线性代数的几何意义笔记
线性代数的重点知识点总结
![线性代数的重点知识点总结](https://img.taocdn.com/s3/m/3c6d3663ae45b307e87101f69e3143323968f516.png)
线性代数的重点知识点总结线性代数是数学中的一个重要分支,它研究向量空间和线性变换的性质。
在数学、物理、计算机科学等领域中,线性代数都有着广泛的应用。
本文将总结线性代数的一些重点知识点,帮助读者更好地理解和应用线性代数。
1. 向量和矩阵向量是线性代数中的基本概念,它表示空间中的一点或者一个方向。
向量可以表示为一个有序的数列,也可以表示为一个列矩阵。
矩阵是由多个向量按照一定规则排列而成的矩形阵列。
矩阵可以进行加法、减法和数乘等运算。
矩阵的转置、逆矩阵和行列式等概念也是线性代数中的重要内容。
2. 线性方程组线性方程组是线性代数中的一个重要问题,它可以表示为多个线性方程的组合。
线性方程组的求解可以通过消元法、矩阵的逆等方法进行。
当线性方程组有唯一解时,称为可逆方程组;当线性方程组无解或者有无穷多解时,称为不可逆方程组。
3. 向量空间和子空间向量空间是线性代数中的一个核心概念,它包含了所有满足线性组合和封闭性的向量的集合。
子空间是向量空间中的一个子集,它也满足线性组合和封闭性的性质。
子空间可以通过一组线性无关的向量来生成,这组向量称为子空间的基。
子空间的维度等于基向量的个数。
4. 线性变换线性变换是线性代数中的一个重要概念,它是指一个向量空间到另一个向量空间的映射,并且保持向量空间的线性性质。
线性变换可以用矩阵表示,矩阵的每一列表示线性变换后的基向量。
线性变换有很多重要的性质,比如保持向量的线性组合、保持向量的线性无关性等。
5. 特征值和特征向量特征值和特征向量是线性代数中的一个重要概念,它们描述了线性变换对向量的影响。
特征向量是指在线性变换下保持方向不变或者仅仅改变长度的向量,特征值是特征向量对应的标量。
特征值和特征向量可以通过求解线性方程组来得到。
6. 内积和正交性内积是线性代数中的一个重要概念,它表示两个向量之间的夹角和长度的关系。
内积可以用来判断向量是否相互垂直或者平行,还可以用来计算向量的长度和夹角。
线性代数知识点全面总结
![线性代数知识点全面总结](https://img.taocdn.com/s3/m/28fac45efbd6195f312b3169a45177232f60e41e.png)
线性代数知识点全面总结线性代数是研究向量空间、线性变换、矩阵、线性方程组及其解的一门数学学科。
它是高等数学的基础课程之一,广泛应用于物理学、工程学、计算机科学等领域。
下面将全面总结线性代数的知识点。
1.向量向量是线性代数的基本概念之一,它表示有方向和大小的物理量。
向量可以表示为一个有序的元素集合,也可以表示为一个列向量或行向量。
向量的加法、减法、数乘等运算满足一定的性质。
2.向量空间向量空间是一组向量的集合,其中的向量满足一定的性质。
向量空间中的向量可以进行线性组合、线性相关、线性无关等运算。
向量空间的维数是指向量空间中线性无关向量的个数,也称为向量空间的基的个数。
3.矩阵矩阵是线性代数中的另一个重要概念,它是由若干个数排成的矩形阵列。
矩阵可以表示线性方程组、线性变换等。
矩阵的加法、数乘运算满足一定的性质,矩阵的乘法满足结合律但不满足交换律。
4.线性方程组线性方程组是由线性方程组成的方程组。
线性方程组可以表示为矩阵乘法的形式,其中未知数对应为向量。
线性方程组的解可以通过高斯消元法、矩阵的逆等方法求解。
5.行列式行列式是一个包含数字的方阵。
行列式的值可以通过一系列的数学运算求得,它可以表示方阵的一些性质,例如可逆性、行列式的大小等。
6.矩阵的特征值与特征向量矩阵的特征值和特征向量是矩阵的重要性质。
特征值表示线性变换后的方向,特征向量表示与特征值对应的方向。
通过求解特征值和特征向量可以分析矩阵的性质,例如对角化、矩阵的相似等。
7.线性变换线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以通过矩阵的乘法表示,矩阵中的元素代表了向量的变换规则。
8.最小二乘法最小二乘法是一种通过最小化误差的平方和来求解线性方程组的方法。
最小二乘法可以用于求解多项式拟合、数据拟合等问题,它可以通过求矩阵的伪逆来得到解。
9.正交性与正交变换正交性是指向量或函数满足内积为零的性质。
正交变换是一种保持向量长度和夹角不变的线性变换。
线性代数知识点归纳,超详细
![线性代数知识点归纳,超详细](https://img.taocdn.com/s3/m/b803f678571252d380eb6294dd88d0d233d43cad.png)
线性代数知识点归纳,超详细线性代数复习要点第⼀部分⾏列式1. 排列的逆序数2. ⾏列式按⾏(列)展开法则3. ⾏列式的性质及⾏列式的计算⾏列式的定义1.⾏列式的计算:①(定义法)②(降阶法)⾏列式按⾏(列)展开定理:⾏列式等于它的任⼀⾏(列)的各元素与其对应的代数余⼦式的乘积之和.推论:⾏列式某⼀⾏(列)的元素与另⼀⾏(列)的对应元素的代数余⼦式乘积之和等于零.③(化为三⾓型⾏列式)上三⾓、下三⾓、主对⾓⾏列式等于主对⾓线上元素的乘积.④若都是⽅阵(不必同阶),则⑤关于副对⾓线:⑥范德蒙德⾏列式:证明⽤从第n⾏开始,⾃下⽽上依次的由下⼀⾏减去它上⼀⾏的倍,按第⼀列展开,重复上述操作即可。
⑦型公式:⑧(升阶法)在原⾏列式中增加⼀⾏⼀列,保持原⾏列式不变的⽅法.⑨(递推公式法) 对阶⾏列式找出与或,之间的⼀种关系——称为递推公式,其中,,等结构相同,再由递推公式求出的⽅法称为递推公式法.(拆分法) 把某⼀⾏(或列)的元素写成两数和的形式,再利⽤⾏列式的性质将原⾏列式写成两⾏列式之和,使问题简化以例计算.⑩(数学归纳法)2. 对于阶⾏列式,恒有:,其中为阶主⼦式;3. 证明的⽅法:①、;②、反证法;③、构造齐次⽅程组,证明其有⾮零解;④、利⽤秩,证明;⑤、证明0是其特征值.4. 代数余⼦式和余⼦式的关系:第⼆部分矩阵1.矩阵的运算性质2.矩阵求逆3.矩阵的秩的性质4.矩阵⽅程的求解1.矩阵的定义由个数排成的⾏列的表称为矩阵.记作:或①同型矩阵:两个矩阵的⾏数相等、列数也相等.②矩阵相等: 两个矩阵同型,且对应元素相等.③矩阵运算a. 矩阵加(减)法:两个同型矩阵,对应元素相加(减).b. 数与矩阵相乘:数与矩阵的乘积记作或,规定为.c. 矩阵与矩阵相乘:设, ,则,其中注:矩阵乘法不满⾜:交换律、消去律, 即公式不成⽴.a. 分块对⾓阵相乘:,b. ⽤对⾓矩阵○左乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○⾏向量;c. ⽤对⾓矩阵○右乘⼀个矩阵,相当于⽤的对⾓线上的各元素依次乘此矩阵的○列向量.d. 两个同阶对⾓矩阵相乘只⽤把对⾓线上的对应元素相乘.④⽅阵的幂的性质:,⑤矩阵的转置:把矩阵的⾏换成同序数的列得到的新矩阵,叫做的转置矩阵,记作.a. 对称矩阵和反对称矩阵:是对称矩阵.是反对称矩阵.b. 分块矩阵的转置矩阵:⑥伴随矩阵:,为中各个元素的代数余⼦式.,, .分块对⾓阵的伴随矩阵:,矩阵转置的性质:矩阵可逆的性质:伴随矩阵的性质:r(A)与r(A*)的关系若r(A)=n,则不等于0,A*=可逆,推出r(A*)=n。
线性代数与几何阅读笔记
![线性代数与几何阅读笔记](https://img.taocdn.com/s3/m/f79f9b29f342336c1eb91a37f111f18582d00c43.png)
《线性代数与几何》阅读笔记一、内容描述线性代数基础知识:书中首先介绍了线性代数的基本概念和定义,如向量、矩阵、线性方程组等。
作者详细解释了这些概念的本质,并通过实例加以阐述,帮助读者建立起扎实的线性代数基础。
矩阵理论:矩阵作为线性代数的重要工具,是本书的重点之一。
书中详细讨论了矩阵的运算(如矩阵的加法、乘法、转置等)、矩阵的逆、特征值和特征向量等关键概念,并对这些概念在解决实际问题中的应用进行了深入探讨。
向量空间与线性变换:本书阐述了向量空间的概念,包括其性质、子空间、向量空间的基和维数等。
书中还介绍了线性变换的概念、性质以及在线性代数和几何中的应用。
几何应用:本书强调了线性代数与几何学的紧密联系。
通过对向量、矩阵等概念在几何中的运用,阐述了线性代数在解析几何、空间几何等领域的应用实例。
书中还讨论了线性代数在图形处理、计算机动画等领域的实际应用。
实例分析:书中包含了许多实际问题的分析和解决过程,如通过线性代数解决线性方程组的问题、利用矩阵进行图像处理等。
这些实例不仅增强了理论的实用性,也使得读者能够更直观地理解线性代数的应用。
扩展知识:除了基础的线性代数知识,本书还介绍了一些高级主题,如张量、外积和内积等概念,为读者提供了更深入的学习方向。
通过阅读《线性代数与几何》,我深刻理解了线性代数的基本概念及其在几何学中的应用。
这本书不仅为数学爱好者提供了丰富的知识,也为相关领域的研究人员和学生提供了有价值的参考。
二、基础知识篇线性代数与几何作为数学的一门重要分支,是研究向量空间、矩阵、线性变换等概念及其相关性质的学科。
本阅读笔记的第二部分将围绕线性代数与几何的基础知识展开,旨在梳理关键概念,加深理解。
向量的概念:向量是一个具有大小和方向的量,可以用有向线段表示。
在几何空间中,向量可以描述点的位移、速度等。
在线性代数中,向量是一组数,可以表示空间中的点或方向。
向量的运算:包括向量的加法、数乘、数量积(点乘)、向量积(叉乘)等运算,这些运算是构建向量空间的基础。
线性代数总结知识点
![线性代数总结知识点](https://img.taocdn.com/s3/m/949614dbbdeb19e8b8f67c1cfad6195f312be8cc.png)
线性代数总结知识点线性代数是数学的一个分支,主要研究向量、向量空间(也称为线性空间)、线性变换以及线性方程组的理论。
它是现代数学的基础工具之一,广泛应用于物理学、工程学、计算机科学、经济学和社会科学等领域。
以下是线性代数的一些核心知识点总结:1. 向量与向量运算- 向量的定义:向量可以是有序的数字列表,用于表示空间中的点或方向。
- 向量加法:两个向量对应分量相加得到新的向量。
- 标量乘法:一个向量与一个标量相乘,每个分量都乘以该标量。
- 向量的数量积(点积):两个向量的对应分量乘积之和,用于计算向量的长度或投影。
- 向量的向量积(叉积):仅适用于三维空间,结果是一个向量,表示两个向量平面的法向。
