数字温度计的设计与实现
基于单片机的数字温度计的设计与实现毕业设计论文
基于单片机的数字温度计的设计与实现摘要采用单片机来对他们控制不仅具有控制方便,简单和灵活性大等优点,而且可以大幅度提高被控温度的技术指标,从而能够大大的提高产品的质量和数量。
在生产过程中,为了高效地进行生产,必须对它的主要参数,如温度、压力、流量等进行有效的控制。
传统的测温元件有热电偶和二电阻。
而热电偶和热电阻测出的一般都是电压,再转换成对应的温度,这些方法相对比较复杂,需要比较多的外部硬件支持。
我们用一种相对比较简单的方式来测量。
温度范围为-55~125 ºC,最高分辨率可达0.0625 ºC。
DS18B20可以直接读出温度值,而且采用三线制与单片机相连,减少了外部的硬件电路,具有低成本和易使用的特点。
本文介绍一种基于AT89C51单片机的一种温度测量及报警电路,该电路采用DS18B20作为温度监测元件,测量范围0℃-~+100℃,使用七级数码管LED模块显示,能设置温度报警上下限。
正文着重给出了软硬件系统的各部分电路,介绍了集成温度传感器DS18B20的原理,AT89C51单片机功能和应用,该电路设计新颖、功能强大、结构简单。
关键词:温度测量;DS18B20 ; AT89C51Design of Digital Thermomer Based on SCMABSTRACTControlled by single-chip microcomputer to control not only to them, advantages of simplicity and flexibility, and can significantly increase the temperature specifications, which can significantly increase the quality and quantity of the products. In the process of production, in order to efficiently produce, it must be the main parameters, such as temperature, pressure, flow, and other effective control. Traditional temperature measuring component thermocouple and resistance. Are generally voltage of thermocouple and thermal resistance measured, then converted to the corresponding temperature, these methods are relatively complex and requires more external hardware support. We are in a relatively simple way to measure.-55~125 ºc temperature range, maximum resolution up to 0.0625 ºc. DS18B20 can read temperature value, and wire connected to the microcontroller, reduced external hardware circuits, low cost and ease of use features.The introduction of a cost-based AT89C51 MCU a temperatur measurement circuits, the circuits used DS18B20 high-precision temperatur sensor, measuring scope 0℃-~+100℃,can set the warning limitation, the use of Seven digital tube seven segments LED that can be display the current temperature. The paper focuses on providing a software and hardware system components circuit, introduced the theory of DS18B20, the founctions and applications of AT89C51 .This circuit design innovative, powerful, can be expansionary strong.Keywords:Temperature measurement ;DS18B20 ;AT89C51目录摘要 (I)ABSTRACT (II)第一章绪论 (1)1.1 引言 (1)1.1.1 国内外现状 (1)1.1.2 课题背景及研究意义 (2)1.2 设计内容及性能指标 (2)1.3 系统概述 (3)1.3.1 系统方案论证与比较 (3)1.3.2 系统设计原理与组成 (5)第二章开发工具Proteus与Keil (6)2.1 Proteus软件 (6)2.1.1 Proteus简介 (6)2.1.2 4大功能模块 (6)2.1.3 Proteus简单应用 (8)2.2 Keil软件 (8)2.2.1 Keil软件简介 (8)2.2.2 Keil软件调试功能 (9)第三章系统硬件设计 (10)3.1 单片机的选择 (10)3.1.1 AT89C51单片机的介绍 (10)3.1.2 AT89C51单片机主要特性 (11)3.2 温度传感器的选择 (13)3.3 硬件电路设计 (17)第四章系统软件设计 (20)4.1 各模块的程序设计 (20)4.2 Protues测温仿真 (25)4.3 系统调试 (28)4.4 结果分析 (30)结论 (31)致谢 (32)参考文献 (33)附录1 全部程序清单 (34)附录2 系统总体设计图 (41)第一章绪论1.1引言1.1.1 国内外现状温度控制系统在国内各行各业的应用虽然已经十分广泛,但从国内生产的温度控制器来讲,总体发展水平仍然不高,同日本、美国、德国等先进国家相比,仍然有着较大的差距。
(数电)数字温度计的设计
数字温度计的设计一、总体方案的选择1.拟定系统方案框图(1)方案一:本方案采用AD590单片集成两段式敢问电流源温度传感器对温度进行采集,采集的电压经过放大电路将信号放大,然后经过3.5位A/D转换器转换成数字信号,在进行模拟/数字信号转换的同时, 还可直接驱动LED显示器,将温度显示出来。
系统方框图如下:图1.1 系统方案框图(2)方案二:使用数字传感器采集温度信号,然后将被测温度变化的电压或电流采集过来放大适当的倍数,进行A/D转换后,将转换后的数字进行编码,然后再经过译码器通过七段数字显示器将被测温度显示出来。
图1.2系统方案框图2. 方案的分析和比较方案一中的模数转换器ICL7107集A/D转换和译码器于一体,可以直接驱动数码管,不仅省去了译码器的接线,使电路精简了不少,而且成本也不是很高。
