考点32 线性回归方程与列联表 ——2021年高考数学专题复习讲义
高三数学回归方程知识点
高三数学回归方程知识点回归方程是高三数学中的一个重要概念,它在数据分析和预测中起到了至关重要的作用。
了解回归方程的知识点对于高考数学复习和应用都非常重要。
本文将为你介绍高三数学回归方程的知识点,帮助你更好地掌握这一概念。
一、回归方程的定义回归方程是用于描述两个或更多个变量之间关系的数学模型。
它可以通过已知数据点的坐标来找到最佳拟合曲线或直线,进而进行预测和分析。
二、一元线性回归方程1. 简介一元线性回归方程是最简单的回归方程形式,它描述了两个变量之间的线性关系。
方程的一般形式为:y = ax + b,其中y是因变量,x是自变量,a和b是常数。
2. 最小二乘法求解一元线性回归方程的常用方法是最小二乘法。
最小二乘法通过最小化实际观测值与回归方程预测值之间的误差平方和,来确定最佳拟合直线的斜率和截距。
三、多元线性回归方程1. 简介多元线性回归方程是一种描述多个自变量与因变量之间线性关系的模型。
方程的一般形式为:y = a1x1 + a2x2 + ... + anx + b,其中y是因变量,x1、x2、...、xn是自变量,a1、a2、...、an和b是常数。
2. 多元线性回归方程的求解多元线性回归方程的求解可以使用矩阵运算的方法,通过求解正规方程组来得到最佳拟合曲面或超平面的系数。
四、非线性回归方程1. 简介非线性回归方程是描述自变量和因变量之间非线性关系的模型。
在实际问题中,很多现象和数据并不符合线性关系,因此非线性回归方程具有广泛的应用。
2. 非线性回归方程的求解求解非线性回归方程的方法有很多种,常用的包括最小二乘法、曲线拟合法和参数估计法等。
具体选择哪种方法取决于具体问题和数据的特点。
五、回归方程的应用回归方程在实际问题中有广泛的应用。
它可以用于数据分析、预测和模型建立等方面,帮助我们了解变量之间的关系并进行科学的决策和预测。
六、总结回归方程是高三数学中的一个重要概念,掌握回归方程的知识点对于数学复习和问题解决至关重要。
高考回归方程的知识点
高考回归方程的知识点高考是每个学生都经历的重要考试,它对于一个学生的未来起着决定性的作用。
而高考数学中的回归方程是一个比较重要的知识点,它不仅在数学中有着广泛的应用,而且在实际生活中也有着很多的应用价值。
下面我们就来详细了解一下高考回归方程的知识点。
1. 回归方程的概念回归方程是一种用于揭示自变量与因变量之间关系的数学模型。
在数学中,通常用直线或曲线来表示回归方程。
回归分析主要用于统计数据的分析和预测。
通过回归方程,我们可以根据已有的数据来预测未知的数据。
2. 简单线性回归方程简单线性回归方程是回归方程中最简单的一种形式。
它表示两个变量之间的线性关系。
简单线性回归方程的一般形式为:y = ax + b,其中y是因变量,x是自变量,a和b是常数。
a代表的是变量y随着变量x的变化而变化的速率,b代表的是y在x=0时的值。
3. 多元线性回归方程多元线性回归方程是回归方程中常用的一种形式。
它表示多个自变量与因变量之间的线性关系。
多元线性回归方程的一般形式为:y =a₁x₁ + a₂x₂ + ... + anxn + b,其中y是因变量,x₁、x₂、...、xn是自变量,a₁、a₂、...、an和b是常数。
多元线性回归方程可以用来分析多个自变量对于因变量的影响程度。
4. 回归方程的确定系数确定系数是用来衡量回归方程对于实际数据拟合程度的指标。
它的取值范围在0到1之间,越接近1表示回归方程对数据的拟合程度越好。
确定系数的计算公式为:R² = 1 - (SSE/SST),其中SSE表示残差平方和,SST表示总平方和。
通过计算确定系数,我们可以评估回归方程的质量,并对预测结果进行准确性评估。
5. 回归方程在实际生活中的应用回归方程在实际生活中有着广泛的应用。
例如,在经济学中,可以使用回归方程来分析商品价格与供需关系,从而预测价格变动趋势;在医学研究中,可以使用回归方程分析药物剂量与疗效之间的关系,从而确定最佳剂量;在市场营销中,可以使用回归方程来分析消费者行为与销售量之间的关系,从而制定合理的市场营销策略。
2025高考数学一轮复习-9.1.2-线性回归方程【课件】
(3)该企业采取订单生产模式(根据订单数量进行生产,即产品全部售出). 根据市场调研数据,若该产品单价定为100元,则签订9千件订单的概 率为0.8,签订10千件订单的概率为0.2;若单价定为90元,则签订10千 件订单的概率为0.3,签订11千件订单的概率为0.7.已知每件产品的原料 成本为10元,根据(2)的结果,企业要想获得更高利润,产品单价应选 择100元还是90元,请说明理由.
因为 y =3860=45,
8
uiyi-8 u y
i=1
所以b^ =
8
u2i -8 u 2
i=1
=1831..45- 3-8×8×0.03.411×545=06.611=100,
则a^ = y -b^ u =45-100×0.34=11, 所以y^ =11+100u, 所以 y 关于 x 的回归方程为y^=11+10x0.
三、非线性回归问题
知识梳理
解非线性回归分析问题的一般步骤 有些非线性回归分析问题并不给出函数,这时我们可以根据已知数据 画出散点图,与学过的各种函数(幂函数、指数函数、对数函数等)的图 象进行比较,挑选一种跟这些散点拟合得最好的函数,用适当的变量 进行变换,把问题转化为线性回归分析问题,使之得到解决.
n
v2i -n
v
2
i=1
i=1
解 ①当产品单价为100元,设订单数为m千件,因为签订9千件订单的 概率为0.8,签订10千件订单的概率为0.2, 所以E(m)=9×0.8+10×0.2=9.2, 所以企业利润为 100×9.2-9.2×190.20+21=626.8(千元). ②当产品单价为90元,设订单数为n千件, 因为签订10千件订单的概率为0.3,签订11千件订单的概率为0.7, 所以E(n)=10×0.3+11×0.7=10.7,
9.1.2线性回归方程讲义-2021-2022学年高二下学期数学苏教版(2019)选择性必修第二册
编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =___________称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=__________称为线性回归方程.其中__称为回归截距,__称为回归系数,__称为回归值. (2),的计算公式=∑i =1n(x i -x)(y i -y )∑i =1n(x i -x )2=________________ ,=______________.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系题2.根据如下样本数据:x2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【当堂巩固训练】题7.已知x,y的取值如表所示:x234 5y 2.2 3.8 5.5m若y与x线性相关,且回归直线方程为=1.46x-0.61,则表格中实数m的值为( )A.7.69 B.7.5 C.6.69 D.6.5题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2) B .(-1,2) C .(1,-2)D .(1,2)题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度C.当x=6时,y的预测值为8.1万盒D.线性回归直线=0.7x +经过点(2,6)题12.下列说法:①设有一个回归方程=3-5x,变量x增加一个单位时,y平均增加5个单位;②线性回归方程=x+必过()x,y;③设某地女儿身高y对母亲身高x的一个回归直线方程是=34.92+0.78x,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分.其中正确的个数是( )A.0 B.1 C.2 D.3题13.(多选题...)两个相关变量x,y的5组对应数据如表:x8.3 8.6 9.9 11.1 12.1y 5.9 7.8 8.1 8.4 9.8根据表格,可得回归直线方程=x+,求得=0.78.据此估计,以下结论正确的是( )A.x=10 B.y=9C.=0.2 D.当x=15时,=11.95题14.(多选题...)已知x与y之间的几组数据如表:x 1 2 3 4 5 6y0 2 1 3 3 4假设根据表格数据所得线性回归直线方程为=x+,若某同学根据上表中的前两组数据()1,0和()2,2求得的直线方程为y=b′x+a′,则以下结论正确的是( )参考公式:=∑i=1nx i y i-n x y∑i=1nx2i-n(x)2,=y-b x .A.a′=-2 B.b′=2 C.>b′ D.>a′【综合突破拔高】题15.对于指数曲线y=ae bx,令U=ln y,c=ln a,经过非线性回归分析后,可转化的形式为( ) A.U=c+bx B.U=b+cxC.y=c+bx D.y=b+cx题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝ ⎛⎭⎪⎫sin α+12 2D .以上都不对题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 7 10 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年.题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________.题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x 之间的回归方程.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 4 5 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.编号032 §9.1.2 线性回归方程目标要求1、结合具体实例,了解一元线性回归模型的含义.2、结合具体实例,了解模型参数的统计意义.3、结合具体实例,了解最小二乘原理,掌握一元线性回归模型参数的最小二乘估计方法.4、结合具体实例,会使用相关的统计软件.5、针对实际问题,会用一元线性回归模型进行预测.学科素养目标本章内容是在学生已经学习过必修课程中的统计知识和概率知识的基础上,通过对典型案例的研究,了解和使用一些常用统计分析方法,进一步体会运用统计方法解决实际问题的基本思想,认识统计方法在决策中的作用,从而形成运用统计的观点认识客观事物的习惯.在本章教学中,应突出对学生应用意识的培养,不能只限于要求学生会解书本上的习题,还要关注学生应用与解决实际问题的能力.应引导、鼓励学生从现实生活中发现问题,并能自觉地运用所学的统计方法加以理解,应尽量给学生提供一定的实践活动机会,可结合数学建模活动,选择一个案例,要求学生亲自实践.重点难点重点:一元线性回归模型参数的最小二乘估计方法; 难点:用一元线性回归模型进行预测.教学过程基础知识点 1.线性回归模型我们将y =a +bx +ε称为线性回归模型. 2.线性回归方程与最小二乘法(1)线性回归方程:直线=+x 称为线性回归方程.其中称为回归截距,称为回归系数,称为回归值.(2),的计算公式=∑i =1n(x i -x )(y i -y )∑i =1n(x i -x )2=___∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2___ ,=__y -x __.