e c e ∈-∈∈+∞.即10a b e c -<<<<<,得证.…………………………………………………………1分 (III )由题意,只需min max ()()>f x g x第 11 页 共 11 页 ∵2(12ln )()(ln )-'=mx x f x x 由0<m ,∴函数()f x 在12(1,)e 上单调递减,在12(,)e +∞上单调递增. ∴12min ()()2==-f x f e me .………………………………………………………………2分 ∵(2)()-'=mxmx mx g x e 由0<m ,∴函数()g x 在2(,)m -∞上单调递增,2(,0)m 上单调递减. ∴max 224()()==-g x g m m e m.……………………………………………………………2分 ∴242->-me m e m ,不等式两边同乘以负数m ,得22242-<-m e m e. ∴224(21)e m e +>,即224(21)m e e >+. 由0<m,解得(21)m e e <-+.综上所述,存在这样的负数(,(21)∈-∞-+m e e 满足题意.……………………………1分。

四川省成都市2015届高三摸底(零诊)考试数学(理)试题(word版)

四川省成都市2015届高三摸底(零诊)考试数学(理)试题(word版)

四川省成都市 2015届高三摸底(零诊)数学(理)试题本试卷分选择题和非选择题两部分。

满分150分,考试时间120分钟. 注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用椽皮撵擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=(5,-3),b=(-6,4),则a+b= (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(U ðS )U T 等于 (A ){2,4} (B ){4}(C )∅(D ){1,3,4}3.已知命题p :x ∀∈R ,2x=5,则⌝p 为 (A )x ∀∉R,2x=5 (B )x ∀∈R,2x≠5(C )0x ∃∈R ,20x =5(D )0x ∃∈R ,20x ≠54.计算21og 63 +log 64的结果是 (A )log 62 (B )2(C )log 63(D )35.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是 (A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m 3)则下列说法正确的是 (A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,己的较大 (C )这10日内乙监测站读数的众数与中位散相等 (D )这10日内甲、乙监测站读数的平均数相等8.已知函数f (x )3cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于x ,则f (x )的单调递减区间是 (A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z(C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 9.已知定义在R 上的偶函数f (x )满足f (4-x )=f (x ),且当x ∈(]1,3-时,f (x )=(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩则g (x )=f (x )-|1gx|的零点个数是 (A )7(B )8(C )9(D )1010.如图,已知椭圆C l :211x +y 2=1,双曲线C 2:2222x y a b -=1(a>0,b>0),若以C 1的长轴为直径的圆与C 2的一条渐近线相交于A ,B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为 (A )5 (B 17(C 5(D )2147第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

成都市2015级高中毕业班摸底测试理科数学试题(含答案)

成都市2015级高中毕业班摸底测试理科数学试题(含答案)

( 以点 A 为 坐 标 原 点 , Ⅱ) A B 所 在 直 线 为x 轴, 建立如图所示的空间直 A B C 的直线为z 轴 , 角坐标系 A x z. y ) , ) , ) , 易知 C( 0, 2, 0 A1( 0, 2, 2 B( 2, 0, 0 过点 A 作垂直于平面 A C 所在直 线 为 y 轴 ,

i=1
i=1
1 ������- ∵ a= b x, ∴ a=- . y 2
∧ ∧ ∧
∧ 1 1 ∴ 所求线性回归方程为 y= x- . 2 2
高三数学 ( 理科 ) 摸底测试参考答案第 共 4页) 1 页(
( 根据列表 , 设 1 号至 5 号 小 白 鼠 依 次 为 a1 , 则在这5只小白鼠中 Ⅱ) a2 , a3 , a4 , a5 . 共1 a2 a3 a4 , a2 a3 a5 , a2 a4 a5 , a3 a4 a5 , 0种. ������������������������9 分
数学 ( 理科 ) 参考答案及评分意见
( 一、 选择题 : 每小题 5 分 , 共6 0 分) 1. B; 7. B; 2. A; 8. C; 第 Ⅰ 卷( 选择题 , 共6 0 分) 4. C; 5. A; 6. C;
成都市 2 0 1 5 级高中毕业班摸底测试
3. C;
9. D;
1 0. D;
{
( , 由( 得 f( Ⅱ) ∵ a>0, Ⅰ) x) =x3 +3 x2 -9 x+9. ∴f ′( x) =3 x2 +6 x-9. ) ) ∴f( -2 =3 1, ′( -2 =-9. f
经检验符合题意 .
a=-2 , 或 . b=-9 b=1
a=3
{
∴ 所求切线方程为 9 x+ 3=0. y-1