ICL7107只需要很少的外部元件就可以精确测量0到200mv电压,AD590可以将温度线性转换成电压输出。
而方案二经过A/D转换后,需要先经过编码器再经过译码器才能将数字显示出来。
比较上述两个方案,方案一明显优越于方案二,它用AD590采集温度信号,用ICL7107驱动数码管直接实现数字信号的显示,实现数字温度计的设计;省去了另加编码器和译码器的设计,所以线路更简单、直观;即采用方案一。
二、单元电路的设计通过AD590对温度进行采集,通过温度与电压近乎线性关系,以此来确定输出电压和相应的电流,不同的温度对应不同的电压值,故我们可以通过电压电流值经过放大进入到A/D 转换器和译码器,再由数码管表示出来。
2.1传感电路AD590是半导体结效应式温度传感器,PN 结正向压降的温度系数为-2mV/℃ , 利用硅热敏晶体管PN 结的温度敏感特性测量温度的变化测量温度,其测量温度范围为-50~150。
AD590输出电流值(μA 级)等于绝对温度(开尔文)的度数。
使用时一般需要将电流值转换为电压值, 如图2.1.1图中,Ucc 为激励电压, 取值为4~40 V;输出电流I0以绝对温度零度-273℃为基准, 温度每升高1℃ ,电流值增加1μA。
数字式温度计的设计与制作
设计三数字式温度计的设计与制作一、目的和要求1.目的(1)通过本次综合设计,进一步了解智能传感与检测技术的基本原理、智能检测系统的建立和智能检测系统的设计过程。
(2)学生设计制作出数字式温度计,提高学生有关工程系统的程序设计能力,。
(3)进一步熟悉掌握单片机技术、c 语言、汇编语言等以及在智能检测设计中的应用。
2.要求(1)充分理解设计内容,并独立完成综合设计报告。
(2)综合设计报告要求:综合设计题目,综合设计具体内容及实现功能,结果分析、收获或不足,程序清单,参考资料。
二、实验设备及条件热电偶Easypro编程软件热电偶或智能传感器DS18B20Keil c安装盘PC机、剥线钳、面包板、镊子、导线、电源、示波器、万用表、频率计单片机及其外围电路所需元器件烙铁、焊接板等焊接工具万用表电源TEKTRONIX TDS1002 60MHZ示波器三、实验原理、内容本实验培养学生了解便携式数字仪表的制作,数字式显示仪表是一种以十进制数形式显示被测量值的仪表,与模拟式的显示仪表相比较,数字显示仪表具有读数直观方便,无读数误差准确度高,响应速度快,易于和计算机联机进行数据处理等优点。
数字式显示仪表的基本构成方式如下,图中各基本单元可以根据需要进行组合,以构成不同用途的数字式显示仪表。
将其中一个或几个电路制成专用功能模块电路,若干个模块组装起来,即可以制成一台完整的数字式显示仪表。
其核心部件是模拟/数字转换器,可以将输入的模拟信号转换成数字信号,以A/D转换器为中心,可将显示仪表内部分为模拟和数字两大部分。
仪表的模拟部分一般设有信号转换和放大电路,模拟切换开关等环节。
信号转换电路和放大电路的作用是将来自各种传感器或变换器的被测信号转换成一定范围内的电压值并放大到一定幅值,以供后续电路处理。
仪表的数字部分一般由计数器,译码器,时钟脉冲发生器,驱动显示电路以逻辑控制电路等组成。
经放大后的模拟信号由A/D转换器转换成相应的数字量后,译码,驱动,送到显示器件去进行数字显示。
51单片机数字温度计设计与实现
51单片机数字温度计设计与实现温度计是一种常见的电子测量设备,用于测量环境或物体的温度。
而数字温度计基于单片机的设计与实现,能够更准确地测量温度并提供数字化的显示,具备更多功能。
一、设计原理数字温度计的设计原理基于温度传感器和单片机。
温度传感器用于感测温度,而单片机负责将传感器读取的模拟信号转化为数字信号,并进行温度计算及显示。
二、所需材料1. 51单片机2. 温度传感器(例如DS18B20)3. 数码管或液晶显示屏4. 连接线5. 电源电路电容、电阻等元件三、设计步骤1. 连接电路:按照电路原理图将51单片机、温度传感器和显示器等元件进行连接。
注意正确连接引脚,以及电源电路的设计和连接。
2. 编写程序:利用汇编语言或C语言编写51单片机的程序,实现温度读取、计算和显示功能。
3. 温度传感器设置:根据温度传感器的型号和数据手册,配置单片机相应的输入输出口、温度转换方式等参数。
4. 读取温度:通过单片机对温度传感器进行读取,获取传感器采集的温度数据。
5. 温度计算:根据传感器输出的数据和转换方法,进行温度计算,得到更准确的温度数值。
6. 数字显示:将计算得到的温度数值通过数码管或液晶显示屏进行数字显示。
可以选择合适的显示格式和单位。
7. 添加附加功能:可以根据实际需求,增加其他功能,如报警功能、数据记录、温度曲线显示等。
8. 系统测试与优化:将设计的数字温度计进行系统测试,确保其正常运行和准确显示温度。
根据测试结果进行可能的优化或改进。
四、注意事项1. 连接线应牢固可靠,避免出现松动或接触不良的情况。
2. 选择合适的温度传感器,并正确设置传感器的相关参数。
3. 程序设计时应注意算法的准确性和优化性,以确保测量的准确性和实时性。
4. 温度传感器的安装和环境选择也会影响温度计的准确性,应避免与外部环境干扰和热源过近的情况。
五、应用领域1. 家庭和工业温度监测:数字温度计可以广泛应用于室内、室外温度监测,工业生产中的温度控制等。
数字温度计的设计与制作课件
3.2 温度检测电路
VCC接高电平,DQ端接单片机的 P3.4口,这里利用了P3.4口双向 I/O口作用,单片机从DS18B20 读取温度和报警温度,此时作为 输入口,当设置报警温度时单片 机向DS18B20内部存储器写入数 据,此时作为数据输出端口。DQ 与VCC之间需要一个电阻值约为 5KΩ的上拉电阻。
单
报警设备
片
机
(ADC0809)
1.2 方案二:采用数字温度芯片DS18B20
AT98C51 DS18B20
报警点温度设置
液 晶
感 器
温 度
显
主
示
控
单制 片器 机
报 警 设
备
传
二 系统器件的选择
2.1 单片机的选择
AT89S52为 ATMEL 所生 产的一种低功耗、高性能CMOS8 位微控制器,具有8K在系统可编 程Flsah存储器。
3.3 液晶显示电路
在液晶显示电路的设计中选择具有单 向输出数据功能的P0端口向液晶显示 模块提供数据,P2.5、P2.6、P2.7口 作为控制液晶显示模块的端口,在PO 口上需要外加上拉电阻,才可以使液晶 显示模块正常显示。
3.4 报警电路设计
报警电路中使用P1.4-P1.7作为 控制按键输入端口,P1.0、P1.2 作为报警指示灯端口,P2.3作为 报警蜂鸣器端口,当它们对应的 端口为低电平时就会报警。
主要内容
一:设计方案选择 二:元器件的选择 三:设计过程 四:制作成果
一 设计方案选择
数字温度计的制作方法有很多种,最常见的有两种,一种 是利用热敏电阻测量温度的电路,另一种是利用数字温度 传感器DS18B20测量温度的电路。
1.1 方案一:采用热敏电阻
数字式温度计设计
数字温度计的设计与实现一、设计目的1.了解DS18B20数字式温度传感器的工作原理。
2.利用DS18B20数字式温度传感器和微机实验平台实现数字温度计。
二、设计内容与要求采用数字式温度传感器为检测器件,进行单点温度检测。
