直流电动机闭环调速试验
双闭环直流电机调速系统的SIMULINK仿真实验
双闭环直流电机调速系统的SIMULINK仿真实验魏小景张晓娇刘姣(自动化0602班)摘要:采用工程设计方法对双闭环直流调速系统进行设计,选择调节器结构,进行参数的计算和校验;给出系统动态结构图,建立起动、抗负载扰动的Matlab Simulink 仿真模型.分析系统起动的转速和电流的仿真波形 ,并进行调试 ,使双闭环直流调速系统趋于合理与完善。
关键词:双闭环调速系统;调节器;Matlab Simulink建模仿真1.引言双闭环直流调速系统是目前直流调速系统中的主流设备,具有调速范围宽、平稳性好、稳速精度高等优点,在理论和实践方面都是比较成熟的系统,在拖动领域中发挥着极其重要的作用。
由于直流电机双闭环调速是各种电机调速系统的基础,直流电机双闭环调速系统的工程设计主要是设计两个调节器。
调节器的设计一般包括两个方面:第一选择调节器的结构,以确保系统稳定,同时满足所需的稳态精度. 第二选择调节器的参数,以满足动态性能指标。
本文就直流电机调速进行了较系统的研究,从直流电机的基本特性到单闭环调速系统,然后进行双闭环直流电机设计方法研究,最后用实际系统进行工程设计,并采用Matlab/Sim-ulink进行仿真。
2.基本原理和系统建模为了实现转速和电流两种负反馈分别起作用,在系统中设置了两个调节器,分别调节转速和电流,二者之间实行串联连接. 把转速调节器ASR 的输出当作电流调节器ACR 的输入,再用电流调节器的输出去控制晶闸管整流器的触发装置GT ,TA为电流传感器,TG 为测速发电机. 从闭环结构上看,电流调节环在里面,叫做内环,转速调节环在外边叫做外环,这样就形了转速、图1 直流电机双闭环调速系统的动态结构图3.系统设计调速系统的基本数据如下:晶闸管三相桥式全控整流电路供电的双闭环直流调速系统, 系统参数:直流电动机:220,13.6,1480/m in,0.131/(/m in)e V A r C V r =,允许过载倍数1.5λ=;晶闸管装置:76s K =;电枢回路总电阻: 6.58R =Ω;时间常数:0.018l T s =,0.25m T s =;反馈系数:0.00337/(/min)V r α=,0.4/V A β=;反馈滤波时间常数:0.005oi T s =,0.005on T s =。
实验一 不可逆单闭环直流调速系统静特性的研究
南昌大学实验报告学生姓名:学号:专业班级:自动化121班实验类型:■验证□综合□设计□创新实验日期:实验成绩:实验一不可逆单闭环直流调速系统静特性的研究一.实验目的1.研究晶闸管直流电动机调速系统在反馈控制下的工作。
2.研究直流调速系统中速度调节器ASR 的工作及其对系统静特性的影响。
3.学习反馈控制系统的调试技术。
二.预习要求1.了解速度调节器在比例工作与比例—积分工作时的输入—输出特性。
2.弄清不可逆单闭环直流调速系统的工作原理。
三.实验线路及原理见图6-7。
四.实验设备及仪表1.MCL 系列教学实验台主控制屏。
2.MCL—18 组件(适合MCL—Ⅱ)或MCL—31 组件(适合MCL—Ⅲ)。
3.MCL—33(A)组件或MCL—53 组件。
4.MEL-11 挂箱5.MEL—03 三相可调电阻(或自配滑线变阻器)。
6.电机导轨及测速发电机、直流发电机M01(或电机导轨及测功机、MEL—13 组件)。
7.直流电动机M03。
8.双踪示波器。
五.注意事项1.直流电动机工作前,必须先加上直流激磁。
2.接入ASR 构成转速负反馈时,为了防止振荡,可预先把ASR 的RP3 电位器逆时针旋到底,使调节器放大倍数最小,同时,ASR 的“5”、“6”端接入可调电容(预置7μF)。
3.测取静特性时,须注意主电路电流不许超过电机的额定值(1A)。
4.三相主电源连线时需注意,不可换错相序。
5.电源开关闭合时,过流保护发光二极管可能会亮,只需按下对应的复位开关SB1 即可正常工作。
6.系统开环连接时,不允许突加给定信号U g 起动电机。
7.起动电机时,需把MEL-13 的测功机加载旋钮逆时针旋到底,以免带负载起动。
8.改变接线时,必须先按下主控制屏总电源开关的“断开”红色按钮,同时使系统的给定为零。
