(完整版)代数式化简专项训练(带答案)
化简求值专项练习20题带答案
化简求值专项练习题1.先化简,再求值:2(3a2﹣ab)﹣3(2a2﹣ab),其中a=﹣2,b=3.2.先化简,再求值:6a2b﹣(﹣3a2b+5ab2)﹣2(5a2b﹣3ab2),其中a=﹣2,b=.3.先化简,再求值:3x2y2﹣[5xy2﹣(4xy2﹣3)+2x2y2],其中x=﹣3,y=2.4.先化简,再求值:5ab2+3a2b﹣3(a2b﹣ab2),其中a=2,b=﹣1.5.先化简,再求值:2x2﹣y2+(2y2﹣x2)﹣3(x2+2y2),其中x=3,y=﹣2.6.先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.7.先化简,再求值:(6a2﹣6ab﹣12b2)﹣3(2a2﹣4b2),其中a=﹣,b=﹣8.8.先化简,再求值:x2y﹣(2xy﹣x2y)+xy,其中x=﹣1,y=﹣2.9.先化简,再求值:5(xy+3x2﹣2y)﹣3(xy+5x2﹣2y),其中x=,y=﹣1.10.当|a|=3,b=a﹣2时,化简代数式1﹣{a﹣b﹣[a﹣(b﹣a)+b]}后,再求这个代数式的值.11.先化简,再求值:a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2),其中a=3,b=﹣2.12.先化简,再求值:3a2﹣(2ab+b2)+(﹣a2+ab+2b2),其中a=﹣1,b=2.13.先化简再求值,已知a=﹣2,b=﹣1,c=3,求代数式5abc﹣2a2b﹣[(4ab2﹣a2b)﹣3abc]的值.14.先化简,再求值:﹣2(ab﹣3a2)﹣[a2﹣5(ab﹣a2)+6ab],其中a=2,b=﹣3.15.先化简,再求值:3a3﹣[a3﹣3b+(6a2﹣7a)]﹣2(a3﹣3a2﹣4a+b)其中a=2,b=﹣1,16.先化简,再求值:(5a2b+4b3﹣2ab2+3a3)﹣(2a3﹣5ab2+3b3+2a2b),其中a=﹣2,b=3.17.先化简,再求值:(a2﹣3ab﹣2b2)﹣(a2﹣2b2),其中,b=﹣8.18.先化简,再求值:8mn﹣[4m2n﹣(6mn2+mn)]﹣29mn2,其中m=﹣1,n=.19.化简求值:3(x3﹣2y2﹣xy)﹣2(x3﹣3y2+xy),其中x=3,y=1.20.先化简再求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=,y=﹣5.整式化简求值90题参考答案:1.原式=6a2﹣2ab﹣6a2+3ab=ab,当a=﹣2,b=3时,原式=ab=﹣2×3=﹣6.2.原式=6a2b+3a2b﹣5ab2﹣10a2b+6ab2=﹣a2b+ab2 ,把a=﹣2,b=代入上式得:原式=﹣(﹣2)2×+(﹣2)×2=﹣2﹣=﹣2.3.原式=3x2y2﹣5xy2+4xy2﹣3﹣2x2y2=x2y2﹣xy2﹣3当x=﹣3,y=2时,原式=454.原式=5ab2+3a2b﹣3a2b+2ab2=7ab2.当a=2,b=﹣1时,原式=7×2×(﹣1)2=14.5.原式=2x2﹣y2+2y2﹣x2﹣3x2﹣6y2=﹣2x2﹣5y2.当x=3,y=﹣2时,原式=﹣18﹣20=﹣38.6.原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,原式=7.原式=6a2﹣6ab﹣12b2﹣6a2+12b2=﹣6ab,当a=﹣,b=﹣8时,原式=﹣6×(﹣)×(﹣8)=﹣24.8.原式=x2y﹣2xy+x2y+xy=2x2y﹣xy,当x=﹣1,y=﹣2时,原式=2×(﹣1)2×(﹣2)﹣(﹣1)×(﹣2)=﹣6.9.原式=5xy+15x2﹣10y﹣3xy﹣15x2+6y=2xy﹣4y,当x=,y=﹣1时,原式=2××(﹣1)﹣4×(﹣1)=3.10.原式=1+a+b;当a=3时,b=1,代数式的值为5;当a=﹣3时,b=﹣5,代数式的值为﹣7.a2﹣(2a2+2ab﹣b2)+(a2﹣ab﹣b2)11.原式==a2﹣2a2﹣2ab+b2+a2﹣ab﹣b2=﹣a2﹣3ab.当a=3,b=﹣2时,原式=﹣×32﹣3×3×(﹣2)=﹣3+18=1512.原式=2a2﹣ab+b2当a=﹣1,b=2.原式=2a2﹣ab+b2=2×(﹣1)2﹣(﹣1)×2+22= 813.原式=5abc﹣2a2b﹣4ab2+a2b+3abc=8abc﹣a2b﹣4ab2;a=﹣2,b=﹣1,c=3时,原式=8×2×1×3﹣4×(﹣1)﹣4×(﹣2)×1=60.14.原式=﹣2ab+6a2﹣(a2﹣5ab+5a2+6ab)=﹣2ab+6a2﹣a2+5ab﹣5a2﹣6ab=﹣3ab;当a=2,b=﹣3时,原式=﹣3×2×(﹣3)=1815.原式=3a3﹣[a3﹣3b+6a2﹣7a]﹣2a3+6a2+8a﹣2b=3a3﹣a3+3b﹣6a2+7a﹣2a3+6a2+8a﹣2b=15a+b当a=2,b=﹣1时,原式=15×2﹣1=29.16.原式=5a2b+4b3﹣2ab2+3a3﹣2a3+5ab2﹣3b3﹣2a2b=a3+3a2b+3ab2+b3,当a=﹣2,b=3时,原式=(﹣2)3+3×(﹣2)2×3+3×(﹣2)×32+33=﹣8+36﹣54+27=1.17.原式=a2﹣3ab﹣2b2﹣a2+2b2=﹣3ab,当,b=﹣8时,原式=﹣3×()×(﹣8)=﹣12.18.原式=8mn﹣[4m2n﹣6mn2﹣mn]﹣29mn2=8mn﹣4m2n+6mn2+mn﹣29mn2=9mn﹣4m2n﹣23mn2当m=﹣1,n=时,原式=9×(﹣1)×﹣4×12×﹣23×(﹣1)×=﹣﹣2+=﹣.19.原式=3x3﹣6y2﹣3xy﹣3x3+6y2﹣2xy=﹣5xy,当x=3,y=1时,原式=﹣5×3×1=﹣15.20.原式=3x2y﹣[2xy2﹣(2xy﹣3x2y)+xy]+3xy2=3x2y﹣(2xy2﹣2xy+3x2y+xy)+3xy2=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy+xy2,当x=,y=﹣5时,原式=×(﹣5)+×25=.。