用数码管直接显示温度值,微机系统作为数字温度计的控制系统。
1.基本要求:(1)检测的温度范围:0℃~100℃,检测分辨率 0.5℃。
(2)用4位数码管来显示温度值。
(3)超过警戒值(自己定义)要报警提示。
2.提高要求(1)扩展温度范围。
(2)增加检测点的个数,实现多点温度检测。
三、设计报告要求1.设计目的和内容2.总体设计3.硬件设计:原理图(接线图)及简要说明4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法)四、数字温度传感器DS18B20由DALLAS半导体公司生产的DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。
它具有体积小,接口方便,传输距离远等特点。
1.DS18B20性能特点DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O 口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM ,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源。
2. DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH 和TL,高速暂存器。
64位光刻ROM 是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。
64位ROM 结构图如图2所示。
不同的器件地址序列号不同。
DS18B20的管脚排列如图1所示。
图1 DS18B20引脚分布图图2 64位ROM 结构图 DS18B20高速暂存器共9个存储单元,如表所示: LSBMSB 8位检验CRC 48位序列号 8位工厂代码(10H )以12位转化为例说明温度高低字节存放形式及计算:12位转化后得到的12位数据,存储在18B20的两个高低两个8位的RAM中,二进制中的前面5位是符号位。
51单片机数字温度计的设计与实现
51单片机数字温度计的设计与实现温度计是一种广泛使用的电子测量仪器,它能够通过感知温度的变化来提供精准的温度数值。
本文将介绍如何使用51单片机设计并实现一款数字温度计。
一、硬件设计1. 采集温度传感器温度传感器是用来感知环境温度的关键器件。
常见的温度传感器有DS18B20、LM35等。
在本次设计中,我们选择DS18B20温度传感器。
通过电路连接将温度传感器与51单片机相连,使51单片机能够读取温度传感器的数值。
2. 单片机选型与连接选择适合的51单片机型号,并根据其引脚功能图对单片机进行合理的引脚连接。
确保温度传感器与单片机之间的数据传输通畅,同时保证电源和地线的正确连接。
3. 显示模块选型与连接选择合适的数字显示模块,如数码管、液晶显示屏等。
将显示模块与51单片机相连,使温度数值能够通过显示模块展示出来。
4. 电源供应为电路提供稳定的电源,保证整个系统的正常运行。
选择合适的电源模块,并根据其规格连接电路。
二、软件设计1. 温度传感器读取程序编写程序代码,使用单片机GPIO口将温度传感器与单片机连接,并通过相应的通信协议读取温度数值。
例如,DS18B20采用一线制通信协议,需要使用单总线协议来读取温度数值。
2. 数字显示模块驱动程序编写程序代码,通过单片机的GPIO口控制数字显示模块的数码管或液晶显示屏进行温度数值显示。
根据显示模块的规格,编写合适的驱动程序。
3. 温度转换算法将温度传感器读取到的模拟数值转换为实际温度数值。
以DS18B20为例,它输出的温度数值是一个16位带符号的数,需要进行相应的转换操作才能得到实际的温度数值。
4. 系统控制程序整合以上各部分代码,编写系统控制程序。
该程序通过循环读取温度数值并进行数据处理,然后将处理后的数据送到数字显示模块进行实时显示。
三、实现步骤1. 硬件连接按照前文所述的硬件设计,将温度传感器、51单片机和数字显示模块进行正确的连接。
确保连接无误,并进行必要的电源接入。
数字温度计设计方案
数字温度计设计方案数字温度计是一种利用数字显示温度值的仪器,目前已广泛应用于家庭、实验室、医疗等领域。
为了设计一个稳定、可靠的数字温度计,以下是一个初步设计方案。
1. 传感器选择温度传感器是数字温度计的核心部件,常用的有热敏电阻、热电偶、半导体传感器等。
在设计中,我们可以选择适用范围广、精度高的数字温度传感器,如DS18B20。
该传感器具有数字接口、高精度、高稳定性等特点。
2. 微控制器选择微控制器是数字温度计的处理器,负责监测温度传感器的数据,并将其转化为数字信号。
在设计中,我们可以选择具有足够计算能力、低功耗的微控制器,如STM32系列中的STM32F103C8T6。
该微控制器具有高性能、低功耗、丰富的外设等特点,适合用于数字温度计的设计。
3. 电路设计在电路设计中,可以采用数字传感器和微控制器之间的串行通信方式,使用一对引脚(数据引脚和电源引脚)实现数据的传输和供电。
同时,需要添加稳压电路和滤波电路,保证电路的稳定性和抗干扰能力。
4. 数字显示模块选择数字显示模块是数字温度计的输出设备,负责将测得的温度值以数字形式显示出来。
在设计中,可以选择7段LED数码管,该数码管具有明亮的显示效果、低功耗、容易驱动等优点。
5. 电源选择数字温度计需要稳定的电源供电,可选择直流电源供电,电压范围5V。
在设计中,可以添加电源管理电路,包括稳压电路、过压保护、短路保护等,以增加设备的安全性和稳定性。
6. 程序设计程序设计是数字温度计的重要环节,需要编写相应的程序实现温度的测量、显示、存储等功能。
在程序设计中,可以使用C 语言或者嵌入式开发平台进行编程,实现温度测量值的读取、温度值的转换、温度值的显示等功能。
总之,以上是一个基本的数字温度计的初步设计方案,通过选择合适的传感器、微控制器、显示模块,并进行稳压电路和滤波电路的设计,再加上适当的程序编写,可以设计出一个稳定、可靠的数字温度计。
当然,具体的设计方案还需要参照实际需求进行调整和优化。
数字温度计毕业设计论文
青岛农业大学毕业论文(设计)题目:数字温度计的设计与实现*名:***学院:理学与信息科学学院专业:电子信息科学与技术班级:2006级01班学号:********指导教师:代爱妮2010年6月13日目录摘要 (1)Abstract (1)前言 (1)1 绪论 (2)1.1 课题背景 (2)1.2 课题研究的目的和意义 (2)1.3 设计的主要任务 (2)2 DS18B20的应用 (4)2.1 温度传感器的发展趋势 (4)2.2 DS18B20数字温度传感器 (4)2.2.1 DS18B20简介 (4)2.2.2 DS18B20内外部结构 (5)2.2.3 DS18B20控制方法 (6)2.3 DS18B20的测温原理 (7)2.4 提高DS18B20测温精度的途径 (7)2.5 注意事项 (8)3 系统电路设计与分析 (9)3.1 系统方案实现论证 (9)3.2 单片机控制部分 (10)3.3 DS18B20部分 (11)3.4 LED数码管显示部分 (13)4 系统实现程序分析 (15)4.1 主程序流程图 (15)4.2 各子程序流程图 (15)4.2.1初始化程序 (15)4.2.2读取温度子程序 (16)4.2.3写流程图 (17)4.2.4读流程图 (18)5 PROTEUS仿真与实现 (20)5.1 PROTEUS仿真过程 (20)5.2 仿真结果 (21)5.3 具体实物图 (21)6 设计总结 (22)致谢: (24)参考文献 (25)附录: (26)数字温度计的设计与实现电子信息科学与技术专业崔新健指导教师代爱妮摘要:温度测量是现代工业测量中的关键技术,应用广泛。