成都市零诊考试题

成都市零诊考试题

成都市零诊考试题篇一:四川省成都市2015届零诊数学(理)试题及答案四川省成都市2015届高三摸底(零诊)数学(理)试题本试卷分选择题和非选择题两部分。

满分150分,时间120分钟.注意事项 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用椽皮撵擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=(5,-3),b=(-6,4),则a+b= (A)(1,1)(B)(-1,-1)(C)(1,-1)(D)(-1,1) 2.设全集U={1,2,3,4},集合S={l,3},T={4},则(eUS)(A){2,4} (B){4} 3.已知命题p:?x∈R,2=5,则?p 为(A)?x?R,2=5(C)?x0∈R,2 x0x x T等于(D){1,3,4} (C)? (B)?x?R,2?5 (D)?x0∈R,2(C)log63 x0 x =5 ≠5 4.计算21og63 +log64的结果是(A)log62 (B)2 (D)3 ?x?0 ? 5.已知实数x,y满足?y?0,则z=4x+y的最大值为 ?x?y?2? (A)10 (B)8 (C)2 (D)0 6.已知a,b是两条不同直线,a 是一个平面,则下列说法正确的是(A)若a∥b.b??,则a//? (B)若a//?,b??,则a∥b(C)若a⊥?,b⊥?,则a∥b (D)若a⊥b,b⊥?,则a∥? 7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:?g/m3)则下列说法正确的是(A)这l0日内甲、乙监测站读数的极差相等(B)这10日内甲、乙监测站读数的中位数中,己的较大(C)这10日内乙监测站读数的众数与中位散相等(D)这10日内甲、乙监测站读数的平均数相等 8.已知函数f(x)?x?cos?x(??0)的图象与直线y= -2的两个相邻公共点之间的距离等于x,则f(x)的单调递减区间是(A)?k?? ?? ? 6 ,k?? 2?? ,k∈z 3??4?? ,k∈z ?3? (B)?k?? ? ? ?3 ,k?? ?? 6?? ,k∈z (C)?2k?? ? ? ? 3 ,2k?? (D)?2k?? ?? ? 12 ,2k?? 5?? ,k∈z ?12? ?x2,x?(?1,1)? 9.已知定义在R上的偶函数(fx)满足(f4-x)=f(x),且当x∈??1,3?时,(fx)=?? 1?cosx,x??1,3???2 则g(x)=f (x)-|1gx|的零点个数是(A)7 (B)8 (C)9 (D)10 x22x2y210.如图,已知椭圆Cl:+y=1,双曲线C2:2?2=1(a 0,b 0),若以C1的长轴为直径的 ab11 圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB 三等分,则C2的离心率为(A)5(C (B (D 第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

成都市零诊考试题

成都市零诊考试题

成都市零诊考试题篇一:四川省成都市2015届零诊数学(理)试题及答案四川省成都市2015届高三摸底(零诊)数学(理)试题本试卷分选择题和非选择题两部分。

满分150分,时间120分钟.注意事项 1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。

2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用椽皮撵擦干净后,再选涂其它答案标号。

3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。

4.所有题目必须在答题卡上作答,在试题卷上答题无效。

5.考试结束后,只将答题卡交回。

第I卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a=(5,-3),b=(-6,4),则a+b= (A)(1,1)(B)(-1,-1)(C)(1,-1)(D)(-1,1) 2.设全集U={1,2,3,4},集合S={l,3},T={4},则(eUS)(A){2,4} (B){4} 3.已知命题p:?x∈R,2=5,则?p 为(A)?x?R,2=5(C)?x0∈R,2 x0x x T等于(D){1,3,4} (C)? (B)?x?R,2?5 (D)?x0∈R,2(C)log63 x0 x =5 ≠5 4.计算21og63 +log64的结果是(A)log62 (B)2 (D)3 ?x?0 ? 5.已知实数x,y满足?y?0,则z=4x+y的最大值为 ?x?y?2? (A)10 (B)8 (C)2 (D)0 6.已知a,b是两条不同直线,a 是一个平面,则下列说法正确的是(A)若a∥b.b??,则a//? (B)若a//?,b??,则a∥b(C)若a⊥?,b⊥?,则a∥b (D)若a⊥b,b⊥?,则a∥? 7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:?g/m3)则下列说法正确的是(A)这l0日内甲、乙监测站读数的极差相等(B)这10日内甲、乙监测站读数的中位数中,己的较大(C)这10日内乙监测站读数的众数与中位散相等(D)这10日内甲、乙监测站读数的平均数相等 8.已知函数f(x)?x?cos?x(??0)的图象与直线y= -2的两个相邻公共点之间的距离等于x,则f(x)的单调递减区间是(A)?k?? ?? ? 6 ,k?? 2?? ,k∈z 3??4?? ,k∈z ?3? (B)?k?? ? ? ?3 ,k?? ?? 6?? ,k∈z (C)?2k?? ? ? ? 3 ,2k?? (D)?2k?? ?? ? 12 ,2k?? 5?? ,k∈z ?12? ?x2,x?(?1,1)? 9.已知定义在R上的偶函数(fx)满足(f4-x)=f(x),且当x∈??1,3?时,(fx)=?? 1?cosx,x??1,3???2 则g(x)=f (x)-|1gx|的零点个数是(A)7 (B)8 (C)9 (D)10 x22x2y210.如图,已知椭圆Cl:+y=1,双曲线C2:2?2=1(a 0,b 0),若以C1的长轴为直径的 ab11 圆与C2的一条渐近线相交于A,B两点,且C1与该渐近线的两交点将线段AB 三等分,则C2的离心率为(A)5(C (B (D 第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