【课前小题演练】题1.关于回归分析,下列说法错误的是( ) A .回归分析是研究两个具有相关关系的变量的方法 B .散点图中,解释变量在x 轴,响应变量在y 轴 C .回归模型中一定存在随机误差 D .散点图能明确反映变量间的关系【解析】选D .用散点图反映两个变量间的关系时,存在误差. 题2.根据如下样本数据:x 2 3 4 5 6Y 4 2.5 -0.5 -2 -3得到的经验回归方程为=x+,则( )A.>0,>0 B.>0,<0C.<0,>0 D.<0,<0【解析】选B.由题干表中的数据可得,变量Y随着x的增大而减小,则<0,又回归方程为=x+经过(2,4),(3,2.5),可得>0.题3.已知变量x,Y之间具有线性相关关系,其散点图如图所示,则其经验回归方程可能为( )A.=1.5x+2 B.=-1.5x+2C.=1.5x-2 D.=-1.5x-2【解析】选B.设经验回归方程为=x+,由题干中散点图可知变量x,Y之间负相关,经验回归直线在Y轴上的截距为正数,所以<0,>0,因此方程可能为=-1.5x+2.题4.若某地财政收入x与支出Y满足经验回归方程=x++e i(单位:亿元)(i=1,2,…),其中=0.8,=2,|e i|<0.5,如果今年该地区财政收入10亿元,年支出预计不会超过( )A.10亿元B.9亿元C.10.5亿元D.9.5亿元【解析】选C.=0.8×10+2+e i=10+e i,因为|e i|<0.5,所以9.5<<10.5.题5.若施肥量x(kg)与水稻产量Y(kg)的经验回归方程为=5x+250,当施肥量为80 kg时,预计水稻产量约为________kg.【解析】把x=80代入经验回归方程可得其预测值=5×80+250=650(kg).答案:650题6.某种产品的广告费用支出x与销售额Y(单位:百万元)之间有如下的对应数据:x/百万元 2 4 5 6 8Y/百万元30 40 60 50 70(1)画出散点图;(2)求经验回归方程;(3)试预测广告费用支出为10百万元时,销售额多大?【解析】(1)散点图如图所示:(2)列出下表,并用科学计算器进行有关计算:i 1 2 3 4 5 合计 x i 2 4 5 6 8 25 y i 30 40 60 50 70 250 x i y i 60 160 300 300 560 1 380 x 2i416253664145所以x =255 =5,y =2505=50,∑i =15x 2i =145,∑i =15x i y i =1 380.于是可得=∑i =15x i y i -5x y∑i =15x 2i -5x 2=1 380-5×5×50145-52×5=6.5,=y -x =50-6.5×5=17.5. 所以所求的经验回归方程为=6.5x +17.5.(3)根据上面求得的经验回归方程,当广告费用支出为 10百万元时,=6.5×10+17.5=82.5(百万元),即广告费用支出为10百万元时,销售额大约为82.5百万元. 【当堂巩固训练】题7.已知x ,y 的取值如表所示:x 2 3 4 5 y2.23.85.5m若y 与x 线性相关,且回归直线方程为=1.46x -0.61,则表格中实数m 的值为( ) A .7.69 B .7.5 C .6.69 D .6.5 【解析】选D .因为x =2+3+4+54 =72, y =2.2+3.8+5.5+m 4 =11.5+m 4,所以11.5+m 4 =1.46×72-0.61,解得m =6.5.题8.某药厂为了了解某新药的销售情况,将2019年2至6月份的销售额整理如下:月份 2 3 4 5 6 销售额(万元)1925353742根据2至6月份的数据可求得每月的销售额y 关于月份x 的线性回归方程=x +为( )(参考公式及数据:=∑i =1nx i y i -n x y∑i =1n x 2i -n (x )2,=y -x ,∑i =15x i y i =690,∑i =15x 2i =90)A .=5.8x +8.4B .=8.4x +5.8C .=6x -9D .=4x +31.6【解析】选A .由表格中的数据得x =2+3+4+5+65=4,y =19+25+35+37+425=31.6,所以=∑i =15x i y i -5x y∑i =15x 2i -5(x)2=690-5×4×31.690-5×42=5.8, =31.6-5.8×4=8.4,因此,y 关于x 的线性回归方程为=5.8x +8.4.题9.登山族为了了解某山高y (km )与气温x (℃)之间的关系,随机统计了4次山高与相应的气温,并制作了对照表:气温x (℃) 18 13 10 -1 山高y (km )24343864由表中数据,得到线性回归方程=-2x +()∈R ,由此请估计出山高为72(km )处气温的度数为( )A .-10B .-8C .-4D .-6【解析】选D .由题意可得x =10,y =40,所以=y +2x =40+2×10=60.所以=-2x +60,当=72时,有-2x +60=72,解得x =-6. 题10.根据如下的样本数据:x 1 2 3 y2.133.9得到的回归方程为=bx +a ,则直线ax +by -3=0经过定点( ) A .(-1,-2)B .(-1,2)C .(1,-2)D .(1,2)【解析】选D .由所给数据得x =2,y =3,3i 1=∑(x i -x )(y i -y )=1.8,3i 1=∑(x i -x )2=2,所以b =0.9,a =3-0.9×2=1.2,所以直线ax +by -3=0方程为1.2x +0.9y -3=0,过点(1,2). 题11.某同学在研究学习中,收集到某制药厂今年5个月甲胶囊生产产量(单位:万盒)的数据如表所示:x (月份) 1 2 3 4 5 y (万盒)55668若x ,y 线性相关,线性回归方程为=0.7x +,则以下为真命题的是( ) A .x 每增加1个单位长度,则y 一定增加0.7个单位长度 B .x 每增加1个单位长度,则y 必减少0.7个单位长度 C .当x =6时,y 的预测值为8.1万盒 D .线性回归直线=0.7x +经过点(2,6)【解析】选C .由=0.7x +,得x 每增(减)一个单位长度,y 不一定增加(减少)0.7,而是大约增加(减少)0.7个单位长度,故选项A ,B 错误;由已知表中的数据,可知x =1+2+3+4=55 =3,y =5+5+6+6+85=6,则回归直线必过点(3,6),故D 错误;将(3,6)代入回归直线=0.7x +,解得=3.9,即=0.7x +3.9,令x =6,解得=0.7×6+3.9=8.1万盒. 题12.下列说法:①设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均增加5个单位; ②线性回归方程=x +必过()x ,y ;③设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,则方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分. 其中正确的个数是( ) A .0 B .1 C .2 D .3【解析】选C .设有一个回归方程=3-5x ,变量x 增加一个单位时,y 平均减少5个单位,故①错;线性回归方程=x +必过样本中心点()x ,y ,故②正确;设某地女儿身高y 对母亲身高x 的一个回归直线方程是=34.92+0.78x ,当x =0时,=34.92, 方程中的=34.92可以解释为女儿身高不受母亲身高变化影响的部分,故③正确. 题13.(多选题...)两个相关变量x ,y 的5组对应数据如表:x 8.3 8.6 9.9 11.1 12.1 y5.97.88.18.49.8根据表格,可得回归直线方程=x +,求得=0.78.据此估计,以下结论正确的是( )A .x =10B .y =9C .=0.2D .当x =15时,=11.95【解析】选AC .易求得x =10,y =8⇒=y -x =8-0.78×10=0.2,所以=0.78x +0.2. x =15⇒=0.78×15+0.2=11.90.题14.(多选题...)已知x 与y 之间的几组数据如表:x 1 2 3 4 5 6 y21334假设根据表格数据所得线性回归直线方程为=x +,若某同学根据上表中的前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,则以下结论正确的是()参考公式:=∑i =1nx i y i -n x y∑i =1nx 2i -n (x)2,=y -b x . A .a ′=-2 B .b ′=2 C .>b ′ D .>a ′【解析】选ABD .因为某同学根据前两组数据()1,0 和()2,2 求得的直线方程为y =b ′x +a ′,所以b ′=2,a ′=-2,根据题意得:x =3.5,y =136,∑i =16x i y i =0+4+3+12+15+24=58,∑i =16x 2i =1+4+9+16+25+36=91,所以=∑i =16x i y i -6x y∑i =16x 2i -6(x)2=57 ,=y -x =136 -57 ×72 =-13 ,所以<b ′,>a ′. 【综合突破拔高】题15.对于指数曲线y =ae bx ,令U =ln y ,c =ln a ,经过非线性回归分析后,可转化的形式为( ) A .U =c +bx B .U =b +cx C .y =c +bxD .y =b +cx【解析】选A .由y =ae bx 得ln y =ln (ae bx ), 所以ln y =ln a +ln e bx ,所以ln y =ln a +bx ,所以U =c +bx .题16.若一函数模型为y =sin 2α+2sinα+1,为将y 转化为t 的经验回归方程,则需作变换t 等于( ) A .sin 2αB .(sinα+1)2C .⎝⎛⎭⎪⎫sin α+12 2D .以上都不对 【解析】选B .因为y 是关于t 的经验回归方程,实际上就是y 是关于t 的一次函数,又因为y =(sin α+1)2,若令t =(sin α+1)2,则可得y 与t 的函数关系式为y =t ,此时变量y 与变量t 是线性相关关系. 题17.在生物学上,有隔代遗传的现象.已知某数学老师的体重为62 kg ,他的曾祖父、祖父、父亲、儿子的体重分别为58 kg 、64 kg 、58 kg 、60 kg .如果体重是隔代遗传,且呈线性相关,根据以上数据可得解释变量x 与预报变量的回归方程为=x +,其中=0.5,据此模型预测他的孙子的体重约为( ) A .58 kgB .61 kgC .65 kgD .68 kg【解析】选B .由于体重是隔代遗传,且呈线性相关, 则取数据(58,58),(64,62),(58,60),得x =58+64+583 =60,y =58+62+603 =60,即样本点的中心为(60,60),代入=x +, 得=60-0.5×60=30,则=0.5x +30, 取x =62,可得=0.5×62+30=61 kg . 故预测他的孙子的体重约为61 kg .题18.(多选题...)月亮公转与自转的周期大约为30天,阴历是以月相变化为依据.人们根据长时间的观测,统计了月亮出来的时间y (简称“月出时间”,单位:小时)与天数x (x 为阴历日数,x ∈N *,且0≤x ≤30)的有关数据,如表,并且根据表中数据,求得y 关于x 的线性回归方程为=0.8x +.x 2 4 710 15 22 y8.19.41214.418.524其中,阴历22日是分界线,从阴历22日开始月亮就要到第二天(即23日0:00)才升起.