为了实现对温度的精确测量,开发了一种由AT89C51单片机控制的数字温度计。
本系统采用的是美国DALLAS公司生产的单线数字温度传感器DS18B20,相比于其他模拟传感器,DS18B20能够直接输出数字信号,与单片机接线仅需要一条口线,外围电路简单,无需放大电路及A/D转换电路,节省了成本,并且测量精度高。
数字温度计的设计与实现
数字温度计的设计与实现一、实验目的1.了解DS18B20数字式温度传感器的工作原理。
2.利用DS18B20数字式温度传感器和微机实验平台实现数字温度计。
二、实验内容与要求采用数字式温度传感器为检测器件,进行单点温度检测。
用数码管直接显示温度值,微机系统作为数字温度计的控制系统。
1.基本要求:(1)检测的温度范围:0℃~100℃,检测分辨率 0.5℃。
(2)用4位数码管来显示温度值。
(3)超过警戒值(自己定义)要报警提示。
2.提高要求(1)扩展温度范围。
(2)增加检测点的个数,实现多点温度检测。
三、设计报告要求1.设计目的和内容2.总体设计3.硬件设计:原理图(接线图)及简要说明4.软件设计框图及程序清单5.设计结果和体会(包括遇到的问题及解决的方法)四、数字温度传感器DS18B20由DALLAS半导体公司生产的DS18B20型单线智能温度传感器,属于新一代适配微处理器的智能温度传感器,可广泛用于工业、民用、军事等领域的温度测量及控制仪器、测控系统和大型设备中。
它具有体积小,接口方便,传输距离远等特点。
1.DS18B20性能特点DS18B20的性能特点:①采用单总线专用技术,既可通过串行口线,也可通过其它I/O 口线与微机接口,无须经过其它变换电路,直接输出被测温度值(9位二进制数,含符号位),②测温范围为-55℃-+125℃,测量分辨率为0.0625℃,③内含64位经过激光修正的只读存储器ROM ,④适配各种单片机或系统机,⑤用户可分别设定各路温度的上、下限,⑥内含寄生电源。
2. DS18B20内部结构DS18B20内部结构主要由四部分组成:64位光刻ROM,温度传感器,非挥发的温度报警触发器TH 和TL,高速暂存器。
64位光刻ROM 是出厂前被光刻好的,它可以看作是该DS18B20的地址序列号。
64位ROM 结构图如图2所示。
不同的器件地址序列号不同。
DS18B20的管脚排列如图1所示。
图1 DS18B20引脚分布图图2 64位ROM 结构图 DS18B20高速暂存器共9个存储单元,如表所示:以12位转化为例说明温度高低字节存放形式及计算:12位转化后得到的12位数据,存储在18B20的两个高低两个8位的RAM 中,二进制中的前面5位是符号位。
数字温度计的设计与定标(终稿)
数字温度计的设计与定标(终稿)
数字温度计是一种温度测量工具,它通常可以支持各种量程及温度校准方式,提供较
高数据精度及较高测量稳定性,主要用于现场和实验室等环境温度控制环境下的测量。
本
文面向数字温度计的设计与定标,介绍其设计实现及定标过程。
首先采用标准温度源作为定标的依据。
温度源的精度可以通过表示形式来确定,例如
可以采用PT100和温度互感器作为标准测量元器件,它可以根据需要采取不同的量程。
定标过程分两步:误差检测和数据调整。
在这一步中首先将温度表测量温度源的温度,然后与实际已知的温度值进行比较,以确定数字温度计的误差。
其次,为了更准确的表示
温度,可以对非线性特性进行处理,系统中的热元件支持热桥与NTC阻抗来计算温度值的
恒定变化,以保证表示的温度准确显示。
此外,该系统还可以通过限制连接器的可用数量以节省成本,有助于减少线路设计时间,实现更加高效的调试。
另外,通过采用专用电路板设计,可以节约空间,使得该温度
测量系统变得更小而节能。
总之,本文介绍了数字温度计的设计与定标。
首先,采用标准温度源作为定标依据,
然后在定标步骤中进行温度测量,以及热效应的调整。
其次,通过采用专用连接器和电路
板设计等技术,以实现更加安全高效的温度测量。
数字温度计的设计与制作实验报告
数字温度计的设计与制作实验报告数字温度计的设计与制作实验报告一、实验目的本实验旨在通过设计与制作数字温度计,深入理解温度测量原理及实现方式,锻炼电路设计与验证实验能力。
二、实验原理数字温度计是通过测量热敏电阻(PTC或NTC)的电阻值来计算温度的。
当温度升高时,热敏电阻的电阻值也会升高,反之亦然。
该实验利用了热敏电阻的这一特性,通过将热敏电阻串联到一定电路中,便可测量到其电阻值的变化,从而得到温度值。
此外,数字显示器可以根据电路中的控制信号对电阻值进行计算和显示,以数字形式直观显示温度。
三、实验器材与耗材器材:热敏电阻、AD转换芯片、单片机、数字显示器、蜂鸣器、键盘、面包板、杜邦线等。
耗材:焊锡、铜线、电池、电阻等。
四、实验步骤1.接线。
将热敏电阻串联到一个电路中,连接到AD转换芯片的AIN0输入端,并将AIN1连接到参考电压源。
2.编写单片机程序。
通过查询AD转换器的输出值,计算出热敏电阻的电阻值,并转换为温度值。
然后将温度值显示在数字显示器上,并输出报警信号到蜂鸣器。
3.测试验证。
使用温度计紧贴测试物体表面,观察数字显示器和蜂鸣器的反应,逐步校准温度计并记录数据。
五、实验结果实验结果表明,数字温度计的设计与制作成功,能够准确地测量环境温度,并可进行实时数字化显示和警报功能。
六、实验心得在本次实验中,我们对数字温度计的设计及制作有了更加深入的理解和认识。
了解电路原理、编写单片机程序、进行电路调试与验证等一系列实验操作,培养了我们的理论知识和实践能力,加强了我们对电路与信号处理的认识和理解。
通过实验,我们认识到数字温度计在生产生活中的重要性,为未来的实际工作奠定了扎实的基础。
51单片机数字温度计的设计与实现方法论
51单片机数字温度计的设计与实现方法论1.引言温度计是一种常见的电子设备,用于测量温度并将其转化为数字显示。
本文将介绍在51单片机上设计与实现数字温度计的方法论。
2.硬件设计2.1 温度传感器选择温度传感器是数字温度计的核心组件,常用的温度传感器有热敏电阻、热敏电容和数字温度传感器等。
需要根据实际需求选择合适的温度传感器,并根据其特性调整硬件设计。
2.2 温度传感器接口电路设计温度传感器需要与51单片机进行通信,因此需要设计相应的接口电路来连接传感器与单片机。
根据传感器的通信协议选择合适的接口设计方案,例如I2C、SPI等。
2.3 数字显示模块选型数字温度计需要将测量到的温度以数字形式显示出来,因此需要选择合适的数码管、液晶显示屏或其他数字显示模块。
根据实际需求选择合适的显示模块,并考虑与51单片机的接口兼容性。
3.软件设计3.1 接口通信协议根据温度传感器的通信协议选择合适的接口设计方案,并在软件中实现相应的协议处理算法。
其中包括数据传输的初始化、发送和接收等功能。