成都市2015届高中毕业班摸底测试理科数学试题成都市零诊试题及参考答案

成都市2015届高中毕业班摸底测试理科数学试题成都市零诊试题及参考答案

四川省成都市2015届高三摸底(零诊)数学(理)试题第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知向量()5,3a =-,()6,4b =-,则a b +=A.()1,1B.()1,1--C.()1,1-D.()1,1-2.设全集{}1,2,3,4U =,集合{}1,3S =,{}4T =,则()U S T ð等于A.{}2,4B.{}4C.∅D.{}1,3,43.已知命题p x R ∀∈:,25x =,则p ⌝为A.,25x x R ∀∉=B.,25x x R ∀∈≠C.00,25x x R ∃∈=D.00,25x x R ∃∈≠4.计算662log 3log 4+的结果是A.6log 2B.2C.6log 3D.35.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z =4x +y 的最大值为A.10B.8C.2D.06.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是 A.若a ∥b .b α⊂,则a //α B.若a //α,b α⊂,则a ∥b C.若a ⊥α,b ⊥α,则a ∥b D.若a ⊥b ,b ⊥α,则a ∥α7.PM 2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,一般情况下PM 2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM 2.5浓度读数(单位:μg /m 3)则下列说法正确的是 A.这10日内甲、乙监测站读数的极差相等B.这10日内甲、乙监测站读数的中位数中,乙的较大C.这10日内乙监测站读数的众数与中位数相等D.这10日内甲、乙监测站读数的平均数相等8.已知函数()cos (0)f x x x ωωω=+>的图象与直线2y =-的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是A.2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈ B.,36k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈ C.42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k Z ∈ D.52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k Z ∈9.已知定义在R 上的偶函数()f x 满足()()4f x f x -=,且当(]1,3x ∈-时,()(]2,(1,1)1cos ,1,32x x f x x x π⎧∈-⎪=⎨+∈⎪⎩则()()lg g x f x x =-的零点个数是A.7B.8C.9D.1010.如图,已知椭圆221111x C y +=:,双曲线()2222210,0x y C a b a b-=>>:,若以C 1的长轴为直径的圆与C 2的一条渐近线相交于A ,B 两点,且C 1与该渐近线的两交点将线段AB 三等分,则C 2的离心率为A.5D.7第II 卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上. 11.已知40,,cos 25παα⎛⎫∈= ⎪⎝⎭,则sin()πα-= . 12.当1x >时,函数11y x x =+-的最小值是____ .13.如图是一个几何体的本视图,则该几何体的表面积是 .14.运行如图所示的程序框图,则输出的运算结果是____ .15.已知直线14y k x ⎛⎫=+⎪⎝⎭与曲线y =恰有两个不同交点,记k 的所有可能取值构成集合A ,P (x ,y )是椭圆221169x y +=上一动点,点()111,P x y 与点P 关于直线1y x =+对称,记114y -的所有可能取值构成集合B ,若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是____ .三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤. 16.(本小题满分12分)已知等差数列{a n }的前n 项和为S n ,且a 2=3,S 7=49,n ∈N *. (1)求数列{a n }的通项公式;(2)设12(1)2n n a b n-+⋅=,求数列{b n }的前n 项和T n .【知识点】等差数列与等比数列的通项公式与求和公式【答案解析】(1)21n a n =-;(2)122n n T +=-.解析:解:(1)设公差为d ,因为113767492a d a d +=⎧⎪⎨⨯+=⎪⎩,解得112a d =⎧⎨=⎩,所以()1121n a a n d n =+-=-,即所求数列的通项公式为*21,n a n n N =-∈; (2)由(1)得()1122n n nna b n-+==,所以()()11*121222,112n n n n b q T n N q+--===-∈--【思路点拨】在解答题中一般遇到等差数列与等比数列通常利用其通项公式与求和公式列出首项与公差或公比的方程组,通过解方程组求出首项与公差或公比再进行解答. 