9.双踪示波器的两个探头地线通过示波器外壳短接,故在使用时,必须使两探头的地线同电位(只用一根地线即可),以免造成短路事故。
转速闭环直流调速系统
第一章 转速闭环直流调速系统第一节 闭环调速系统的组成及其静特性1.1.1绪论在反馈控制的闭环直流调速系统中,与电动机同轴安装一台测速发电机 TG ,从而引出与被调量转速成正比的负反馈电压U n ,与给定电压 U *n 相比较后,得到转速偏差电压 DU n ,经过放大器 A ,产生电力电子变换器UPE 的控制电压U c ,用以控制电动机转速 n 。
比较一下开环系统的机械特性和闭环系统的静特性,就能清楚地看出反馈闭环控制的优越性。
如果断开反馈回路,则上述系统的开环机械特性为(1·1)(1·2)比较1·1和1·2不难得到以下结论(1)闭环系统静性可以比开环系统机械特性硬得多。
在同样的负载扰动下,两者的转速降落分别为l l n n K C RI K C U K K n c c 0e d e *n s p )1()1(∆-=+-+= op op 0e d e *n s p e d 0d n n C RI C U K K C R I U n ∆-=-=-=它们的关系 (1·3)(2)如果比较同一的开环和闭环系统,则闭环系统的静差率要小得多。
闭环系统和开环系统的静差率分别为当 n 0op =n 0c l 时(1·4)(3)当要求的静差率一定时,闭环系统可以大大提高调速范围。
如果电动机的最高转速都是n max ;而对最低速静差率的要求相同,那么开环时, 闭环时,再考虑式(1-3),得(1·5) (4)要取得上述三项优势,闭环系统必须设置放大器上述三项优点若要有效,都取决于一点,即 K 要足够大,因此必须设置放大器。
把以上四点概括起来,可得下述结论:闭环调速系统可以获得比开环调速系统硬得多的稳态特性,从而在保证一定静差率的要求下,能够提高调速范围,为此所需付出的代价是,须增设电压放大器以及检测与反馈装置。
由此看来,闭环系统能够减少稳态速降的实质在于它的自动调节作用,在于它能随着负载的变化而相应地改变电枢电压,以补偿电枢回路电阻压降。
双闭环直流电动机调速系统
04
系统软件设计
控制算法设计
算法选择
算法实现
根据系统需求,选择合适的控制算法, 如PID控制、模糊控制等。
将控制算法用编程语言实现,并集成 到系统中。
算法参数整定
根据系统性能指标,对控制算法的参 数进行整定,以实现最优控制效果。
调节器设计
调节器类型选择
根据系统需求,选择合适 的调节器类型,如PI调节 器、PID调节器等。
在不同负载和干扰条件下测试系统的性能, 验证系统的鲁棒性。
06
结论与展望
工作总结
针对系统中的关键问题,如电流和速度的动态 调节、超调抑制等,进行了深入研究和改进。
针对实际应用中可能出现的各种干扰和不确定性因素 ,进行了充分的考虑和实验验证,提高了系统的鲁棒
性和适应性。
实现了双闭环直流电动机调速系统的优化设计 ,提高了系统的稳定性和动态响应性能。
通过对实验数据的分析和比较,验证了所设计的 双闭环直流电动机调速系统的可行性和优越性。
研究展望
进一步研究双闭环直流电动机 调速系统的控制策略,提高系
统的动态性能和稳定性。
针对实际应用中的复杂环境和 工况,开展更为广泛和深入的 实验研究,验证系统的可靠性
和实用性。
探索双闭环直流电动机调速系 统在智能制造、机器人等领域 的应用前景,为相关领域的发 展提供技术支持和解决方案。
功率驱动模块
总结词
控制直流电动机的启动、停止和方向。
详细描述
功率驱动模块是双闭环直流电动机调速系统的核心部分,负责控制直流电动机的启动、停止和方向。它通常 由电力电子器件(如晶体管、可控硅等)组成,通过控制电动机的输入电压或电流来实现对电动机的速度和 方向的控制。功率驱动模块还需要具备过流保护、过压保护和欠压保护等功能,以确保电动机和整个系统的
直流调速系统实验指导书
直流调速系统实验指导书江西理工大学应用科学学院机电工程系2007年10月目录实验一晶闸管直流调速系统参数和环节特性的测定 (1)实验二晶闸管直流调速系统主要单元调试 (6)实验三不可逆单闭环直流调速系统静特性的研究 (9)实验四双闭环晶闸管不可逆直流调速系统 (13)实验五逻辑无环流可逆直流调速系统 (18)实验六双闭环可逆直流脉宽调速系统 (22)实验一晶闸管直流调速系统参数和环节特性的测定一.实验目的1.了解电力电子及电气传动教学实验台的结构及布线情况。