3.2 温度测量与转换算法根据选用的温度传感器,编写软件算法将传感器采集到的模拟温度值转换为数字温度值。
具体算法根据传感器的特性来设计,可能需要使用模拟转数字转换技术、纠偏算法等。
3.3 数字温度值显示算法编写显示算法,在数码管、液晶屏或其他数字显示模块上将转换后的数字温度值进行显示。
可以根据具体需求设计温度的显示格式和精度。
4.系统实现4.1 硬件连接根据硬件设计的要求,按照相应的电路连接方式将温度传感器、51单片机和数字显示模块进行硬件连接。
4.2 软件编程利用汇编语言或高级编程语言(如C语言)编写相应的软件程序,分别实现接口通信、温度测量与转换、数字温度值显示等功能。
4.3 调试与测试对整个系统进行调试和测试,确保温度传感器能够准确采集温度、转换算法正确运行并实现数字温度值的显示等功能。
5.总结本文介绍了51单片机数字温度计的设计与实现方法论。
基于51单片机数字温度计系统设计与实现
基于51单片机数字温度计系统设计与实现数字温度计是一种可以测量环境温度并将结果以数字方式显示的设备。
在本次任务中,我们将基于51单片机设计和实现一个数字温度计系统。
本文将介绍数字温度计的原理、硬件设计、软件设计以及系统的实施过程。
首先,让我们来了解一下数字温度计的工作原理。
数字温度计通过传感器获取环境温度的模拟信号,然后将其转换为数字信号进行处理,并最终在数字显示器上显示温度值。
通常,我们使用的传感器是温度敏感电阻或数字温度传感器。
接下来,我们将讨论硬件设计。
在本次任务中,我们使用的是51单片机作为主控制器。
我们需要连接一个温度传感器来测量温度,并将温度值转换为数字信号。
同时,我们还需要连接一个数字显示器,用于显示温度值。
为了实现这些功能,我们需要设计一个电路板,并正确布局电子元件。
另外,我们还需要通过键盘或按钮来控制系统的操作,例如切换温度单位等。
在软件设计方面,我们需要编写程序来完成以下任务:首先,我们需要初始化51单片机的引脚和中断。
然后,我们需要编写一个温度转换的函数,将传感器输出的模拟信号转换为数字信号。
接下来,我们需要编写一个显示函数,将转换后的数字温度值显示在数字显示器上。
最后,我们还可以添加一些功能,例如设置温度单位(摄氏度或华氏度)和存储温度数据等。
在系统实施过程中,我们需要按照以下步骤进行操作:首先,进行硬件的连接和组装。
确保所有电子元件正确连接并固定在电路板上。
然后,烧录编写好的程序到51单片机中。
接下来,我们可以通过设置开关或按键来控制系统的操作。
最后,我们可以测试系统的功能和性能,确保数字温度计正常工作。
值得注意的是,在设计和实现数字温度计系统时,我们需要考虑一些问题。
例如,温度传感器的精度和响应时间,数字显示器的显示精度和分辨率,以及系统的稳定性和可靠性等。
通过合理的设计和选择高质量的元件,我们可以提高系统的性能和可靠性。
总结起来,本次任务中我们基于51单片机设计和实现了一个数字温度计系统。
数字温度计的设计与实现
1 引言随着人们生活水平的不断提高,数字化操纵日趋成为人们所追求的目标,它给人们带来了无以比拟的方便,数字温度计确实是其中一个典型的例子,它效劳于现代人工作、科研、生活的各个领域,已经成了一项比较成熟的技术,但为了知足人们不断提高的要求就需要从单片机技术入手,沿着数字化操纵、智能化操纵方向,走出一条新的道路。
温度计的进展超级迅速,原始的玻璃管温度计慢慢被此刻的热电阻温度计、热电偶温度计所取代,而热电偶和热电阻测出的一样都是电压,需依照必然的关系转换成与之对应的温度,对外部硬件支持要求高、反映速度慢、读数麻烦、测量精度不高、误差大[1]。
通过“数字温度计的设计与实现”的设计进程,结合所学课程和目前自动化仪表的一样设计要求、工程设计方式、开发及设计工具的利用方式,通过从电路图的设计、程序模块的编写到仿真调试,全方位的实践进程,锻炼学生分析、解决问题和实际动手操作的能力;积存体会,培育循序渐进、一丝不苟的工作态度和学知识并综合应用的能力。
本设计用集成数字温度传感器DS18B20设计并制作了一款基于AT89C52 的LCD显示数字温度计,要紧用于需要对温度实施实时监控的场所,或科研实验室利用,其电路简单、读数方便、易于实现、测温准确、本钱低、易利用,测量范围为0~99.9℃,当温度超出该范围时,蜂鸣器报警,能准确达到设计要求。
功能要求与设计方案1.1.1 功能要求数字式温度计要求测温范围在0到度,精度误差在0.1度之内,LCD显示屏直读显示,超出上下限蜂鸣器报警。
1.1.2 设计方案该系统利用AT89C52芯片操纵数字温度传感器DS18B20,对温度进行实时监测并显示,能够快速测量环境温度,并具有超出上下限温度报警功能。
传感器采纳的是美国DALLAS半导体公司推出的改良型智能温度传感器DS18B20作为检测组件,温度范围在-55~125℃之间,分辨率用户能够从9位到12位选择。
DS18B20是1-Wire式结构,即单总线器件,只需一个端口即可实现通信,外部的硬件电路简单,本钱低,易利用,能够很容易直接读取被测温度值,进行转换,知足设计要求。
数字温度计设计毕业设计(两篇)2024
数字温度计设计毕业设计(二)引言概述数字温度计是一种用于测量温度的电子设备,它通过传感器将温度转换为数字信号,然后显示在数字屏幕上。
本文将针对数字温度计的设计进行详细讨论,包括硬件设计和软件设计两个主要方面。
硬件设计部分将包括传感器选择、信号调理电路设计和数字显示设计;软件设计部分将包括嵌入式程序设计和用户界面设计。
通过本文的详细介绍,读者将能够了解到数字温度计的设计原理、设计流程和关键技术。
正文内容1. 传感器选择1.1 温度传感器类型1.2 温度传感器比较与选择1.3 温度传感器参数测试与校准2. 信号调理电路设计2.1 信号条件2.2 放大和滤波电路设计2.3 ADC(模数转换器)选型和使用3. 数字显示设计3.1 显示芯片选型和使用3.2 显示屏尺寸和分辨率选择3.3 显示内容设计和显示方式选择4. 嵌入式程序设计4.1 控制器选型和使用4.2 温度数据采集与处理4.3 温度数据存储和传输5. 用户界面设计5.1 按键和控制部分设计5.2 显示界面设计与实现5.3 温度单位与切换设计正文详细阐述1. 传感器选择1.1 温度传感器类型在数字温度计的设计中,可以选择多种温度传感器,包括热电偶、热敏电阻和半导体温度传感器等。
本文将比较各种传感器的特点和适用范围,从而选择最合适的传感器。
1.2 温度传感器比较与选择通过比较热电偶、热敏电阻和半导体温度传感器的精度、响应时间和成本等特点,结合设计需求和成本预算,选择最佳的温度传感器。
1.3 温度传感器参数测试与校准为了确保传感器的准确性,需要对其参数进行测试和校准。
本文将介绍传感器参数测试的方法和仪器,以及校准的步骤和标准。
2. 信号调理电路设计2.1 信号条件传感器输出的信号需要进行电平调整和滤波等处理,以便进一步处理和显示。
本文将介绍信号调理的基本原理和设计方法。
2.2 放大和滤波电路设计为了放大和滤波传感器输出的微弱信号,本文将介绍放大和滤波电路的设计原理和实现方法,包括运放、滤波器和滤波器的选型和参数设置。
基于51单片机数字温度计的设计与实现
基于51单片机数字温度计的设计与实现数字温度计是一种能够测量环境温度并显示数值的设备。