代数式的化简求值问题(含答案)
第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m 利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a 例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
初一代数式化简练习题
初一代数式化简练习题一、单项式化简1. 化简:(3a 2a) + 4b2. 化简:5x 3x + 2y y3. 化简:4m^2 2m^2 + 3n^24. 化简:7ab 5ab + 6ac 2ac5. 化简:9p^3q 3p^3q + 4pq^2二、多项式化简1. 化简:(2x + 3y) (x y)2. 化简:(4a 5b) + (3a + 2b)3. 化简:(7m + 2n) (4m n)4. 化简:(3x^2 2xy) + (4xy x^2)5. 化简:(5a^2b 3ab^2) + (2a^2b + 4ab^2)三、合并同类项1. 合并同类项:2x + 3y 4x + 5y2. 合并同类项:5a^2 3a^2 + 4b^2 2b^23. 合并同类项:7m^3n 5m^3n + 6m^2n^2 4m^2n^24. 合并同类项:9ab^2 6ab^2 + 8ac^2 5ac^25. 合并同类项:12p^4q^2 10p^4q^2 + 15pq^3 8pq^3四、分配律应用1. 应用分配律:3(x + 2y) 4(x y)2. 应用分配律:5(a 3b) + 2(a + 4b)3. 应用分配律:7(m + 2n) 3(m n)4. 应用分配律:4(x^2 y^2) + 3(x^2 + y^2)5. 应用分配律:6(a^2b ab^2) 2(a^2b + ab^2)五、提取公因式1. 提取公因式:2x + 4y 6z2. 提取公因式:3a^2 6ab + 9b^23. 提取公因式:4m^3n 8m^2n^2 + 12mn^34. 提取公因式:5ab^2 10ac^2 + 15ad^25. 提取公因式:7p^4q^2 14p^3q^3 + 21p^2q^4六、分式的化简1. 化简分式:\(\frac{2x}{4} \frac{3x}{6}\)2. 化简分式:\(\frac{5y}{10} + \frac{2y}{5}\)3. 化简分式:\(\frac{3a}{6} \frac{2a}{3}\)4. 化简分式:\(\frac{4b}{8} + \frac{5b}{8}\)5. 化简分式:\(\frac{7m}{14} \frac{2m}{7}\)七、含绝对值的代数式化简1. 化简:|2x 3| |x + 4|2. 化简:|3y + 5| + |2y 1|3. 化简:|4a 7| |a + 2|4. 化简:|5b + 3| + |3b 6|5. 化简:|6m 8| |2m + 5|八、平方差公式应用1. 应用平方差公式:\(a^2 b^2\)2. 应用平方差公式:\(x^2 4\)3. 应用平方差公式:\(9y^2 25\)4. 应用平方差公式:\(16m^2 n^2\)5. 应用平方差公式:\(25p^2 49q^2\)九、完全平方公式应用1. 应用完全平方公式:\(a^2 + 2ab + b^2\)2. 应用完全平方公式:\(x^2 6x + 9\)3. 应用完全平方公式:\(4y^2 + 12y + 9\)4. 应用完全平方公式:\(m^2 10mn + 25n^2\)5. 应用完全平方公式:\(p^2 + 8pq + 16q^2\)十、混合运算化简1. 化简:(3x + 4y)(2x 3y) + (x 2y)(4x + 5y)2. 化简:(a 3b)(a + 2b) (2a + b)(a b)3. 化简:(4m + 5n)(3m 2n) + (m 3n)(2m + 4n)4. 化简:(7p 6q)(p + 2q) (3p + 4q)(p q)5. 化简:(2x^2 3y^2)(x^2 + y^2) + (x^2 + 4y^2)(x^2 y^2)答案一、单项式化简1. 4b2. 2x + y3. 2m^2 + 3n^24. ab + 4ac5. 5p^3q + 4pq^2二、多项式化简1. x + 4y2. 8a b3. 3m + 3n4. 3x^2 + 2xy5. 7a^2b + 2ab^2三、合并同类项1. 2x + 8y2. 2a^2 + 2b^23. 2m^3n 4m^2n^24. 3ab^2 + 3ac^25. 2p^4q^2 + 7pq^3四、分配律应用1. x + 10y2. 7a 5b3. 7m + 11n4. 7x^2 y^25. 4a^2b 6ab^2五、提取公因式1. 2(x + 2y 3z)2. 3(a^2 2ab + 3b^2)3. 