2. 矩阵- 矩阵的定义:一个由数字排列成的矩形阵列。
- 矩阵加法和减法:对应元素相加或相减。
- 矩阵乘法:第一个矩阵的列数必须等于第二个矩阵的行数,结果矩阵的每个元素是两个矩阵对应行列的乘积之和。
- 矩阵的转置:将矩阵的行变成列,列变成行。
- 单位矩阵:对角线上全是1,其余位置全是0的方阵。
- 零矩阵:所有元素都是0的矩阵。
3. 线性相关与线性无关- 线性相关:如果一组向量中的任何一个可以通过其他向量的线性组合来表示,则这组向量是线性相关的。
- 线性无关:如果只有所有向量的零组合才能表示为零向量,则这组向量是线性无关的。
4. 向量空间(线性空间)- 定义:一组向量,它们在向量加法和标量乘法下是封闭的。
- 子空间:向量空间的子集,它自身也是一个向量空间。
- 维数:向量空间的基(一组线性无关向量)的大小。
- 基和坐标:向量空间的一组基可以用来表示空间中任何向量的坐标。
5. 线性变换- 定义:保持向量加法和标量乘法的函数。
- 线性变换可以用矩阵表示,矩阵的乘法对应线性变换的复合。
6. 特征值和特征向量- 特征值:对应于线性变换的标量,使得变换后的向量与原向量成比例。
- 特征向量:与特征值对应的非零向量,变换后的向量与原向量方向相同。
线性代数知识点归纳
![线性代数知识点归纳](https://img.taocdn.com/s3/m/a1004d67443610661ed9ad51f01dc281e53a563a.png)
线性代数知识点归纳线性代数是一门研究向量、向量空间、线性变换以及有限维线性方程组的数学分支。
它广泛应用于各个领域,如物理、计算机科学、工程学等。
线性代数的核心概念和工具包括行列式、矩阵、向量组以及线性方程组等。
下面将详细介绍线性代数的相关知识点。
一、行列式1.1 行列式的概念:行列式是一个函数,它从n×n阶方阵到实数(或复数)的映射。
行列式记作|A|,其中A是一个n×n的方阵。
1.2 逆序数:在n×n阶方阵A中,将行列式中元素a_ij与a_ji互换,所得到的新的行列式称为原行列式的逆序数。
1.3 余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij删去,剩下的(n-1)×(n-1)阶方阵的行列式称为原行列式的余子式,记作M_ij。
1.4 代数余子式:在n×n阶方阵A中,将第i行第j列的元素a_ij替换为它的相反数,然后计算得到的新的行列式,称为原行列式的代数余子式,记作A_ij。
1.5 行列式的性质:行列式具有以下性质:(1)交换行列式中任意两个元素的位置,行列式的值变号。
(2)行列式中某一行(列)的元素乘以常数k,行列式的值也乘以k。
(3)行列式中某一行(列)的元素与另一行(列)的元素相加,行列式的值不变。
(4)行列式某一行(列)的元素与另一行(列)的元素相减,行列式的值变号。
1.6 行列式的计算方法:行列式的计算方法有:降阶法、按行(列)展开法、克拉默法则等。
二、矩阵2.1 矩阵的概念:矩阵是一个由数组元素构成的矩形阵列,矩阵中的元素称为矩阵的项。
矩阵记作A,其中A是一个m×n的矩阵,A_ij表示矩阵A中第i行第j列的元素。
2.2 矩阵的线性运算:矩阵的线性运算包括加法、减法、数乘等。
2.3 矩阵的乘法:两个矩阵A和B的乘法,记作A×B,要求A是一个m×n的矩阵,B是一个n×p的矩阵。
矩阵的乘法满足交换律、结合律和分配律。
《线性代数》知识点_归纳整理
![《线性代数》知识点_归纳整理](https://img.taocdn.com/s3/m/8bedd4c4760bf78a6529647d27284b73f3423659.png)
《线性代数》知识点_归纳整理线性代数是数学的一个重要分支,研究向量空间及其上的线性映射、线性方程组和矩阵等基本概念和性质。
它在数学、物理、工程、计算机科学等领域都有广泛的应用。
下面将对线性代数的一些重要知识点进行归纳整理。
1.向量空间:向量空间是线性代数的核心概念,它是一组向量的集合,满足加法和数乘运算的封闭性、结合律、交换律和分配律等性质。
向量空间的例子包括实数空间R^n、矩阵空间M(m,n)等。
2.线性映射:线性映射是指一个向量空间到另一个向量空间的映射,满足保持加法和数乘运算的性质。
线性映射可以表示为矩阵乘法的形式,其中矩阵的每一列对应于一个基向量在映射后的值。
3.线性方程组:线性方程组是由一组线性方程组成的方程组,其中每个方程都是关于未知数的线性表达式。
解线性方程组的方法包括高斯消元法、矩阵求逆法和克拉默法则等。
4.矩阵:矩阵是由数按矩形排列成的数组,是线性代数的重要工具。
矩阵可以表示线性映射、线性方程组和向量空间的基等。
矩阵的运算包括加法、数乘、矩阵乘法和转置等。
5.行列式:行列式是一个标量,它由矩阵的元素按一定规则计算得到。
行列式可以用于判断方阵的可逆性、计算线性映射的缩放因子和求解线性方程组等。
6.特征值和特征向量:特征值和特征向量是矩阵的重要性质。
特征值是一个标量,特征向量是一个非零向量,它们满足A*v=lambda*v的关系式,其中A是矩阵,v是特征向量,lambda是特征值。
特征值和特征向量可以用于矩阵的对角化和矩阵的谱分解等。
7.正交性:正交性是指向量之间的垂直关系。
在内积空间中,如果两个向量的内积为零,则它们是正交的。
正交向量组和正交矩阵是线性代数中常见的概念,它们在解线性方程组和进行特征值分解等方面具有重要作用。
8.线性相关性和线性无关性:线性相关性和线性无关性是向量组的重要性质。
如果一个向量可以由其他向量线性表示,则称这个向量与其他向量线性相关;如果一个向量不能由其他向量线性表示,则称这个向量与其他向量线性无关。
线性代数的几何意义
![线性代数的几何意义](https://img.taocdn.com/s3/m/a43d1d70561252d380eb6eeb.png)
线性代数的几何意义注解线性代数是优雅和有趣的一门学科,应用也很多,只是目前多数线性代数教材似乎都偏重"代数"而较少涉及"线性"一词包含的几何意义,所以可能给人印象较抽象,不容易让同学产生兴趣,有幸在以前偶然一次看到一位工程师自编的一本小册子叫《线性代数的几何意义》,加上后来阅读matlab 作者的书籍,才发现原来线性代数的几何含义真的印证了“数学之美”,的确很美,所以想借鉴这些零散的阅读,加上自己后来的理解,把它的部分几何意义注解一下,希望以前对线代没有很多兴趣的同学能喜欢上它,同时我也会保持更新,不断完善,一起体会数学无与伦比的美丽矩阵的几何意义1、一个矩阵是由若干向量组成的,矩阵可以看作是这些向量的集合或由这些向量为基张成的空间(在力学分析,向量空间应用时常取此几何含义,后文把此类几何含义称作矩阵的向量空间)如矩阵5673⎛⎫⎪⎝⎭按照行向量可表示为如下形式2、一个矩阵是由若干向量组成的,矩阵可以看作是这些向量终点组成的图形(在计算机图形学中常取此几何表示,后文把此类几何含义称作矩阵的图形),如矩阵579 635⎛⎫ ⎪⎝⎭按照列向量可表示为如下图形如下图是在matlab 中将z=sin(x)*cos(y)算得的离散点组成的矩阵表示成几何图形注1:如果单独查看一个矩阵m n A ⨯,可以有两种解读:矩阵A 由m 个n 维向量组成,或者由n 个m 维向量组成;在使用时会根据实际情或约定选择其中一种,而在参与变换或其他运算时,这两种解读一般不能混淆,一定要确定注2:当我们把矩阵表示成图形时,其作图没有固定标准,并不一定是把所有向量终点连接起来构成一个多边形,规则是使用者制定的,可以是网格,可以是离散面片等行列式的几何意义一个方阵n n A ⨯的行列式的绝对值是其行向量或列向量所张成的平行几何体的空间积,对于二阶行列式,就是向量张成的平行四边形的面积,对于三阶行列式,就是对应平行六面体的体积;如方阵5673⎛⎫ ⎪⎝⎭的行列式绝对值为27,它就是下图平行四边形的面积注:行列式其实是带有符号的,实际上,正负号表征了这些向量作为线性空间基的手性,正号表示右手系,负号表示左手系,在二阶矩阵的向量空间里,其判别方法是,伸出右手和矩阵的第一个列向量或行向量平行,然后调整手的正反使得能从此向量转过小于180度的角到达第二个向量,这时大拇指如果朝上(从纸面指向自己)则为右手系,矩阵的行列式为正,反之则为左手系,对应行列式为负;如果是三阶矩阵,则从第一个向量转向第二个向量时,如果大拇指指向第三个向量方向(不必重合),则为右手系,其行列式为正,反之为左手系,行列式为负;其实这一点上更广义的表述应是向量空间的基相对自然坐标系的顺序性(代数上可用逆序数表达)克拉默法则的几何意义以二维形式为例来说明其几何意义:方程A x =b ,设A=11122122a a a a ⎛⎫ ⎪⎝⎭,b =12b b ⎛⎫ ⎪⎝⎭,待求的x =12x x ⎛⎫ ⎪⎝⎭ 将A 的两个列向量分别表示为a1,a2,那么原方程可表示为1x a1+2x a2=b ,这样可以把1x 与2x 看作是列向量a1,a2的伸缩因子,经过伸缩后再叠加即得到和向量b ,故原方程可以看作已知列向量被伸缩并叠加后的向量b ,求伸缩因子i x我们已经知道行列式的几何意义,显然矩阵A 对应的平行四边形的面积就是|A|(这里以带符号的有方向面积表示,因为伸缩因子也是有符号的),当某一个向量被伸缩后,如图将OB 边伸长至OE ,形成新的平行四边形OAFE ,记其面积为OAFE S ,这样a1的伸缩因子1x 可表示为||OAFE S A ,显然只要求出OAFE S 即可解出未知量;图中OG 即向量b ,因为它是1x a1,2x a2的线性叠加,所以G 点必在EF 的延长线上,这样OG 和OE 相对OA 边的高就是相同的,故OA 与OG 组成的平行四边形面积和OAFE 相同,即OAFE S =|b a2|,所以可求得1x =|b a2|/|A|,同理可得2x =|a1 b |/|A|,可以看出此表达式和克拉默法则等价矩阵乘法的几何意义我们知道矩阵是由若干向量组成的,因此可自然地把矩阵乘法看作是两个矩阵的同维向量之间做内积(或点乘),而内积的意义是两向量同向投影的乘积,但这只是一个表面的几何含义,比较抽象(也有应用之处,后面会提到);实际上,对于矩阵乘法C=AB ,作用后得到的新矩阵C 可以看作是矩阵A 经过某种变换得到的,也可以看作是矩阵B 经过某种变换后得到的,而这种变换显然就是乘以另一个矩阵的过程,结合前面提到的矩阵的几何意义,故可以把矩阵乘法C=AB 看作是图形A (或B )经过变换B (或A )后得到新图形C ,或者是向量空间A (或B )经过变换B (或A )后得到新的向量空间C ,对于简单的变换矩阵这一点最容易感性体会到;例如变换矩阵100010000⎛⎫ ⎪ ⎪ ⎪⎝⎭会把原3D 图形向x-y 面投影,变换矩阵100010001-⎛⎫ ⎪ ⎪ ⎪⎝⎭会把原图形对x 轴镜像,变换矩阵cos30sin 30sin 30cos30-⎛⎫ ⎪⎝⎭会把原2D 图形相对原点逆时针旋转30度。