基于51单片机的数字温度计设计与实现是指利用51单片机作为核心,结合温度传感器和其他辅助电路,实现一个能够测量温度并通过数码管显示温度数值的系统。
本文将从硬件设计和软件实现两个方面介绍基于51单片机数字温度计的具体设计与实现过程。
一、硬件设计1. 温度传感器选取在设计数字温度计时,首先需要选取合适的温度传感器。
市面上常用的温度传感器有热敏电阻、功率型温度传感器(如PT100)、数字温度传感器(如DS18B20)等。
根据设计需求和成本考虑,我们选择使用DS18B20数字温度传感器。
2. 电路设计基于51单片机的数字温度计的电路设计主要包括单片机与温度传感器的连接、数码管显示电路和电源电路。
(1)单片机与温度传感器的连接在电路中将51单片机与DS18B20数字温度传感器相连接,可采用一线总线的方式。
通过引脚的连接,实现单片机对温度传感器的读取控制。
(2)数码管显示电路为了能够显示温度数值,我们需要设计一个数码管显示电路。
根据温度传感器测得的温度值,通过数字转换和数码管驱动,将温度数值显示在数码管上。
(3)电源电路电源电路采用稳压电源设计,保证整个系统的稳定供电。
根据实际需求选择合适的电源电压,并添加滤波电容和稳压芯片,以稳定电源输出。
3. PCB设计根据电路设计的原理图,进行PCB设计。
根据电路元件的布局和连线的走向,绘制PCB板的线路、元件和连接之间。
二、软件实现1. 单片机的编程语言选择对于基于51单片机的数字温度计的软件实现,我们可以选择汇编语言或者C语言进行编程。
汇编语言的效率高,但编写难度大;C语言的可读性好,开发效率高。
根据实际情况,我们选择使用C语言进行编程。
2. 温度传感器数据获取利用单片机的IO口与温度传感器相连,通过一线总线协议进行数据的读取。
根据温度传感器的通信规则,编写相应的代码实现数据的读取。
基于51单片机数字温度计设计与实现
基于51单片机数字温度计设计与实现数字温度计是一种常见的电子仪器,用于测量和显示温度。
本文将介绍如何基于51单片机设计和实现一个数字温度计。
首先,我们需要了解51单片机的基本原理和工作方式。
51单片机是一款广泛应用于嵌入式系统中的微控制器,具有低成本、易编程、可扩展等特点。
它由中央处理器、存储器、输入输出端口和定时器等组成,可以实现各种功能。
接下来,我们可以开始设计数字温度计的硬件部分。
首先,我们需要一个温度传感器,如DS18B20数字温度传感器。
该传感器具有高精度和数字输出的特点,可以直接与51单片机进行通信。
然后,将传感器与51单片机的引脚相连,通过读取传感器输出的温度值,即可得到实时的温度数据。
为了方便用户查看温度,我们可以通过数码管或LCD显示屏显示温度值。
数码管是一种7段显示器件,可以显示数字0-9的字符。
我们可以通过将温度值拆分成各个位数,然后将对应的数字发送到数码管上,实现温度的显示。
此外,我们还可以为温度计添加一些附加功能。
例如,可以通过按键切换温度的单位,从摄氏度切换到华氏度。
还可以设置温度报警功能,当温度超过一定阈值时,触发蜂鸣器或LED灯进行报警。
在软件设计方面,我们需要编写51单片机的固件程序来实现温度计的功能。
首先,我们需要初始化51单片机的引脚和定时器。
然后,可以设置一个定时器中断,用于定时读取温度传感器的数值。
在定时器中断的处理函数中,读取温度传感器的数值,并将其转换为摄氏度或华氏度,然后发送到数码管或LCD显示屏上。
此外,我们还可以添加一些交互功能,例如按键实现温度单位切换或报警阈值的设置功能。
通过按键检测的方式,可以在主循环中判断按键的按下和释放,并根据按键的状态进行相应的操作。
最后,我们需要将编写好的固件程序下载到51单片机的存储器中。
可以使用ISP编程器或者串口下载方式进行下载。
下载完成后,将51单片机与硬件连接好,就可以通过操作按键和观察数码管或LCD显示屏来实现数字温度计的功能了。
基于数电 数字温度计课程设计(附答辩PPT)
数字电子课程设计题目:数字温度计的设计与实现专业:班级:姓名:学号:指导老师:小组成员:成绩:数字温度计的设计与实现摘要数字温度计采用进口芯片组装精度高、高稳定性,误差≤0.5%,内电源、微功耗、不锈钢外壳,防护坚固,美观精致。
数字温度计采用进口高精度、低温漂、超低功耗集成电路和宽温型液晶显示器,内置高能量电池连续工作≥5年无需敷设供电电缆,是一种精度高、稳定性好、适用性极强的新型现场温度显示仪。
是传统现场指针双金属温度计的理想替代产品,广泛应用于各类工矿企业,大专院校,科研院所。
温度数我们日常生产和生活中实时在接触到的物理量,但是它是看不到的,仅凭感觉只能感觉到大概的温度值,传统的指针式的温度计虽然能指示温度,但是精度低,使用不够方便,显示不够直观,数字温度计的出现可以让人们直观的了解自己想知道的温度到底是多少度。
关键词:数字温度计;温度传感器;3位半的ADC转换芯片;报警;共阳极发光二极管显示屏;电压反转芯片Design and realization of digital thermometerAbstractDigital thermometers imported chips assembled with high precision, high stability and error ≤ 0.5%, power, micropower, stainless steel case, protective solid, beautiful and refined. Digital thermometers imported high precision and low temperature drift, ultra low-power integrated circuits and wide temperature LCD, built-in high energy battery power ≥ 5 years of continuous service without laying cable, is a high precision, good stability, strong applicability of new in-situ temperature indicator. Is the ideal alternative to traditional pointer Bimetal Thermometer products, widely used in various industrial and mining enterprises, universities, scientific research institutes. Temperature number we daily production and life in the real-time in contact to of physical volume, but it is see not to of, only by feels only feels to probably of temperature value, traditional of pointer type of thermometer while can indicates