15.2三角形全等的判定(一)的教学设计

合集下载

新人教版七年级数学下册(五四制)《三角形全等的判定(1)》教案

新人教版七年级数学下册(五四制)《三角形全等的判定(1)》教案

18.2 三角形全等的判定第1课时一、教学目标 (一)学习目标1.经历探索三角形全等条件的过程,体验分类讨论的数学思想,体会利用操作、归纳获得数学结论的过程.2.经历探索利用 “边边边”判定两个三角形全等的过程,体会从特殊到一般的数学思维过程. 3.掌握三角形全等的判定“边边边”,初步体会并运用综合推理证明命题,掌握作一个角等于已知角的方法. (二)学习重点1.指导学生分析问题,寻找判定三角形全等的条件. 2.三角形全等的“边边边”条件的探索和运用. (三)学习难点1.理解证明的基本过程,初步学会证三角形全等的格式. 2.会用尺规作一个角等于已知角. 二、教学设计 (一)课前设计 1.预习任务(1)三边分别相等的两个三角形全等(可以简写成“边边边”或“SSS”) (2)利用尺规作一个角等于已知角.其作法的根据是 边边边 . 2.预习自测(1)如图,AB=AD ,CB=CD ,则________≌_________. 根据是________.DCBA【知识点】全等三角形的判定:边边边 【思路点拨】图中的隐含条件公共边“AC=AC” 【答案】△ABC ,△ADC , 边边边 或SSS(2)如图,线段AD 与BC 交于点O ,且AC=BD ,AD=BC ,则下面的结论中不正确的是( ) A .△ABC ≌△BAD B .∠C=∠D C .∠CAB=∠DBA D .OB=ODOD CBA【知识点】全等三角形的判定:边边边,全等三角形的性质.【思路点拨】由题中两个条件和公共边可证得两个三角形全等,再根据全等三角形的性质得对应边相等. 【解题过程】由AC=BD ,AD=BC ,AB=BA,可证得△ABC ≌△BAD ,故A 正确;由△ABC ≌△BAD ,可得∠C=∠D ,故B 正确;由△ABC ≌△BAD ,可得∠CAB=∠DBA ,故C 正确;OB 和OD 不是△ABC 和△BAD 的对应边,故D 不正确. 故选:D(3)将下列推理过程补充完整.如图,AB=CD ,BF=DE ,E 、F 是AC 上两点,且AE=CF . 求证:∠B=∠D.FEDC BA证明:∵AE=CF ∴AE+EF=CF+EF 即______=________. 在△ABF 和△CDE 中,⎪⎩⎪⎨⎧_______________________∴△ABF ≌△CDE ( ) ∴____________________.【知识点】全等三角形的判定定理:边边边,全等三角形的性质.【思路点拨】利用等式的性质,等式两边同时加上EF,可得AF=CE,再得△ABF≌△CDE,最后由全等三角形的性质得∠B=∠D.【答案】AF,CE,AB=CD,BF=DE,AF=CE,SSS,∠B=∠D(二)课堂设计1.知识回顾(1)能够完全重合的两个三角形叫做全等三角形.(2)全等三角形的性质:全等三角形的对应边相等,全等三角形的对应角相等.2.问题探究探究一:探索三角形全等的条件●活动①创设情境,提出问题问题:两个三角形全等,是否一定需要六个条件呢?如果只满足六个条件中的一部分,是否也能保证两个三角形全等呢?【设计意图】问题的提出使学生产生浓厚的兴趣,激发他们的探究欲望.●活动②建立模型,探索发现1.两个三角形满足六个条件中的一个条件,两个三角形全等吗?一个条件有几种情况?学生经过交流得出:一条边或一个角.2.(1)让学生画一个一边长为3cm的三角形,画后剪下来看与同桌的三角形能否重合. (2)让学生画一个一个角为30°的三角形,画后剪下来看与同桌的三角形能否重合.只给定一条边相等:只给定一个角相等:3.通过上面的操作,你得到了什么结论?学生讨论后得出结论.结论:两个三角形一条件相等不一定全等.【设计意图】学生动手操作,通过实践、自主探索、交流,获得新知,同时也渗透了分类讨论的思想.●活动③1.两个三角形满足六个条件中的两个条件时两个三角形全等吗?两个条件有几种情况?学生分组交流讨论.结论:一条边和一个角相等、两个角相等、两条边相等.2.让学生画一个一边长为3cm和一个角为30°三角形,画好后剪下来看与同桌的三角形能否重合?①3cm3cm 3cm30︒30︒30︒3.让学生画一个两个角分别为30°和50°的三角形,画好后剪下来看与同桌的三角形能否重合.②50︒50︒30︒30︒4.让学生画一个两边分别为3cm和5cm的三角形,画好后剪下来看与同桌的三角形能否重合.5.通过上面的操作,你得到了什么结论?学生通过画一画,比一比,得出结论.结论:两个三角形两个条件相等不一定全等.【设计意图】学生动手操作自主探索、交流,获得新知,明确两条件不能判定两个三角形全等,为探究后面三个条件判定两个三角形全等作铺垫.探究二:探索三角形全等的判定“边边边”.1.师问:前面通过探究一个条件或两个条件的两个三角形不一定全等,那么当满足三个条件的两个三角形是否全等,三个条件有几种情况?学生分组讨论后,每组选代表发言.结论:三内角、三条边、两边一内角、两内角一边.师问:三个内角相等全等吗?请举例说明.通过学生的回答,全班明白三个内角相等的两个三角形不一定全等.2.画一个三角形的三条边长分别为3cm 、4cm 、5cm .画好后剪下来看与同桌的三角形能否重合.3.任意画一个△ABC ,根据前面作法,同样可以作出一个△A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,观察两个三角形能否重合. 4.通过上面的操作,你得到了什么结论?学生经过特殊到一般的思想,通过画一画,比一比,得出结论. 结论:两个三角形满足三条边相等时,这个两个三角形全等。