2.熟悉晶闸管直流调速系统的组成及其基本结构。
3.掌握晶闸管直流调速系统参数及反馈环节测定方法。
二.实验内容1.测定晶闸管直流调速系统主电路电阻R2.测定晶闸管直流调速系统主电路电感L3.测定直流电动机的飞轮惯量GD24.测定晶闸管直流调速系统主电路电磁时间常数T d5.测定直流电动机电势常数C e和转矩常数C M6.测定晶闸管直流调速系统机电时间常数T M三.实验系统组成和工作原理晶闸管直流调速系统由三相调压器,晶闸管整流调速装置,平波电抗器,电动机——发电机组等组成。
本实验中,整流装置的主电路为三相桥式电路,控制回路可直接由给定电压Ug作为触发器的移相控制电压,改变U g的大小即可改变控制角,从而获得可调的直流电压和转速,以满足实验要求。
四.实验设备及仪器1.教学实验台主控制屏。
2.NMCL—33组件3.NMEL—03组件4.电机导轨及测速发电机(或光电编码器)5.直流电动机M036.双踪示波器7.万用表五.注意事项1.由于实验时装置处于开环状态,电流和电压可能有波动,可取平均读数。
2.为防止电枢过大电流冲击,每次增加U g须缓慢,且每次起动电动机前给定电位器应调回零位,以防过流。
3.电机堵转时,大电流测量的时间要短,以防电机过热。
六.实验方法1.电枢回路电阻R的测定电枢回路的总电阻R包括电机的电枢电阻R a,平波电抗器的直流电阻R L和整流装置的内阻R n,即R=R a+R L+R n为测出晶闸管整流装置的电源内阻,可采用伏安比较法来测定电阻,其实验线路如图1-1所示。
直流电机闭环调速的原理
直流电机闭环调速的原理
直流电机闭环调速的原理:
1. 采用速度反馈来调节电机速度。
2. 设置一个给定速度值,和电机实际速度信号比较,得到速度偏差。
3. 速度偏差经过PID 控制器运算,输出调节相电压的控制量。
4. 相电压的大小决定电机端电动势和电流,进而调节电机速度。
5. 当速度偏差为零时,表示电机达到给定速度,完成闭环控制。
6. 采用磁powder制动或增益调节来改变速度稳定性。
7. 闭环控制使电机调速更准确,不受负载影响。
8. 典型的闭环控制方式有增量式PID 控制和位置式PID 控制。
9. 还可以采用模糊控制、神经网络控制等方式进行闭环调速。
10. 优化控制参数,设计控制器,可以实现高精度的闭环转速控制。
综上,闭环调速利用反馈实现给定速度的准确跟踪,是直流电机调速的有效方法。
“双闭环控制直流电动机调速系统”数字仿真实验
“双闭环控制直流电动机调速系统”数字仿真实验24、SIMULINK建模我们借助SIMULINK,根据上节理论计算得到的参数,可得双闭环调速系统的动态结构图如下所示:图7 双闭环调速系统的动态结构图(1)系统动态结构的simulink建模①启动计算机,进入MATLAB系统检查计算机电源是否已经连接,插座开关是否打开,确定计算机已接通,按下计算机电压按钮,打开显示器开关,启动计算机。
打开Windows开始菜单,选择程序,选择MATAB6.5.1,选择并点击MATAB6.5.1,启动MATAB程序,如图8,点击后得到下图9:图8选择MATAB程序图9 MATAB6.5.1界面点击smulink 中的continuous,选择transfor Fc n(传递函数)就可以编辑系统的传递函数模型了,如图10。
图10 smulink界面②系统设置选择smulink界面左上角的白色图标既建立了一个新的simulink模型,系统地仿真与验证将在这个新模型中完成,可以看到在simulink目录下还有很多的子目录,里面有许多我们这个仿真实验中要用的模块,这里不再一一介绍,自介绍最重要的传递函数模块的设置,其他所需模块参数的摄制过程与之类似。
将transfor Fc n(传递函数)模块用鼠标左键拖入新模型后双击transfor Fc n(传递函数)模块得到图11,开始编辑此模块的属性。
图11参数表与模型建立参数对话栏第一和第二项就是我们需要设置的传递函数的分子与分母,如我们需要设置电流环的控制器的传递函数:0.01810.0181()0.2920.0180.062ACR s s W s s s++=⋅=,这在对话栏的第一栏写如:[0.018 1],第二栏为:[0.062 0]。