temperature, but precision low, using enough convenient, displayed enough intuitive, digital thermometer of appeared can let people intuitive of understanding themselves wanted to knows of temperature what is how many degrees.Keywords:digital thermometer,temperature transducer,Three and a half of the ADC conversion chip,alarm,A total of anode led display screen,Reverse voltage chip目录第1章绪论 (1)1.1 课题研究的目的 (1)1.2 设计任务与要求 (1)1.2.1数字温度计的设计与实现任务 (1)1.2.2 数字温度计的设计要求 (1)第2章数字温度计电路的总体设计 (2)2.1 方案设计 (2)2.2电路的总体设计 (3)2.2.1 温度传感电路设计 (3)2.2.2高温预警系统设计 (4)2.2.3A/D转换与数码管显示设计 (5)2.2.4电压反转电路设计 (6)2.2.5 整体电路图 (8)2.2.6 零件清单 (8)第3章设计功能仿真 (12)温度传感器模块仿真 (12)A/D转换模块仿真测试及显示模块仿真测试 (12)心得体会 (15)参考文献 (16)附录实物图 (23)第一章绪论1.1 课题研究的目的目前温度计的发展很快,从原始的玻璃温度计管温度计发展到了现在的热电阻温度计、热电偶温度计、数字温度计、电子温度计等等。
数字温度计设计课程设计
数字温度计设计课程设计引言数字温度计是一种用于测量温度的设备,它将温度转换为数字信号来表示。
在本课程设计中,我们将探讨数字温度计的设计原理和实现方法。
通过本设计,学生将能够理解数字温度计的工作原理,掌握数字信号的转换方式,并通过实际搭建一个数字温度计的电路来锻炼实践能力。
设计目标本课程设计旨在帮助学生达到以下目标:1.理解数字温度计的基本原理和工作机制;2.掌握数字信号的转换方式;3.学会使用模拟传感器完成温度测量;4.能够使用电路和编程工具实现数字温度计。
设计步骤步骤一:理解数字温度计的原理在本步骤中,学生将学习数字温度计的基本原理和工作机制。
他们需要学习关于传感器、模拟信号和数字信号的知识。
可以使用实验示意图、图表和实际温度计来帮助学生理解。
步骤二:选择传感器和电路元件在本步骤中,学生将学习如何选择合适的传感器和电路元件来实现数字温度计。
他们需要学习传感器的种类和特性,并选择合适的传感器来测量温度。
此外,学生还需要选择合适的电路元件来转换模拟信号为数字信号。
步骤三:搭建电路在本步骤中,学生将使用所选的传感器和电路元件来搭建数字温度计的电路。
他们需要按照电路图纸的指导,正确地连接电路,并确认电路的正常工作。
步骤四:测试和校准在本步骤中,学生将测试他们搭建的数字温度计的性能和准确性。
他们可以使用已知温度源来测试数字温度计的响应和精度,并根据需要调整传感器和电路的参数。
步骤五:实现数字温度显示在本步骤中,学生将使用数字信号转换器和显示设备来实现数字温度的显示。
他们需要学习如何将数字信号转换为合适的格式,并将其显示在合适的设备上。
步骤六:编写文档和报告在本步骤中,学生需要撰写关于数字温度计设计的文档和实验报告。
他们需要描述设计的原理、电路图纸、实验步骤和测试结果,并对设计中遇到的问题和解决方法进行讨论。
实验工具和材料•Arduino Uno开发板•温度传感器•电阻、电容和电路连接线•电脑和编程软件•调试工具:万用表、示波器等总结通过本课程设计,学生将能够理解数字温度计的工作原理,掌握数字信号的转换方式,并通过实际搭建一个数字温度计的电路来锻炼实践能力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基于单片机的数字温度计的设计摘要随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术。
本文将介绍一种基于单片机控制的数字温度计,就是用单片机实现温度测量,传统的温度检测大多以热敏电阻为温度传感器,但热敏电阻的可靠性差,测量温度准确率低,而且必须经过专门的接口电路转换成数字信号才能由单片机进行处理。
本次采用DS18B20数字温度传感器来实现基于AT89S52单片机的数字温度计的设计,这种设计需要用到A/D转换电路,感温电路比较麻烦。
其输出温度采用数字显示,主要用于对测温比较准确的场所,或科研实验室使用,该设计控制器采用单片机8051,温度传感器采用DS18B20,以边沿D触发器7474、移位寄存器74LS164和共阴极LED数码管为主体设计了一款简易数字式温度计实现温度显示。
关键词:数字温度计;单片机;传感器;DS18B20;目录第一章绪论 (1)第二章数字温度计的总体设计2.1总体设计方案 22.2 重要性能指标 (2)2.3 系统主要模块方案论证与比较 (2)2.3.1控制模块的选用 (2)2.4 设计要求和实现的功能 (3)3.1 主要芯片介绍 (4)3.1.1 AT89S52的介绍 (4)3.2 温度检测模块 (7)3.2.1 DS18B20的简介 (7)3.2.2 DS18B20的引脚功能 (9)3.2.3 DS18B20的两个表格 (10)3.2.4 DS18B20的测温原理 (11)3.2.5 DS18B20的时序设置 (12)3.2.6 DS18B20硬件电路设计 (13)4.1 系统主程序 (15)4.3 计算温度子程序流程图 (16)4.4 显示数据子程序 (17)4.5 系统初始化程序 (17)4.6 温度转换段码子程序 (18)5.1 Proteus软件介绍 (20)5.1.2 工作界面 (21)5.2 仿真结果图 (22)参考文献 (26)第一章绪论单片机的诞生标志着计算机正式形成了通用计算机系统和嵌入式计算机系统两个分支。
通用计算机系统主要用于海量高速数值运算,不必兼顾控制功能,其数据总线的宽度不断更新,从8位、16位迅速过渡到32位、64位,并且不断提高运算速度和完善通用操作系统,以突出其高速海量数值运算的能力,在数据处理、模拟仿真、人工智能、图像处理、多媒体、网络通信中得到了广泛应用;单片机作为最典型的嵌入式系统,由于其微小的体积和极低的成本,广泛应用于家用电器、机器人、仪器仪表、工业控制单元、办公自动化设备以及通信产品中,成为现代电子系统中最重要的智能化工具。
因此,单片机的出现大大促进了现代计算机技术的飞速发展,成为近代计算机技术发展史上一个重要里程碑。
随着人们生活水平的不断提高,单片机控制无疑是人们追求的目标之一,它所给人带来的方便也是不可否定的,其中数字温度计就是一个典型的例子,但人们对它的要求越来越高,要为现代人工作、科研、生活、提供更好的更方便的设施就需要从数单片机技术入手,一切向着数字化控制,智能化控制方向发展。
随着时代的进步和发展,单片机技术已经普及到我们生活,工作,科研,各个领域,已经成为一种比较成熟的技术,单片机已经在测控领域中获得了广泛的应用。