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教学设计

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教学设计

浙教版数学八年级上册1.5《三角形全等的判定》(第1课时)教学设计一. 教材分析《三角形全等的判定》是浙教版数学八年级上册1.5节的内容,本节内容是在学生已经掌握了三角形的基本概念、性质以及三角形的画法等知识的基础上进行学习的。

本节内容的主要目的是让学生掌握三角形全等的判定方法,并能够灵活运用这些方法解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对于图形的认识和操作也有一定的了解。

但是,对于三角形全等的判定方法,学生可能还比较陌生,需要通过实例分析和操作来理解和掌握。

此外,学生的空间想象能力和逻辑思维能力还需要进一步的培养和提高。

三. 教学目标1.让学生了解三角形全等的概念,掌握三角形全等的判定方法。

2.培养学生观察、分析、解决问题的能力。

3.培养学生的空间想象能力和逻辑思维能力。

四. 教学重难点1.三角形全等的判定方法的理解和运用。

2.三角形全等判定方法的灵活运用。

五. 教学方法1.采用问题驱动法,通过问题的提出和解决,引导学生思考和探索。

2.采用实例分析法,通过具体的实例,让学生理解和掌握三角形全等的判定方法。

3.采用合作交流法,让学生在小组合作中,共同解决问题,提高解决问题的能力。

六. 教学准备1.教学课件和教学素材。

2.三角板和尺子等绘图工具。

七. 教学过程1.导入(5分钟)通过复习三角形的基本概念和性质,引导学生进入本节课的主题——三角形全等的判定。

2.呈现(10分钟)通过PPT呈现三角形全等的判定方法,引导学生观察和思考,让学生理解三角形全等的判定方法。

3.操练(10分钟)让学生利用三角板和尺子,自己动手画出全等的三角形,并通过比较,验证自己的结论。

4.巩固(10分钟)通过PPT展示一些判断三角形全等的问题,让学生独立解答,巩固所学知识。

5.拓展(10分钟)让学生思考:除了三角形,其他多边形有没有类似全等的概念?全等的概念在实际生活中有哪些应用?6.小结(5分钟)对本节课的内容进行小结,让学生明确三角形全等的判定方法,并能够灵活运用。

《三角形全等的判定(一)》磨课计划

《三角形全等的判定(一)》磨课计划

《三角形全等的判定(一)》磨课计划磨课计划讨论记录:合作学习中如何做到:1、提高“小组合作学习”的时效性。

2、解决教学过程中存在的许多不足,如后进生在小组合作学习的热情不高,优生吃不饱现象,部分学生在小组合作时浮于表面、流于形式等。

3、把握好教师的主导作用,既不能过于干预学生思考讨论,又不能游离于学生之外。

张俊芳:课堂上营造一个宽松和谐的学习氛围,充分调动学生学习的积极性、主动性。

让全体同学在感觉说错了也不要紧的情况下大胆发言。

张新华:得关注后进生,多鼓励、多表扬。

同时充分调动学生的学习积极性,激发学生学习兴趣,还要培养学生善于发现、分析、解决和运用数学的能力。

崔宝卫:发现后进生的优点就把优点放大,增加后进生的信心。

多给后进生一些关爱,让他们觉得老师和同学们都关注真自己。

赵庆山:在小组合作探讨的问题选择上需要关注学生之间存在的差异,关注学困生,提供不同的学生都可以发挥的空间,有不同的要求和指导。

利光辉:可以用较为简单的问题,让后进生来回答,增强自信。

发动全班同学多帮助后进生。

李芹:在教学活动中,我们要明确学生是课堂的主角,是活动的参与者,在一定程度上还是活动的组织者和设计者,在小组合作学习中,学生为主体教师为辅。

秦成娟:教师要大胆放手给学生,让他们多说、多练、多发表意见和建议,要多鼓励基础薄弱、参与不积极、思维不敏捷的学生多发言黄学利:为了使合作学习收到实效,而不是“形式化”,“合作时间”的安排也很关键。

然而在教学和研究中,我们经常发现有的教师为了完成教学内容,担心时间不够,结果刚开始的小组合作讨论,学生刚进入角色,便让学生汇报,成了简单的教师“导”,学生“演”,当然结果也就成了“导”不明,“演”不精。

每次合作学习,教师都一定要留给学生充足的时间,让每个小组的成员都有独立思考的余地,有交流的尝试。

张俊芳:自主学习的中心在学生,在于学生之间的互动和交往,教师在教学中应发挥主导作用,要敢于放手给学生。

全等三角形判定sss教学设计

全等三角形判定sss教学设计

《三角形全等的判定(一)》教学设计教材分析:本节是人教版八年级上册第十二章第二节的第一课时,安排的教学内容为三角形全等的判定中的“三边对应相等的两个三角形全等”。