点击OK ,参数设置完成。
如图12。
图12传递函数参数设置设置完所有模块的参数后将模块连接起来既得到图7所示的系统仿真模型。
在这里需要注意的是,当我们按照理论设计的仿真模型得到的实验波形与理想的波形有很大的出入。
单闭环不可逆直流调速系统实验
单闭环不可逆直流调速系统实验
单闭环不可逆直流调速系统实验是一种用于直流电机控制的原型实验系统,旨在教授学生如何使用基于控制理论的方法来调节直流电机的速度并实现不同的功能要求。
该实验系统的基本结构包括直流电动机、电源、可编程随机逻辑控制器和信号调节器等几个部分,其整体系统设计具有紧密性和高效性。
主要研究内容包括如何进行直流电机的速度控制,如何获取直流电机的信息量和如何实现不同的控制算法等方面。
在进行实验之前,首先确定实验要求和目的,然后根据具体的实验内容选择不同的实验设备和工具。
在实验开始之前,需要进行一些准备工作,例如接线、开机和设置基本参数等。
在实验进行过程中,需要注意事项包括安全性、操作准确性和数据的通用性。
在实验结束之后,需要对实验数据进行处理和分析,根据实验结果进行总结和归纳,并对实验过程中的问题进行分析,并总结出实验中的经验和教训。
在单闭环不可逆直流调速系统实验中,学生们将会学习到许多重要的概念和方法,包括控制系统的基本理论、信号调节器的使用方法、可编程随机逻辑控制器的设计和实现等方面。
这些知识将使他们在现实世界中的工程问题中更加技术熟练和完善。
直流电机调速系统实验
第一章直流电机调速系统实验实验一单闭环不可逆直流调速系统实验一、实验目的(1)了解单闭环直流调速系统的原理、组成及各主要单元部件的原理。
(2)掌握晶闸管直流调速系统的一般调试过程。
(3)认识闭环反馈控制系统的基本特性。
二、实验所需挂件及附件三、实验线路及原理为了提高直流调速系统的动静态性能指标,通常采用闭环控制系统(包括单闭环系统和多闭环系统)。
对调速指标要求不高的场合,采用单闭环系统,而对调速指标较高的则采用多闭环系统。
按反馈的方式不同可分为转速反馈,电流反馈,电压反馈等。
在单闭环系统中,转速单闭环使用较多。
在本装置中,转速单闭环实验是将反映转速变化的电压信号作为反馈信号,经“转速变换”后接到“速度调节器”的输入端,与“给定”的电压相比较经放大后,得到移相控制电压U ct,用作控制整流桥的“触发电路”,触发脉冲经功放后加到晶闸管的门极和阴极之间,以改变“三相全控整流”的输出电压,这就构成了速度负反馈闭环系统。
电机的转速随给定电压变化,电机最高转速由速度调节器的输出限幅所决定,速度调节器采用P(比例)调节对阶跃输入有稳态误差,要想消除上述误差,则需将调节器换成PI(比例积分)调节。
这时当“给定”恒定时,闭环系统对速度变化起到了抑制作用,当电机负载或电源电压波动时,电机的转速能稳定在一定的范围内变化。
在电流单闭环中,将反映电流变化的电流互感器输出电压信号作为反馈信号加到“电流调节器”的输入端,与“给定”的电压相比较,经放大后,得到移相控制电压U ct,控制整流桥的“触发电路”,改变“三相全控整流”的电压输出,从而构成了电流负反馈闭环系统。
电机的最高转速也由电流调节器的输出限幅所决定。
同样,电流调节器若采用P(比例)调节,对阶跃输入有稳态误差,要消除该误差将调节器换成PI(比例积分)调节。
当“给定”恒定时,闭环系统对电枢电流变化起到了抑制作用,当电机负载或电源电压波动时,电机的电枢电流能稳定在一定的范围内变化。
直流电动机双闭环调速系统MATLAB仿真实验报告
本科上机大作业报告课程名称:电机控制姓名:学号:学院:电气工程学院专业:电气工程及其自动化指导教师:提交日期:20年月日一、作业目的1.熟悉电机的控制与仿真;2.熟悉matlab和simulink等相关仿真软件的操作;3.熟悉在仿真中各参数变化和不同控制器对电机运行的影响。
二、作业要求对直流电动机双闭环调速进行仿真1.描述每个模块的功能2.仿真结果分析:包括转速改变、转矩改变下电机运行性能,并解释相应现象3.转速PI调节器参数对电机运行性能的影响4.电流调节器改用PI调节器三、实验设备MATLAB、simulink四、实验原理1.双闭环系统结构如图:该系统通过电流负反馈和速度负反馈两个反馈闭环实现对电机的控制,其内环是电流控制环,外环是转速控制环。