线性代数知识点全面总结
![线性代数知识点全面总结](https://img.taocdn.com/s3/m/fc1be31e814d2b160b4e767f5acfa1c7aa008224.png)
线性代数知识点全面总结线性代数是数学的重要分支,广泛应用于各个领域,如物理学、计算机科学、经济学等。
本文将全面总结线性代数的知识点,帮助读者系统地了解和掌握该学科。
1. 线性代数的基本概念1.1 向量及其表示:向量是线性代数的基本概念,可以用有序数对、矩阵或列向量表示,具有方向和大小。
1.2 矩阵及其运算:矩阵是由数字排列成的矩形数组,可以进行加法、乘法、转置等运算。
1.3 线性方程组:线性方程组是由一组线性方程组成的方程组,可以用矩阵和向量的表示形式来求解。
2. 向量空间2.1 向量空间的定义:向量空间是由一组满足一定条件的向量构成的集合,满足加法和数乘运算的封闭性。
2.2 子空间:子空间是向量空间的子集,也是向量空间,满足加法和数乘运算的封闭性。
2.3 线性无关与生成子空间:线性无关是指向量组中的向量之间不存在线性关系,生成子空间是指向量组中所有向量的线性组合的集合。
3. 线性映射3.1 线性映射的定义:线性映射是一个将一个向量空间映射到另一个向量空间的映射,保持加法和数乘运算的性质。
3.2 线性映射的矩阵表示:线性映射可以用矩阵表示,将一个向量空间的向量转化为另一个向量空间的向量。
3.3 核与像:核是线性映射中被映射为零向量的向量集合,像是线性映射中所有被映射到的向量组成的集合。
4. 矩阵的特征值与特征向量4.1 特征值和特征向量的定义:特征值是一个矩阵对应的线性变换中不改变方向的标量因子,特征向量是在特征值下发生伸缩的向量。
4.2 特征值与特征向量的计算:特征值与特征向量可以通过求解特征方程来计算。
4.3 对角化与相似矩阵:若一个矩阵相似于一个对角矩阵,则称其可对角化,对角矩阵是一个形式为对角线非零、其余元素均为零的矩阵。
5. 线性代数的应用5.1 物理学中的应用:线性代数在量子力学、力学等物理学领域有广泛应用,如描述粒子的状态和变换等。
5.2 计算机科学中的应用:线性代数在计算机图形学、机器学习等领域起到重要作用,如图像处理、数据分析等。
《线性代数》知识点归纳与梳理_老师给的资料
![《线性代数》知识点归纳与梳理_老师给的资料](https://img.taocdn.com/s3/m/8090da2d53d380eb6294dd88d0d233d4b04e3f68.png)
《线性代数》知识点归纳与梳理_老师给的资料线性代数是数学的一个分支,研究向量空间、线性变换和矩阵的理论和方法。
它在许多领域中都有应用,如物理学、工程学、计算机科学等。
下面是对线性代数的一些主要知识点的归纳与梳理。
1.向量和向量空间向量是有大小和方向的量,可以表示为一个n维的有序实数组。
向量空间是由一组向量组成的集合,满足向量的加法和数乘运算的封闭性、结合律、分配律等性质。
2.矩阵和矩阵运算矩阵是一个由m行n列元素组成的矩形数组。
矩阵运算包括矩阵的加法、减法、数乘、矩阵乘法等。
矩阵乘法具有结合律和分配律,但不满足交换律。
3.行列式行列式是一个标量,用于表示一个n阶矩阵的性质。
行列式的计算可以通过对矩阵进行一系列的行变换来简化。
4.线性方程组线性方程组是由一组线性方程组成的方程组。
求解线性方程组可以通过高斯消元法、矩阵的逆等方法来实现。
当线性方程组有唯一解时,称为非齐次线性方程组;当线性方程组有无穷多个解时,称为齐次线性方程组。
5.向量空间的基和维数向量空间的基是指能够生成该向量空间中所有向量的一组线性无关的向量。
向量空间的维数是指其基的向量个数。
6.线性变换线性变换是指保持向量空间中向量加法和数乘运算的运算规则的变换。
线性变换可以用矩阵来表示,矩阵的列向量是线性变换作用于基向量得到的结果。
7.特征值和特征向量特征值和特征向量是线性变换的重要性质。
特征值是线性变换作用于特征向量后,得到的向量与特征向量平行的倍数。
特征向量是线性变换的不变子空间上的向量。
8.内积空间内积空间是具有内积运算的向量空间。
内积运算满足对称性、线性性和正定性等性质。
内积空间的基础是正交向量和标准正交向量组。
9.正交投影和最小二乘法正交投影是将一个向量投影到一个子空间上,得到其在该子空间上的投影向量。
最小二乘法是通过最小化误差的平方和来求解线性方程组的近似解。
10.特征分解和奇异值分解特征分解将一个矩阵分解为特征向量和特征值的乘积。
线性代数知识点归纳大一手写
![线性代数知识点归纳大一手写](https://img.taocdn.com/s3/m/d8e196f10408763231126edb6f1aff00bed570c7.png)
线性代数知识点归纳大一手写线性代数是一门关于向量空间和线性映射的数学学科,它在计算机科学、物理学、经济学等领域中扮演着重要的角色。
本文将结合大一上学期所学内容,对线性代数的几个重要知识点进行归纳总结,旨在帮助读者更好地理解线性代数的基本概念和应用。
1. 向量和矩阵线性代数的基础是向量和矩阵。
向量可以理解为有方向和大小的量,常用符号表示为小写字母加箭头,如→v。
向量可以进行加法和数乘运算,两个向量的点积可以得到一个标量。
矩阵可以理解为由多个向量组成的矩形数组,常用符号表示为大写字母,如A。
矩阵的加法和数乘运算与向量类似,可以进行矩阵乘法运算,矩阵乘法的结果为一个新的矩阵。
2. 向量空间和子空间向量空间是由向量所构成的集合,具有加法和数乘运算,同时满足一些公理,如封闭性、结合性和分配律等。
向量空间的一个重要概念是子空间,即原向量空间中的一部分空间,也满足向量空间的性质。
判断一个集合是否为子空间,可以通过验证其是否满足加法和数乘运算封闭性。
3. 线性方程组和矩阵的行列式线性方程组是由一组线性等式组成的方程组,可以使用矩阵表示。
求解线性方程组的方法有高斯消元法、矩阵的逆等,其中,高斯消元法通过矩阵的初等行变换将线性方程组转化为行阶梯形式,从而求解方程组的解。
行列式是矩阵的一个标量值,表示一个方阵的一个特征,判断一个矩阵是否可逆可以通过行列式是否为零来判断。
4. 特征值和特征向量对于一个n阶方阵A,若存在一个非零向量x,使得Ax=kx,其中k为常数,则称k为矩阵A的特征值,向量x为对应的特征向量。
求解特征值和特征向量可以通过解特征方程来实现。
特征值和特征向量在很多领域中都有重要的应用,如谱分解、主成分分析等。
5. 线性变换和矩阵的相似性线性变换是指一个向量空间到另一个向量空间的映射,它保持向量空间的线性结构不变。
矩阵的相似性是指两个矩阵存在一个可逆矩阵P,满足PAP^-1=B的关系,这种关系意味着两个矩阵在某种意义下具有相同的特征。
《线性代数》知识点归纳整理
![《线性代数》知识点归纳整理](https://img.taocdn.com/s3/m/689e794691c69ec3d5bbfd0a79563c1ec5dad736.png)
《线性代数》知识点归纳整理线性代数是数学的一个分支,主要研究向量、向量空间以及线性映射等概念和性质。
它在数学领域具有广泛的应用,被广泛应用于物理学、计算机科学、经济学、工程学等领域。
以下是对《线性代数》的知识点进行归纳整理:1.矩阵和向量:矩阵是一个二维的数字阵列,可以表示为一个矩阵的形式。
向量是矩阵的特殊情况,只有一个列的矩阵。
矩阵和向量可以进行加法和数乘运算。
2.矩阵乘法:矩阵乘法是矩阵运算中的重要操作,它利用矩阵的行和列的组合,将两个矩阵相乘得到新的矩阵。
3.行列式:行列式是一个标量值,用于判断一些矩阵是否可逆。
行列式的值为0表示矩阵不可逆,非零表示矩阵可逆。
4.向量空间:向量空间是一组向量的集合,满足一定的条件。
向量空间具有加法和数乘运算,并满足一定的性质,如封闭性、结合律、分配律等。
5.线性相关与线性无关:向量集合中的向量如果不能由其他向量线性组合得到,则称这个向量集合是线性无关的;反之,如果存在一个向量可以由其他向量线性组合得到,则称这个向量集合是线性相关的。
6.基与维数:如果向量集合是线性无关的,并且能够生成整个向量空间中的所有向量,则称这个向量集合是向量空间的一组基。
向量空间的维数是指基向量的个数。
7.矩阵的秩:矩阵的秩是指矩阵列向量或行向量中的线性无关向量的个数。
秩表示矩阵中线性无关的方向个数。
8.特征值与特征向量:对于一个n维矩阵A,如果存在一个标量λ和非零向量X,使得AX=λX成立,则λ称为矩阵A的特征值,对应的非零向量X称为矩阵A的特征向量。
9.对角化:如果矩阵A可以通过相似变换得到一个对角矩阵B,则称矩阵A可以被对角化。
对角化后的矩阵可以简化各种计算。
10.线性变换:线性变换是指一个向量空间到另一个向量空间的映射,它满足线性性质。
线性变换可以用矩阵来表示,通过矩阵乘法来表示向量的线性变换。
11.正交性:向量集合中的向量如果互相垂直,则称这个向量集合是正交的。
如果正交向量集合中的每个向量都是单位向量,则称这个向量集合是标准正交的。
线性代数背诵要点(全)
![线性代数背诵要点(全)](https://img.taocdn.com/s3/m/8f8584b80975f46527d3e160.png)