则( ) A .样本点的中心为()10,14.4 B .=6.8C .预报月出时间为16时的那天是阴历13日D .预报阴历27日的月出时间为阴历28日早上4:00 【解析】选AD .x =2+4+7+10+15+226=10,y =8.1+9.4+12+14.4+18.5+246=14.4,故样本点的中心为()10,14.4 ,选项A 正确;将样本点的中心()10,14.4 代入=0.8x +得=6.4,故选项B 错误;因为=0.8x +6.4,当y =16时,求得x =12,月出时间为阴历12日,选项C 错误;因为阴历27日时,即x =27,代入=0.8×27+6.4=28,日出时间应该为28日早上4:00,选项D 正确. 题19.对某台机器购置后的运行年限x (x =1,2,3,…)与当年利润Y 的统计分析知x ,Y 具备线性相关关系,经验回归方程为=10.47-1.3x ,估计该台机器最为划算的使用年限为______年. 【解析】当年利润小于或等于零时应该报废该机器, 当y =0时,令10.47-1.3x =0,解得x ≈8, 故估计该台机器最为划算的使用年限为8年. 答案:8题20.以模型y =ce kx 去拟合一组数据时,为了求出非经验回归方程,设z =ln y ,其变换后得到经验回归方程=0.3x +4,则c =________. 【解析】由题意,得ln (ce kx )=0.3x +4,所以ln c +kx =0.3x +4,所以ln c =4,所以c =e 4. 答案:e 4题21.为了响应中央号召,某日深圳环保局随机抽查了本市市区汽车尾气排放污染物x (单位:ppm )与当天私家车路上行驶的时间y (单位:小时)之间的关系,从某主干路随机抽取10辆私家车,已知x 与y 之间具有线性相关关系,其回归直线方程为=0.3x -0.4,若该10辆车中有一辆私家车的尾气排放污染物为6(单位:ppm ),据此估计该私家车行驶的时间为________小时.【解析】由=0.3x -0.4,令x =6,代入可得=0.3×6-0.4=1.4.所以估计该私家车行驶的时间为1.4小时. 答案:1.4题22.某市农科所对冬季昼夜温差大小与某反季节大豆新品种发芽多少之间的关系进行分析研究,他们分别记录了12月1日至12月4日的每天昼夜温差与实验室每天每100颗种子中的发芽数,得到如下数据:日期 12月1日 12月2日12月3日12月4日温差 11 13 12 8 发芽数(颗)26322617根据表中12月1日至12月3日的数据,求得线性回归方程=x +中的=-8,则求得的=________;若用12月4日的数据进行检验,检验方法如下:先用求得的线性回归方程计算发芽数,再求与实际发芽数的差,若差值的绝对值不超过2颗,则认为得到的线性回归方程是可靠的,则求得的线性回归方程________(填“可靠”或“不可靠”).【解析】由题得x =11+13+123 =12,y =26+32+263 =28,所以样本中心点为(12,28),所以28=×12-8,所以=3;因为=3x -8,所以12月4日的估计值为=3×8-8=16,又|17-16|=1,没有超过2,所以求得的线性回归方程可靠. 答案:3 可靠题23.如表为收集到的一组数据:x 21 23 25 27 29 32 35 Y711212466115325试建立Y 与x【解析】作出散点图,如图.从散点图中可以看出x 与Y 不具有线性相关关系,根据已有知识可以发现样本点分布在某一条指数函数曲线的周围.令Z =ln Y ,则变换后的样本点分布在直线=x +的周围,这样就可以利用线性经验回归模型来建立非线性经验回归方程了,数据可以转化为:x 21 232527 29 32 35 Z1.9462.3983.0453.1784.1904.7455.784求得经验回归方程为=0.272x -3.849, 所以=e0.272x -3.849.题24.宿州市公安局交警支队依据《中华人民共和国道路交通安全法》第90条规定:所有主干道路凡机动车途经十字路口或斑马线,无论转弯或者直行,遇有行人过马路,必须礼让行人,违反者将被处以100元罚款,记3分的行政处罚.如表是本市一主干路段监控设备所抓拍的5个月内,机动车驾驶员“不礼让行人”行为统计数据:月份x 1 2 3 45 违章驾驶员人数y1151101009085(1)若x 与y 之间具有很强的线性相关关系,请利用所给数据求违章驾驶员人数y 与月份x 之间的回归直线方程=x +;(2)预测该路段8月份的“不礼让行人”违章驾驶员的人数.参考公式:=∑i =1nx i y i -n x ·y∑i =1nx 2i -n (x)2,=y -x ,参考数据:∑i =15x i y i =1 420.【解析】(1)由表中数据得:x =15()1+2+3+4+5 =3,y =15()115+110+100+90+85 =100,=∑i =15x i y i-5x·y∑i=15x2i-5(x)2=1 420-5×3×10055-45=-8,=y-x=100+8×3=124.所以y与x之间的回归直线方程为=-8x+124;(2)由(1)得,=-8x+124,令x=8,得=-8×8+124=60,预测该路段8月份的“不礼让行人”违章驾驶员人数为60人.。
高三回归方程知识点汇总
高三回归方程知识点汇总回归方程是数学中重要的数学模型,用于描述变量之间的关系和进行预测。
在高三阶段,学生需要掌握回归分析的基本知识和技巧。
本文将对高三数学中回归方程的知识点进行全面汇总,并提供一些实例和应用场景供参考。
一、线性回归方程1.1 线性关系与线性回归方程线性关系指的是两个变量之间存在直线关系,可用一条直线来近似表示。
线性回归方程是线性关系的数学表达式,常用形式为 y = kx + b,其中 k 表示直线的斜率,b 表示直线在 y 轴上的截距。
1.2 最小二乘法最小二乘法是确定线性回归方程中斜率 k 和截距 b 的常用方法。
它通过最小化观测值与回归直线的拟合误差平方和,找到最佳的拟合直线。
1.3 直线拟合与误差分析直线拟合是利用线性回归方程将观测数据点拟合到一条直线上。
误差分析可以评估回归方程的拟合优度,常用指标有决定系数R²、平均绝对误差 MAE 等。
二、非线性回归方程2.1 非线性关系与非线性回归方程非线性关系指的是两个变量之间的关系不能用一条直线来近似表示,而是需要使用曲线或其他非线性形式进行描述。
非线性回归方程可以是多项式方程、指数方程、对数方程等形式。
2.2 最小二乘法拟合非线性回归方程与线性回归相似,最小二乘法也可以用于拟合非线性回归方程。
但由于非线性方程的复杂性,通常需要借助计算工具进行求解,例如利用数学软件进行非线性拟合。
2.3 模型选择和拟合优度检验在选择非线性回归模型时,需要综合考虑模型的拟合优度和实际应用的需求。
常见的方法包括比较不同模型的决定系数 R²、检验残差分布等。
三、应用实例3.1 人口增长模型以某地区的人口数据为例,通过拟合合适的回归方程,可以预测未来的人口增长趋势,为城市规划和社会发展提供决策依据。
3.2 经济增长模型回归方程可以用于分析经济数据,例如拟合国民生产总值与时间的关系,预测未来的经济增长态势,为政府制定经济政策提供参考。
3.3 科学实验数据分析在科学研究中,常常需要利用回归方程对实验数据进行拟合和分析。
高三数学一轮复习课件:线性回归方程
课堂互动讲练
(3)若由线性回归方程得到的估计数据与 所选出的检验数据的误差均不超过2人, 则认为得到的线性回归方程是理想的, 试问该小组在(2)中所得线性回归方程是 否理想?
课堂互动讲练
解:(1)设“抽到相邻2个月的数据”为事件 A.因为从6组数据中选取2组数据共有15 种情况,每种情况都是等可能出现的, 其中抽到相邻两个月的数据的情况有5种, 所以P(A)= = .4分 1 5 15 3
,a= y -b x .其中
a,b是由观察值按最小二乘法求得 的估计值 ,也叫 回归系数 .
三基能力强化
1.下列关系中,是相关关系的为 ________. ①学生的学习态度与学习成绩之间的关 系; ②教师的执教水平与学生的学习成绩之 间的关系;
三基能力强化
③学生的身高与学生的学习成绩之间的 关系; ④家庭的经济条件与学生的学习成绩之 间的关系. 答案:①②
(1)判断家庭平均收入与月平均生活支出是否相关? (2)若二者线性相关,求回归直线方程.
课堂互动讲练
【思路点拨】 利用散点图观察 收入x和支出y是否线性相关,若呈线性相 关关系,可利用公式来求回归系数,然 后获得回归直线方程.
课堂互动讲练
【解】 (1)作出散点图:
课堂互动讲练
观察发现各个数据对应的点都在一条 直线附近,所以二者呈线性相关关系. (2) = (0.8+1.1+1.3+1.5+1.5+ 1 1.8+2.0+ 2.2 +2.4+2.8)=1.74, x 10 = (0.7+1.0+1.2+1.0+1.3+1.5 1 +1.3+ 1.7 +2.0+2.5)=1.42, y 10
课堂互动讲练
i= 1 i i
∑ x y =0.8×0.7+1.1×1.0+1.3×1.2+
高中数学知识点精讲精析 线性回归方程
6.4 线性回归方程1、确定性函数关系:变量之间可以用函数表示2、相关关系:变量之间具有一定的联系,但不能完全用函数表达引入:某小卖部为了了解热茶销售量与气温的大致的关系,随机统计并制作了某6天卖出热茶的杯数与当天气温对照表如果某天的气温是-5℃,你能根据这些数据预测这天小卖部卖出热茶的杯数么?考虑离差的平方和:一般地,设有n对观察数据如下:仿照前面的方法,可得线性回归方程中系数a,b满足由此二元一次方程组便可依次求出b 、a 的值.相关关系1. 散点图、正相关、负相关2. 数据回归直线方程:样本相关系数:1112211nn n i i i i i i i n ni i i i n x y x y b n x x a y bx =====⎧⎛⎫⎛⎫-⎪⎪⎪⎝⎭⎝⎭⎪=⎪⎛⎫⎨- ⎪⎪⎝⎭⎪⎪=-⎩∑∑∑∑∑)(121n x x x n x +++=)(121n y y y n y +++= ∑=+++=ni nix x x x1222212 ∑=+++=ni niy y y y1222212 ∑=+++=ni nn ii y x y x y x yx 12211 ∑∑==--=n i i ni ii xn x yx n yx b 1221x b y a -=a bx y +=⋂∑∑∑===-⋅--=ni ni i ini ii y y x xyx n yx r 11221)()(时回归直线有意义时回归直线无意义.该市统计调查队随机调查10个家庭,【解析】∴ 回归直线有意义∴ 回归直线:∑∑∑===---=ni ni i i ni ii y n y x n x yx n yx 11221))((1||≤r 05.0||r r >05.0||r r ≤88.321012=∑=i ix∑==10127.22i iy∑==10117.27i ii yx 632.0950.005.0=>=r r 013.0-=a 833.0=b 013.0833.0-=x y(1)检验是否线性相关. (2)求回归方程.(3)若市政府下一步再扩大5千煤气用户.试预测该市煤气消耗量将达到多少. 【解析】解:(1)线性相关(2)(3)代入 所以煤气量达3037万立方米3. 为了了解参加某种知识竞赛的1003名学生的成绩,请用系统抽样抽取一个容量为50的样本. 