教材安排的上述内容是在学习了全等三角形的概念、全等三角形的性质后展开的,在本节课中给学生提供探索交流的时间和空间,让学生充分感受探索三角形全等的条件的过程。

教学目标:知识与技能:掌握“边边边”判定的内容,初步应用“边边边”条件判定两个三角形全等,能够进行有条理的思考并进行简单的推理。

能够利用尺规画出全等的三角形,具有一定的作图能力。

过程与方法:经历探索三角形全等的判定的过程,体验用操作、归纳得出数学结论的过程,培养学生的动手能力以及发现、归纳、总结问题的能力。

情感态度与价值观:在探究三角形全等的判定过程中,以观察思考、动手画图、合作交流等多种形式让学生共同探讨,培养学生的协作精神。

引导学生从现实的生活经历与体验出发,激发学生学习兴趣。

教学重点:掌握三角形全等“边边边”的判定教学难点:探究三角形全等“边边边”的判定。

“分类讨论”的数学方法的初步渗透和逻辑思维能力的培养也是本节的难点。

教学用具:多媒体电脑、圆规、直尺、剪刀、纸板书设计:教学过程:一、复习回顾师:上一节课我们学习了全等三角形的概念,哪位同学能回答出来?生:能够完全重合的两个三角形叫做全等三角形。

师:那么全等三角形有哪些性质呢?生:全等三角形的对应角相等,对应边相等。

师:已知△ABC≌△DEF则有哪些相等的量,请回答?生:AB=DE,BC=EF,CA=FD,∠A =∠D,∠B =∠E,∠C=∠F(教师给出投影)师:从上面知道只要满足上述六个条件,就能保证△ABC ≌△DEF全等,那么如果只满足上述六个条件的一部分,能否保证△ABC ≌△DEF全等呢?本节课我们来共同讨论这个问题。

(教师板书课题:三角形全等的判定(1))二、新课引入师:如果两个三角形只满足一个条件,也就是只有一条边或一个角对应相等,这两个三角形全等吗?请同学们画图。

15.2三角形全等的判定(1)

15.2三角形全等的判定(1)

课题:第15章全等三角形15.2 三角形全等的判定(1)主备人:曹智审核人: 时间:2011年月日年级班姓名:学习目标:1.掌握三角形全等的“SAS”条件,能运用“SAS”证明简单三角形全等问题2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件一、学前准备1.复习回顾(1)上节课我们学习了全等三角形的有关性质是什么?___________________________________________(2)如图,如果△ABC≌△DEF请说出对应边、对应顶点、对应角。

2.思考:三角形有六个基本元素(三条边和三个角),只给定其中的一个或两个元素,能够确定一个三角形的形状和大小吗?(1)只给定一个元素:①一条边长为4cm ②一个角为45°________________ _____________(2)若给定两个元素;①两条边长为4cm、5cm. _____________②一条边长为4cm,一个角为45°______________③两个角分别为45°. _______________结论:给定两个条件仍______确定一个三角形的形状和大小。

C 'B 'A 'C B A3.若给三个条件:①三个角 ②两边一角 ③两角一边 ④三条边 4.研究两边一角的情况: 利用尺规作图画出已知角和已知边 已知:△ABC求作:△A 1B 1C 1,使A 1B 1=AB ,∠B 1=∠B ,B 1C 1=BC作法:①作∠MB 1N=∠B②在B 1M 上截取B 1 A 1=BA ,在B 1N 上截取B 1C 1=BC, ③连接A 1C 1则△A 1B 1C 1就是所求作的三角形.将这两个三角形重叠,看能否完全重合? 三角形全等判定定理1:两边和它们的______对应相等的两个三角形全等.记为“_____”或“_____”. 用数学语言表述全等三角形判定定理1: 在△ABC 和'''A B C ∆中,∵''AB A B B BC =⎧⎪∠=⎨⎪=⎩∴△ABC ≌ 练一练 :如图,已知OA=OB,应填什么条件就得到 △AOC ≌△BOD(允许添加一个条件)___________________预习疑难摘要___________________________________________________ _______________________________________________________________二、探究活动(一)师生探究·解决问题例1: 已知:如图 AD ∥BC,AD=BC.OACDBCDCBA21 求证:△ADC ≌△CBA例2: 已知:如图,AB=AC,AD=AE.求证:△ABE ≌△ACD.(二)独立思考·巩固升华1. 已知:如图,AC=BD ,∠1= ∠2,求证:BC=AD.三、自我测试1、如图: OB=OD,OA=OC,求证:AB ∥CDAODB CDEA2、AB=AC,∠B=∠C,BE=CD.求证:△ADB ≌△AEC.四、应用与拓展已知:AB=DB,CB=EB,∠ABD=∠EBC. 求证: ∠A=∠DACBDEACE。