第一章 行列式一、行列式的概念、展开公式及其性质 (一)行列式的概念nnn n n n a a a a a a a a a A .. (2)12222111211=(二)行列式按行(列)展开公式公式为关于副对角线,其计算角线上元素的乘积三角行列式等于其主对下上的代数余子式为的余子式,而阶行列式,称之为列元素后的行及第中去掉第是其中.2......)(.1)1(1)1( (221122)11221122112211nnnn nn ij ij j i ij ij ijj i ij nj nj j j j j in in i i i i a a a a a a a a a a M a n j i A M M A A a A a A a A a A a A a A ⋅⋅⋅=******=******---=+++=+++=++11212)1(11211121)1(......n n n n n n n nn n na a a a a a a a a ⋅⋅⋅-=******=******---- B A OB A BA OB A B OA B O A n B m A mn ⋅-=*=*⋅=*=*)1(.3阶矩阵,则是阶矩阵,是开式,设两种特殊的拉普拉斯展(三)行列式的性质1.经转置的行列式的值不变,即T A A =2.行列式中某一行各元素如有公因数k ,则k 可以提到行列式符号外,若行列式某行元素全是零,则行列式的值为零3.如果行列式中某行的每个原色都是两个的和,则这个行列式可以拆成两个行列式的和mlb b a a 2121++=mlb a 11+mlb a 224对换行列中某两行的位置,行列式的值只改变正负号;若两行元素对应相对(成比例),则行列式的值为零 5.把某行的k 倍加至另一行,行列式的值不变(四)关于代数余子式的求和...0...)()(.2,.122112211=+++=+++nk nj k j k j jn in j i j i ij ij ij ij A a A a A a A a A a A a a A A a 乘积之和必为零对应元素的代数余子式列元素与另一行列行列式一行的取值无关与式值并不影响其代数余子所在行或列中的元素的只改变二、有关行列式的几个重要公式A k kA n A n =阶矩阵,则是若.1B A B A n B A •=阶矩阵,则是,若.211-1.3--*==AA n A AA n A n 阶可逆矩阵,则是若阶矩阵,则是若∏≤≤----==ni j j i n nn n n nx x A x x x x x x x x x A n A 1112112222121)( (1)...11.4,则阶范德蒙矩阵是若 ∏==ni i i A A n A 1.5λλ的特征值,则是阶矩阵,是若B A B A =,则若~.6三、关于克莱姆法则的系数换成常数项中的是把其中则方程组有唯一解方程组,如果系行列式个未知数的非齐次线性个方程对于j j n n x D D DDx D D x D D x A D n n ,,...,,,02211===≠=则方程组只有零解程组,系数行列式个未知数的齐次线性方个方程对于,0≠=A D n n 0==A D n n 数行列式程组,有非零解,则系个未知数的齐次线性方个方程对于逆序数的计算,从左至右,看每个数后面比它小的数的个数 经初等变换矩阵的秩不变第二章 矩阵及其运算一、矩阵的概念与几类特殊方阵 (一)矩阵及相关概念 1.矩阵阶方阵阶矩阵或是,则称若或矩阵,简记称为列的表格行排成的个数n n A n m a A n m a a a a a a a a a n m a n m n m ij mn m m n n ij =⨯⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⨯⨯,)( (21)2222111211 2.0矩阵00,则称为零矩阵,记作中所有元素而都是如果矩阵A 3.同型矩阵是同型矩阵与则称中如果,矩阵B A t n s m b B a A t s ij n m ij ,,,)(,)(====⨯⨯4.矩阵相等即对应的元素都相等同型矩阵),,(j i b a B A ij ij ∀=⇔= 1. 方阵的行列式 阶行列式其元素可构造对于方阵n a A ij )(=B A B A a a a a a a a a a A nnn n nn≠≠=得不到由,.............. (2)12222111211(二)几类特殊方阵1.单位矩阵 主对角线上的运算全是1,其余元素均为0的n 阶段方阵,称为n 阶单位矩阵, 记为E E A A AE EA ===0;2.对称矩阵),(,j i a a A A n A ji ij T ∀==即阶矩阵,如是设3.反对称矩阵对称矩阵反不一定是对称矩阵,但反也是对称矩阵,则反是同阶的若,即阶矩阵,如是设)()(,,)(,0),(-,-AB A B A B A B A a j i a a A A n A ii ji ij T λ-+=∀==4.对角矩阵、积仍然是对角矩阵同阶的对角矩阵的和差,对角矩阵记为阶矩阵,如是设Λ≠∀≡)(0j i a n A ij5.逆矩阵1,-==AA AB A E BA AB B n n A 记为的逆矩阵唯一的逆矩阵,是是可逆矩阵,,则称使阶矩阵阶矩阵,如存在是设6.正交矩阵T T T A A A E A A AA n A ===-1,是正交矩阵,则称阶矩阵,如是设 7.伴随矩阵*=A A A A A A A A A A A n A a A n a A nnnnn n ij ij ij 的伴随矩阵,记为,称为阶矩阵所构成的的代数余子式的各元素阶矩阵,则由行列式是设....................)(212221212111二、矩阵的运算(一)矩阵的线性运算 1.矩阵的加法C B A B A b a c C n m n m b B a A ij ij ij ij ij =++==⨯⨯==的和称为矩阵矩阵矩阵,则是两个设,)()()(),(2.矩阵的数乘kAA k b a ka n m k n m a A ij ij ij ij 记为的数乘,与矩阵称为数矩阵是一个常数,则矩阵,是设)()()(+=⨯⨯=3.矩阵的乘法nb r A r B Ax B AB A E A A A A B AB BA AB B A BA AB ABC B A b a b a b a b a c c C s m s n b B a A nk kj ik nj in j i j i ij ij ij ij ≤+≠======≠==≠==+++==⨯⨯==∑=)()(,00,0;0,;00,0)2(,)1(,...)()(),(212211则齐次方程组有非零解的解,若程中的每一列都是其次方应联想到或不能堆出,不能退出时,才能运算可交换即与只有换律矩阵的乘法一般没有交的乘积,记为与称为其中矩阵矩阵,则是两个设,命题成立矩阵,秩序是若不能退出的列数,则,且若可逆,则,且矩阵若立:以下两种情况消去率成,对于矩阵乘以不具有消去律n A r n m A C B A AC AB B A A r AB B A AB A AB =⨯=≠======≠=)(,,0,)3(0)(000),0(0(二)关于逆矩阵的运算规律A A =--11))(1( 111))(2(--=A kkA 111))(3(---=A B AB 11)())(4(--=T T A A 11)5(--=A A n n A A )())(6(11--=(三)关于矩阵转置的运算规律A A T T =))(1( T T kA kA =))(2( T T T AB AB =))(3( T T T B A B A +=+))(4((四)关于伴随矩阵的运算规律E A AA A A ==**)1( )2()2(1≥=-*n AA n )2())(3(2≥=-**n A AA n*-*=A k kA n 1))(4( **=)())(5(T T A A1)(,0)(;1)(,1)(;)(,)()6(-=-====***n A r A r n A r A r n A r n A r111-1-,)()(,1)()7(-**-**===A A A A A A AA A 可逆,则若(五)关于分块矩阵的运算法则⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡+⎥⎦⎤⎢⎣⎡4433221143214321)1(B A B A B A B A B B B B A A A A ⎥⎦⎤⎢⎣⎡++++=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡DW CY DZ CX BW AY BZ AX W Z Y X D C B A )2( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡T TT T TD B C A D C B A )3( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡n n n C OO B C O O B )4( ⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡--O B C O O C B O C O O B C O O B 111-1-1-1-)4(,三、矩阵可逆的充分必要条件.8,.70.6)(.5,.4)(.30.2.121的特征值全不为总有唯一解非齐次方程组只有零解齐次方程组向量线性无关行的列是初等矩阵其中,有阶方阵存在可逆,等价于阶方阵A b Ax b Ax A P P P P A nA r A E BA AB B n A n i s =∀=⋅⋅⋅==≠==四、矩阵的初等变换与初等矩阵 (一)矩阵的初等变换及相关概念 1.矩阵的初等变换下述三种对矩阵的行列实施的变换称为矩阵的初等行列变换 (1) 对调矩阵的两行列(2) 用非零常数k 乘以某行列中所有元素(3) 把矩阵某行列所有元素的k 倍加至另一行列对应的元素上去 (4) 求秩(行列变换可混用);求逆矩阵(只用行或只用列);求线性方程组的解(只用行变换) (5) 不要混淆矩阵的运算2.行阶梯形矩阵与行最简形矩阵(1)具体如下特征的矩阵称为行阶梯形矩阵①零行(即元素全为零的行)全都位于非零行的下方②各非零行坐起第一个非零元素的列指标由上至下是严格增大(2)如果其非零行的第一个非零元素为1,并且这些非零元素所在列的其他元素均为零,这个行阶梯形矩阵称为行最简形矩阵对于任何矩阵A ,总可以经过有限次初等行变换把它化为行阶梯形矩阵和行最简形矩阵(二)初等矩阵的概念单位矩阵经过一次初等变换所得到的矩阵称为初等矩阵(三)初等矩阵的性质逆是同类型的初等矩阵初等矩阵均可逆,且其同样的行列初等变换做了一次与就是对矩阵,所得乘右左用初等矩阵.2)()(.1P A AP PA A P)()(100013-001100013001)1()(100021000110002000100101010000101010011-11-11-k E k E kE k E EE ij ij i i ij ij -=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---主对角线以外;主对角线;副对角线五、矩阵的等价(一)矩阵等价的概念的秩是矩阵阶单位矩阵是的等价标准形,其中后者是则称若等价,记作与则称矩阵矩阵经有限次初等变换变成矩阵A r r E A EA B A B A B A r r,,000~.