【解析】解:(1)随机地将这1003个个体编号为1,2,3, (1003)(2)利用简单随机抽样,先从总体中剔除3个个体(可利用随机数表),剩下的个体数1000能被样本容量50整除,然后再按系统抽样的方法进行.总体中的每个个体被剔除的概率相等(3/1003),也就是每个个体不被剔除的概率相等(1000/1003),采用系统抽样时每个个体被抽取的概率都是(50/1000),所以在整个抽样过程中每个个体被抽取的概率仍然相等,都是4. 某农场种植的甲乙两种水稻,在连续6年中各年的平均产量如下:哪种水稻的产量比较稳定? 【解析】解:因为,所以甲水稻的产量比较稳定5. 已知10只狗的血球体积及红血球的测量值如下:x (血球体积,mm ),y (血红球数,百万)(1)画出上表的散点图;(2)求出回归直线并且画出图形; (3)回归直线必经过的一点是哪一点? 【解析】05.0632.0998.0r r =>=06.6=b 07.0=a x y 06.607.0+=⋂55.05.40=+=x 37.30=⋂y 10035010005010031000=⨯6/)9.683.638.675.69.675.6(+++++=甲x 75.6=177.0=甲S 6/)68.645.638.613.72.768.6(+++++=乙x 75.6=312.0=乙S 乙甲S S <解:(1)见下图(2)设回归直线为则所以所求回归直线的方程为,图形如下:故可得到从而得回归直线方程是点评:借助散点图,可以直观探究两个变量是否具有线形相关关系;运用由最小二乘法思想得到回归直线方程的回归系数和,会由数据求回归直线方程,并利用回归直线方程进行回归分析与预测.50.45)50394058354248464245(101=+++++++++=x 37.7)72.855.620.649.990.599.650.752.930.653.6(101=+++++++++=y a bx y +=⋂176.01221=--=∑∑==ni ini ii xn xxyn yx a 64.0-=-=x a y b 64.0176.0-=⋂x y 75.430770003.399307871752≈⨯-⨯⨯-=b 2573075.43.399≈⨯-=a 25775.4+=⋂x y a b。
高一数学必修线性回归分析知识点
⾼⼀数学必修线性回归分析知识点 分析按照⾃变量和因变量之间的关系类型,可分为线性回归分析和⾮线性回归分析。
下⾯是店铺给⼤家带来的⾼⼀数学必修线性回归分析知识点,希望对你有帮助。
⾼⼀数学线性回归分析知识点总结(⼀) 重点难点讲解: 1.回归分析: 就是对具有相关关系的两个变量之间的关系形式进⾏测定,确定⼀个相关的数学表达式,以便进⾏估计预测的统计分析⽅法。
根据回归分析⽅法得出的数学表达式称为回归⽅程,它可能是直线,也可能是曲线。
2.线性回归⽅程 设x与y是具有相关关系的两个变量,且相应于n组观测值的n个点(xi, yi)(i=1,......,n)⼤致分布在⼀条直线的附近,则回归直线的⽅程为。
其中 。
3.线性相关性检验 线性相关性检验是⼀种假设检验,它给出了⼀个具体检验y与x之间线性相关与否的办法。
①在课本附表3中查出与显著性⽔平0.05与⾃由度n-2(n为观测值组数)相应的相关系数临界值r0.05。
②由公式,计算r的值。
③检验所得结果 如果|r|≤r0.05,可以认为y与x之间的线性相关关系不显著,接受统计假设。
如果|r|>r0.05,可以认为y与x之间不具有线性相关关系的假设是不成⽴的,即y与x之间具有线性相关关系。
典型例题讲解: 例1.从某班50名学⽣中随机抽取10名,测得其数学考试成绩与物理考试成绩资料如表:序号12345678910数学成绩54666876788285879094,物理成绩61806286847685828896试建⽴该10名学⽣的物理成绩对数学成绩的线性回归模型。
解:设数学成绩为x,物理成绩为,则可设所求线性回归模型为, 计算,代⼊公式得 ∴所求线性回归模型为=0.74x+22.28。
说明:将⾃变量x的值分别代⼊上述回归模型中,即可得到相应的因变量的估计值,由回归模型知:数学成绩每增加1分,物理成绩平均增加0.74分。
⼤家可以在⽼师的帮助下对⾃⼰班的数学、化学成绩进⾏分析。
2021_2022学年高中数学第2章统计2.4线性回归方程讲义苏教版必修3
2.4 线性回归方程学 习 目 标核 心 素 养1.了解两个变量之间的相关关系并与函数关系比拟. 2.会作散点图,并利用散点图判断两个变量之间是否具有线性相关关系.3.能根据给出的线性回归方程系数公式建立线性回归方程,并能由回归方程对总体进展预测、估计.(重点、难点)通过对已有数量的分析、运算培养学生数据分析、数学运算的核心素养.1.变量之间的两类常见关系在实际问题中,变量之间的常见关系有如下两类:一类是确定性函数关系,变量之间的关系可以用函数表示.另一类是相关关系,变量之间有一定的联系,但不能完全用函数表示.2.相关关系的分类相关关系分线性相关和非线性相关两种. 3.线性回归方程系数公式能用直线方程y ^=bx +a 近似表示的相关关系叫做线性相关关系,该方程叫线性回归方程.给出一组数据(x 1,y 1),(x 2,y 2),…, (x n ,y n ),线性回归方程中的系数a ,b 满足⎩⎪⎨⎪⎧b =n ∑i =1n x i y i -⎝ ⎛⎭⎪⎪⎫∑i =1n x i ⎝ ⎛⎭⎪⎪⎫∑i =1n y i n ∑i =1nx 2i -⎝ ⎛⎭⎪⎪⎫∑i =1n x i2,a =y -b x .上式还可以表示为⎩⎪⎨⎪⎧b =∑i =1nx i y i-n x -y -∑i =1n x 2i -n x 2=∑i =1n(x i-x )(y i-y )∑i =1n(x i-x )2,a =y -b x .1.有以下关系:①人的年龄与其拥有的财富之间的关系; ②曲线上点与该点的坐标之间的关系; ③苹果的产量与气候之间的关系;④森林中的同一树木,其横截面直径与高度之间的关系; ⑤学生与其学号之间的关系. 其中具有相关关系的是________. ①③④ [②⑤为确定关系不是相关关系.]2.下面四个散点图中点的分布状态,直观上判断两个变量之间具有线性相关关系的是________.③ [散点图①中的点无规律的分布,范围很广,说明两个变量之间的相关程度很小;②中所有的点都在同一条直线上,是函数关系;③中点的分布在一条带状区域上,即点分布在一条直线的附近,是线性相关关系;④中的点也分布在一条带状区域内,但不是线性的,而是一条曲线附近,所以不是线性相关关系,故填③.]3.工人工资y (元)依劳动生产率x (千元)变化的线性回归方程为y ^=50+80x ,以下判断正确的选项是________.①劳动生产率为1 000元时,工资为130元; ②劳动生产率提高1 000元时,工资提高80元; ③劳动生产率提高1 000元时,工资提高130元; ④当月工资为250元时,劳动生产率为2 000元.② [回归直线斜率为80,所以x 每增加1,y ^增加80,即劳动生产率提高1 000元时,工资提高80元.]4.下表是广告费用与销售额之间的一组数据:广告费用(千元) 1 4 6 10 14 销售额(千元)1944405253销售额y (千元)与广告费用x (千元)之间有线性相关关系,回归方程为y x +a (a 为常数),现要使销售额到达6万元,估计广告费用约为________千元.15 [x =7,y =41.6,那么a=y x=41.6-2.3×7=25.5.当y=6万元=60千元时,x+25.5,解得x=15(千元).]变量间相关关系的判断【例1】在以下两个变量的关系中,具有相关关系的是________.①正方形边长与面积之间的关系;②作文水平与课外阅读量之间的关系;③人的身高与年龄之间的关系;④降雪量与交通事故发生率之间的关系.②④[两变量之间的关系有两种:函数关系与带有随机性的相关关系.①正方形的边长与面积之间的关系是函数关系.②作文水平与课外阅读量之间的关系不是严格的函数关系,但是具有相关性,因而是相关关系.③人的身高与年龄之间的关系既不是函数关系,也不是相关关系,因为人的年龄到达一定时期身高就不发生明显变化了,因而他们不具备相关关系.④降雪量与交通事故的发生率之间具有相关关系.]1.函数关系是一种确定的关系,而相关关系是非随机变量与随机变量的关系.函数关系是一种因果关系,而相关关系不一定是因果关系,也可能是伴随关系.2.准确理解变量间的相关关系是解答此题的关键.要准确区分两个变量间的相关关系和函数关系,事实上,现实生活中相关关系是处处存在的,从某种意义上讲,函数关系可以看作一种理想的关系模型,而相关关系是一种普遍的关系.两者区别的关键点是“确定性〞还是“不确定性〞.1.以下两个变量中具有相关关系的是________(填写相应的序号).①正方体的棱长和体积;②单产为常数时,土地面积和总产量;③日照时间与水稻的亩产量.③[正方体的棱长x和体积V存在着函数关系V=x3;单产为常数a公斤/亩,土地面积x(亩)和总产量y(公斤)之间也存在着函数关系y=ax.日照时间长,那么水稻的亩产量高,这只是相关关系,应选③.]2.以下命题:①任何两个变量都具有相关关系;②圆的周长与该圆的半径具有相关关系;③某商品的需求量与该商品的价格是一种非确定性关系;④根据散点图求得的回归直线方程可能是没有意义的;⑤两个变量间的相关关系可以通过回归直线,把非确定性问题转化为确定性问题进展研究.其中正确的命题为________.③④⑤[两个变量不一定是相关关系,也可能是确定性关系,故①错误;圆的周长与该圆的半径具有函数关系,故②错误;③④⑤都正确.]散点图的画法及应用【例2】现有5个同学的数学和物理成绩如下表:学生A B C D E学科数学8075706560物理7066686462 利用散点图判断它们是否具有线性相关关系?如果有线性相关关系,是正相关还是负相关?思路点拨:此题涉及两个变量(数学成绩与物理成绩),以x轴表示数学成绩、y轴表示物理成绩,可得相应的散点图,再观察散点图得出结论.[解] 把数学成绩作为横坐标,把相应的物理成绩作为纵坐标,在平面直角坐标系中描点(x i,y i)(i=1,2,…,5).从图中可以直观地看出数学成绩和物理成绩具有线性相关关系,且当数学成绩减小时,物理成绩也由大变小,即它们正相关.1.判断两个变量x和y之间是否具有线性相关关系,常用的简便方法就是绘制散点图,如果图上发现点的分布从整体上看大致在一条直线附近,那么这两个变量就是线性相关的,注意不要受个别点的位置的影响.如果变量的对应点分布没有规律,我们就可以认为这两个变量不具有相关关系.2.正相关、负相关线性相关关系又分为正相关和负相关.正相关是指两个变量具有一样的变化趋势,即从整体上来看,一个变量会随另一个变量变大而变大.从散点图上看,因变量随自变量的增大而增大,图中的点分布在左下角到右上角的区域.负相关是指两个变量具有相反的变化趋势,即从整体上来看,一个变量会随另一个变量变大而变小.从散点图上看,因变量随自变量的增大而减小,图中的点分布在左上角到右下角的区域.提醒:画散点图时应注意合理选择单位长度,防止图形过大或偏小,或者是点的坐标在坐标系中画不准,使图形失真,导致得出错误结论.3.如图是两个变量统计数据的散点图,判断两个变量之间是否具有相关关系?思路点拨:观察图中点的分布情况作出判断.从散点图上看,点的分布散乱无规律,故不具有相关关系.[解] 不具有相关关系,因为散点散乱地分布在坐标平面内,不呈线形.4.有个男孩的年龄与身高的统计数据如下:年龄(岁)12345 6身高(cm)788798108115120 思路点拨:描点(1,78),(2,87),(3,98),(4,108),(5,115),(6,120).观察点的分布,作出判断.