内环由电流调节器LT,晶闸管移相触发器CF,晶闸管整流器和电动机电枢回路所组成。
电流调节器的给定信号un。
与电机电枢回路的电流反馈信号相比较,其差值送人电流调节器.由调节器的输出通过移相触发器控制整流桥的输出电压。
在这个电压的作用下电机的电流及转矩将相应地发生变化。
电流反馈信号可以通过直流互感器取白肖流电枢回路,也可以用交流互感器取自整流桥的交流输人电流,然后经整流面得。
这两种办法所得结果相同,但后者应用较多,因为交流互感器结构比较简单。
当电流调节器的给定信号u n大于电流反馈信号uf,其差值为正时,经过调节器控制整流桥的移相角α,使整流输出电压升高,电枢电流增大。
反之,当给定信号u n 小于电流反馈信号时,使整流桥输出电压降低,电流减小,它力图使电枢电流与电流给定值相等。
外环是速度环,其中有一个速度调节器ST,在调节器的输入端送入一个速度给定信号u g,由它规定电机运行的转速。
另一个速度反馈信号u fn米自与电机同轴的测速发电机TG。
这个速度给定信号和实际转速反馈信号之差输人到速度调节器,由速度调节器的输出信号u n作电流调节器输人送到电流调节器,通过前面所讲的电流调节环的控制作用调节电机的.电枢电流Ia和转矩T ,使电机转速发生变化,最后达到转速的给定值。
直流电动机双闭环调速系统MATLAB仿真实验报告
直流电动机双闭环调速系统MATLAB仿真实验报告
实验目的:
本实验旨在设计并实现直流电动机的双闭环调速系统,并使用MATLAB进行仿真实验,验证系统的性能和稳定性。
实验原理:
直流电动机调速系统是通过改变电机的输入电压来实现调速的。
双闭环调速系统采用了速度环和电流环两个闭环控制器,其中速度环的输入为期望转速和实际转速的误差,输出为电机的电流设定值;电流环的输入为速度环输出的电流设定值和实际电流的误差,输出为电机的输入电压。
实验步骤:
1.建立直流电动机的数学模型。
2.设计速度环控制器。
3.设计电流环控制器。
4.进行系统仿真实验。
实验结果:
经过仿真实验,得到了直流电动机双闭环调速系统的性能指标,包括上升时间、峰值过渡性能和稳态误差等。
同时,还绘制了调速曲线和相应的控制输入曲线,分析了调速系统的性能和稳定性。
实验结论:
通过对直流电动机双闭环调速系统的仿真实验,验证了系统的性能和
稳定性。
实验结果表明,所设计的双闭环控制器能够实现快速且稳定的直
流电动机调速,满足了实际工程应用的需求。
实验心得:
本实验通过使用MATLAB进行仿真实验,深入理解了直流电动机的双
闭环调速系统原理和实现方式。
通过实验,我不仅熟悉了MATLAB的使用,还掌握了直流电动机的调速方法和控制器设计的原则。
同时,实验中遇到
了一些问题,比如系统的超调过大等,通过调整控制器参数和优化系统结
构等方法,最终解决了这些问题。
通过本次实验,我对直流电动机调速系
统有了更加深入的理解,为之后的工程应用打下了坚实的基础。
直流电动机双闭环调速系统课程设计
直流电动机双闭环调速系统课程设计一、引言直流电动机是一种常见的电动机,广泛应用于工业生产和日常生活中。
在实际应用中,为了满足不同的工作要求,需要对电动机进行调速。
传统的电动机调速方法是通过改变电源电压或者改变电动机的极数来实现,但这种方法存在调速范围小、调速精度低、调速响应慢等问题。
因此,现代工业中普遍采用电子调速技术,其中双闭环调速系统是一种常用的调速方案。
二、直流电动机双闭环调速系统的原理直流电动机双闭环调速系统由速度环和电流环组成。
速度环是通过测量电动机转速来控制电动机的转速,电流环是通过测量电动机电流来控制电动机的负载。
两个环路相互独立,但又相互联系,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
三、直流电动机双闭环调速系统的设计1.硬件设计硬件设计包括电源模块、电机驱动模块、信号采集模块和控制模块。
其中电源模块提供电源,电机驱动模块将电源转换为电机驱动信号,信号采集模块采集电机转速和电流信号,控制模块根据采集到的信号进行PID控制。
2.软件设计软件设计包括PID控制器设计和程序编写。
PID控制器是直流电动机双闭环调速系统的核心,其作用是根据采集到的信号计算出控制量,控制电机的转速和负载。