4m^2n(m 2n + 3n^2)4. 5ab^2(1 2c^2 + 3d^2)5. 7p^2q^2(p^2 2pq + 3q^2)六、分式的化简1. \(\frac{x}{6}\)2. \(\frac{9y}{10}\)3. \(\frac{a}{6}\)4. \(\frac{9b}{8}\)5. \(\frac{5m}{14}\)七、含绝对值的代数式化简1. \(|2x 3| |x + 4|\) 无法进一步化简2. \(|3y + 5| + |2y 1|\) 无法进一步化简3. \(|4a 7| |a + 2|\) 无法进一步化简4. \(|5b + 3| + |3b 6|\) 无法进一步化简5. \(|6m 8| |2m + 5|\) 无法进一步化简八、平方差公式应用1. \((a + b)(a b)\)2. \((x + 2)(x 2)\)3. \((3y + 5)(3y 5)\)4. \((4m + n)(4m n)\)5. \((5p + 7q)(5p 7q)\)九、完全平方公式应用1. \((a + b)^2\)2. \((x 3)^2\)3. \((2y + 3)^2\)4. \((m 5n)^2\)5. \((p + 4q)^2\)十、混合运算化简1. \(11x^2y 6xy^2 + 2x^2 11y^2\)2. \(a^2 5ab 6b^2\)3. \(18m^2 11mn 8n^2\)4. \(7p^2 18pq 24q^2\)5. \(2x^4 6x^2y^2 + y^4\)请同学们对照答案检查自己的练习结果,确保理解并掌握每个题型的解题方法。
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式的值为8,求当x =2时,代数式的值。
分析: 因为当x=-2时, 得到,所以146822235-=--=++c b a当x=2时,=206)14(622235-=--=-++c b a例3.当代数式的值为7时,求代数式的值.分析:观察两个代数式的系数由 得 ,利用方程同解原理,得2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4. 已知,求的值.分析:解法一(整体代人):由 得所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
代数式化简求值专项训练及答案
代数式化简求值专项训练1.先化简,再求值:(1))1)(2(2)3(3)2)(1(-+++---x x x x x x ,其中31=x .(2) (a +b )(a -b )+(a +b )2-a (2a +b ),其中a =23,b =-112。
(3)22(3)(3)(5)(5)a b a b a b a b -++-+-,其中2a =-,1b =-.2.已知312=-y x ,2=xy ,求 43342y x y x -的值。
3.若x 、y 互为相反数,且4)1()2(22=+-+y x ,求x 、y 的值4.已知22==+ab b a ,,求32232121ab b a b a ++的值.5.已知x 2+x -1=0,求x 3+2x 2+3的值.6.已知:222450a b a b ++-+=,求2243a b +-的值.7.已知等腰△ABC 的两边长,a b 满足:222448160a ab b a -+-+=,求△ABC 的周长?8.若(x 2+px +q )(x 2-2x -3)展开后不含x 2,x 3项,求p 、q 的值.9、已知x 、y 都是正整数,且3722+=y x ,求x 、y 的值。
10、若182++ax x 能分解成两个因式的积,求整数a 的值?代数式典型例题30题参考答案:1.解:在1,a,a+b,,x2y+xy2,3>2,3+2=5中,代数式有1,a,a+b,,x2y+xy2,共5个.故选C2.解:题中的代数式有:﹣x+1,π+3,共3个.故选C.3.解:①1x分数不能为假分数;②2•3数与数相乘不能用“•”;③20%x,书写正确;④a﹣b÷c不能出现除号;⑤,书写正确;⑥x﹣5,书写正确,不符合代数式书写要求的有①②④共3个.故选:C4.解:“负x的平方”记作(﹣x)2;“x的3倍”记作3x;“y与的积”记作y.故选B5.解:A、x是代数式,0也是代数式,故选项错误;B、表示a与b的积的代数式为ab,故选项错误;C、正确;D、意义是:a与b的和除y的商,故选项错误.故选C6.解:答案不唯一,如买一支钢笔5元,买x支钢笔共5x元7.解:(1)(x+2)2可以解释为正方形的边长为x+2,则它的面积为(x+2)2;(2)某商品的价格为n元.则80%n可以解释为这件商品打八折后的价格.故答案为:(1)正方形的边长为x+2,则它的面积为(x+2)2;(2)这件商品打八折后的价格8.解:根据题意得此三位数=2×100+x=200+x9.解:两位数x放在一个三位数y的右边相当于y扩大了100倍,那么这个五位数为(100y+x)10.解:这m+n个数的平均数=.故答案为:.11.解:小华第一天读了全书的,还剩下(1﹣)n=n;第二天读了剩下的,即(1﹣)n×=n.则未读完的页数是n12.解:(1)∵a﹣b=3,∴3a﹣3b=3,5﹣4a+4b=5﹣4(a﹣b)=5﹣4=1;(2)∵x+5y﹣2=0,∴x+5y=2,∴2x+3+10y=2(x+5y)+3=2×2+3=7;(3)∵3x2﹣6x+8=0,∴x2﹣2x=﹣,∴x2﹣2x+8=﹣+8=.