[解] 作出散点图如图:由图可见,具有线性相关关系,且是正相关.线性回归方程的求法及应用【例3】 某产品的广告支出x (单位:万元)与销售收入y (单位:万元)之间有下表所对应的数据.广告支出x /万元 1 2 3 4 销售收入y /万元12284256(1)画出表中数据的散点图;(2)求出y 对x 的回归直线方程y ^=bx +a ,并解释b 的意义; (3)假设广告费为9万元,那么销售收入约为多少万元? 思路点拨:画散点图→列表处理数据→计算x ,y ,n ∑i =14x 2i ,∑i =14x i y i →计算b →计算a →线性回归方程→销售收入[解] (1)散点图如图.(2)观察散点图可知各点大致分布在一条直线附近,列出以下表格,以便计算回归系数a ,B .序号 xyx 2y 2xy1 1 12 1 144 12 2 2 28 4 784 56 334291 7641264 4 56 16 3 136 224 ∑10138305 828418于是x =52,y =692,∑i =14x 2i =30,∑i =14y 2i =5 828,∑i =14x i y i =418,代入公式得,b =∑i =14x i y i -4xy∑i =14x 2i -4x 2=418-4×52×69230-4×⎝ ⎛⎭⎪⎫522=735,a =y -b x =692-735×52=-2.故y 对x 的回归直线方程为y ^=735x -2,其中回归系数b =735,它的意义是:广告支出每增加1万元,销售收入y 平均增加735万元.(3)当x =9万元时,y ^=735×9-2=129.4(万元),即假设广告费为9万元,那么销售收入约为129.4万元.1.求样本数据的线性回归方程,可按以下步骤进展: 第一步,计算平均数x ,y ;第二步,求和∑i =1nx i y i ,∑i =1nx 2i ;第三步,计算b =∑i =1n (x i -x )(y i -y)∑i =1n(x i -x)2=∑i =1nx i y i -n xy∑i =1nx 2i -n x 2,a =y -b x ;第四步,写出线性回归方程y ^=bx +A .2.对于任意一组样本数据,利用上述公式都可以求得“回归方程〞,如果这组数据不具有线性相关关系,即不存在回归直线,那么所得的“回归方程〞是没有实际意义的.因此,对一组样本数据,应先作散点图,在具有线性相关关系的前提下再求回归方程.提醒:(1)对一组数据进展线性回归分析时,应先画出其散点图,判断变量之间是否线性相关,再由系数a ,b 的计算公式,计算出a ,b ,由于计算量较大,在计算时应借助计算器,仔细计算,以防出现错误.(2)为了方便,常制表对应算出x i y i ,x 2i ,以便于求和.(3)研究变量间的相关关系,求得回归直线方程能帮助我们发现事物开展的一些规律,估计、预测某些数据,为我们的判断和决策提供依据.5.如图是我国2021年至2021年生活垃圾无害化处理量(单位:亿吨)的折线图.注:年份代码1-7分别对应年份2021-2021.(1)由折线图看出,可用线性回归模型拟合y 与t 的关系,请用相关系数加以说明; (2)建立y 关于t 的回归方程(系数准确到0.01),预测2021年我国生活垃圾无害化处理量.参考数据:∑ 7i =1y i =9.32,∑7i =1t i y i =40.17,∑ 7i =1(y i -y )2=0.55,7≈2.646.参考公式:相关系数r =∑ni =1 (t i -t )(y i -y )∑ ni =1 (t i -t )2∑ ni =1(y i -y )2,回归方程y ^=a +bt 中斜率和截距的最小二乘估计公式分别为b =∑ ni =1 (t i -t )(y i -y )∑ ni =1(t i -t )2,a =y --b t . 思路点拨:(1)利用相关系数的大小――→确定y 与t 的线性相关程度 (2)求出回归方程→利用方程进展估计[解] (1)由折线图中的数据和附注中的参考数据得 t =4,∑ 7i =1 (t i -t )2=28,∑ 7i =1(y i -y )2=0.55,∑ 7i =1(t i -t )(y i -y )=∑ 7i =1t i y i -t ∑ 7i =1y i =40.17-4×9.32=2.89,∴r ≈,0.55×2×2.646)≈0.99.因为y 与t 的相关系数近似为0.99,说明y 与t 的线性相关程度相当大,从而可以用线性回归模型拟合y 与t 的关系.(2)由y =,7)≈1.331及(1)得b =∑ 7i =1(t i -t )(y i -y )∑ 7i =1 (t i -t )2=,28)≈0.103. a =y -b t ≈1.331-0.103×4≈0.92.所以y 关于t 的回归方程为y ^t .将2021年对应的t =9代入回归方程得y ^=0.92+0.10×9=1.82. 所以预测2021年我国生活垃圾无害化处理量约为1.82亿吨.1.本节课的重点是会作两个有关联变量的数据的散点图,会利用散点图认识变量间的相关关系,能根据给出的线性回归方程系数公式建立线性回归方程.难点是了解相关关系、线性相关、回归直线的概念.2.本节课要掌握以下几类问题 (1)准确区分相关关系与函数关系.(2)会利用散点图判断两个变量间的相关关系. (3)掌握用线性回归方程估计总体的一般步骤.1.在如下图的四个散点图中,两个变量具有相关性的是( )A .①②B .①④C .②③D .②④D [由图可知①中变量间是一次函数关系,不是相关关系;②中的所有点在一条直线附近波动,是线性相关的;③中的点杂乱无章,没有什么关系;④中的所有点在某条曲线附近波动,是非线性相关的.故两个变量具有相关性的是②④.]2.四名同学根据各自的样本数据研究变量x ,y 之间的相关关系,并求得线性回归方程,分别得到以下四个结论:①y 与x 负相关且y ^x -6.423; ②y 与x 负相关且y ^x +5.648; ③y 与x 正相关且y ^x +8.493; ④y 与x 正相关且y ^x -4.578.其中一定不正确的结论的序号有( ) A .①③ B .①④ C .②③D .②④B [由正、负相关性的定义知①④一定不正确.]3.某工厂生产某种产品的产量x (吨)与相应的生产能耗y (吨标准煤)有如下几组样本数据:的斜率为0.7,那么这组样本数据的线性回归方程是________.y ^x +0.35 [∵x =3+4+5+64=4.5,y =,4)=3.5, ∴a =y -b x =3.5-0.7×4.5=0.35. ∴线性回归方程为y ^x +0.35.]4.2021年元旦前夕,某市统计局统计了该市2021年10户家庭的年收入和年饮食支出的统计资料如下表:(2)假设某家庭年收入为9万元,预测其年饮食支出.(参考数据:∑i =110x i y i =117.7,∑i =110x 2i =406)思路点拨:按照求线性回归方程的一般步骤,求出线性回归方程,再根据回归方程作出预测.[解] (1)依题意可计算得:x =6,y =1.83,x 2=36,.下载后可自行编辑修改,页脚下载后可删除。
高中数学知识点精讲精析 线性回归分析 (2)
1.3 线性回归分析1.客观事物是相互联系的但实际上更多存在的是一种非因果关系 某某同学的数学成绩与物理成绩,彼此是互相联系的,但不能认为数学是“因”,物理是“果”,或者反过来说 “果”,而真正的“因”是学生的理科学习能力和努力程度 函数关系存在着一种确定性关系 2.线性相关关系:像能用直线方程ˆybx a =+近似表示的相关关系叫做线性相关关系. 3.线性回归方程:一般地,设有n 个观察数据如下:当,a b 使2221122()()...()n n Q y bx a y bx a y bx a =--+--++--取得最小值时,就称ˆybx a =+为拟合这n 对数据的线性回归方程,该方程所表示的直线称为回归直线. 上述式子展开后,是一个关于,a b 的二次多项式,应用配方法,可求出使Q 为最小值时的,a b 的值.即1112211()()()n n n i i i i i i i i i i i n x y x y b n x x a y bx=====⎧-⎪⎪=⎨-⎪⎪=-⎪⎩∑∑∑∑∑,(*) ∑==ni i x n x 11, ∑==n i i y n y 111. 下表为某地近几年机动车辆数与交通事故数的统计资料,请判断机动车辆数与交通事故数之间是否有线性相关关系,如果具有线性相关关系,求出线性回归方程;如果不具有线性相关关系,说明理由.【解析】在直角坐标系中画出数据的散点图,直观判断散点在一条直线附近,故具有线性相关关系.计算相应的数据之和:8888211111031,71.6,137835,9611.7ii i i i i i i i xy x x y ========∑∑∑∑,将它们代入(*)式计算得0.0774, 1.0241b a ≈=-,所以,所求线性回归方程为0.0774 1.0241y x =-.2.有10名同学高一(x )和高二(y )的数学成绩如下:⑴画出散点图;⑵求y 对x 的回归方程 【解析】 ⑴如图:⑵ 由已知表格的数据可得,,所以,又可查表中相应与显著性水平0.05和n -2的相关系数的临界值 因为可知,y 与x 具有相关关系. 因为y 与x 具有相关关系,设y=bx+a ,∴71,72.3x y ==101011710,723ii i i xy ====∑∑1010102211151467,50520,52541i ii i i i i x yx y ======∑∑∑10100.7802972i ix y x yr -⋅===∑0.050.632,r =0.05r r >1012110 1.22,14.3210i ii nii x y x yb a y bx xx==-⋅=≈=-≈--∑∑∴所求的回归方程为y=1.22x -14.32.3.下列两个变量之间的关系哪个不是函数关系( D ) A .角度和它的余弦值B.正方形边长和面积C .正n边形的边数和它的内角和 D.4.给出施化肥量对水稻产量影响的试验数据:(1)画出上表的散点图;(2)求出回归直线并且画出图形 【解析】(1)散点图(略).(2)表中的数据进行具体计算,列成以下表格 故可得到 2573075.43.399,75.430770002≈⨯-=≈⨯-=a b从而得回归直线方程是^4.75257y x =+.(图形略)5.一个工厂在某年里每月产品的总成本y (万元)与该月产量x (万件)之间由如下一组数据: 1)画出散点图;2)检验相关系数r 的显著性水平;3)求月总成本y 与月产量x 之间的回归直线方程.解析:=,==2.8475,=29.808,=99.2081,=54.243 1)画出散点图:2)r==在“相关系数检验的临界值表”查出与显著性水平0.05及自由度12-2=10相应的相关数临界值r0.05=0.576<0.997891, 这说明每月产品的总成本y(万元)与该月产量x(万件)之间存在线性相关关系。
2025数学大一轮复习讲义苏教版 第九章 线性回归分析、独立性检验
根据散点的集中程度可知,花瓣长度和 花萼长度有相关性,故A错误; 散点的分布是从左下到右上,从而花瓣 长度和花萼长度呈正相关,故B错误, C正确; 由于r=0.824 5是全部数据的相关系数,取出来一部分数据,相关性可能 变强,可能变弱,即取出的数据的相关系数不一定是0.824 5,故D错误.
n
xiyi-n x y
i=1
2.求b^ 时,常用公式b^ =
.
n
x2i -n x 2
i=1
3.回归分析和独立性检验都是基于样本观测数据进行估计或推断,得出
的结论都可能犯错误.