《三角形全等的判定》(边边边)参考教案

《三角形全等的判定》(边边边)参考教案

三角形全等的判定(一)教学目标1.三角形全等的“边边边”的条件.2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 教学重点三角形全等的条件.教学难点寻求三角形全等的条件.教学过程Ⅰ.创设情境,引入新课出示投影片,回忆前面研究过的全等三角形.已知△ABC ≌△A′B′C′,找出其中相等的边与角.C 'B 'A 'C B A图中相等的边是:AB=A′B 、BC=B′C′、AC=A′C .相等的角是:∠A=∠A′、∠B=∠B′、∠C=∠C′.展示课作前准备的三角形纸片,提出问题:你能画一个三角形与它全等吗?怎样画?(可以先量出三角形纸片的各边长和各个角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等.这样作出的三角形一定与已知的三角形纸片全等).这是利用了全等三角形的定义来作图.那么是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题.Ⅱ.导入新课1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?分别按下列条件做一做.①三角形一内角为30°,一条边为3cm .②三角形两内角分别为30°和50°.③三角形两条边分别为4cm 、6cm .学生分组讨论、探索、归纳,最后以组为单位出示结果作补充交流. 结果展示:1.只给定一条边时:只给定一个角时:2.给出的两个条件可能是:一边一内角、两内角、两边.①3cm 3cm 3cm 30︒30︒30︒②50︒50︒30︒30︒③6cm4cm 4cm6cm可以发现按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.已知一个三角形的三条边长分别为6cm 、8cm 、10cm .你能画出这个三角形吗?把你画的三角形剪下与同伴画的三角形进行比较,它们全等吗?1.作图方法:先画一线段AB ,使得AB=6cm ,再分别以A 、B 为圆心,8cm 、10cm 为半径画弧,•两弧交点记作C ,连结线段AC 、BC ,就可以得到三角形ABC ,使得它们的边长分别为AB=6cm ,AC=8cm ,BC=10cm .2.以小组为单位,把剪下的三角形重叠在一起,发现都能够重合.•这说明这些三角形都是全等的.3.特殊的三角形有这样的规律,要是任意画一个三角形ABC ,根据前面作法,同样可以作出一个三角形A′B′C′,使AB=A′B′、AC=A′C′、BC=B′C′.将△A′B′C′剪下,发现两三角形重合.这反映了一个规律:三边对应相等的两个三角形全等,简写为“边边边”或“SSS”.用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SSS”是证明三角形全等的一个依据.请看例题.[例]如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD .[分析]要证△ABD ≌△ACD ,可以看这两个三角形的三条边是否对应相等. 证明:因为D 是BC 的中点所以BD=DC在△ABD 和△ACD 中(AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩公共边)所以△ABD ≌△ACD (SSS ).生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.Ⅲ.随堂练习如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有什么条件?怎样才能得到这个条件?F DC BE A2.课本练习.Ⅳ.课时小结本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.Ⅴ.作业1. 习题11.2 复习巩固1、2.Ⅵ.活动与探索如图,一个六边形钢架ABCDEF 由6条钢管连结而成,为使这一钢架稳固,请你用三条钢管连接使它不能活动,你能找出几种方法?C本题的目的是让学生能够进一步理解三角形的稳定性在现实生活中的应用. 结果:(1)可从这六个顶点中的任意一个作对角线,•把这个六边形划分成四个三角形.如图(1)为其中的一种.(2)也可以把这个六边形划分成四个三角形.如图(2).板书设计(1)(2)。

15.2三角形全等的判定SAS教案

15.2三角形全等的判定SAS教案

15.2 三角形全等的判定一、教学目标1.经历探究两个三角形全等条件的过程,体会利用操作、归纳获得数学规律的过程。

2.掌握三角形全等的“边角边”判定方法。

3.在探索全等三角形条件及其运用过程中,培养有条理的分析、推理能力,并进行简单的证明。

二、教学重点判定两个三角形全等的第一种方法“边角边”。

三、教学难点探究三角形全等的条件。

四、教学过程设计(一)创设情境,引入新知师:出示投影片一,回忆前面研究的全等三角形A A′已知:△ABC≌△A′B′C′,找出其中相等的边与角B C B′ C′生:图中相等的边是:AB=A′B′,AC=A′C′,BC=B′C′;相等的角是:∠A=∠A′,∠B=∠B′,∠C=∠C′.师:很好,老师这里有一个三角形纸片,你能画一个三角形与它全等吗?怎样画?生:能,先量出三角形纸片的各边长和各角的度数,再作出一个三角形使它的边、角分别和已知的三角形纸片的对应边、对应角相等,这样作出的三角形一定与已知的三角形纸片全等。

师:这位同学利用了全等三角形的定义来作图。

请问,是否一定需要六个条件呢?条件能否尽可能少呢?现在我们就来探究这个问题。

(二)合作交流,探索新知问题:只给定三角形的一个元素或两个元素,能够确定一个三角形的形状和大小吗?通过画图,说明你的判断。

出示投影片二:分别按下列条件做一做:1.只给定一个元素:(1)一条边长为4cm; (2)一个角为45°.2.只给定两个元素:(1)两条边长分别为4cm、5cm;(2)一条边长为4cm,一个角为45°;(3)两个角分别为45°、60°.通过画图,你有什么发现?学生活动:分组讨论、画图、探索、归纳。