17.(本小题满分12分)在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知向量m =(a -b ,c -a ),n =(a +b ,c )且m ·n =0. (1)求角B 的大小; (2)求函数f (A )=s1n 6A π⎛⎫+⎪⎝⎭的值域. 【知识点】向量的数量积的坐标运算,余弦定理、三角函数的值域 【答案解析】(1)3π;(2)1,12⎛⎤ ⎥⎝⎦解析:解:由m ·n =0得222a cb ac +-=,由余弦定理得2221c o s 22a c b B ac +-==,又因为B 为三角形内角,所以3B π=;(2)由(1)得20,33A C πππ⎛⎫=--∈ ⎪⎝⎭,所以51,,sin ,166662A A ππππ⎛⎫⎛⎫⎛⎤+∈+∈ ⎪ ⎪ ⎥⎝⎭⎝⎭⎝⎦,则所求函数的值域为1,12⎛⎤⎥⎝⎦. 【思路点拨】在求角中注意余弦定理的变式应用,在三角函数给定区间求值域问题,通常先由所给角的范围得辅角范围,再利用三角函数的单调性确定值域. 18.(本小题满分12分)某地区为了解高二学生作业量和玩电脑游戏的情况,对该地区内所有高二学生采用随机抽样的方法,得到一个容量为200的样本统计数据如下表:(1)已知该地区共有高二学生42500名,根据该样本估计总体,其中喜欢电脑游戏并认为作业不多的人有多少名?(2)在A,B.C,D,E,F六名学生中,但有A,B两名学生认为作业多如果从速六名学生中随机抽取两名,求至少有一名学生认为作业多的概率.【知识点】抽样方法、古典概型【答案解析】(1)7650名;(2)3 5解析:解:(1)42500×36200=7650(名);(2)从这六名学生随机抽去两名的基本事件有:{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F},{C,D},{C,E},{C,F},{D,E},{D,F},{E,F}共15个,设事件G表示至少有一位学生认为作业多,符合要求的事件有{A,B},{A,C},{A,D},{A,E},{A,F},{B,C},{B,D},{B,E},{B,F}共9个,所以()93 155P G==,所以至少有一名学生认为作业多的概率为3 5 .【思路点拨】求概率问题应先确定其概率模型,若总体个数有限为古典概型,利用古典概型计算公式计算,若总体个数无限为几何概型,利用几何概型计算公式计算.19.(本小题满分12分)如图,已知⊙O的直径AB=3,点C为⊙O上异于A,B的一点,VC⊥平面ABC,且VC=2,点M为线段VB的中点.(1)求证:BC⊥平面VAC;(2)若AC=l,求二面角M-VA-C的余弦值.【知识点】直线与平面垂直的判定、二面角的求法【答案解析】(1)略;(2)11解析:解:(1)证明:因为VC⊥平面ABC,BC⊂平面ABC,所以VC⊥BC,又因为点C为圆O上一点,且AB 为直径,所以AC⊥BC,又因为VC,AC⊂平面VAC,VC∩AC=C,所以BC⊥平面VAC.(2)由(1)得BC⊥VC,VC⊥AC,AC⊥BC,分别以AC,BC,VC,所在的直线为x轴,y轴,z轴建立空间直角坐标系C—xyz如图则A(1,0,0),V(0,0,2),B(0,设平面VAC的法向量()()()02201021m CB VA AB===-=-,,,,,,,设平面VAM的法向量()n x y z=,,,由200x z x -=⎧⎪⎨-+=⎪⎩令y得42x z =⎧⎨=⎩,所以()4,2,2,cos ,1122mn n m n m n∙====∙,即所求二面角的余弦值为11 【思路点拨】在证明直线与平面垂直时,一般结合直线与平面垂直的判定定理,只需证明直线与平面内两条相交直线垂直;对于求二面角可考虑直接求其平面角的大小和用向量求解,当直接寻求其平面角不方便时要注意建立适当空间直角坐标系,借助于平面的法向量解答. 20.(本小题满分13分)在平面直角坐标系x Oy 中,点P 是圆x 2+y 2=4上一动点,PD ⊥x 轴于点D ,记满足1()2OM OP OD =+的动点M 的轨迹为F . (1)求轨迹F 的方程;(2)已知直线l :y =kx +m 与轨迹F 交于不同两点A ,B ,点G 是线段AB 中点,射线OG 交轨迹F 于点Q ,且,OQ OG λλ=∈R .①证明:λ2m 2=4k 2+1;②求△AOB 的面积S (λ)的解析式,并计算S (λ)的最大值.【知识点】轨迹方程的求法、直线与圆锥曲线位置关系、向量的坐标运算【答案解析】(1)2214x y +=;(2)①略,②()()1,S λλ=∈+∞,最大值为1. 解析:解:(1)设点M (x ,y ),()00,P x y ,得点D 坐标为()0,0x ,且22004x y +=.①因为()12OM OP OD =+,所以002x x y y=⎧⎨=⎩②,将②代入①得2244x y +=,所以所求的轨迹方程为2214x y +=; (2)①令()()1122,,,A x y B x y ,由()22222,148440440y kx m k x kmx m x y =+⎧+++-=⎨+-=⎩得,所以()()()22222121222221212228414440 1488141444441414km k m m k km km x x x x k k m m x x x x k k ⎧⎧∆=-+->⎪⎪<+⎪⎪--⎪⎪+=+=⎨⎨++⎪⎪⎪⎪--==⎪⎪++⎩⎩即③,所以()()12122282221414k km m y y k x x m m k k -+=++=+=++,由中点坐标公式得224,1414kmm G k k -⎛⎫ ⎪++⎝⎭,根据OQ OG λ=,得224,1414km m Q k k λλ-⎛⎫⎪++⎝⎭,将其代入椭圆方程,有()()222222222411414k m m k k λλ+=++.