故答案为:(1)3,1;(2)7;(3)13.解:因为a,b互为倒数,c,d互为相反数,所以ab=1,c+d=0,所以3c+3d﹣9ab=3(c+d)﹣9ab=0﹣9=﹣9,故答案为:﹣914.解:由题意知:﹣a﹣b=5所以a+b=﹣5;则当x=1时,ax3+bx=a+b=﹣515.解:开放题,答案无数个,只要所写同类项,所含字母相同且相同字母的指数也相同即可,同类项与字母的顺序无关.如5x3y,12x3y,20x3y.故答案为:5x3y,12x3y,20x3y16.解:由同类项的定义可知m=2,n=3,代入(﹣n)m,结果为9.答:(﹣n)m值是917.解:两个单项式的和是单项式,则它们是同类项,则2m+3=4,m=;n=3.则(4m﹣n)n=(4×﹣3)3=﹣1.答:(4m﹣n)n=﹣118.解:x5y n与﹣3x2m+1y3n﹣2是同类项,2m+1=5,n=3n﹣2,m=2,n=1,m+n=2+1=3,故答案为:319.解:(1)∵其余三面留出宽都是x米的小路,∴由图可以看出:菜地的长为18﹣2x米,宽为10﹣x米;(2)由(1)知:菜地的长为18﹣2x米,宽为10﹣x米,所以菜地的面积为S=(18﹣2x)•(10﹣x);(3)由(2)得菜地的面积为:S=(18﹣2x)•(10﹣x),当x=1时,S=(18﹣2)(10﹣1)=144m2.故答案分别为:(1)18﹣2x,10﹣x;(2)(18﹣2x)(10﹣x);(3)144m220.解:∵﹣3x4+m y与x4y3n是同类项,∴4+m=4,3n=1,∴m=0,n=,∴m100+(﹣3n)99﹣mn=0+(﹣1)﹣0=﹣121.解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=422.解:∵6x+5y﹣2﹣3Rx﹣2Ry+4R=0合并同类项后不含y项,∴5﹣2R=0,解得R=2.523.解:原式=x2+(﹣2k+6)xy﹣3y2﹣y,∵不含x,y的乘积项,∴x,y的乘积项的系数为0,∴﹣2k+6=0,∴2k=6,∴k=3.∴当k=3时,已知多项式不含x,y的乘积项24.(1)﹣3(2s﹣5)+6s=﹣6s+15+6s=15;(2)3x﹣[5x﹣(x﹣4)]=3x﹣[5x﹣x+4]=3x﹣5x+x﹣4=﹣x+4;(3)6a2﹣4ab﹣4(2a2+ab)=6a2﹣4ab﹣8a2﹣2ab=﹣2a2﹣6ab;(4)﹣3(2x2﹣xy)+4(x2+xy﹣6)=﹣6x2+3xy+4x2+4xy﹣24=﹣2x2+7xy﹣2425.(1)x+[﹣x﹣2(x﹣2y)]=x﹣x﹣2x+4y=﹣2x+4y;(2)原式=a﹣a﹣﹣+b2=;(3)2a﹣(5a﹣3b)+3(2a﹣b)=2a﹣5a+3b+6a﹣3b=3a;(4)﹣3{﹣3[﹣3(2x+x2)﹣3(x﹣x2)﹣3]},=﹣3{9(2x+x2)+9(x﹣x2)+9},=﹣27(2x+x2)﹣27(x﹣x2)﹣27,=﹣54x﹣27x2﹣27x+27x2﹣27,=﹣81x﹣2726.解:(1)﹣;(2)原式=1﹣+﹣++…+﹣=1﹣= 27.解:(1)∵第n个数是(﹣1)n,∴第7个,第8个,第9个数分别是﹣,,﹣.(2),最后与0越来越接近28.解:通过图案观察可知,当n=1时,点的个数是12=1;当n=2时,点的个数是22=4;当n=3时,点的个数是32=9;当n=4时,点的个数是42=16,…∴第n个正方形点阵中有n2个点,∴第n个正方形点阵中的规律是=n2.29.解:根据图案可知,(1)第4个图案火柴有3×4+1=13;第6个图案中火柴有3×6+1=19;(2)当n=1时,火柴的根数是3×1+1=4;当n=2时,火柴的根数是3×2+1=7;当n=3时,火柴的根数是3×3+1=10;所以第n个图形中火柴有3n+1.(3)当n=2008时,3n+1=3×2008+1=602530.解:(1)在第1个图中,共有白色瓷砖1×(1+1)=2块,(2)在第2个图中,共有白色瓷砖2×(2+1)=6块,(3)在第3个图中,共有白色瓷砖3×(3+1)=12块,(4)在第10个图中,共有白色瓷砖10×(10+1)=110块,(5)在第n个图中,共有白色瓷砖n(n+1)块。
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值. 分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx 所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式的值为8,求当x =2时,代数式的值。
分析: 因为当x=-2时, 得到,所以146822235-=--=++c b a当x=2时,=206)14(622235-=--=-++c b a例3.当代数式的值为7时,求代数式的值.分析:观察两个代数式的系数由 得 ,利用方程同解原理,得2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4. 已知,求的值.分析:解法一(整体代人):由 得所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
七年级数学上册化简求值专项训练(带答案)