教师活动:教师演示,然后引导学生归纳结论。

通过上述操作,我们发现只给定三角形的一个或两个元素,不能完全确定一个三角形的形状、大小。

师:那么,还需增加什么条件才能确定一个三角形的形状、大小呢?下面。

请同学们继续探究。

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案 三角形全等的判定教学设计

三角形全等的判定教案三角形全等的判定教学设计角形全等的判定教案三角形全等的判定教学设计篇一目标:1、知识目标:(1)掌握已知三边画三角形的方法;(2)掌握边边边公理,能用边边边公理证明两个三角形全等;(3)会添加较明显的辅助线。

2、能力目标:(1)通过尺规作图使学生得到技能的训练;(2)通过公理的初步应用,初步培养学生的逻辑推理能力。

3、情感目标:(1)在公理的形成过程中渗透:实验、观察、归纳;(2)通过变式训练,培养学生“举一反三”的学习习惯。

重点:sss公理、灵活地应用学过的各种判定方法判定三角形全等。

难点:如何根据题目条件和求证的结论,灵活地选择四种判定方法中较适当的方法判定两个三角形全等。

用具:直尺,微机方法:自学辅导过程:1、新课引入投影显示问题:有一块三角形玻璃窗户破碎了,要去配一块新的,你较少要对窗框测量哪几个数据?如果你手头没有测量角度的仪器,只有尺子,你能保证新配的玻璃恰好不大不小吗?这个问题让学生议论后回答,他们的答案或许只是一种感觉。

于是要引导学生,抓住问题的本质:三角形的三个元素――三条边。

2、公理的获得问:通过上面问题的分析,满足什么条件的两个三角形全等?让学生粗略地概括出边边边的公理。

然后和学生一起画图做实验,根据三角形全等定义对公理进行验证。

(这里用尺规画图法)公理:有三边对应相等的两个三角形全等。

应用格式:(略)强调说明:(1)、格式要求:先指出在哪两个三角形中证全等;再按公理顺序列出三个条件,并用括号把它们括在一起;写出结论。

(2)、在应用时,怎样寻找已知条件:已知条件包含两部分,一是已知中给出的,二时图形中隐含的(如公共边)(3)、此公理与前面学过的公理区别与联系(4)、三角形的稳定性:演示三角形的稳定性与四边形的不稳定性。

在演示中,其实可以去掉组成三角形的一根小木条,以显示三角形条件不可减少,这也为下面总结“三角形全等需要有3全独立的条件”做好了准备,进行了沟通。

三角形全等的判定——AAS教学设计

三角形全等的判定——AAS教学设计

三角形全等的判定——AAS教学设计教学设计:三角形全等的判定,AAS一、教学目标:1.知识与技能目标:a.了解三角形全等的判定条件之一,AAS(两角对应相等,且一边对应相等);b.掌握使用AAS进行三角形全等判定的方法;c.能够运用AAS判定条件,解决实际问题;2.过程与方法目标:a.引导学生观察、发现并总结AAS判定全等的规律;b.能够解答关于AAS的相关问题、完成相关练习;c.引导学生通过对比、组合进行归纳总结。

二、教学重点与难点:教学重点:AAS判定全等的理论与方法。

教学难点:如何运用AAS判定条件进行证明。

三、教学过程:1.导入(5分钟):a.引入本节课的主题:三角形全等的判定,AAS;b.展示两个全等的三角形,让学生观察并找出它们的相同之处;c.引导学生思考:这两个三角形有哪些角是相等的?有哪些边是相等的?2.观察与总结(15分钟):a.展示多个已知全等的三角形,引导学生观察这些三角形之间的共同特征;b.引导学生自主探索,通过对比找到AAS判定全等的规律;c.学生个体或小组讨论,总结AAS判定三角形全等的条件;d.学生报告、老师点评,确保学生对AAS的判定条件有正确的理解。

3.示例与分析(15分钟):a.给学生展示两个需要判定全等的三角形,同时给出两个已知的条件;b.引导学生运用AAS条件判断这两个三角形是否全等;c.学生个体或小组讨论,解答问题并给出说明;d.老师点评、纠正错误,确保学生能正确使用AAS进行判定。

4.练习与巩固(15分钟):a.学生进行练习,使用AAS判定条件判断给出的三组三角形是否全等;b.学生个体或小组讨论,解答问题并给出说明;c.老师点评、纠正错误,帮助学生更好地理解与应用。

5.拓展与应用(15分钟):a.学生进行拓展性练习,解答更复杂的问题,例如:给定一个已知条件,判断是否可以通过AAS条件得出全等;b.学生展示解题方法与结果,进行讨论与总结;c.老师点评、总结掌握,帮助学生理解并灵活应用。

三角形全等的判定(ASA)的说课稿

三角形全等的判定(ASA)的说课稿

三角形全等的判定(ASA)的说课稿各位领导、老师:你们好!我说课的内容是“沪科版八年级 15.2三角形全等的判定<角边角>”。

下面,我从教材分析、教材处理、教学方法、教学手段、教学过程、板书设计及教学反思等几个方面对本课的设计进行说明。

一、教材分析:1、教材的地位及作用本节课研究三角形全等的判定方法之一——角边角定理,它是沪科版八年级(上册)第15章第二节的内容。

它是在学习了认识三角形、全等三角形及其性质,以及探究出三角形全等的判定方法1——边角边公理的基础上编写的。

一方面引导学生从动手操作出发探索出角边角公理,体会利用操作、归纳获得数学结论的方法;另一方面让学生能够运用“角边角公理”解决实际问题。

另外,判定三角形全等在初中几何学习中对于证明线段及角相等是一个非常重要而且有效的方法。

2、教学目标知识与技能:(1)掌握角边角公理的内容;(2)能初步应用角边角公理证明两个三角形全等;过程与方法:(1) 通过实验、观察、归纳出角边角公理;(2) 通过观察几何图形,培养学生的识图能力;(3) 通过公理的初步应用,初步培养学生的逻辑推理能力。