自主诊断
1.判断下列结论是否正确.(请在括号中打“√”或“×”)
(1)散点图是判断两个变量相关关系的一种重要方法和手段.( √ )
跟踪训练1 (1)(2023·保定模拟)已知两个变量x和y之间有线性相关关系, 经调查得到样本数据如表所示:
x3 4 5 6 7 y 3.5 2.4 1.1 -0.2 -1.3
根据表格中的数据求得线性回归方程为y^=b^ x+a^ ,则下列说法中正确的是
a^ >0,b^ >0
√B.a^ >0,b^<0
8
(xi- x )(yi- y )=16+12+5+0+0+3+6+27=69,
i=1
x3 3 4 5 5 6 6 8
y 10 12 13 18 19 21 24 27
8
(xi- x )2=4+4+1+0+0+1+1+9=20,
i=1
8
(yi- y )2=64+36+25+0+1+9+36+81=252,
若由表中数据得到线性回归方程为y^=0.8x+a^ ,则当 x=10 时的残差为 __-__0_.1___(注:实际观测值减去预测值称为残差).
高考数学复习考点32 线性回归方程与列联表(讲解) (解析版)
考点32 回归方程与独立性检验【思维导图】【常见考法】考法一 回归方程1.某工厂某产品产量x (千件)与单位成本y (元)满足回归直线方程77.36 1.82y x =-,则以下说法中正确的是( )A .当产量为1千件时,单位成本为75.54元B .当产量为2千件时,单位成本为73.72元C .产量每增加1000件,单位成本约下降1.82元D .产量每减少1000件,单位成本约下降1.82元【答案】C【解析】令()77.36 1.82f x x =-,因为()()()177.36 1.82177.36 1.82 1.82f x f x x x +-=-+-+=-, 所以产量每增加1000件,单位成本约下降1.82元.故选:C2.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:根据上表可得回归方程y bx a =+,计算得7b =,则当投入10万元广告费时,销售额的预报值为 A .75万元 B .85万元 C .99万元 D .105万元【答案】B【解析】由题意得11(24568)5,(3040506070)5055x y =++++==++++=, ∴样本中心为(5,50).∵回归直线ˆ7ˆyx a =+过样本中心(5,50),∴ˆ5075a =⨯+,解得ˆ15a =, ∴回归直线方程为ˆ715yx =+.当10x =时,710158ˆ5y =⨯+=, 故当投入10万元广告费时,销售额的预报值为85万元.故选B .3.某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(i x ,i y )(1,2,,6i =⋅⋅⋅),如表所示:已知611806i i y y ===∑.(1)求q 的值;(2)已知变量x ,y 具有线性相关关系,求产品销量y (件)关于试销单价x (元)的线性回归方程ˆˆˆy bx a =+;(3)用ˆi y表示用正确的线性回归方程得到的与i x 对应的产品销量的估计值,当ˆ1i i y y -≤时,将销售数据(i x ,i y )称为一个“好数据”,现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个是“好数据”的概率.参考公式:()()()1122211ˆnni iiii i nniii i x y nx y x x y y bxnxx x =-==---==--∑∑∑∑,ˆˆay bx =-. 【答案】(1)90;(2)ˆ4106y x =-+;(3)45. 【解析】(1)由611806i i y y -==∑,得8483807568806q +++++=,解得90q =. (2)经计算,613050i ii x y-=∑, 6.5x =,621271i i x -=∑,所以230506 6.580ˆ42716 6.5b-⨯⨯==--⨯, ˆ804 6.5106a=+⨯=,所以所求的线性回归方程为ˆ4106y x =-+. (3)由(2)知,当14x =时,1ˆ90y =;当25x =时,2ˆ86y =;当36x =时,3ˆ82y =;当47x =时,4ˆ78y=;当58x =时,5ˆ74y=;当69x =时,6ˆ70y =.与销售数据对比可知满足ˆ1i i y y -≤(1,2,,6i =⋅⋅⋅)的共有3个:()4,90,()6,83,()8,75.从6个销售数据中任取2个的所有可能结果有2665C 152⨯==(种),其中2个销售数据中至少有一个是“好数据”的结果有112333C C C 33312+=⨯+=(种),于是抽取的2个销售数据中至少有一个是“好数据”的概率为124155=. 考法二 非线性回归方程1.某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如下表:(1)求这五天内所卖西瓜个数的平均值和方差;(2)求变量x,y 之间的线性回归方程,并预测当温度为30 °C 时所卖西瓜的个数.附:b ̂=∑x i y i ni=1−nx̅y̅∑x i 2n i=1−nx̅2,a ̂=y ̅−b ̂x̅(精确到0.1). 【答案】(1)26,27.2(2)y ̂=2.2x −51,15 【解析】(1)y ̅=15×(20+22+24+30+34)=26,方差为s 2=15×[(20−26)2+(22−26)2+(24−26)2+(30−26)2+(34−26)2]=27.2. (2)x̅=15×(32+33+35+37+38)=35,∑x i 25i=1=6 151,∑x i y i 5i=1=4 608, 所以b ̂=∑x i y i 5i=1−5x̅y ̅∑x i 25i=1−5x̅2=4 608−5×35×266 151−5×352=5826≈2.2,a ̂=y ̅−b ̂x̅=26−2.2×35=−51, 所以回归直线方程为y ̂=2.2x −51,当x =30时,y =15,所以预测当温度为30 °C 时所卖西瓜的个数为15.2.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量()y g 与尺寸()mm x 之间近似满足关系式b y c x =⋅(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间()0.302,0.388内时为优等品.现随机抽取6件合格产品,测得数据如下:(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:根据所给统计量,求y 关于x 的回归方程. 附:对于样本(),(1,2,,6)i i v u i =,其回归直线u b v a =⋅+的斜率和截距的最小二乘法估计公式分别为:()()()1122211ˆnniii i i i nniii i v v u u v u nv ubvv vnv ====---==--∑∑∑∑,ˆˆa u bv=-, 2.7183e ≈.【答案】(1)15;(2)0.5ˆyex =. 【解析】(1)由已知,优等品的质量与尺寸的比(0.302,0.388)yx∈ 则随机抽取的6件合格产品中,有3件为优等品,记为a ,b ,c , 有3件为非优等品,记为d ,e ,f ,现从抽取的6件合格产品中再任选2件,基本事件为:(,),(,),(,),(,)a b a c a d a e (, ),(, ),(, ),(,),(,),(,)a f b c b d b e b f c d(,),(,),(,),(,),(,)c e c f d e d f e f ,选中的两件均为优等品的事件为(,),(,),(,)a b a c b c ,所以所求概率为31155=. (2)对b y c x =⋅两边取自然对数得ln ln ln y c b x =+令ln ,ln i i i i v x u y ==,则u b v a =⋅+,且ln a c = 由所给统计量及最小二乘估计公式有:11222175.324.618.360.271ˆ101.424.660.542ni i nii v u nuvbvnv ==--⨯÷====-÷-∑∑ 118.324.62ˆˆ16au bv ⎛⎫-⨯ ⎪⎝⎭=-==, 由ˆˆln ac =得ˆc e =,所以y 关于x 的回归方程为0.5ˆyex =.3.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数:经计算:611266i i x x ===∑,611336i i y y ===∑,61()()557i i i x x y y =--=∑,621()84i i x x =-=∑,621()3930ii y y =-=∑,621()23.6ˆ64i i y y=-=∑,8.0653167e ≈,其中i x ,i y 分别为试验数据中的温度和死亡株数,1,2,3,4,5,6i =.(1)若用线性回归模型,求y 关于x 的回归方程^^^y b x a =+(结果精确到0.1);(2)若用非线性回归模型求得y 关于x 的回归方程0.23030.06ˆxye =,且相关指数为20.9522R =.(i)试与(1)中的回归模型相比,用2R 说明哪种模型的拟合效果更好;(ii )用拟合效果好的模型预测温度为35C 时该紫甘薯死亡株数(结果取整数). 附:对于一组数据11(,)u v ,22(,)u v ,,(,)n n u v ,其回归直线ˆˆv u αβ∧=+的斜率和截距的最小二乘估计分别为:121()()()niii ni i u u v v u u β∧==--=-∑∑,a v u β∧∧=-;相关指数为:22121()1()niii niii v v R v v ∧==-=--∑∑.【解析】(Ⅰ)由题意得,()()()121557= 6.6384ˆni i i n i i x x y y b x x ==--=≈-∑∑ ∴ˆa =33−6.63⨯26=−139.4,∴y 关于x 的线性回归方程为:ˆy =6.6x −139.4.(注:若用ˆ 6.6b≈计算出18.6ˆ3a =-,则酌情扣1分) (Ⅱ) (i )线性回归方程ˆy =6.6x −138.6对应的相关指数为:()()6221621236.641110.06020.93983930ˆi i i i ii y y R y y ==-=-=-≈-=-∑∑,因为0.9398<0.9522,所以回归方程0.2303ˆ0.06xye =比线性回归方程ˆy =6.6x −138.6拟合效果更好.(ii )由(i )知,当温度35x C =时,0.2303358.06050.060.060.063167190ˆye e ⨯==≈⨯≈, 即当温度为35︒C 时该批紫甘薯死亡株数为190.考法三 独立性检验1.为大力提倡“厉行节约,反对浪费”,某市通过随机调查100名性别不同的居民是否做到“光盘”行动,得到如下列联表:经计算()()()()()22 3.03n ad bcKa b c d a c b d-=≈++++.附表:参照附表,得到的正确结论是()A.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’行动与性别有关”B.在犯错误的概率不超过1%的前提下,认为“该市居民能否做到‘光盘’行动与性别无关”C.有90%以上的把握认为“该市居民能否做到‘光盘’行动与性别有关”D.