程序编写是将PID控制器的计算结果转换为电机驱动信号,实现电机的精确调速。
四、直流电动机双闭环调速系统的实现1.电路连接将电源模块、电机驱动模块、信号采集模块和控制模块按照设计要求连接起来。
2.参数设置根据电机的参数和工作要求,设置PID控制器的参数,包括比例系数、积分系数和微分系数等。
3.程序编写根据PID控制器的计算结果,编写程序将其转换为电机驱动信号,实现电机的精确调速。
五、直流电动机双闭环调速系统的应用直流电动机双闭环调速系统广泛应用于工业生产和日常生活中,如机床、风机、水泵、电梯等。
其优点是调速范围广、调速精度高、调速响应快、负载能力强等。
六、总结直流电动机双闭环调速系统是一种常用的电子调速方案,其原理是通过速度环和电流环相互独立但相互联系的方式,通过PID控制器对两个环路进行控制,实现电动机的精确调速。
直流电机双闭环PID调速系统仿真设计
目录直流电机双闭环PID调速系统仿真 (1)1 转速、电流双闭环直流调速系统的组成及工作原理 (2)2 双闭环调速系统的动态数学模型 (2)3 调节器的设计 (4)3.1 电流调节器的设计 (4)3.2 转速调节器的设计 (6)4 搭建模型 (8)5 参数计算 (10)5.1 参数的直接计算 (10)5仿真具体参数 (13)6 仿真结果 (13)7 结束语 (14)8 参考文献 (16)直流电机双闭环PID调速系统仿真摘要在工程的应用中,直流电动机的占有很大的比例,同时对于直流系统的调速要求日益增长。
在直流调速系统中比较成熟并且比较广泛的是双闭环调速系统,本文对于直流双闭环的PID调速系统作简要的设计,同时利用Matlab/Simulink 仿真软件进行仿真处理。
关键词: 直流双闭环 PID调速在现代化的工业生产过程中,许多生产机械要求在一定的范围内进行速度的平滑调节,并且要求有良好的稳态、动态性能。
而直流调速系统调速范围广、静差率小、稳定性好,过载能力大,能承受频繁的冲击负载,可实现频率的无级快速起制动和反转等良好的动态性能,能满足生产过程自动化系统中各种不同的特殊运行要求。
在高性能的拖动技术领域中,相当长时期内几乎都采用直流电力拖动系统。
开环直流调速由于自身的缺点几乎不能满足生产过程的要求,在应用广泛地双闭环直流调速系统中,PID控制已经得到了比较成熟的应用。
Matlab是目前国际上流行的一种仿真工具,它具有强大的矩阵分析运算和编程功能,建模仿真可视化功能Simulink是Matlab五大公用功能之一,他是实现动态系统仿真建模的一个集成环境,具有模块化、可重载、图形化编程、可视化及可封装等特点,可以大大提高系统仿真的效率和可靠性。
Simulink提供了丰富的模型库供系统仿真使用,它的仿真工具箱可用来解决某些特定类型的问题,也包括含有专门用于电力电子与电气传动学科仿真研究的电气系统模型库。
此外,用户可根据自己的需要开发并封装模型以扩充现有的模型库。
直流电动机双闭环调速系统中转速超调量的分析研究
入 了饱和状态 。
图2起动过程的电流和转速波彩图
△n N = 0 . 4 n N , / T m = O . 1 ,贝 0 △ n b : O . 1 2 n N ;当 选择h = 5 时并起动到额定转速n 时 ,退饱和超
) A n b_8 1 2 %×
。
统 的突卸负载扰 动的速升过渡过 程 ,同时按 t 卜t 2 ) 为 恒 流 升速 阶 段 : 工程 设计 方法 设计A S R 时 ,转速 环设 计可 设 A S R 输 出恒 定在 限幅值 ,这时 转速环 相 当于 计为典 型 I I 型系 统 。双 闭环系统 调节器设 开环 ,整个系统 处于 电流无 静差调节 阶段 ,
单闭环直流调速系统的设计与仿真实验报告
比例积分控制的单闭环直流调速系统仿真一、实验目的1.熟练使用MATLAB 下的SIMULINK 仿真软件。
2.通过改变比例系数以及积分时间常数τ的值来研究和τ对比例积分控制的直流调速系统的影响。
二、实验内容1.调节器的工程设计 2.仿真模型建立 3.系统仿真分析三、实验要求建立仿真模型,对参数进行调整,从示波器观察仿真曲线,对比分析参数变化对系统稳定性,快速性等的影响。