化简得22214m k λ=+④②由③④得m ≠0,λ>1.因为12x x -==, 在△AOB 中,1212S m x x ∆AOB=∙-⑥,由④⑤⑥得()()21,S λλλ==∈+∞,令()0,t =+∞,则. ()222211112t S t t t tλ==≤===++当且仅当即所以当λ=,()S λ=取得最大值,其最大值为1.【思路点拨】在求轨迹方程问题时,若所求点与已知曲线上的点相关,可用代入法求轨迹方程,在遇到直线与圆锥曲线位置关系问题时,经常把问题转化为坐标关系,通过联立方程借助于韦达定理、中点坐标公式及弦长公式寻求等量关系,若遇到向量关系,先看有无直接的几何条件特征进行转化,否则就把向量关系利用向量的坐标运算转化为坐标关系解答.21.(本小题满分14分, 巳知函数f (x )=x 1nx ,g (x )=13ax 2-bx ,其中a ,b ∈R . (1)求函数f (x )的最小值;(2)当a >0,且a 为常数时,若函数h (x )=x [g (x )+1]对任意的x 1>x 2≥4,总有1212()()0h x h x x x ->-成立,试用a 表示出b 的取值范围; (Ⅲ)当b =23-a 时,若f (x +1)≤32g (x )对x ∈[0,+∞)恒成立,求a 的最小值. 【知识点】导数的综合应用 【答案解析】(1)1e -;(2)1016a <<时,(b ∈-∞;当116a ≥时,1,28b a ⎛⎤∈-∞+ ⎥⎝⎦;(Ⅲ)1解析:解:(1)因为()()'ln 1,0,fx x x =+∈+∞,令()'10,f x x e ==得,所以f (x )在10,e ⎛⎫⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增,则f (x )在1x e =处取得最小值为1111ln f e e ee ⎛⎫==- ⎪⎝⎭.(2)由题意得()()3213h x xg x x ax bx x =+=-+在[4,+∞)上单调递增,所以()'2210h x ax bx =-+≥在[4,+∞)上恒成立.即2112ax b ax x x+≤=+在[4,+∞)上恒成立,构造函数()()()10,0,F x a x a x x=+>∈+∞,则()2'2211ax F x a x x -=-=,所以()0,F x a ⎛= ⎝⎭上单调递减,在a ⎛⎫+∞ ⎪ ⎪⎝⎭上单调递增. (1)当14016a a ><<即时,F (x )在4⎡⎢⎣⎭上单调递减,在⎫+∞⎪⎪⎝⎭上单调递增,所以F (x )的最小值为F =⎝⎭,所以2b b ≤≤; (2)当1416a ≤≥即时,F (x )在(4,+∞)上单调递增,()11244,248b F a b a ≤=+≤+从而;综上,1016a <<时,(b ∈-∞;当116a ≥时,1,28b a ⎛⎤∈-∞+ ⎥⎝⎦;(Ⅲ)当23b a =-时,构造函数()()()()()[)23111ln 1,0,22G x f x g x x x ax ax x =+-=++--∈+∞,由题意有G (x )≤0对x ∈[0,+∞)恒成立,因为()()[)'ln 11,0,G x x ax a x =++--∈+∞.(1)当a ≤0时,()()()'ln 1110G x x a x =++-+>,所以G (x )在[0,+∞)上单调递增,则G (x )>G (0)=0在(0,+∞)上成立,与题意矛盾.(2)当a >0时,令()()[)()1',0,,'1x G x x x a x ϕϕ=∈+∞=-+则,由于()10,11x ∈+ ①当a ≥1时,()()[)1'01x a x x ϕϕ=-<0,+∞+在,上单调递减,所以()()()[)010,'00x a G x ϕϕ≤=-≤≤+∞在,上成立,所以G (x )在[0,+∞)上单调递减,所以G (x )≤G (0)=0在[0,+∞)上成立,符合题意.②当0<a <1时,()[)111',0,11a x a x a x x x ϕ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦=-=∈+∞++,所以()10,1x x a ϕ⎡⎫∈-⎪⎢⎣⎭在上单调递增,在11,x a ⎛⎫∈-+∞⎪⎝⎭上单调递减,因为()010a ϕ=->,所以()100,1x a ϕ⎡⎫>∈-⎪⎢⎣⎭在x 成立,即()1'001G x a ⎡⎫>∈-⎪⎢⎣⎭在x ,上成立,所以()10,1G x a ⎡⎫-⎪⎢⎣⎭在上单调递增,则G (x )>G (0)=0在10,1x a ⎛⎫∈- ⎪⎝⎭上成立,与题意矛盾.综上知a的最小值为1.【思路点拨】本题主要考查的是利用导数求函数的最值,利用导数求最值一般先判断函数的单调性,再结合单调性确定最值位置,对于由不等式恒成立求参数参数范围问题通常转化为函数的最值问题解答.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