有90%以上的把握认为“该市居民能否做到‘光盘’行动与性别无关”【答案】C【解析】由题意可知2 3.03K≈,结合临界值表可知2.706 3.03 3.841<<,因而在犯错误的概率不超过10%的前提下,认为“该市居民能否做到‘光盘’行动与性别有关”,或表述为有90%以上的把握认为“该市居民能否做到‘光盘’行动与性别有关”;结合选项可知,C为正确选项,故选:C.2.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取100名学生对线上教学进行调查,其中男生与女生的人数之比为9:11,抽取的学生中男生有30人对线上教学满意,女生中有10名表示对线上教学不满意.(1)完成22⨯列联表,并回答能否有90%的把握认为“对线上教学是否满意与性别有关”;(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取5名学生,再在这5名学生中抽取2名学生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:()()()()()22n ad bcKa b c d a c b d⋅=++++.【答案】(1)填表见解析;有90%的把握认为“对线上教学是否满意与性别有关”;(2)35.【解析】(1)22⨯列联表如下:又()22100301045153.03 2.70675254555K⨯-⨯=≈>⨯⨯⨯,这说明有90%的把握认为“对线上教学是否满意与性别有关”.(2)方法一:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为A、B;女生3人设为,,a b c,则从这5名学生中抽取2名学生的基本事件有:(),A B,(),A a,(),A b,(),A c,(),B a,(),B b,(),B c,(),a b,(),a c,(),b c,共10个基本事件,其中抽取一名男生与一名女生的事件有(),A a,(),A b,(),A c,(),B a,(),B b,(),B c,共6个基本事件,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为63 105=.方法二:由题可知,从被调查中对线上教学满意的学生中,利用分层抽样抽取5名学生,其中男生2名,设为;女生3人,根据古典概型,从这5名学生中抽取一名男生与一名女生的概率为11 22 2 563 105C CC==3.“微信运动”是一个类似计步数据库的公众账号,用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面22⨯列联表(单位:人),并根据列联表判断是否有90%的把握认为“评定类型与性别有关”;附:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++. (2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.【答案】(1)列联表见解析;没有90%的把握认为“评定类型与性别有关”;(2)310. 【解析】(1)22⨯列联表如下:根据列联表中的数据,得的观测值2K 的观测值()225020810120.231 2.70630203218K ⨯⨯-⨯=≈<⨯⨯⨯, 所以没有90%的把握认为“评定类型与性别有关”.(2)由已知可得从步数在3001~6000的人群有男性2人,女性3人.设步数在3001~6000中的男性的编号为1,2,女性的编号为a ,b ,c .设选中的人中男性人数超过女性人数为事件A .选取三人的所有情况为()1,2,a ,()1,2,b ,()1,2,c ,()1,,a b ,()1,,a c ,()1,,b c ,()2,,a b ,()2,,a c ,()2,,b c ,(),,a b c ,共10种情况.符合条件的情况有()1,2,a ,()1,2,b ,()1,2,c ,共3种情况.故所求概率为()310P A =. 4.为了提高生产效益,某企业引进一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取100件产品进行质量检测,所有产品质量指标值均在(]15,45以内,规定质量指标值大于30的产品为优质品,质量指标值在(]15,30以内的产品为合格品.旧设备所生产的产品质量指标值如频率分布直方图所示,新设备所生产的产品质量指标如频数分布表所示.(1)请分别估计新、旧设备所生产的产品优质品率;(2)优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有95%的把握认为“产品质量高低与新设备有关”;(3)已知每件产品的纯利润y (单位:元)与产品质量指标t 的关系式为2,30451,1530t y t <≤⎧=⎨<≤⎩.若每台新设备每天可以生产1000件产品,买一台新设备需要80万元,请估计至少需要生产多少天才可以收回设备成本.参考公式:()()()()()22n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.【答案】(1)估计新、旧设备所生产的产品优质品率分别为70%、55%;(2)列联表见解析,有95%的把握认为“产品质量高低与新设备有关”,理由见解析;(3)471.【解析】(1)估计新设备所生产的产品优质品率为302515100%70%100++⨯=,估计旧设备所生产的产品优质品率为()50.060.030.02100%55%⨯++⨯=;(2)根据题中所给数据可得到如下22⨯列联表:()22220030557045 4.8 3.84110075125K ⨯⨯-⨯==>⨯⨯, 因此,有95%的把握认为“产品质量高低与新设备有关”; (3)新设备所生产的产品的优质品率为0.7,∴每台新设备每天所生产的1000件产品中,估计有10000.7700⨯=件优质产品,有300件合格品,则每台新设备每天所生产的产品的纯利润为700230011700⨯+⨯=(元), 8000001700471÷≈(天),因此,估计至少需要471天方可收回成本.。
2021年高考线性回归方程总结【精华版】
第二讲线性回归方程一、相关关系:1、1||1||r r 不确定关系:相关关系确定关系:函数关系2、相关系数:ni i n i i ni i i y y x x y y x x r 12121)()())((,其中:(1)负相关正相关00r r ;(2)相关性很弱;相关性很强;3.0||75.0||r r 例题1:下列两个变量具有相关关系的是()A.正方形的体积与棱长;B.匀速行驶的车辆的行驶距离与行驶时间;C.人的身高和体重;D.人的身高与视力。
例题2:在一组样本数据),,,2)(,(),,(),,(212211不全相等n n n x x x n y x y x y x 的散点图中,若所有样本点),2,1)(,(n i y x i i 都在直线121x y 上,则样本相关系数为()21.21.1.1.D C B A 例题3:r 是相关系数,则下列命题正确的是:(1)]75.0,1[r 时,两个变量负相关很强;(2)]1,75.0[r 时,两个变量正相关很强;(3))75.0,3.0[]3.0,75.0(或r 时,两个变量相关性一般;(4)(4)1.0r 时,两个变量相关性很弱。
3、散点图:初步判断两个变量的相关关系。
例题4:在画两个变量的散点图时,下列叙述正确的是()A.预报变量在x 轴上,解释变量在y 轴上;B.解释变量在x 轴上,预报变量在y 轴上;C.可以选择两个变量中的任意一个变量在x 轴上;D.可以选择两个变量中的任意一个变量在y 轴上;例题5:散点图在回归分析过程中的作用是()A.查找个体个数B.比较个体数据的大小C.研究个体分类D.粗略判断变量是否线性相关二、线性回归方程:1、回归方程:a x b y?其中2121121)())((x n x yx n y x x x y y x x b n i i ni i i n i i n i i i ,x b y a (代入样本点的中心)例题1:设),(),,(),,(2211n n y x y x y x 是变量n y x 的和个样本点,直线l 是由这些样本点通过最小二乘法得到的线性回归直线(过一、二、四象限),以下结论正确的是()A.直线l 过点),(y xB.当n 为偶数时,分布在l 两侧的样本点的个数一定相同C.的和y x 相关系数在0到1之间D.的和y x 相关系数为直线l 的斜率例题2:工人月工资y (元)依劳动生产率x (千元)变化的回归直线方程为x y 9060,下列判断正确的是()A.劳动生产率为1000元时,工资为150元;B.劳动生产率提高1000元时,工资平均提高150元;C.劳动生产率提高1000元时,工资平均提高90元;D.劳动生产率为1000元时,工资为90元;例题3:设某大学的女生体重)(kg y 与身高)(cm x 具有线性相关关系,根据一组样本数据)2,1)(,(n i y x i i ,用最小二乘法建立的回归方程为71.8585.0x y ,则不正确的是()A.y 与x 具有正的线性相关关系;B.回归直线过样本点的中心),(y x C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg例题4:为了了解儿子的身高与其父亲身高的关系,随机抽取5对父子的身高数据如下:父亲身高174 176 176 176 178儿子身高175 175 176 177 177则y 对x 的线性回归方程为()A.1x y B.1x y C.x y 2188 D.176y 2、残差:(1)残差图:横坐标为样本编号,纵坐标为每个编号样本对应的残差。
【优】高中数学线性回归方程PPT资料
(2)利用回归直线对总体进行估计 利用回归直线,我们可以进行预测,若回归直线方程为:y^= bx+a,则 x=x0 处的估计值为:y^=bx0+a.
题型一 相关关系的判断 【例1】 下列两个变量之间的关系中,①角度和它的余弦 值;②正方形的边长和面积;③正n边形的边数和其内角度数之 和;④人的年龄和身高.不是函数关系的是________.(填序号) [思路探索] 函数关系是一种变量之间确定性的关系.而相 关关系是非确定性关系. 解析 选项①②③都是函数关系,可以写出它们的函数表 达式:f(θ)=cos θ,g(a)=a2,h(n)=nπ-2π,④不是函数关系, 对于相同年龄的人群中,仍可以有不同身高的人. 答案 ④
i=1
i=1 i=1
b=
n
n
,
nxi2-xi2
i=1
i=1
a= y -b x
上式还可以表示为
n
n
xiyi-n x y xi- x yi- y
i=1
i=1
b=
=
,
n
xi2-n x 2
n
xi- x 2
i=1
i=1
a= y -b x .
想一想:1.相关关系是不是都为线性关系? 提示 不是.有些变量间的相关关系是非线性相关的. 2.散点图只描述具有相关关系的两个变量所对应点的图形吗? 提示 不是.两个变量统计数据所对应的点的图形都是散点图.
【示例】 已知x、y之间的一组数据如下表:
(2)函数关系与相关关系的区别的关键是“确定性”还是 【示例】 已知x、y之间的一组数据如下表:
(12)画 求出线数性据回对归应方的程散,点并图在;散点图中加上回归直线; 单(2)产函为数常关数系a与公相斤关/亩关土系地的面区积别x的(亩关)和键总是产“量确y定(公性斤”)之还间是也“存随在机着性函”数.关系y=ax.