七年级数学上册化简求值专项训练(带答案)-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN2015年11月14日整式的加减(化简求值)一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费元;(2)若张红家6月份缴交水费44元,则该月用水量为吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.29.(2015春•绥阳县校级期末)化简并求值.4(x﹣1)﹣2(x2+1)﹣(4x2﹣2x),其中x=2.30.(2014•咸阳模拟)先化简,再求值.(1)3x3﹣[x3+(6x2﹣7x)]﹣2(x3﹣2x2﹣4x),其中x=﹣1;(2)5x2﹣(3y2+7xy)+(2y2﹣5x2),其中x=,y=﹣2015年11月14日整式的加减(化简求值)参考答案与试题解析一.解答题(共30小题)1.(2014秋•黔东南州期末)先化简,再求值:5(3a2b﹣ab2)﹣3(ab2+5a2b),其中a=,b=﹣.【考点】整式的加减—化简求值.【分析】首先根据整式的加减运算法则将原式化简,然后把给定的值代入求值.注意去括号时,如果括号前是负号,那么括号中的每一项都要变号;合并同类项时,只把系数相加减,字母与字母的指数不变.【解答】解:原式=15a2b﹣5ab2﹣3ab2﹣15a2b=﹣8ab2,当a=,b=﹣时,原式=﹣8××=﹣.【点评】熟练地进行整式的加减运算,并能运用加减运算进行整式的化简求值.2.(2014•咸阳模拟)已知a、b、c在数轴上的对应点如图所示,化简|a|﹣|a+b|+|c﹣a|+|b+c|.【考点】整式的加减;数轴;绝对值.【分析】本题涉及数轴、绝对值,解答时根据绝对值定义分别求出绝对值,再根据整式的加减,去括号、合并同类项即可化简.【解答】解:由图可知,a>0,a+b<0,c﹣a<0,b+c<0,∴原式=a+(a+b)﹣(c﹣a)﹣(b+c)=a+a+b﹣c+a﹣b﹣c=3a﹣2c.【点评】解决此类问题,应熟练掌握绝对值的代数定义,正数的绝对值等于它本身,负数的绝对值等于它的相反数.注意化简即去括号、合并同类项.3.(2015•宝应县校级模拟)先化简,再求值:(﹣4x2+2x﹣8y)﹣(﹣x﹣2y),其中x=,y=2012.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=﹣x2+x﹣2y+x+2y=﹣x2+x,当x=,y=2012时,原式=﹣+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.4.(2014•咸阳模拟)已知(x+1)2+|y﹣1|=0,求2(xy﹣5xy2)﹣(3xy2﹣xy)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】因为平方与绝对值都是非负数,且(x+1)2+|y﹣1|=0,所以x+1=0,y﹣1=0,解得x,y的值.再运用整式的加减运算,去括号、合并同类项,然后代入求值即可.【解答】解:2(xy﹣5xy2)﹣(3xy2﹣xy)=(2xy﹣10xy2)﹣(3xy2﹣xy)=2xy﹣10xy2﹣3xy2+xy=(2xy+xy)+(﹣3xy2﹣10xy2)=3xy﹣13xy2,∵(x+1)2+|y﹣1|=0∴(x+1)=0,y﹣1=0∴x=﹣1,y=1.∴当x=﹣1,y=1时,3xy﹣13xy2=3×(﹣1)×1﹣13×(﹣1)×12=﹣3+13=10.答:2(xy﹣5xy2)﹣(3xy2﹣xy)的值为10.【点评】整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.代入求值时要化简.5.(2014•咸阳模拟)已知A=x2﹣2x+1,B=2x2﹣6x+3.求:(1)A+2B.(2)2A﹣B.【考点】整式的加减.【专题】计算题.【分析】(1)根据题意可得A+2B=x2﹣2x+1+2(2x2﹣6x+3),去括号合并可得出答案.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),先去括号,然后合并即可.【解答】解:(1)由题意得:A+2B=x2﹣2x+1+2(2x2﹣6x+3),=x2﹣2x+1+4x2﹣12x+6,=5x2﹣14x+7.(2)2A﹣B=2(x2﹣2x+1)﹣(2x2﹣6x+3),=2x2﹣4x+2﹣2x2+6x﹣3,=2x﹣1.【点评】本题考查了整式的加减,难度不大,解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.6.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.【考点】整式的加减—化简求值.【专题】计算题.【分析】本题考查了整式的加减、去括号法则两个考点.先按照去括号法则去掉整式中的小括号,再合并整式中的同类项即可.【解答】解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴原式=﹣16.【点评】解决此类题目的关键是熟记去括号法则,熟练运用合并同类项的法则,这是各地中考的常考点.然后代入求值即可.7.(2014•陕西模拟)先化简,再求值:m﹣2()﹣(),其中m=,n=﹣1.【考点】整式的加减—化简求值.【专题】计算题.【分析】原式去括号合并得到最简结果,将m与n的值代入计算即可求出值.【解答】解:原式=m﹣2m+n2﹣m+n2=﹣3m+n2,当m=,n=﹣1时,原式=﹣3×+(﹣1)2=0.