情感、态度与价值观:(1)通过例题3,让学生体会到数学知识的价值,从而激发学生学习数学的兴趣;(2)通过变式训练,培养学生“举一反三”的学习能力.(3)通过“实践活动”,让学生学会与人合作,并能与他人交流思维的过程和结果。

3、教学重、难点重点:熟练地运用ASA公理判定三角形全等。

难点:如何根据已知条件和求证的结论,灵活地运用所学的“ASA”证明两个三角形全等。

二、教材处理《新课程标准》理念中强调过程比结论重要,方法比知识重要。

学习新知识时,引导学生在生活中发现问题,在讨论中分析问题,在操作中验证问题,重视知识的形成过程。

我将书中的例题、习题进行重组,由一题展开,由浅入深,层层铺垫,更好地体现了几何图形之间、数学与生活的内在联系。

三、教学方法:在学法上,倡导学生主动参与,通过画、剪、比较等手段验证新知,在猜想、尝试与反馈中得到提高。

三角形全等的判定教学设计

三角形全等的判定教学设计

三角形全等的判定教学设计一、教学目标通过本节课的学习,学生能够:1.掌握三角形全等的判定条件;2.运用判定条件判断给定的两个三角形是否全等;3.理解并运用全等三角形的性质解决实际问题。

二、教学重点1.三角形全等的判定条件;2.运用判定条件判断三角形是否全等。

三、教学难点1.理解三角形全等的判定条件;2.运用判定条件解决实际问题。

四、教学过程1.导入(5分钟)教师出示两张相似的图片,引导学生观察,并提出“这两个图形相似吗?”的问题。

学生根据图片的形状和大小回答“相似”。

教师引领学生思考:“那么,你们知道什么是相似图形?”学生回答后,教师解释相似图形的定义。

2.引入全等(15分钟)教师出示两个形状相同的纸片,贴在黑板上,并问学生:“这两个图形相同吗?”学生根据图形形状回答“相同”。

教师解释:“这两个图形我们称为全等图形,什么是全等图形呢?”学生回答后,教师说:“全等图形就是形状和大小都完全相同的图形。

”3.全等的判定条件(20分钟)教师将全等的判定条件写在黑板上,加以解释和讲解,要求学生逐条记录下来。

a.两边对应相等(边边边);b.两角对应相等(角角角);c.两边角对应相等(边角边)。

教师用具体的图形示例,结合判定条件,向学生演示如何判断两个三角形是否全等。

4.运用判定条件判断全等(25分钟)教师出示多个三角形的图形,要求学生两两判断是否全等,并给出判断的理由。

教师在黑板上列举学生给出的判断理由,并逐一讲解纠正。

教师提醒学生要注意判断时的先后顺序,例如要先判断两边相等再判断两角相等。

5.运用全等性质解决问题(20分钟)教师引导学生运用全等三角形的性质解决问题,并指导学生绘制图形,标注出相关的边与角。

六、课堂小结(5分钟)教师对本节课的重点知识进行归纳总结,并对下节课的内容进行适当的展望。

七、作业布置布置练习题让学生巩固所学知识,并要求学生写出解题思路和判断依据。

提醒学生练习时注意判断条件,避免出现因粗心而判断错误的情况。

初中数学初二数学上册《全等三角形的判定》教案、教学设计

初中数学初二数学上册《全等三角形的判定》教案、教学设计
-鼓励学生从不同角度思考问题,勇于提出自己的观点,培养学生的创新意识。
二、学情分析
初二是学生数学学习的关键时期,他们在之前的课程中已经掌握了三角形的基本概念和性质,具备了一定的几何图形识别和分析能力。在此基础上,学习全等三角形的判定,有助于巩固和提升学生的几何知识体系。然而,学生在学习过程中可能会遇到以下问题:对全等三角形的定义理解不够深入,容易混淆判定条件;在解决实际问题时,难以将问题转化为全等三角形的判定问题。因此,在教学过程中,教师应关注以下几点:
3.空间想象能力和创新意识的培养:通过丰富的教学活动,激发学生的空间想象能力,鼓励他们从不同角度思考问题,培养创新意识。
(二)教学难点
1.全等三角形判定条件的理解与应用:学生对全等三角形的判定条件容易混淆,需要通过典型例题和练习题,帮助他们理解和掌握。
2.实际问题的转化:将实际问题转化为全等三角形的判定问题,对学生来说具有一定的挑战性,需要教师引导学生运用所学知识进行分析和解决。
-设计具有挑战性的问题,让学生在小组内充分讨论,共同寻找解决问题的方法。
2.引导学生运用几何画板、实物模型等教学工具,提高学生的实践操作能力。
-利用几何画板展示全等三角形的动态变化,让学生直观地感受全等三角形的性质。
-提供实物模型,让学生通过折叠、拼接等操作,亲身体验全等三角形的判定过程。
3.培养学生运用数学思维解决问题的能力。
在导入新课环节,我将通过以下方式激发生的兴趣和好奇心:
1.利用多媒体展示生活中全等三角形的实例,如建筑物的平面图、拼图游戏等,让学生直观地感受全等三角形的应用。
2.提问:“同学们,你们在生活中见过全等三角形吗?它们有什么特点?”引导学生回顾已知的三角形知识,为新课的学习做好铺垫。