本次设计的数字温度计与传统的温度计相比,具有读数方便,价格低廉,测温范围广,测温准确等优点,其输出温度采用数字显示,主要用于对测温比较准确的场所或科研实验室使用,该设计控制器使用单片机AT89C51,测温传感器使用DS18B20,用3位共阴极LED数码管以串口传送数据,实现温度显示,能准确达到以上要求。
第二章数字温度计的总体设计2.1总体设计方案本设计是测温电路,使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度显示出来温度是非电量模拟信号,数字显示温度就必须将这一非电量信号转换成电量(电压或电流),然后将模拟电信号经A/D 转换器转换成数字信号,最后经译码显示器显示温度值。
由论述可知,所设计的这种温度计的功能是传统的物理温度计无法完成的。
在分析之后决定采用单片机8051为核心,加上AD590测温电路、ADC模数转换电路、4位温度数据显示电路以及外围电源、时钟电路等组成。
2.2 重要性能指标本电路旨在将AD590(0℃时为273.2uA)因温度变化,导致电流变化(1uA / ℃),经OPA转换为电压变化输入ADC0804,输入电压Vin(0-5V之间)经AD转换后,其值由8751处理,最后显示在D4,D3,D2,D1共4各七段显示器。
该温度计所显示测量范围0℃-100℃。
2.3 系统主要模块方案论证与比较2.3.1控制模块的选用方案一:采用ATMEL公司的AT89C51单片机作为控制器。
单片机运算能力强,软件编程灵活,自由度大。
AT89C51具有低电压供电和体积小等特点,四个端口只需要两个口就能满足电路系统的设计需要,很适合便携手持式产品的设计使用系统可用二节电池供电。
方案二:采用FPGA(现场可编辑门列阵)作为系统主控制器。
FPGA可以实现各种复杂的逻辑功能,规模大,集成度高,体积小,稳定性好,并且可利用EDA软件进行仿真和调试。
FPGA采用并行工作方式,提高了系统的处理速度,常用于大规模实时性要求较高的系统。
方案比较,以上两种方案中,方案一的四个端口只需要两个就能满足设计需要,资源比较适中。
而方案二将使FPGA的高速处理能力得不到充分发挥,故选择方案一。
2.3.2温度测量模块选用方案一:测温电路可以使用热敏电阻之类的器件利用其感温效应,在将随被测温度变化的电压或电流采集过来,进行A/D转换后,就可以用单片机进行数据的处理,在显示电路上,就可以将被测温度值显示出来,但这种设计需要用到A/D转换电路,感温电路比较复杂、成本高。
方案二:进而考虑到用温度传感器,在单片机电路设计中,大多都是使用传感器,这是非常容易想到的,所以可以采用一只温度传感器DS18B20,此传感器,可以很容易直接读取被测温度值,进行转换,就可以满足设计要求。
方案比较,从以上两种方案,很容易看出,方案一中感温电路比较麻烦,而方案二中电路比较简单,软件设计也比较简单,故采用方案二。
2.4 设计要求和实现的功能1.用温度传感器测试温度,用6位LED数码管显示温度;2.测试温度的范围为-55~99℃,温度误差为±1℃;3.能进行仿真第三章硬件电路设计3.1 主要芯片介绍3.1.1 AT89S52的介绍选用的AT89S52与同系列的AT89C51在功能上有明显的提高,最突出是的可以实现在线的编程。
用于实现系统的总的控制。
其主要功能列举如下:(1)为一般控制应用的 8 位单片机(2)晶片内部具有时钟振荡器(传统最高工作频率可至 33MHz)(3)内部程式存储器(ROM)为 4KB(4)内部数据存储器(RAM)为 128B(5)外部程序存储器可扩充至 64KB(6)外部数据存储器可扩充至 64KB(7)32 条双向输入输出线,且每条均单独做 I/O 的控制(8)5 个中断向量源(9)2 组独立的 16 位定时器(10)1 个全双工串行通信端口(12)8751 及 8752 单芯片具有数据保密的功能(13)单芯片提供位逻辑运算指令3.1.2 AT89S52各引脚功能介绍VCC:ATAT89S52 电源正端输入,接+5V。
VSS:电源地端。
XTAL1:单芯片系统时钟的反向放大器输入端XTAL2:系统时钟的反向放大器输出端,一般在设计上只要在 XTAL1 和 XTAL2 上接上一只石英振荡晶体系统就可以动作了,此外可以在两个引脚与地之间加入一个 20PF 的小电容,可以使系统更稳定,避免噪声干扰而死机。
RESET:AT89S52的重置引脚,高电平动作,当要对晶片重置时,只要对此引脚电平提升至高电平并保持两个机器周期以上的时间,AT89S52便能完成系统重置的各项动作,使得内部特殊功能寄存器之内容均被设成已知状态,并且至地址0000H处开始读入程序代码而执行程序。
EA/Vpp:"EA"为英文"External Access"的缩写,表示存取外部程序代码之意,低电平动作,也就是说当此引脚接低电平后,系统会取用外部的程序代码(存于外部EPROM 中)来执行程序。
因此在8031及8032中,EA引脚必须接低电平,因为其内部无程序存储器空间。
如果是使用 8751 内部程序空间时,此引脚要接成高电平。
此外,在将程序代码烧录至8751内部EPROM时,可以利用此引脚来输入21V的烧录高压(Vpp)。
ALE/PROG:ALE是英文"Address Latch Enable"的缩写,表示地址锁存器启用信号。
ATAT89S51可以利用这支引脚来触发外部的8位锁存器(如74LS373),将端口0的地址总线(A0~A7)锁进锁存器中,因为ATAT89S51是以多工的方式送出地址及数据。
平时在程序执行时ALE引脚的输出频率约是系统工作频率的1/6,因此可以用来驱动其他周边晶片的时基输入。
此外在烧录8751程序代码时,此引脚会被当成程序规划的特殊功能来使用。
PSEN:此为"Program Store Enable"的缩写,其意为程序储存启用,当8051被设成为读取外部程序代码工作模式时(EA=0),会送出此信号以便取得程序代码,通常这支脚是接到EPROM的OE脚。
ATAT89S51可以利用PSEN及RD引脚分别启用存在外部的RAM与EPROM,使得数据存储器与程序存储器可以合并在一起而共用64K的定址范围。
PORT0(P0.0~P0.7):端口0是一个8位宽的开路电极(Open Drain)双向输出入端口,共有8个位,P0.0表示位0,P0.1表示位1,依此类推。
其他三个I/O端口(P1、P2、P3)则不具有此电路组态,而是内部有一提升电路,P0在当作I/O用时可以推动8个LS的TTL 负载。
如果当EA引脚为低电平时(即取用外部程序代码或数据存储器),P0就以多工方式提供地址总线(A0~A7)及数据总线(D0~D7)。
设计者必须外加一个锁存器将端口0送出的地址锁住成为A0~A7,再配合端口2所送出的A8~A15合成一组完整的16位地址总线,而定位地址到64K的外部存储器空间。
PORT2(P2.0~P2.7):端口2是具有内部提升电路的双向I/O端口,每一个引脚可以推动4个LS的TTL 负载,若将端口2的输出设为高电平时,此端口便能当成输入端口来使用。
P2除了当作一般I/O端口使用外,若是在ATAT89S52扩充外接程序存储器或数据存储器时,也提供地址总线的高字节A8~A15,这个时候P2便不能当作I/O来使用了。