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2015春•萧山区校级月考)化简后再求值:5(x2﹣2y)﹣(x2﹣2y)﹣8(x2﹣2y)﹣(x2﹣2y),其中|x+|+(y﹣)2=0.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【专题】计算题.【分析】原式去括号合并得到最简结果,利用非负数的性质求出x与y的值,代入计算即可求出值.【解答】解:原式=5x2﹣10y﹣x2+y﹣8x2+16y﹣x2+y=﹣4x2+8y,∵|x+|+(y﹣)2=0,∴x+=0,y﹣=0,即x=﹣,y=,则原式=﹣1+=.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.9.(2015•宝应县校级模拟)化简:2(3x2﹣2xy)﹣4(2x2﹣xy﹣1)【考点】整式的加减.【专题】计算题.【分析】原式去括号合并即可得到结果.【解答】解:原式=6x2﹣4xy﹣8x2+4xy+4=﹣2x2+4.【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.10.(2011秋•正安县期末)4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1,其中x=﹣,y=4.【考点】整式的加减—化简求值.【专题】计算题.【分析】根据运算顺序,先计算小括号里的,故先把小括号外边的2利用乘法分配律乘到括号里边,然后根据去括号法则:括号前面是负号,去掉括号和负号,括号里各项都变号,合并后再利用去括号法则计算,再合并即可得到最后结果,最后把x与y的值代入到化简得式子中即可求出值.【解答】解:4x2y﹣[6xy﹣2(3xy﹣2)﹣x2y]+1=4x2y﹣[6xy﹣(6xy﹣4)﹣x2y]+1=4x2y﹣(6xy﹣6xy+4﹣x2y)+1=4x2y﹣(4﹣x2y)+1=4x2y﹣4+x2y+1=5x2y﹣3,当x=﹣,y=4时,原式=5x2y﹣3=5××4﹣3=5﹣3=2.【点评】此题考查了整式的化简求值,去括号法则,以及合并同类项.其中去括号法则为:括号前面是正号,去掉括号和正号,括号里各项不变号;括号前面是负号,去掉括号和负号,括号里各项都要变号,此外注意括号外边有数字因式,先把数字因式乘到括号里再计算.合并同类项法则为:只把系数相加减,字母和字母的指数不变.解答此类题时注意把原式化到最简后再代值.11.(2009秋•吉林校级期末)化简:(1)3a+(﹣8a+2)﹣(3﹣4a)(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3(3)先化简,再求值,其中【考点】整式的加减—化简求值;整式的加减.【分析】(1)先去括号,3a+(﹣8a+2)﹣(3﹣4a)=3a﹣8a+2﹣3+4a;再合并同类项.(2)先去括号,2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3;再合并同类项;(3)先去括号,合并同类项,将复杂整式,化为最简式﹣3x+y2;再将代入计算即可.【解答】解:(1)3a+(﹣8a+2)﹣(3﹣4a),=3a﹣8a+2﹣3+4a,=﹣a﹣1;(2)2(xy2+3y3﹣x2y)﹣(﹣2x2y+y3+xy2)﹣4y3=2xy2+6y3﹣2x2y+2x2y﹣y3﹣xy2﹣4y3=xy2+y3;(3)原式=x y2﹣x+y2=﹣3x+y2当时,原式=﹣3×(﹣2)+()2=6.【点评】此类题的解答规律是先去括号,合并同类项,将整式化为最简式,最后代入计算求值.易错点是多项式合并时易漏项.12.(2010秋•武进区期中)已知:,求:3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】由,据非负数≥0,即任意数的偶次方或绝对值都是非负数,故只能x﹣=0,和y+3=0;将3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2)去括号,化简得x2y+4x2,问题可求.【解答】解:由题意,∵,∴x﹣=0,y+3=0,即x=,y=﹣3;∴3x2y﹣2x2y+[9x2y﹣(6x2y+4x2)]﹣(3x2y﹣8x2),=3x2y﹣2x2y+9x2y﹣6x2y﹣4x2﹣3x2y+8x2,=x2y+4x2,=x2(y+4),=()2×(﹣3+4),=.【点评】本题综合考查了非负数的性质和化简求值,正确解答的关键是掌握:非负数≥0,这个知识点.13.(2013秋•淮北期中)某同学做一道数学题:“两个多项式A、B,B=3x2﹣2x﹣6,试求A+B”,这位同学把“A+B”看成“A﹣B”,结果求出答案是﹣8x2+7x+10,那么A+B的正确答案是多少?【考点】整式的加减.【分析】先根据A﹣B=﹣8x2+7x+10得出A,再求出A+B即可.【解答】解:∵A﹣B=﹣8x2+7x+10,B=3x2﹣2x﹣6,∴A=(﹣8x2+7x+10)+(3x2﹣2x﹣6)=﹣8x2+7x+10+3x2﹣2x﹣6=﹣5x2+5x+4,∴A+B=(﹣5x2+5x+4)+(3x2﹣2x﹣6)=﹣5x2+5x+4+3x2﹣2x﹣6=﹣2x2+3x﹣2.【点评】本题考查的是整式的加减,熟知整式的加减实质上是合并同类项是解答此题的关键.14.