四川省成都市2015届高三摸底(零诊)数学(文)试题【试卷综析】本试卷是高三摸底试卷,考查了高中全部内容.以基础知识和基本技能为载体,以能力测试为主导,在注重考查学科核心知识的同时,突出考查考纲要求的基本能力,重视学生科学素养的考查.知识考查注重基础、注重常规、注重主干知识,兼顾覆盖面.试题重点考查:数列、三角、概率、导数、圆锥曲线、立体几何综合问题、程序框图、平面向量、基本不等式、函数等;考查学生解决实际问题的综合能力。

是份非常好的试卷.第I 卷(选择题,共50分)一、选择题.本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知向量a =(5,-3),b =(-6,4),则a+b = (A )(1,1) (B )(-1,-1) (C )(1,-1) (D )(-1,1) 【知识点】向量的坐标运算【答案解析】D 解析:解:由向量的坐标运算得a +b =(5,-3)+(-6,4)=(-1,1),所以选D. 【思路点拨】本题主要考查的是向量加法的坐标运算,可直接结合向量加法的运算法则计算. 2.设全集U={1,2,3,4},集合S={l ,3},T={4},则(U ðS )T 等于(A ){2,4} (B ){4} (C )∅(D ){1,3,4}【知识点】集合的运算【答案解析】A 解析:解:因为U ðS={2,4},所以(U ðS )T={2,4},选A.【思路点拨】本题主要考查的是集合的基本运算,可先结合补集的含义求S 在U 中的补集,再结合并集的含义求S 的补集与T 的并集. 3.已知命题p :x ∀∈R ,2x =5,则⌝p 为 (A )x ∀∉R,2x =5 (B )x ∀∈R,2x ≠5 (C )0x ∃∈R ,2x =5 (D )0x ∃∈R ,2x ≠5【知识点】全称命题及其否定【答案解析】D 解析:解:结合全称命题的含义及其否定的格式:全称变特称,结论改否定,即可得⌝p 为0x ∃∈R ,2x ≠5,所以选D.【思路点拨】全称命题与特称命题的否定有固定格式,掌握其固定格式即可快速判断其否定.4.计算21og 63 +log 64的结果是 (A )log 62 (B )2 (C )log 63 (D )3【知识点】对数的运算【答案解析】B 解析:解:21og 63 +log 64=1og 69+log 64=1og 636=2,所以选B.【思路点拨】在进行对数运算时,结合对数的运算法则,一般先把对数化成同底的系数相同的对数的和与差再进行运算,注意熟记常用的对数的运算性质.5.已知实数x ,y 满足002x y x y ≥⎧⎪≥⎨⎪+≤⎩,则z=4x+y 的最大值为(A )10 (B )8 (C )2 (D )0 【知识点】简单的线性规划【答案解析】B 解析:解:作出不等式组表示的平面区域为如图中的三角形AOB 对应的区域,平移直线4x+y=0,经过点B 时得最大值,将点B 坐标(2,0)代入目标函数得最大值为8,选B.【思路点拨】对于线性规划问题,通常先作出其可行域,再对目标函数进行平行移动找出使其取得最大值的点,或者把各顶点坐标代入寻求最值点.6.已知a ,b 是两条不同直线,a 是一个平面,则下列说法正确的是 (A )若a ∥b .b α⊂,则a//α (B )若a//α,b α⊂,则a ∥b (C )若a ⊥α,b ⊥α,则a ∥b (D )若a ⊥b ,b ⊥α,则a ∥α 【知识点】线面平行的判定、线面垂直的性质【答案解析】C 解析:解:A 选项中直线a 还可能在平面α内,所以错误,B 选项直线a 与b 可能平行还可能异面,所以错误,C 选项由直线与平面垂直的性质可知正确,因为正确的选项只有一个,所以选C 【思路点拨】在判断直线与平面平行时要正确的理解直线与平面平行的判定定理,应特别注意定理中的“平面外一条直线与平面内的一条直线平行”,在判断位置关系时能用定理判断的可直接用定理判断,不能直接用定理判断的可考虑用反例排除.7.PM2.5是指大气中直径小于或等于2.5微米的颗粒物,也称为可A 