四、实验原理图4-1 带转速反馈的闭环直流调速系统原理图调速范围和静差率是一对互相制约的性能指标,如果既要提高调速范围,又要降低静差率,唯一的方法采用反馈控制技术,构成转速闭环的控制系统。
转速闭环控制可以减小转速降落,降低静差率,扩大调速范围。
在直流调速系统中,将转速作为反馈量引进系统,与给定量进行比较,用比较后的偏差值进行系统控制,可以有效的抑制甚至消除扰动造成的影响。
当t=0时突加输入时,由于比例部分的作用,输出量立即响应,突跳到,实现了快速响应;随后按积分规律增长,。
在时,输入突降为0,=0,=,使电力电子变换器的稳态输出电压足以克服负载电流压降,实现稳态转速无静差。
五、实验各环节的参数及和1/τ的参数的确定5.1各环节的参数:_-_+直流电动机:额定电压=220V,额定电流=55A,额定转速=1000r/min,电动机电动势系数=0.192V •min/r。
假定晶闸管整流装置输出电流可逆,装置的放大系数=44,滞后时间常数=0.00167s。
电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数=0.00167s电力拖动系统机电时间常数=0.075s。
转速反馈系数=0.01V •min/r。
对应额定转速时的给定电压=10V。
稳态性能指标D=20,s 5% 。
5.2 和1/τ的参数的确定:PI调节器的传递函数为其中,。
(1)确定时间常数1)整流装置滞后时间常数;2)转速滤波时间常数;3)转速环小时间常数;(2)计算参数按跟随和抗扰性都较好的原则,取h=5,则调节器超前时间常数,即积分时间常数:,则由此可得开环增益:于是放大器比例放大系数:六、仿真模型的建立如图6-1为比例积分控制的无静差直流调速系统的仿真框图,根据仿真框图,利用MATLAB下的SMULINK软件进行系统仿真,建立的仿真模型如图6-2所示。
直流电机实验
电机学实验一直流电机实验1实验目的:理解掌握直流机发电、电动工作特性。
2实验电路:图 1 直流电机实验系统结构图3 实验内容与步骤3.1系统基本连接与参数调节--由教师完成:(1)连接电路实线部分。
直流机按正转接线,交流机按反转接线。
(2)电流调节器调最大Uc为1V。
调电流反馈:Ui/Ia=2V/0.5A。
(3)直流稳压源限流值调到1.5A。
3.2直流机发电实验--交流机作同步恒速运行,驱动直流机发电,电流闭环控制整流调压器吸收其电流。
3.2.1实验准备(1) 完成直流机电枢回路、励磁回路连接,励磁开关Kf断开,RA、RB置最大。
(2)整流器:Uct只接电流调节器输出Uc!Ublf断开,整流器先关闭。
(3)交流机RC调最大。
直流稳压源断开Kz,通电调到Uz=15V。
(4)实验台通电。
(5)给定电路置“负”,并调输出0V。
--注:电流调节器的运放“反相”,故给定为负,反馈为正3.2.2 启动交流机(1)接通主电路。
(2)减RC起动交流机反转到~1000rpm,接通直流稳压源Kz,RC回最大。
使交流机进入同步恒速(1500rpm)运行,驱动直流机发电。
3.2.3直流发电机空载Uf-E特性(即if -φ磁化特性)实验断Kf使Uf=0, 测量记录对应的直流机剩磁发电电势E(|Ua|)。
接通Kf后调RA+RB使Uf= 90, 160, 220V。
测量记录E。
3.2.4 直流发电机负载特性实验--用电流闭环恒定吸收直流机发电电流,并转为交流功率送电网。
(1)调RA+RB保持励磁Uf=220V。
(2)测Ud应为负!(否则查改直流机电枢接线)。
整流器Ubf接通,允许其工作。
(3)加负载:用负给定电位器调-Ui*到Ia=(0),0.3, 0.6A,测量记录Ia、Ua。
*(4) 可用RA+RB降Uf=200V,测量记录Ia、Ua—观察电流环恒流效果。
(5) 停车:先用-Ui*减Ia到0,再断开Kz,电机停车后断主电路。
基于相位闭环控制的直流电动机调速方法
基 于 相 位 闭 环 控 制 的 直 流 电 动 机 调 速 方 法
朱 安 定 , 建 国 , 文敏 邢 赵
( 江工商大学 , 江杭州 301 ) 浙 浙 10 8
ห้องสมุดไป่ตู้
摘
要: 提出了采用 V 变换器将和 直流 电动 机 串联 的 T I C两 端 压降转 换 为相位 脉 冲, / RA 通过测 量 相位 脉
b lt ii y.