(2012秋•德清县校级期中)先化简,再求值:﹣(3a2﹣4ab)+a2﹣2(2a+2ab),其中a=2,b=﹣1.【考点】整式的加减;合并同类项;去括号与添括号.【专题】计算题.【分析】先去括号,再合并同类项,把a=2代入求出即可.【解答】解:当a=2,b=﹣1时,原式=﹣3a2+4ab+a2﹣4a﹣4ab,=﹣2a2﹣4a,=﹣2×22﹣4×2,=﹣16.【点评】本题考查了整式的加减,合并同类项,去括号等知识点的应用,通过做此题培养了学生运用所学的知识进行计算的能力,题目比较典型,难度适中.15.已知,B=2a2+3a﹣6,C=a2﹣3.(1)求A+B﹣2C的值;(2)当a=﹣2时,求A+B﹣2C的值.【考点】整式的加减;代数式求值.【分析】(1)根据题意列出A+B﹣2C的式子,再去括号,合并同类项即可;(2)把a=﹣2代入(1)中的式子即可.【解答】解:(1)∵,B=2a2+3a﹣6,C=a2﹣3.∴A+B﹣2C=(a2﹣1)+(2a2+3a﹣6)﹣2(a2﹣3)=a2﹣+2a2+3a﹣6﹣2a2+6=a2+3a﹣;(2)∵由(1)知,A+B﹣2C=a2+3a﹣,∴当a=﹣2时,原式=﹣6﹣=﹣5.【点评】本题考查的是整式的加减,熟知整式的加减实质上就是合并同类项是解答此题的关键.16.(2008秋•城口县校级期中)已知A=x3﹣2x2+4x+3,B=x2+2x﹣6,C=x3+2x﹣3,求A ﹣2B+3C的值,其中x=﹣2.【考点】整式的加减—化简求值.【专题】常规题型.【分析】由B=x2+2x﹣6,可得2B=2x2+4x﹣12;由C=x3+2x﹣3,可得3C=3x3+6x﹣9;把A、B、C代入A﹣2B+3C去括号,合并化简,最后代入x=﹣2计算即可.【解答】解:∵B=x2+2x﹣6,∴2B=2x2+4x﹣12;∵C=x3+2x﹣3,∴3C=3x3+6x﹣9;由题意,得:A﹣2B+3C=x3﹣2x2+4x+3﹣(2x2+4x﹣12)+(3x3+6x﹣9),=x3﹣2x2+4x+3﹣2x2﹣4x+12+3x3+6x﹣9,=4x3﹣4x2+6x+6,=4x2(x﹣1)+6x+6,∵x=﹣2.∴原式=4×(﹣2)2(﹣2﹣1)+6×(﹣2)+6,=4×4×(﹣3)﹣12+6,=﹣48﹣12+6,=﹣54.【点评】本题的解答,不要忙于代入计算;应先将复杂的式子整理成最简式,再代入计算.此类题的解答,关键是不要怕麻烦,一步一步的求解.17.求下列代数式的值:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4,其中a=﹣2,b=1;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a},其中a=﹣,b=0.4的值.【考点】整式的加减—化简求值.【分析】(1)直接合并同类项,再代值计算;(2)去括号,合并同类项,再代值计算.【解答】解:(1)a4+3ab﹣6a2b2﹣3ab2+4ab+6a2b﹣7a2b2﹣2a4=﹣a4+7ab﹣13a2b2﹣3ab2+6a2b当a=﹣2,b=1时,原式=﹣(﹣2)4+7×(﹣2)×1﹣13(﹣2)2×12﹣3×(﹣2)×(﹣1)2+6(﹣2)2×1=﹣16﹣14﹣52+6+24,=﹣52;(2)2a﹣{7b+[4a﹣7b﹣(2a﹣6a﹣4b)]﹣3a}=2a﹣{7b+[4a﹣7b﹣2a+6a+4b]﹣3a}=2a﹣{7b+4a﹣7b﹣2a+6a+4b﹣3a}=2a﹣{5a+4b}=﹣3a﹣4b,当a=﹣,b=0.4时,原式=﹣3×(﹣)﹣4×0.4=﹣.【点评】本题考查了整式的加减及求值问题,需要先化简,再代值.直接代值,可能使运算麻烦,容易出错.18.已知a、b在数轴上如图所示,化简:2|a+b|﹣|a﹣b|﹣|﹣b﹣a|+|b﹣a|.【考点】整式的加减;数轴;绝对值.【专题】计算题.【分析】根据数轴上点的位置判断出绝对值里边式子的正负,利用绝对值的代数意义化简,计算即可得到结果.【解答】解:根据数轴上点的位置得:a<0<b,且|a|>|b|,∴a+b<0,a﹣b<0,﹣b﹣a=﹣(a+b)>0,b﹣a>0,则原式=﹣2a﹣2b+a﹣b+a+b+b﹣a=﹣a﹣b.【点评】此题考查了整式的加减,数轴,以及绝对值,熟练掌握运算法则是解本题的关键.19.(2012秋•中山市校级期末)(1)﹣=1(2)[(x+1)+2]﹣2=x(3)化简并求值:3x2y﹣[2xy2﹣2(xy﹣x2y)+xy]+3xy2,其中x=3,y=﹣.【考点】整式的加减—化简求值;整式的加减;解一元一次方程.【专题】计算题.【分析】(1)方程去分母,去括号,移项合并,把m系数化为1,即可求出解;(2)方程去括号,移项合并,把x系数化为1,即可求出解;(3)原式去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:(1)去分母得:3﹣3m﹣6+6m=6,移项合并得:3m=9,解得:m=3;(2)去括号得:x+1+3﹣=x,去分母得:3x+48﹣30=8x,解得:x=;(3)原式=3x2y﹣2xy2+2xy﹣3x2y﹣xy+3xy2=xy2+xy,当x=3,y=﹣时,原式=﹣1=﹣.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.20.(2014秋•吉林校级期末)已知(﹣3a)3与(2m﹣5)a n互为相反数,求的值.【考点】合并同类项.【分析】运用相反数的定义得(﹣3a)3+(2m﹣5)a n=0,求出m,a,再代入求值.