~,⎥⎦⎤⎢⎣⎡ (二)矩阵等价的充分必要条件价向量组等价必有矩阵等向量可以互相线性表示;向量组等价是指两个等价是两个不同的概念矩阵的等价与向量组的使得阶可逆矩阵,阶可逆矩阵矩阵,则存在时设,使和存在可逆矩阵秩是同型矩阵且有相同的,等价于⎥⎦⎤⎢⎣⎡=⨯=000,.2.1~rE PAQ Q n P m n m A BPAQ Q P B A B A⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡=====----*-O BC O O C B O C O O B C O O B AE E A A EE A A AA E BA E AB B 111-1-1-1-111)()();()(1,分块矩阵法初等变换法伴随矩阵法或使定义法,找出为阶梯形方程组列方程用高斯消元法化不可逆,则可设未知数,若方法可以先求出可逆,则若方法解题思路的列向量表出的每列可由有解等价于A AB A X A AB r A r A B B Ax 2,,1)()(.2.111--===的主对角线元素之和是矩阵T T αββα 若11,--==P PB A PBP A n n 则1-)(,P P A P A n n n Λ=Λ,令与先求特征值与特征向量求 行列变换与单位矩阵、初等矩阵运算的关系第三章 n 维向量一、n 维向量的概念与运算 (一)n 维向量的概念个分量称为向量的第的矩阵,数或维列向量,也就是维行向量或分别称为或维向量,记作构成的有序数组称为个数i a n n n n a a a a a a n a a a n i T n n n 11,),...,,(),...,,(,...,,212121⨯⨯(二)n 维向量的运算0),(......),(,0),(.4...),(.3),...,,(.2),...,,(.1),...,,(,),...,,(222212222122112122112121=⇔==+++=+++=====+++==+++=+==ααααααααααβαβααββαβααβαβαT n nT TT n n Tn T n n T n T n a a a a a a b a b a b a ka ka ka k b a b a b a b b b a a a 正交,,则若内积数乘加法如果二、线性组合与线性表出 1.线性组合若干个同维数的列向量(或同维数的行向量)所组成的集合叫做向量组称为组合系数的一个线性组合,其中称为向量组所构成的向量个常数及维向量个由s s s s s s k k k k k k k k k s n s ,...,,,...,,...,...,,,...,,212122112121ααααααααα+++ 2.线性表出的线性组合是线性表出,或说可由则称的线性组合能表示成向量维向量如αααβαααββααααααβ,...,,,...,,...,...,,2121221121s s s s k k k n =+++3.向量组等价,则称两个向量等价量组可以互相线性表出线性表出;如果两个向可由向量组线性表出,则称向量组量组的每个向量都可以由向如过向量组)2()1(,...,,)2(,...,,)1(2121t s βββααα等价、则线性表出,可由向量组如果向量组不一定等价秩,但秩相同的向量组等价的向量具有相同的相同向量组所含向量的个数两个等价的线性无关的无关组等价向量组的任意两个极大无关组等价任一向量组和它的极大样,线性相关也可以不一但向量个数可以不一样、对称性、及反身性,等价向量组具有传递性)2()1(),2()1()2()1(.6.5.4.3.21r r =三、向量组的线性相关与线性无关 (一)线性相关与线性无关的概念 1.线性相关线性相关则称此向量组使得的数,如存在一组不全为维向量对于s s s s s k k k k k k n ααααααααα,...,,0...,...,,0,...,,2122112121=+++2.线性无关线性无关称此向量组,,必有不全为或者说如存在一组数线性无关则称此向量组,必有,如果维向量对于s s s s s s s s s k k k k k k k k k k k k n ααααααααααααααα,...,,0...0,...,,,...,,,0...0...,...,,212211212121221121≠+++=====+++(二)线性相关与线性无关的充分必要条件 1.线性相关的充分必要条件位向量一定线性相关个维向量线性相关个个向量线性表出可由其他存在某向量的个数有非零解齐次方程组线性相关,向量组n n n n s s r x x x s i s s s s 10,...,,1)(),...,,(0...),...,,(,...,,2121212121+=⇔-⇔⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔ααααααααααααα2.线性无关的充分必要条件个向量线性表出都不能用其他存在某向量的个数只有零解齐次方程组线性无关,向量组1)(),...,,(0...),...,,(,...,,21212121-⇔=⇔=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡⇔s s r x x x i s s s s αααααααααα3.几个重要结论组必然线性无关两两正交、非零的向量必然线性无关,,,延伸组线性无关,则它的任一若向量组必然线性无关个部分分组线性无关,则它的任一若向量组无关阶梯形向量组一定线性)4(...,...,,)3(,...,,,...,,)2()1(2211212121⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡s s s i i i s t βαβαβαααααααααα四、线性相关性与线性表出的关系ts t s s s t s s t s i i i s s s s s t ≤-线性无关,则线性表出,且可由向量组若向量组线性相关则线性表出,且可由向量组若向量组必然线性无关则它的任一个部分分组一线性表出,且表示法唯可由线性相关,则,线性无关,而向量组若向量组个向量线性表出可以用其余是线性相关,的充要条件向量组αααβββααααααβββαααααααααββαααααααααα,...,,,...,,,...,,)4(,...,,,,...,,,...,,)3(,...,,,...,,,...,,,...,,)2(1,...,,)1(2121212121212121212121五、向量组的秩与矩阵的秩(一)向量组的秩与矩阵的秩的概念 1.极大线性无关组是由原向量唯一确定的即个数都是关组中所含向量的个数个极大线性无关组是等价的,从而每的。
线性代数重要知识点总结
![线性代数重要知识点总结](https://img.taocdn.com/s3/m/5aa918536d175f0e7cd184254b35eefdc8d31536.png)
线性代数重要知识点总结线性代数是数学中的一个重要分支,它研究向量、向量空间以及线性变换等概念。
在科学、工程、计算机科学等领域中都广泛应用线性代数的知识。
下面是线性代数的一些重要知识点的总结。
1.向量:向量是表示大小和方向的量,可以用有序数组表示。
向量的加法和数乘运算满足交换律、结合律和分配律。
2.向量空间:向量空间是一组向量的集合,在其中向量可以进行加法和数乘运算。
向量空间必须满足闭合性、加法逆元、加法交换律、加法结合律、数乘结合律和数乘分配律等性质。
3.线性相关与线性无关:向量组中的向量可以是线性相关的,也可以是线性无关的。
线性相关表示一些向量可以由其他向量线性表示出来,而线性无关表示所有向量不能通过线性组合得到零向量。
4.矩阵:矩阵是二维数组,也可以看作是向量的扩展。
矩阵的加法和数乘运算满足交换律、结合律和分配律。
5.矩阵乘法:矩阵乘法是矩阵之间的一种运算,前提是第一个矩阵的列数等于第二个矩阵的行数。
矩阵乘法满足结合律,但不满足交换律。
6.线性方程组:线性方程组是一组线性方程的集合。
可以使用矩阵的形式表示线性方程组,通过高斯消元法或矩阵求逆等方法求解线性方程组。
7.特征值与特征向量:在线性代数中,对于一个n维向量,如果它乘以一个n×n的矩阵后,仍然保持方向不变(可能会变长或变短),那么这个向量称为这个矩阵的特征向量,而乘以矩阵后的长度变化倍数称为特征值。
8.内积与外积:内积是向量之间的一种运算,满足交换律和分配律,内积为一个标量。
外积是向量之间的一种运算,满足反对称性和分配律,外积为一个向量。
9.正交与正交子空间:正交指的是两个向量的内积为零,正交子空间是由正交向量组成的向量空间。
10.线性变换:线性变换是将一个向量空间映射到另一个向量空间的变换,保持向量空间的线性运算性质。
11.特征值分解:矩阵的特征值分解是将一个矩阵分解为特征值和特征向量的乘积的形式。
12.奇异值分解:矩阵的奇异值分解是将一个矩阵分解为奇异值和左右奇异向量的乘积的形式。
《线性代数的几何意义》之一(什么是线性代数)
![《线性代数的几何意义》之一(什么是线性代数)](https://img.taocdn.com/s3/m/3da03c2f915f804d2b16c16f.png)
这就是本《线性代数的几何意义》的由来。也是这个本子的目标。
目标有了,具体如何编写呢?模仿一下科学大德牛顿的口气:
从线性代数书籍的浩瀚海洋的沙滩上(还没有更高的能力去远洋、去深海处),用一双自己的 眼睛,寻找到了一个个闪闪的小珍珠,一片片如玉的小彩贝,然后细细的打磨和擦拭,拂去沙尘,使 它们重放光彩,用一根几何意义的锦丝,穿就了这本《线性代数几何意义》的项链,献给热爱思考、 痴迷于创造的人们。
z 然后,在回到现在的抽象的线性代数的教材,短时间内构筑个人的线性代数的知识体系的“向 量空间”,通过适量的习题训练,巩固解决具体问题的动手能力。此时,具体与抽象一体, 理想与现实齐飞。您,已经成为线性代数的高手和大牛。
注:本文中,几何意义和几何解释的文字意思没有根本区别,一般对于数学概念的对应的几何图 形而言称为几何意义,而对运算、变换的过程可对应几何图形的变化过程称为几何解释。
================================================================================= 第 2 页, 共 28 页
《线性代数的几何意义》
前言
为什么要给出线性代数的几何意义
作为一名工作十多年的电子工程师,作者在想提高自己的专业水平时,深感数学能力的重要。随 便打开一篇专著或论文,满纸的微分方程、矩阵扑面而来。竭力迎头而上,每每被打得灰头土脸、晕 头转向。我天生就不是搞数学的?我的智力有问题吗?