肺颗粒物,般情况下PM2.5浓度越大,大气环境质量越差右边的茎叶图表示的是成都市区甲、乙两个监测站某10日内每天的PM2.5浓度读数(单位:μg/m 3)则下列说法正确的是 (A )这l0日内甲、乙监测站读数的极差相等(B )这10日内甲、乙监测站读数的中位数中,己的较大 (C )这10日内乙监测站读数的众数与中位散相等 (D )这10日内甲、乙监测站读数的平均数相等【知识点】茎叶图、中位数、众数、平均数【答案解析】C 解析:解:因为甲、乙监测站读数的极差分别为55,57,所以A 选项错误,10日内甲、乙监测站读数的中位数分别为74,68,所以B 选项错误,10日内乙监测站读数的众数与中位数都是68,所以C 正确,而正确的选项只有一个,因此选C.【思路点拨】结合所给的茎叶图正确读取数据是解题的关键,同时要理解中位数、众数、平均数各自的含义及求法.8.已知函数f (x )cos (0)x x ωωω+>的图象与直线y= -2的两个相邻公共点之间的距离等于x ,则f (x )的单调递减区间是 (A )2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (B ),36k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z (C )42,233k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z (D )52,21212k k ππππ⎡⎤-+⎢⎥⎣⎦,k ∈z 【知识点】函数y=Asin(ωx+φ)的图象与性质 【答案解析】A 解析:解:因为()2sin 6f x x πω⎛⎫=+⎪⎝⎭,则图象与直线y= -2的两个相邻公共点之间的距离等于一个周期,所以2ππω=,得ω=2,由()3222,262k x k k Z πππππ+≤+≤+∈,得()263k x k k Z ππππ+≤≤+∈,所以其单调递减区间是2,63k k ππππ⎡⎤++⎢⎥⎣⎦,k ∈z 选A. 【思路点拨】注意该题中直线y=-2的特殊性:-2正好为函数的最小值,所以其与函数的两个相邻公共点之间的距离等于函数的最小正周期.9.已知双曲线22221x y a b-=(a>0,b>0)的一条渐近线与圆(x -3)2+y 2=9相交于A,B 两点,若|AB|=2,则该双曲线曲离心率为(A )8(B )(C )3(D )32【知识点】直线与圆的位置关系,双曲线的性质【答案解析】C 解析:解:因为|AB|=2,圆的半径为3,所以圆心(3,0)到渐进线y=b x a的==,得22383c ab a a a ====,所以e=,则选C. 【思路点拨】一般求离心率问题就是通过已知条件得到关于a ,b ,c 的关系式,再求ca即可;在直线与圆的位置关系中,当出现弦长问题时经常转化为圆心到直线的距离,再利用点到直线的距离建立等量关系.10.已知定义在R 上的函数f (x)的周期为4,且当x ∈(-1,3]时,f (x) =(]2,(1,1)1cos ,1,32x x x x π⎧∈-⎪⎨+∈⎪⎩,则函数g (x )=f (x )-1og 6x 的零点个数为(A)4 (B)5 (C)6 (D)7【知识点】函数的零点、函数的图象及函数的周期性的应用【答案解析】B 解析:解:函数g (x )=f (x )-1og 6x 的零点个数即f (x )=1og 6x 的零点个数,也就是函数y=f (x )与y=1og 6x 的图象的交点个数,在同一坐标系中作出两个函数的图象如图,因为当x=6时6log 6=1,所以两个函数的图象有5个交点,选B.【思路点拨】判断函数零点个数的方法有直接求零点和图象法,当直接求零点不方便时通常通过观察图象与x 轴的交点个数,若直接做对应函数的图象不方便时可转化为两个函数的图象交点个数进行判断.第Ⅱ卷(非选择题,共100分)二、填空题:本大题共5小题,每小题5分,共25分答案填在答题卡上。