全等三角形判定一教案设计

全等三角形判定一教案设计

《三角形全等的判定》第一课时教学设计教学目标:1、知识目标:(1)熟记边角边的内容;(2)能应用边角边证明两个三角形全等.2、能力目标:(1) 通过“边角边”的运用,提高学生的逻辑思维能力;(2) 通过观察几何图形,培养学生的识图能力.3、情感目标:(1) 通过几何证明的教学,使学生养成尊重客观事实和形成质疑的习惯;(2) 通过自主学习的发展体验获取数学知识的感受,培养学生勇于创新,多方位审视问题的创造技巧.教学重点:学会运用边角边证明两个三角形全等.教学难点:在稍复杂的图形中,找出证明两个三角形全等的条件.教学用具:直尺、三角板、三角形剪纸、多媒体几何画板课件教学过程:一、复习三角形全等的性质二、探究活动:1、一个元素能否确定三角形的形状和大小?(△ABC中条件①AB=10cm,②∠A=45O,出示学生提前准备的三角形,然后和老师手中的三角形比较后得出结论,再推测一条边的情况。

)2、两个元素呢?(△ABC中条件①AB=10cm,BC=15cm,②AB=10cm,∠A=45O,③∠A=45O,∠B=60O,出示学生提前准备的三角形,然后和老师手中的三角形比较后得出结论,再推测已知一条边、一个角或已知两个角的的情况。

)3、三个元素呢?① 利用几何画板的动画功能演示右图在AB 边绕点旋转的动态过程中保持BA 边等于4, BC 边等于5,两个元素不变,考察再添什么元素可以让三角形的形状和大小确定下来?过程中保持∠B 和∠C 两个元素不变,考察再添什么元素可以让三角形的形状和大小确定下来?(特别说明再添∠BAC 和情况)结论:至少需要三个条件才能确定三角形的形状和大小。

板书课题“§15.2 三角形全等的判定”三、新课讲解1、利用作图的方法画一个和已知三角形全等的三角形,可以得到当两边及它们的夹角对应相等的两个三角形全等。

2、告诉学生两边及其夹角的条件让学生作三角形,然后和老师手中的三角形比对,加强对定理的理解。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第十五章全等三角形
15.2三角形全等的判定(一)
潜山县天柱山中心学校徐定生
教材分析
对于全等三角形的研究,实际是平面几何中对封闭的两个图形关系研究的第一步。

它是两三角形间最简单、最常见的关系。

本节《三角形全等的判定》是学生在认识三角形的基础上,在了解全等图形和全等三角形以后进行学习的,它既是前面所学知识的延伸与拓展,又是后继学习探索相似形的条件的基础,并且是用以说明线段相等、两角相等的重要依据。

因此,本节课的知识具有承上启下的作用。

同时,沪科版教材将“边角边”这一识别方法作为五个基本事实之一,说明本节的内容对学生学习几何说理来说具有举足轻重的作用。

教学目标
1.知识与技能
掌握“边角边”这一三角形全等的判别方法,并能利用这些条件判别两个三角形是否全等,并能解决一些简单的实际问题。

2.过程与方法
经历探究三角形全等条件的过程,体会分析问题的方法,积累数学活动的经验,学习进行有条理的思索。

3.情感、态度与价值观
(1)通过几何证明的教学,培养学生严谨的分析能力,使学生养成尊重客观事实和形成质疑的习惯;
(2)通过自主学习的发展体验获取数学知识的感受,培养学生勇于探索,团结协作的精神,以及多方位审视问题的创造技巧. 重、难点与关键
1.重点:探究全等三角形的必要条件的个数及探究“边角边”这一判定方法,运用“边角边”定理解决实际问题。

2.难点:在较复杂的图形中,找出证明两个三角形全等的条件。

3.关键:分析问题的因果关系,从中识别出其边其角,然后再证
明它们对应相等。

教学准备
1.教师准备:课件
2.学生准备:剪刀、纸片、直尺、量角器、圆规。

教学过程
一:创设情景,导入新知
1.课件显示:屏幕上出现一个被墨迹污染了的三角形。

问题引入:小伟作业本上画的三角形被墨迹污染了,他想画一个与原来完全一样的三角形,他该怎么办?请你帮助小伟想个办法,并说明你的理由?
学生讨论:与原来完全一样的三角形,即是与原来三角形全等的三角形。

2.探究:要画一个三角形与小伟画的三角形全等。

需要几个与边
或角的大小有关的条件?只知道一个条件(一角或一边)行吗?两个条件呢?三个条件呢?
探究(1):先任意画出一个△ABC,再画一个△A’B’C’,使△ABC 满足上述六个条件中的一个或两个,你画出的△ABC与△A’B’C’全等吗?
做一做:只给出一个条件(一条边或一个角)画三角形时,画出的三角形一定全等吗?
1) 一条边等于3厘米。