扯来扯去,千言万语汇成一句话:什么样的《线性代数》学习资料较好,较适合中国学生?我想, 本子的物理尺寸要越薄越好,内容要越通俗易懂越好。
书本越薄大家学习的信心越强:小样,这么点厚度还搞不定你,看,信心先有了。
线性代数相关概念的几何意义理解
![线性代数相关概念的几何意义理解](https://img.taocdn.com/s3/m/f57bfc6300f69e3143323968011ca300a6c3f6df.png)
线性代数相关概念的⼏何意义理解线性代数意义:线性代数存在的意义:将现实⽣活的事物⽤计算机来识别并可以进⾏相应的处理。
现实⽣活中我们常常可以通过⼈脑来识别别各种事物,但是如何⽤计算机来表⽰这些事物呢?⽐⽅说红⾊,⼈眼直接判断它是红⾊,将其让计算机表⽰的话就要转化成计算机语⾔——RGB向量。
那如果要对颜⾊进⾏⼀下转换,加深或改变颜⾊的话怎么⽤计算机来表⽰呢?此时线性代数的作⽤就体现出来了,向量加法,数乘等。
线性代数主要内容:1、向量2、矩阵3、⽅程组(⽅程组是向量和矩阵的⼀个应⽤,所以和向量、矩阵都相关。
)N维空间:⼀个点(标量)存在于零维空间,⼀条线(向量)——⼀维空间,⼀个⾯(矩阵)——⼆维空间,⼀个物体(三维张量)——三维空间,⼀个物体加上时间维(四维张量)——四维空间……意思⼀样的⼏个概念:①⾏列式不为0②满秩③线性⽆关④两个向量可以形成⼀个平⾯或两个向量不平⾏⑤齐次⽅程组只有零解⑥⾮齐次⽅程组有唯⼀解这⼏个概念都在阐述:在向量空间中两个向量并不平⾏可以形成平⾯,针对矩阵来说就是矩阵⾥⼏个⾏向量或列向量是线性⽆关的,不存在多余的⼀个,此时它的⾏列式不等于0且满秩。
标量:记住⼀个概念:在向量空间中,标量(数字)的⼀个重要作⽤就是缩放拉伸向量。
向量:(1)是什么物理上:⼀个箭头,起点为坐标系的原点,如:作⽤⼒可以⽤⼀个向量来表⽰,⼀个⽅向为Y=X,⼤⼩为根号2的⼒⽤向量表⽰为【1,1】。
数学(计算机)上:⼀个有序的数字列表,如:⼀部电影多个评分2,3,5,4,也可以⽤向量来表⽰【2,3,5,4】向量是可以存在于多维空间当中的,不仅仅是⼀维空间,⽐⽅说:⼀个评分序列【2,3,5,4】这是在⼀维空间中还要理解⼀个概念就是向量是可以存在于多维空间当中的的,⼀个苹果的重量1g、价格1¥,向量表⽰【1,1】,这就存在于⼆维空间中的向量了。
(2)怎么⽤:①向量的加法:点的运动,⽅向改变。
⽐⽅说从原点出发,先沿v⾛再沿着w⾛是等于直接从原点沿着v+w⽅向⾛,两者终点⼀致。
线性代数必须熟记的结论总结
![线性代数必须熟记的结论总结](https://img.taocdn.com/s3/m/745b9259804d2b160b4ec07c.png)
线性代数必须熟记的结论总结1、行列式1. n 行列式共有2n 个元素,展开后有!n 项,可分解为2n行列式;2. 代数余子式的性质: ①、ijA 和ija 的大小无关;②、某行(列)的元素乘以其它行(列)元素的代数余子式为0; ③、某行(列)的元素乘以该行(列)元素的代数余子式为A ; 3. 代数余子式和余子式的关系:(1)(1)i ji jijij ij ijM A A M ++=-=-4. 设n 行列式D :将D 上、下翻转或左右翻转,所得行列式为1D ,则(1)21(1)n n DD-=-; 将D 顺时针或逆时针旋转90,所得行列式为2D ,则(1)22(1)n n DD-=-;将D 主对角线翻转后(转置),所得行列式为3D ,则3D D=;将D 主副角线翻转后,所得行列式为4D ,则4DD=;5. 行列式的重要公式:①、主对角行列式:主对角元素的乘积; ②、副对角行列式:副对角元素的乘积(1)2(1)n n -⨯ -;③、上、下三角行列式( =◥◣):主对角元素的乘积;④、◤和 ◢:副对角元素的乘积(1)2(1)n n -⨯ -;⑤、拉普拉斯展开式:AO A C A BC B OB==、(1)m nCA O A A BBO BC ==-⑥、范德蒙行列式:大指标减小指标的连乘积; ⑦、特征值;6. 对于n 阶行列式A ,恒有:1(1)nnkn kk k E AS λλλ-=-=+-∑,其中kS 为k 阶主子式; 7. 证明0A =的方法:①、A A=-;②、反证法;③、构造齐次方程组0Ax =,证明其有非零解; ④、利用秩,证明()r A n <; ⑤、证明0是其特征值;2、矩阵1.A是n 阶可逆矩阵: ⇔0A ≠(是非奇异矩阵); ⇔()r A n =(是满秩矩阵)⇔A 的行(列)向量组线性无关;⇔齐次方程组0Ax =有非零解;⇔nb R ∀∈,Ax b =总有唯一解;⇔A 与E 等价;⇔A 可表示成若干个初等矩阵的乘积; ⇔A的特征值全不为0; ⇔T A A 是正定矩阵;⇔A 的行(列)向量组是nR 的一组基; ⇔A是nR 中某两组基的过渡矩阵;2. 对于n 阶矩阵A :**AA A A A E== 无条件恒成立;3.1**111**()()()()()()TTTT A A A A A A ----===***111()()()TTTAB B A AB B A AB B A---===4. 矩阵是表格,推导符号为波浪号或箭头;行列式是数值,可求代数和;5. 关于分块矩阵的重要结论,其中均A 、B 可逆: 若12s A A A A ⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭,则:Ⅰ、12sA A A A = ;Ⅱ、111121s A A A A ----⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪⎝⎭;②、111AO A O O B O B ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(主对角分块) ③、111O A O B B O A O ---⎛⎫⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(副对角分块)④、11111A C A A C BO B OB-----⎛⎫-⎛⎫= ⎪ ⎪⎝⎭⎝⎭;(拉普拉斯) ⑤、11111A O A O CB BC AB -----⎛⎫⎛⎫= ⎪ ⎪-⎝⎭⎝⎭;(拉普拉斯)3、矩阵的初等变换与线性方程组1. 一个m n ⨯矩阵A ,总可经过初等变换化为标准形,其标准形是唯一确定的:rm nEO F OO ⨯⎛⎫=⎪⎝⎭;等价类:所有与A 等价的矩阵组成的一个集合,称为一个等价类;标准形为其形状最简单的矩阵;对于同型矩阵A 、B ,若()()r A r B A B = ⇔ ; 2. 行最简形矩阵:①、只能通过初等行变换获得; ②、每行首个非0元素必须为1;③、每行首个非0元素所在列的其他元素必须为0;3. 初等行变换的应用:(初等列变换类似,或转置后采用初等行变换)①、 若(,)(,)rA E E X ,则A 可逆,且1XA-=;②、对矩阵(,)A B 做初等行变化,当A 变为E 时,B 就变成1AB-,即:1(,)(,)cA B E A B - ~ ;③、求解线形方程组:对于n 个未知数n 个方程Ax b =,如果(,)(,)rA b E x ,则A 可逆,且1x A b -=;4. 初等矩阵和对角矩阵的概念:①、初等矩阵是行变换还是列变换,由其位置决定:左乘为初等行矩阵、右乘为初等列矩阵; ②、12n ⎛⎫ ⎪⎪Λ= ⎪ ⎪⎝⎭λλλ,左乘矩阵A ,iλ乘A 的各行元素;右乘,iλ乘A 的各列元素;③、对调两行或两列,符号(,)E i j ,且1(,)(,)E i j E i j -=,例如:1111111-⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;④、倍乘某行或某列,符号(())E i k ,且11(())(())E i k E i k-=,例如:1111(0)11kk k-⎛⎫⎛⎫ ⎪⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;⑤、倍加某行或某列,符号(())E ij k ,且1(())(())E ij k E ij k -=-,如:11111(0)11k k k --⎛⎫⎛⎫⎪ ⎪=≠ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭;5. 矩阵秩的基本性质: ①、0()min(,)m nr A m n ⨯≤≤;②、()()Tr Ar A =;③、若A B ,则()()r A r B =;④、若P 、Q 可逆,则()()()()r A r PA r AQ r PAQ ===;(可逆矩阵不影响矩阵的秩)⑤、max((),())(,)()()r A r B r A B r A r B ≤≤+;(※) ⑥、()()()r A B r A r B +≤+;(※) ⑦、()min((),())r AB r A r B ≤;(※)⑧、如果A 是m n ⨯矩阵,B 是n s ⨯矩阵,且0AB =,则:(※) Ⅰ、B 的列向量全部是齐次方程组0AX =解(转置运算后的结论);Ⅱ、()()r A r B n +≤⑨、若A 、B 均为n 阶方阵,则()()()r AB r A r B n ≥+-; 6. 三种特殊矩阵的方幂:①、秩为1的矩阵:一定可以分解为列矩阵(向量)⨯行矩阵(向量)的形式,再采用结合律; ②、型如101001a c b ⎛⎫ ⎪ ⎪ ⎪⎝⎭的矩阵:利用二项展开式;二项展开式:111111()nnnn m n mmn n n nmm n mn n n n n nm a b C a C a b C abC a bC b Ca b-----=+=++++++=∑ ;注:Ⅰ、()na b +展开后有1n +项;Ⅱ、0(1)(1)!1123!()!--+====- mnnn n n n n m n CC C mm n mⅢ、组合的性质:11112---+-===+==∑nm n m m m m r nr r nnn nnnn n r CC CCCCrC nC ;③、利用特征值和相似对角化: 7. 伴随矩阵: ①、伴随矩阵的秩:*()()1()10()1n r A n r A r A n r A n = ⎧⎪==-⎨⎪<-⎩;②、伴随矩阵的特征值:*1*(,)AAA X X A A A A X X λλλ- == ⇒ =;③、*1AA A-=、1*n AA-=8. 关于A 矩阵秩的描述:①、()r A n =,A 中有n 阶子式不为0,1n +阶子式全部为0;(两句话) ②、()r A n <,A 中有n 阶子式全部为0; ③、()r A n ≥,A 中有n 阶子式不为0;9. 