11.已知a ∈40,,cos 25πα⎛⎫= ⎪⎝⎭,则sin()πα-= 。

【知识点】诱导公式、同角三角函数基本关系式. 【答案解析】35解析:解:因为0,2πα⎛⎫∈ ⎪⎝⎭,所以()3sin sin 5παα-==.【思路点拨】在三角求值中有诱导公式特征的应先用诱导公式化简,本题先化简再利用同角三角函数中的余弦和正弦的平方关系计算,注意开方时要结合角所在的象限确定开方的符号.12.当x>1时,函数y=x+11x -的最小值是____ 。

【知识点】基本不等式【答案解析】3解析:解:因为x>1,所以x -1>0,则函数y=x+11x -=x -1+11x -+1≥,当且仅当111x x -=-即x=2时等号成立,所以最小值为3.【思路点拨】对于函数求最值问题,若具有基本不等式特征可考虑用基本不等式求最值,用基本不等式求最值应注意得到最值的三个要素:一正,二定,三相等.13.如图是一个几何体的本视图,则该几何体的表面积是 。

【知识点】由三视图求几何体的表面积.【答案解析】26+解:由几何体的三视图可知该几何体为一个倒放的直三棱柱,则其侧面积为(22624++⨯=+12×2×2×2=4,所以该几何体的表面积为28+【思路点拨】由三视图求几何体的表面积问题,可先结合三视图还原原几何体,再结合几何体的特征计算.14.运行如图所示的程序框图,则输出的运算结果是____ 。

【答案解析】45解析:解:该程序框图为循环结构,第一次执行循环体得S=111122=-⨯,i=2,第二次执行循环体得S=1111112233=-+-=-,i=3,第三次执行循环体得S=1111113344-+-=-,i=4,第四次执行循环体得S=111141144555-+-=-=,此时满足判断框,跳出循环体,所以输出结果为45.【思路点拨】对于循环结构的程序框图,可依次执行循环体,直到满足判断框,若需要循环的次数较多时,可结合数列知识进行解答.15.已知y=a x (a>0且a ≠1)是定义在R 上的单调递减函数,记a 的所有可能取值构成集合A ;P (x ,y)是椭圆22169x y +=1上一动点,点P 1(x 1,y 1)与点P 关于直线y=x+1对称,记114y -的所有可能取值构成集合B 。

若随机地从集合A ,B 中分别抽出一个元素1λ,2λ,则1λ>2λ的概率是____ 。

【知识点】几何概型、椭圆性质、直线与曲线位置关系的应用【答案解析】34解析:解:若直线y=k 14x ⎛⎫+ ⎪⎝⎭与曲线y =程得22221110216k x k x k ⎛⎫+-+=⎪⎝⎭,由△=0得k=±1,结合图形知若过点1,04⎛⎫- ⎪⎝⎭的直线与抛物线2y x =在x 轴上方有2个不同交点,则有0<k <1,所以A={k │0<k <1};又点 P 1(x 1,y 1)关于直线y=x+l 对称点坐标为()111,1y x -+,则[]111,144y x-=∈-,即 B=[-1,1],则总体为两个集合构成的矩形区域ABCD ,所求的事件为四边形OBCD 对应的区域,因为矩形区域ABCD 的面积为2,三角形AOD 的面积为12,所以所求的概率为132124-=.【思路点拨】一般由曲线交点个数问题求参数范围,可结合图象分析;熟记点关于形如直线 y=±x+m 对称点的规律可减少运算量,若所求事件的概率问题与两个连续变量有关,可归结为几何概型的面积问题解答.三、解答题:本大题共6小题,共75分解答应写出立字说明、证明过程或推演步骤。

相关文档
最新文档