2) 一个角等于45度。

探究(2):给出两个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?
做一做:按下面的条件画三角形,画完后小组内交流,看所画的三角形是否全等。

(其它条件不确定)
1)三角形的一个内角为30°,一条边为3cm;
2) 三角形的两个内角分别为30°和45°;
3)三角形的两条边分别为4cm和6cm.
师生归纳:只给一个或两个条件作出三角形,不能保证所画出的三角形一定全等。

探究(3):给出三个条件画三角形时,有几种可能的情况?每种情况下作出的三角形一定全等吗?
有以下几种可能:
1)三边相等。

2) 三角相等。

3)两边一角(两边和夹角;两边和对角)。

4)两角一边(两角和夹边;两角和对边)。

3.导入新课
我们今天专题研究有两条边和它们的夹角对应相等的两个三角形是否全等?
二:实验操作,归纳定理
做一做:
已知:△ABC
A
B C
求作:△DEF,使DE=AB,∠E=∠B,EF=BC
将所作的△DEF 与△ABC 叠一叠,看看它们是否完全重合?由此你能得到什么结论?
师生归纳:全等三角形判定方法一:
两边和它们的夹角对应相等的两个三角形全等。

简记为“边角边”或“SAS ”(S 表示边,A 表示角)。

三:范例学习,应用所学
例1:如图线段AB 是一个池塘的长度,现在想测量这个池塘的长度,在水上测量不方便,你有什么好的方法较方便地把池塘的长度测量出来吗?想想看。

解:先在池塘旁边取一个能直接到达A 和B 处的点C ,连接AC 并延长至D 点,使AC=DC ,连接BC 并延长至E 点,使BC=EC ,连接E 、D ,用米尺测出DE 的长,这个长度就等于A 、B 两点的距离。

证明:在△ACB 和△DCE 中,
∵AC=DC (已知)
∠ACB=∠DCE (对顶角相等)
A B
C
D E
BC=EC (已知)
∴△ACB ≌△DCE (SAS )
∴AB=DE (全等三角形的对应边相等)
例2:如图,已知AD ∥ BC ,AD=BC.你能说明△ABC 与△CDA 全等吗?你能说明AB=CD ,AB∥CD吗?为什么?
证明:∵AD ∥ BC (已知)
∴∠DAC=∠BCA (两直线平行,内错角相等)
在△ABC 和△CDA 中,
∵AD=BC (已知)
∠DAC=∠BCA (已 证)
AC=CA (公共边)
∴△ACB ≌△CDA (SAS )
∴AB=CD (全等三角形的对应边相等)
∠BAC=∠DCA(全等三角形的对应角相等)
∴AB∥CD(内错角相等,两直线平行)
四.大显身手,巩固深化
A B
C
D
1. 小明做了一个如图所示的风筝,其中∠EDH=∠FDH, ED=FD ,将上述条件标注在图中,小明不用测量就能知道EH=FH 吗?与同桌进行交流。

证明:在△DEH 和△DFH 中
⎪⎩
⎪⎨⎧=∠=∠=(公共边)(已知)已知)DH DH FDH EDH FD ED ( ∴△DEH ≌△DFH (SAS )
∴EH=FH (全等三角形的对应边相等)
2.如图,已知AB =AC ,AD =AE 。

求证:∠B =∠C

B C
D
E E F
H D
证明:在△ABD 和△ACE 中
相等)(全等三角形的对应角((已知)(公共角)
(已知)
C B ACE AB
D A
E AD A A AC AB ∠=∠∴∆≅∆∴⎪⎩
⎪⎨⎧=∠=∠=SAS
3.如图,∠B =∠E ,AB =EF ,BD =EC ,那么△ABC 与△FED 全等吗?为什么?AC ∥FD 吗?为什么?
解:全等。

∵ BD=EC (已知)
∴ BD -CD =EC -CD 。

即BC =ED
在△ABC 与△FED 中
⎪⎩
⎪⎨⎧=∠=∠=(已证)(已知)
已知)
ED B C E B EF(A B
∴ △ABC ≌△FED (SAS ) ∴ ∠ACB=∠FED (全等三角形的对应角相等) B C
D



∴∠ACD=∠FEC(等角的补角相等)
∴AC∥FD(内错角相等,两直线平行)
学生活动:先独立思考,再与同学交流解题思路,然后争取上讲台演示。

教师活动:巡视、引导,然后教师再根据学生演示情况予以讲评。

教师要强调板书的规范,用课件显示出规范板书。

师生归纳:利用全等三角形的对应边或对应角相等是证明两个角或两条线段相等的常用手段。

五.课堂总结,发展潜能
1.今天我们经历了画图验证两个三角形全等的过程,探索出两个三角形全等的方法之一“两边和它们的夹角对应相等的两个三角形全等”,我们可以利用它来判别两个三角形是否全等。

2.我们可以通过证明三角形全等的方法来证明线段相等或角相等。

3.证明两个三角形全等的思路:首先分析条件,观察已经具备了什么条件,然后以已具备的条件为基础,根据全等三角形的判定方法,来确定还需要证明哪些边或角对应相等,再设法证明这些边和角相等。

六.布置作业,专题突破
作业略。

相关文档
最新文档