线性方程组:Ax b =,其中A 为m n ⨯矩阵,则: ①、m 与方程的个数相同,即方程组Ax b =有m 个方程; ②、n 与方程组得未知数个数相同,方程组Ax b =为n 元方程; 10. 线性方程组Ax b =的求解:①、对增广矩阵B 进行初等行变换(只能使用初等行变换); ②、齐次解为对应齐次方程组的解; ③、特解:自由变量赋初值后求得;11. 由n 个未知数m 个方程的方程组构成n 元线性方程: ①、11112211211222221122n n n n m m nm n n a x a x a x b a x a x a x b a x a x a x b+++=⎧⎪+++= ⎪⎨⎪⎪+++=⎩ ;②、1112111212222212n nm m m n m m a a a x b a a a x bA x b a a a x b ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪=⇔= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭(向量方程,A 为m n ⨯矩阵,m 个方程,n 个未知数) ③、()1212n n x x aa a x β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭(全部按列分块,其中12n b b b β⎛⎫ ⎪⎪= ⎪ ⎪⎝⎭);④、1122n n a xa x a x β+++= (线性表出)⑤、有解的充要条件:()(,)r A r A n β=≤(n 为未知数的个数或维数)4、向量组的线性相关性 1.m个n 维列向量所组成的向量组A:12,,,mααα 构成n m ⨯矩阵12(,,,)m A = ααα;m个n 维行向量所组成的向量组B :12,,,T T Tmβββ 构成m n ⨯矩阵12T T T m B βββ⎛⎫ ⎪⎪= ⎪ ⎪ ⎪⎝⎭;含有有限个向量的有序向量组与矩阵一一对应;2. ①、向量组的线性相关、无关 0Ax ⇔=有、无非零解;(齐次线性方程组)②、向量的线性表出Ax b⇔=是否有解;(线性方程组)③、向量组的相互线性表示A X B⇔=是否有解;(矩阵方程)3. 矩阵m nA ⨯与l nB ⨯行向量组等价的充分必要条件是:齐次方程组0Ax =和0Bx =同解;(101P 例14)4.()()Tr A A r A =;(101P 例15)5. n 维向量线性相关的几何意义: ①、α线性相关 ⇔0α=; ②、,αβ线性相关 ⇔,αβ坐标成比例或共线(平行);③、,,αβγ线性相关⇔,,αβγ共面;6. 线性相关与无关的两套定理: 若12,,,s ααα 线性相关,则121,,,,s s αααα+ 必线性相关;若12,,,sααα 线性无关,则121,,,s ααα- 必线性无关;(向量的个数加加减减,二者为对偶)若r 维向量组A 的每个向量上添上n r -个分量,构成n 维向量组B : 若A 线性无关,则B 也线性无关;反之若B 线性相关,则A 也线性相关;(向量组的维数加加减减)简言之:无关组延长后仍无关,反之,不确定;7. 向量组A (个数为r )能由向量组B (个数为s )线性表示,且A 线性无关,则r s ≤(二版74P 定理7);向量组A 能由向量组B 线性表示,则()()r A r B ≤;(86P 定理3)向量组A 能由向量组B 线性表示A X B⇔=有解;()(,)r A r A B ⇔=(85P 定理2)向量组A 能由向量组B 等价()()(,)r A r B r A B ⇔ ==(85P 定理2推论) 8. 方阵A 可逆⇔存在有限个初等矩阵12,,,lP P P ,使12lA P P P = ;①、矩阵行等价:~rA B PA B⇔=(左乘,P 可逆)0Ax ⇔=与0Bx =同解 ②、矩阵列等价:~cA B AQ B⇔=(右乘,Q 可逆);③、矩阵等价:~A B P A Q B⇔=(P 、Q 可逆);9. 对于矩阵m nA ⨯与l nB ⨯:①、若A 与B 行等价,则A 与B 的行秩相等;②、若A 与B 行等价,则0Ax =与0Bx =同解,且A 与B 的任何对应的列向量组具有相同的线性相关性;③、矩阵的初等变换不改变矩阵的秩; ④、矩阵A 的行秩等于列秩; 10. 若m ss n m nAB C ⨯⨯⨯=,则:①、C 的列向量组能由A 的列向量组线性表示,B 为系数矩阵; ②、C 的行向量组能由B 的行向量组线性表示,TA 为系数矩阵;(转置)11. 齐次方程组0Bx =的解一定是0ABx =的解,考试中可以直接作为定理使用,而无需证明;①、0ABx = 只有零解0Bx ⇒ =只有零解; ②、0Bx = 有非零解0ABx ⇒ =一定存在非零解; 12. 设向量组12:,,,n rrBb b b ⨯ 可由向量组12:,,,n ssAa a a ⨯ 线性表示为:(110P 题19结论)1212(,,,)(,,,)r s b b b a a a K= (B AK =)其中K 为s r ⨯,且A 线性无关,则B 组线性无关()r K r ⇔=;(B 与K 的列向量组具有相同线性相关性)(必要性:()()(),(),()r r B r AK r K r K r r K r ==≤≤∴= ;充分性:反证法)注:当r s =时,K 为方阵,可当作定理使用;13. ①、对矩阵m nA ⨯,存在n mQ ⨯,mAQ E = ()r A m ⇔=、Q 的列向量线性无关;(87P )②、对矩阵m nA ⨯,存在n mP ⨯,nPA E = ()r A n ⇔=、P 的行向量线性无关;14.12,,,sααα 线性相关⇔存在一组不全为0的数12,,,sk kk ,使得11220s s k k k ααα+++= 成立;(定义)⇔1212(,,,)0s s x x x ααα⎛⎫⎪⎪= ⎪ ⎪⎝⎭有非零解,即0Ax =有非零解;⇔12(,,,)s r sααα< ,系数矩阵的秩小于未知数的个数;15. 设m n ⨯的矩阵A 的秩为r ,则n 元齐次线性方程组0Ax =的解集S 的秩为:()r S n r =-;16. 若*η为Ax b=的一个解,12,,,n rξξξ- 为Ax =的一个基础解系,则*12,,,,n rηξξξ- 线性无关;(111P 题33结论)5、相似矩阵和二次型 1. 正交矩阵TA A E⇔=或1TAA-=(定义),性质:①、A的列向量都是单位向量,且两两正交,即1(,1,2,)Ti j i j a a i j n i j=⎧==⎨≠⎩ ;②、若A 为正交矩阵,则1TAA-=也为正交阵,且1A =±;③、若A 、B 正交阵,则AB 也是正交阵;注意:求解正交阵,千万不要忘记施密特正交化和单位化; 2. 施密特正交化:12(,,,)ra a a11b a =;1222111[,][,]b a b a b b b =-121121112211[,][,][,][,][,][,]r r r r r r r r r b a b a b a b a b b b b b b b b b ----=----;3. 对于普通方阵,不同特征值对应的特征向量线性无关; 对于实对称阵,不同特征值对应的特征向量正交;4. ①、A 与B 等价 ⇔A 经过初等变换得到B ;⇔=P A Q B,P 、Q 可逆; ()()⇔=r A r B ,A 、B 同型; ②、A 与B 合同 ⇔=TC A C B,其中可逆;⇔Tx A x与TxB x有相同的正、负惯性指数; ③、A 与B 相似 1-⇔=P A P B;- 11 - 5. 相似一定合同、合同未必相似; 若C 为正交矩阵,则T CA CB =⇒A B ,(合同、相似的约束条件不同,相似的更严格);6. A 为对称阵,则A 为二次型矩阵;7. n 元二次型T x A x 为正定:A ⇔的正惯性指数为n ;A ⇔与E 合同,即存在可逆矩阵C ,使T C A C E =; A ⇔的所有特征值均为正数;A ⇔的各阶顺序主子式均大于0; 0,0ii a A ⇒>>;(必要条件)。
线性代数知识点及总结
![线性代数知识点及总结](https://img.taocdn.com/s3/m/4024052917fc700abb68a98271fe910ef12dae1b.png)
线性代数知识点总结第一章 行列式1. n 阶行列式()()121212111212122212121==-∑n nnn t p p p n p p np p p p n n nna a a a a a D a a a a a a 2.特殊行列式1212n nλλλλλλ=,()()1122121n n n nλλλλλλ-=-3.行列式的性质定义记111212122212nn n n nna a a a a a D a a a =,112111222212n n T nnnna a a a a a D a a a =,行列式TD 称为行列式D 的转置行列式。
性质1行列式与它的转置行列式相等。
性质2 互换行列式的两行()↔i j r r 或列()↔i j c c ,行列式变号。
推论如果行列式有两行〔列〕完全一样〔成比例〕,则此行列式为零。
性质3 行列式*一行〔列〕中所有的元素都乘以同一数()⨯j k r k ,等于用数k 乘此行列式; 推论1 D 的*一行〔列〕中所有元素的公因子可以提到D 的外面; 推论2 D 中*一行〔列〕所有元素为零,则=0D 。
性质4 假设行列式的*一列〔行〕的元素都是两数之和,则1112111212222212()()()i i n i i n n n ni ninna a a a a a a a a a D a a a a a '+'+='+11121111121121222*********12i n i n i n i n n n ninnn n ninna aa a a a a a a a a a a a a a a a a a a a a a ''=+' 性质6 把行列式的*一列〔行〕的各元素乘以同一数然后加到另一列(行)对应的元素上去,行列式的值不变。
而算得行列式的值。
4. 行列式按行〔列〕展开余子式在n 阶行列式中,把元素ij a 所在的第i 行和第j 列划去后,留下来的1n -阶行列式叫做元素ij a 的余子式,记作ij M 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
所以,看一个函数是不是线性函数,只需要证明上面这个等式是否成立,或(1)(2)分别证明也行。
K就如同高中的函数解析式,也就是两个集合间的对应法则。
线性变换与同构映射的区别和联系
相同点:都保持线性运算(保持加法、保持数乘),即和的像等于像的和,数乘的像等于像的数乘.