Ke r y wo ds: DC l tr; ha e c n r lTRI noo p s o to ; AC ; V/q o v  ̄e )c n e r
0引 言
直 流 电 动机 以其 良好 的线 性 调 速特 性 , 单 的 简 控 制性 能 , 高 的效 率 , 良的动 态 特 性 , 直 广 泛 较 优 一
( hj n oghn nvr t, n zo 0 , hn ) Z ei gG n sa gU i s y Haghu3 C ia a ei 1 1 0 8
A bsr c : V/中 c nv t a t A o e ̄e s u e o d tc h la e dr fTRI rwa s d t ee tte votg op o AC ha si e iswih DC tr. n o t n t ti n s re t moo a d t ur i o a p s ule The s e in lo h moo sn n n g tv e db c ls d-l o c ntoln fv ra l o d tt ha e p s . pe d sg a fte DC tr u i g i e ai e f e a k co e o p o r lig o a ib e l a wa b ane y d t ci h ule wi t .Th o r lm eh d ha h d a a e flw o t so t i d b e e tngt e p s d h e c nto t o ste a v ntg so o c s ,hih fe i lt n g ei — g xbi y a d hih r la l i
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
.
University of South China
电气传动技术
实验报告1
实验名称直流电动机闭环调速实验
学院名称电气工程学院
指导教师
班级电力
学号
学生姓名
文档Word
.
一预习报告
目的:1了解并掌握典型环节模拟电路构成方法。
2 熟悉各典型线性环节阶跃响应曲线。
3 了解参数变化对典型环节动态性能影响。
内容:
1比例积分控制的无静差直流调速系统的仿真模型
2电流环调速系统的仿真模型
3转速环调速系统的仿真模型
文档Word
.
二实验报告
直流电动机:额定电压U=220N,额定电流I=55A,额定转速
dNN n=1000r/min,电动机电动势系数C=0.192V·min/r。
假定晶闸管整流eN装置输出电流可逆,装置的放大系数Ks=44,滞后的时间常数
T=0.00167s。
电枢回路总电阻R=1.0Ω,电枢回路电磁时间常数
s T=0.00167s,电力拖动系统机电时间常数T=0.075s。
转速反馈系数ml*U。
对应额定转速时的给定电压·α=0.01Vmin/r=10V。
双闭环调速系统中Ks=40,T=0.0017s,T=0.18s,T=0.03s,T=0.002s,T=0.01s,R=0onlmsoi Ω,C=0.132V·min/r,α=0.00666V·min/r,β=0.05V·min/r。
e一比例积分控制的无静差直流调速系统中PI调节器的值为:
K=0.56,1/τ=11.34
P
文档Word
.
无静差调速系统输出(Scope图像1)
输出波形比例部分(Scope1图像2)
对比图1和图2可以发现,只应用比例控制的话,系统响应速度快,但是静差率大,而添加积分环节后,系统既保留了比例环节的快速响应性,又具有了积分环节的无静差调速特性,使调速系统稳定性相对更高,动态响应速度也快。
文档Word
.
当取=0.25,1/τ=3时,系统转的响应无超调,但调节时间很长。
如图
无超调的仿真结果3
当=0.8,1/τ=15时,系统转速的响应的超调较大,但快速性较好。
如图所示。
文档Word
.
超调较大的仿真结果4
KT有关。
当系统的时间控制系统的各项动态跟随性能指标与参数TK 的增大,系统的快速性提高,而稳定性,一定时常数随着开环增益KK 取得大一点;若要求超调小,则把变差。
若要求动态响应快,则把取得小一点。
文档Word
.
二1双闭环调速系统中电流环系统的pi调节器的传递函数微
1.013+1.013/(0.03*s),KT=0.5,曲线为
双闭环调速系统中转速环系统中PI调节器的传递
0.5067+16.89/s,KT=0.25。
曲线为
很快的得到电流环的阶跃响应的仿真结果,无超调,但上升时间长,
文档Word
.
2当KT=1.0,即传递函数为2.027+67.567/s,曲线为超调大,但上升时
间短。
三,1双闭环调速系统中转速环系统中PI调节器的传递函数为11.7+134.48/s,负载电流为0A,曲线图如下可以看出,系统转速最终稳定运行于给定系统。
文档Word
.
2当负载电流设置为136A时,曲线如图为启动时间延长,退饱和超调量减少.
跟随给定电压从转速调节器使转速n曲线如下,3加入扰动。
m变化,*U
当偏差电压为零时,实现稳态无静差。
其输出限幅值决定允许的最大电流。
电流调节器起动时保证获得允许的最大电流,使系统获得最大加速度起动。
当电机过载甚至于堵转时,限制电枢电流的最大而起大快速的安全保护作用。
当故障消失时,系统能够自动恢复正常。
文档Word
.。
四心得体会
通过此次试验,使我对MATLAB中的SIMULINK仿真软件也有了进一步的了解,通过SIMULINK仿真软件的仿真功能,可以用图像化的方法直接建立系统模型,使我可以很直观方便地了解一些系统特性。
同时通过自己动手做实验,计算数据,使我对比例积分控制的无静差直流电机调速系统又有了更深层次的学习。
文档Word。