高中数学知识点:线性回归方程
高中数学知识点:线性回归方程1.回归直线方程(1)回归直线:观察散点图的特征,发现各个大致分布在通过散点图中心的一条直线附近。
如果散点图中点的分布从整体上看大致在一条直线附近,我们就称这两个变量之间具有线性相关关系,这条直线叫做回归直线。
求出的回归直线方程简称回归方程。
2.回归直线方程的求法设与n 个观测点(,i ix y )()1,2,,i n =⋅⋅⋅最接近的直线方程为,y bx a =+,其中a 、b 是待定系数.则,(1,2,,)i i y bx a i n =+= .于是得到各个偏差(),(1,2,,)i i i i y y y bx a i n -=-+=. 显见,偏差i i y y -的符号有正有负,若将它们相加会造成相互抵消,所以它们的和不能代表几个点与相应直线在整体上的接近程度,故采用n 个偏差的平方和.表示n 个点与相应直线在整体上的接近程度.记21()n i i i Q y bx a ==--∑.上述式子展开后,是一个关于a 、b 的二次多项式,应用配方法,可求出使Q 为最小值时的a 、b 的值.即1122211()()()n n i i i i i i n n i i i i x x y y x y nx y b x x x nx a y bx ====⎧---⎪⎪==⎪⎨--⎪⎪=-⎪⎩∑∑∑∑, ∑==n i i x n x 11,∑==n i i y n y 11 相应的直线叫做回归直线,对两个变量所进行的上述统计分析叫做回归分析 上述求回归直线的方法是使得样本数据的点到回归直线的距离的平方和最小的方法,叫做最小二乘法。
要点诠释:1.对回归直线方程只要求会运用它进行具体计算a 、b ,求出回归直线方程即可.不要求掌握回归直线方程的推导过程.2.求回归直线方程,首先应注意到,只有在散点图大致呈线性时,求出的回归直线方程才有实标意义.否则,求出的回归直线方程毫无意义.因此,对一组数据作线性回归分析时,应先看其散点图是否成线性.3.求回归直线方程,关键在于正确地求出系数a 、b ,由于求a 、b 的计算量较大,计算时仔细谨慎、分层进行,避免因计算产生失误.4.回归直线方程在现实生活与生产中有广泛的应用.应用回归直线方程可以把非确定性问题转化成确定性问题,把“无序”变为“有序”,并对情况进行估测、补充.因此,学过回归直线方程以后,应增强学生应用回归直线方程解决相关实际问题的意识.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考点32 回归方程与独立性检验【思维导图】【常见考法】考法一 回归方程1.某工厂某产品产量(千件)与单位成本(元)满足回归直线方程,则以下说法中x y 77.36 1.82y x =-正确的是( )A .当产量为千件时,单位成本为元 175.54B .当产量为千件时,单位成本为元 273.72C .产量每增加件,单位成本约下降元 1000 1.82D .产量每减少件,单位成本约下降元1000 1.822.已知某种商品的广告费支出x (单位:万元)与销售额y (单位:万元)之间有如下对应数据:x 2 4 5 6 8y30 40 50 60 70根据上表可得回归方程,计算得,则当投入10万元广告费时,销售额的预报值为 y bx a =+$$$7b= A .75万元 B .85万元 C .99万元 D .105万元3.某企业为了参加上海的进博会,大力研发新产品,为了对新研发的一批产品进行合理定价,将该产品按事先拟定的价格进行试销,得到一组销售数据(,)(),如表所示: i x i y 1,2,,6i =⋅⋅⋅试销单价/元 x 45 6 7 8 9产品销量/件 yq 84 83 80 75 68已知.611806i i y y ===∑(1)求的值;q (2)已知变量,具有线性相关关系,求产品销量(件)关于试销单价(元)的线性回归方程x y y x; ˆˆˆybx a =+(3)用表示用正确的线性回归方程得到的与对应的产品销量的估计值,当时,将销售数ˆi yi x ˆ1i i y y -≤据(,)称为一个“好数据”,现从6个销售数据中任取2个,求抽取的2个销售数据中至少有一个i x i y 是“好数据”的概率.参考公式:,. ()()()1122211ˆnni i iii i nniii i x y nx y x x y y bxnxx x =-==---==--∑∑∑∑ˆˆay bx =-考法二 非线性回归方程1.某同学的父亲决定今年夏天卖西瓜赚钱,根据去年6月份的数据统计连续五天内每天所卖西瓜的个数与温度之间的关系如下表:温度 x(°C)32 33 35 37 38西瓜个数 y 20 22 24 30 34(1)求这五天内所卖西瓜个数的平均值和方差;(2)求变量之间的线性回归方程,并预测当温度为时所卖西瓜的个数.x,y 30 °C 附:(精确到).b =∑nx i y i-nxyi =1ia =y -bx 0.12.某厂生产不同规格的一种产品,根据检测标准,其合格产品的质量与尺寸之间近似满足()y g ()mm x 关系式(b ,c 为大于0的常数).按照某指标测定,当产品质量与尺寸的比在区间b y c x =⋅()0.302,0.388内时为优等品.现随机抽取6件合格产品,测得数据如下:尺寸()mm x 38 48 58 68 78 88质量()y g 16.8 18.8 20.7 22.4 24 25.5质量与尺寸的比y x0.442 0.392 0.357 0.329 0.308 0.290(1)现从抽取的6件合格产品中再任选2件,求选中的2件均为优等品的概率; (2)根据测得数据作了初步处理,得相关统计量的值如下表:()61ln ln i i i x y =⋅∑()61ln i i x =∑()61ln i i y =∑()621ln i i x =∑75.3 24.6 18.3 101.4根据所给统计量,求y 关于x 的回归方程.附:对于样本,其回归直线的斜率和截距的最小二乘法估计公式分别(),(1,2,,6)i i v u i = u b v a =⋅+为:,,. ()()()1122211ˆn niii i i i nniii i v v u u v u nv ubv v vnv ====---==--∑∑∑∑ˆˆa u bv=- 2.7183e ≈3.为响应党中央“扶贫攻坚”的号召,某单位指导一贫困村通过种植紫甘薯来提高经济收入.紫甘薯对环境温度要求较高,根据以往的经验,随着温度的升高,其死亡株数成增长的趋势.下表给出了2017年种植的一批试验紫甘薯在温度升高时6组死亡的株数: 温度(单位:x )C21 23 24 27 29 32死亡数(单y 位:株)61120275777经计算:,,,,611266i i x x ===∑611336i i y y ===∑61(557i i i x x y y =--=∑621()84i i x x =-=∑,,,其中,分别为试验数据中的温度和死621()3930ii y y =-=∑621()23.6ˆ64i i y y=-=∑8.0653167e ≈i x i y 亡株数,.1,2,3,4,5,6i =(1)若用线性回归模型,求关于的回归方程(结果精确到0.1);y x ^^^y b x a =+(2)若用非线性回归模型求得关于的回归方程,且相关指数为. y x 0.23030.06ˆx ye =20.9522R =(i)试与(1)中的回归模型相比,用说明哪种模型的拟合效果更好;2R (ii )用拟合效果好的模型预测温度为时该紫甘薯死亡株数(结果取整数).35C 附:对于一组数据,,,,其回归直线的斜率和截距的最小二乘11(,)u v 22(,)u v (,)n n u v ˆˆv u αβ∧=+估计分别为:,;相关指数为:.121()(()niii ni i u u v v u u β∧==--=-∑∑a v u β∧∧=-22121()1()niii niii v v R v v ∧==-=--∑∑考法三 独立性检验1.为大力提倡“厉行节约,反对浪费”,某市通过随机调查100名性别不同的居民是否做到“光盘”行动,得到如下列联表:做不到“光盘”行动 做到“光盘”行动男 45 10女 30 15经计算. 附表:()()()()()22 3.03n ad bc K a b c d a c b d -=≈++++()20Kk ≥0.10 0.050.0250k 2.706 3.8415.024参照附表,得到的正确结论是( )A .在犯错误的概率不超过的前提下,认为“该市居民能否做到光盘行动与性别有关” 1%‘’B .在犯错误的概率不超过的前提下,认为“该市居民能否做到光盘行动与性别无关” 1%‘’C .有以上的把握认为“该市居民能否做到光盘行动与性别有关” 90%‘’D .有以上的把握认为“该市居民能否做到光盘行动与性别无关” 90%‘’2.2020年寒假,因为“新冠”疫情全体学生只能在家进行网上学习,为了研究学生网上学习的情况,某学校随机抽取名学生对线上教学进行调查,其中男生与女生的人数之比为,抽取的学生中男生有1009:11人对线上教学满意,女生中有名表示对线上教学不满意.3010(1)完成列联表,并回答能否有的把握认为“对线上教学是否满意与性别有关”;22⨯90%(2)从被调查的对线上教学满意的学生中,利用分层抽样抽取名学生,再在这名学生中抽取名学552生,作线上学习的经验介绍,求其中抽取一名男生与一名女生的概率.附:.()()()()()22n ad bc K a b c d a c b d ⋅=++++3.“微信运动”是一个类似计步数据库的公众账号,用户只需以运动手环或手机协处理器的运动数据为介,然后关注该公众号,就能看见自己与好友每日行走的步数,并在同一排行榜上得以体现.现随机选取朋友圈中的50人记录了他们某一天的走路步数,并将数据整理如下:步数/步0~3000 3001~6000 6001~8000 8001~10000 10000以上男性人数/人 1 2 7 15 5女性人数/人 0 3 5 9 3规定:人一天行走的步数超过8000步时被系统评定为“积极性”,否则为“懈怠性”.(1)填写下面列联表(单位:人),并根据列联表判断是否有90%的把握认为“评定类型与性别有22⨯关”;积极性 懈怠性 总计男女总计附:()20P K k ≥0.10 0.05 0.010 0.005 0.0010k 2.706 3.841 6.635 7.879 10.828,其中. ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++(2)为了进一步了解“懈怠性”人群中每个人的生活习惯,从步数在3001~6000的人群中再随机抽取3人,求选中的人中男性人数超过女性人数的概率.4.为了提高生产效益,某企业引进一批新的生产设备,为了解设备生产产品的质量情况,分别从新、旧设备所生产的产品中,各随机抽取件产品进行质量检测,所有产品质量指标值均在以内,规100(]15,45定质量指标值大于的产品为优质品,质量指标值在以内的产品为合格品.旧设备所生产的产品30(]15,30质量指标值如频率分布直方图所示,新设备所生产的产品质量指标如频数分布表所示.质量指标值 频数(]15,20 2 (]20,258(]25,30 20(]30,35 30 (]35,4025(]40,45 15合计100(1)请分别估计新、旧设备所生产的产品优质品率;(2)优质品率是衡量一台设备性能高低的重要指标,优质品率越高说明设备的性能越高.根据已知图表数据填写下面列联表(单位:件),并判断是否有的把握认为“产品质量高低与新设备有关”; 95% 非优质品 优质品 合计新设备产品旧设备产品合计(3)已知每件产品的纯利润(单位:元)与产品质量指标的关系式为.若每台新y t 2,30451,1530t y t <≤⎧=⎨<≤⎩设备每天可以生产件产品,买一台新设备需要万元,请估计至少需要生产多少天才可以收回设备100080成本.参考公式:,其中. ()()()()()22n ad bc K a b c d a c b d -=++++n a b c d =+++ ()20P K k ≥ 0.15 0.10 0.05 0.025 0.010 0.0050.0010k 2.072 2.706 3.841 5.024 6.635 7.87910.828如何学好数学1.圆锥曲线中最后题往往联立起来很复杂导致k算不出,这时你可以取特殊值法强行算出k过程就是先联立,后算代尔塔,用下伟达定理,列出题目要求解的表达式,就ok了2.选择题中如果有算锥体体积和表面积的话,直接看选项面积找到差2倍的小的就是答案,体积找到差3倍的小的就是答案,屡试不爽!3.三角函数第二题,如求a(cosB+cosC)/(b+c)coA之类的先边化角然后把第一题算的比如角A等于60度直接假设B和C都等于60°带入求解。