区别:
(1)线性变换是一个空间到自身的映射,同构映射通常是一个空间到另一个空间的映射;
(2)线性变换未必是可逆的,同构映射首先是双射,故一定是可逆的.
(3)如果线性变换可逆,则该线性变换为双射,从而满足同构映射的三个条件:
(i)是双射,(ii)保持加法,(iii)保持数乘
故为同构映射,但它又是到空间自身的映射,故可逆的线性变换是自同构映射.
线性变换就是矩阵的变换,而任何矩阵的变换可以理解为一个正交变换+伸缩变换+另一个正交变换。
(正交变换可以暂时理解为不改变大小以及正交性的旋转/反射等变换)A*P = y*P ,y就是特征值,P是特征向量,矩阵A做的事情无非是把P沿其P的方向拉长/缩短了一点(而不是毫无规律的多维变换)。
y描述沿着这个方向上拉伸的比例。
对于满秩的n*n方阵,做特征值变换,非满秩的矩阵,做奇异值变换,差别在于前者是个对角阵,后者形成对角阵和零矩阵合成的矩阵。
下面是更直观的例子
1.平面引入直角坐标系之后,二维空间所有的向量都可以用两个基向量i=(1,0)和j=(0,1)的线性组合来表示,例如a=(4,6),可以表示为a=4i+6j。
2.但是也可以由i=(2,0)和j=(0,2)两个向量来表示,例如a=2i+3j。
3.还可以由i=(1,1)和j=(1,-1)来表示,例如a=5i-1j。
4.或者由i=(1,0)和j=(1,-1)表示,例如a=10i-6j。
5.在1的基础上,我们还可以将a表示为i=(1,0),j=(0,1),k=(1,1)三个向量的线性组合,也就是a=4i+6j+0k或者a=0i+2j+4k或者a=2i+4j+2k等等等等我举不完了。
这其中k=i+j。
通过上面的举例我们可以总结出几条。
由5点到4点,将多余的基向量k去掉,得到最大线性无关向量组。
由4点到3点,将两个基向量的夹角变成直角,实现正交化。
由3点到2点,将构成正交的两个基向量旋转,使其与坐标轴重合,实现对角化。
由2点到1点,通过伸缩将两个基向量的长度变成单位长度,实现规化。
通过上面的几个步骤,我们可以看出,任何一组向量构成的坐标系,都可以通过化简,正交,对角,规的过程,将任何乱七八糟莫名其妙的坐标系变换成笛卡尔坐标系。
那这么做有什么用呢?到这里我开了一下脑洞:
假如说,平面有两个椭圆,将直角坐标系的原点放在一个椭圆的长轴和短轴交点处,这样就可以得到这个椭圆的标准方程,就是高中课本上那个。
由于这两个椭圆的位置相对,这样一来另一个椭圆的位置也就定下来了,可惜很难看,长得很歪,很难用方程表示。
这时就可以以这个椭圆为原点再建立一个坐标系,并且在这个坐标系下用标准方程表示出来,这样两个椭圆都有了方程来表示,问题就化简为了两个坐标系之间的关系,这时再用矩阵来运算就好了。
正交变换是保持图形形状和大小不变的几何变换,包含旋转,平移,轴对称及上述变换的复合.
就是所有保持原点不动、长度不变的线性变换。
比如旋转,比如反射。
就这两种。
前者保持定向,后者反向。
[][]121
121112111121cos cos cos e ⋅=⋅=⋅⋅=θαββθαβββθαββββαβ,,是2α在1e 上的 分向量
即a的模,
矩阵等价与向量组等价的关系
矩阵是指排成n行m列的一个数表。
在线性代数中矩阵是一个重要而有力的工具,应用于线性代数的始末,与线性代数的每一章节容都有牵连。
向量是一个数组。
如果向量仅有一个分量,它就是通常意义上的数;如果向量的分量有两个或三个,在解析几何中,它表示平面或空间的有向线段。
在几何上与线性代数中向量的运算具有相同或相应的法则。
向量可以作为特殊的矩阵,也可作为矩阵的一部分。
n个m维列向量组成的向量组即可作成一个m×n矩阵。
所以矩阵与向量组之间有着千丝万缕的联系。
例如矩阵与其行向量组及列向量组均有相同的秩,方阵可逆的充要条件是其行(列)向量组线性无关等。
但是矩阵的等价与向量组的等价却没有任何必然的联系!
矩阵等价的定义:如果矩阵A可以经过有限次初等变换成为矩阵B,就称矩阵A与矩阵B等价。
矩阵等价的两个充要条件:存在可逆矩阵P、Q,使得PAQ =B;A与B同型,且r(A)=r(B)。
向量组的等价,是指两个向量组能相互线性表示。
矩阵等价与向量组等价有如下关系:
1.两矩阵等价,它们的行向量组与列向量组不一定等价!(反例在后面)
2.两个向量组等价,它们作成的矩阵不一定等价!(向量组等价,两向量组中所含向量个数可以不同,但矩阵等价,两矩阵必定具有相同的行数与列数)
在什么情况下矩阵等价其行向量组或列向量组等价呢?
l 若矩阵A经初等列变换成为矩阵B,即存在可逆矩阵Q,使AQ=B,也可以写为(α1,α2,…,αn)Q =(β1,β2,…,βn),此时可知B的列向量组可以由A的列向量组线性表示,因为Q为初等矩阵的乘积,所以可逆,对AQ=B两边右乘Q-1,有A=BQ-1,故A的列向量组可以由B的列向量组线性表示。
此时可得A的列向量组与B 的列向量组等价。
l 同理可知:若矩阵A经初等行变换成为矩阵B,则A的行向量组与B的行向量组等价。
l 矩阵进行初等行变换后,其列向量组不一定等价!矩阵进行初等列变换后,其行向量组不一定等价!(反例在后面)在什么情况下向量组等价其对应的矩阵也等价呢?
l 若向量组A与向量组B均有n个列(行)向量,且两个向量组等价,则这两个向量组所作成的矩阵A与B等价!(因向量组A与向量组B等价,则它们有相同的秩,又A与B作成的矩阵A与B有相同的行与列,且秩相等,故矩阵A与B等价)
l 要求两个向量组有相同个数的向量,是因为矩阵等价的首要条件是两矩阵具有相同的行数与列数,故只有对于均有n个向量的两个m维向量组A与B,才有可能讨论其对应的矩阵A与B是否等价。
两矩阵,A B 等价,能推出他们的行向量组一定等价或者列向量组一定等价么?
【解答】不可以!
首先矩阵A 经初等行变换化为矩阵B ,则称,A B 行等价;
矩阵A 经初等列变换化为矩阵B ,则称,A B 列等价;
矩阵A 经初等变换(包含行变换和列变换)化为矩阵B ,则称,A B 等价;
显然,A B 行等价则有,A B 等价,反之不然!
我们再来看看什么是向量组的等价?
两向量组等价是指两向量组可以互相线性表示,应注意两向量组等价他们所含向量个数可以不一样的!!!
例如向量组I :100⎛⎫ ⎪ ⎪ ⎪⎝⎭
与向量组II :210,000⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭等价。
显然矩阵,A B 行等价,可以推出他们的行向量组等价!,A B 列等价可以推出他们的列向量组等价! 从而,A B 等价未必有,A B 行等价,从而也未必有他们的行向量组等价!
看一个具体的例子:
3131100100101010010010000100101A r r B c c C ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪=+=+= ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭
u u u u u r u u u u u u r
显然矩阵,A B 行等价,,A B 的行向量组等价,但列向量组不等价!
矩阵,B C 列等价,,B C 的列向量组等价,但行向量组不等价!
矩阵,A B等价(既做了行变换,也做了列变换),但他们的行、列向量组均不等价!
左行右列。