【解答】解:∵(﹣3a)3与(2m﹣5)a n互为相反数∴(﹣3a)3+(2m﹣5)a n=0,∴2m﹣5=27,n=3,解得m=16,n=3,∴==5.【点评】本题主要考查了合并同类项,解题的关键是确定(﹣3a)3+(2m﹣5)a n=0,21.已知|a+2|+(b+1)2+(c﹣)2=0,求代数式5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}的值.【考点】整式的加减—化简求值;非负数的性质:绝对值;非负数的性质:偶次方.【分析】根据三个非负数的和为0,必须都为0得出a+2=0,b+1=0,c﹣=0,求出a b c的值,先去小括号、再去中括号,最后去大括号后合并同类项,把a b c的值代入求出即可.【解答】解:∵|a+2|+(b+1)2+(c﹣)2=0,∴三个非负数的和为0,必须都为0,即a+2=0,b+1=0,c﹣=0,解得:a=﹣2,b=﹣1,c=,5abc﹣{2a2b﹣[3abc﹣(4ab2﹣a2b)]}=5abc﹣{2a2b﹣[3abc﹣4ab2+a2b]}=5abc﹣{2a2b﹣3abc+4ab2﹣a2b}=5abc﹣2a2b+3abc﹣4ab2+a2b=8abc﹣a2b﹣4ab2,当a=﹣2,b=﹣1,c=时,原式=8×(﹣2)×(﹣1)×﹣(﹣2)2×(﹣1)﹣4×(﹣2)×(﹣1)2=+4+8=17.【点评】本题考查了求代数式的值,整式的加减,非负数的性质等知识点,关键是正确化简和求出a b c的值,题目比较典型,但是一道比较容易出错的题目.22.已知关于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,求n m的值.【考点】合并同类项;多项式.【分析】由于多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,在合并同类项时,可以得到二次项为0,由此得到故m、n的方程,即m﹣3=0,2n+4=0,解方程即可求出m,n,然后把m、n的值代入n m,即可求出代数式的值.【解答】解:∵多项式mx2+4xy﹣x﹣2x2+2nxy﹣3y合并后不含有二次项,即二次项系数为0,即m﹣2=0,∴m=2;∴2n+4=0,∴n=﹣2,把m、n的值代入n m中,得原式=4.【点评】考查了多项式,根据在多项式中不含哪一项,则哪一项的系数为0,由此建立方程,解方程即可求得待定系数的值.23.先化简,再求值.(1)已知(a+2)2+|b﹣|=0,求a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2的值.(2)已知a﹣b=2,求多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a).(3)已知:a+b=﹣2,a﹣b=﹣3,求代数式:2(4a﹣3b﹣2ab)﹣3(2a﹣)的值.【考点】整式的加减—化简求值.【分析】(1)根据非负数的性质得到a,b的值,再把a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2去括号、合并同类项进行化简后代值计算即可求解;(2)先把多项式(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)合并同类项,再把a﹣b=2整体代入即可求解;(3)先把代数式2(4a﹣3b﹣2ab)﹣3(2a﹣)化简,再根据a+b=﹣2,a﹣b=﹣3,得到ab的值,最后整体代入即可求解.【解答】解:(1)∵(a+2)2+|b﹣|=0,∴a+2=0,解得a=﹣2,b﹣=0,解得b=;a2b﹣[2a2﹣2(ab2﹣2a2b)﹣4]﹣2ab2=a2b﹣[2a2﹣2ab2+4a2b﹣4]﹣2ab2=a2b﹣2a2+2ab2﹣4a2b+4﹣2ab2=﹣3a2b﹣2a2+4=﹣6﹣8+4=﹣10.(2)∵a﹣b=2,(a﹣b)2﹣9(a﹣b)﹣(a﹣b)2﹣5(b﹣a)=﹣(a﹣b)2﹣4(a﹣b)=﹣1﹣8=﹣9.(3)∵a+b=﹣2,a﹣b=﹣3,∴(a+b)2﹣(a+b)2=a2+2ab+b2﹣a2+2ab﹣b2=4ab=4﹣9=﹣5,∴ab=﹣1.25,∴2(4a﹣3b﹣2ab)﹣3(2a﹣)=8a﹣6b﹣4ab﹣6a+8b+ab=2a+2b﹣3ab=2(a+b)﹣3ab=﹣4+3.75=﹣0.25.【点评】考查了整式的加减﹣化简求值,给出整式中字母的值,求整式的值的问题,一般要先化简,再把给定字母的值代入计算,得出整式的值,不能把数值直接代入整式中计算.注意整体思想的运用.24.(2014秋•漳州期末)为鼓励人们节约用水,某地实行阶梯式计量水价(如下表所示).级别月用水量水价第1级20吨以下(含20吨) 1.6元/吨第2级20吨﹣30吨(含30吨)超过20吨部分按2.4元/吨第3级30吨以上超过30吨部分按4.8元/吨(1)若张红家5月份用水量为15吨,则该月需缴交水费24元;(2)若张红家6月份缴交水费44元,则该月用水量为25吨;(3)若张红家7月份用水量为a吨(a>30),请计算该月需缴交水费多少元(用含a的代数式表示)【考点】整式的加减;列代数式.【专题】应用题.【分析】(1)判断得到15吨为20吨以下,由表格中的水价计算即可得到结果;(2)判断得到6月份用水量在20吨﹣30吨之间,设为x吨,根据水费列出方程,求出方程的解即可得到结果;(3)根据a的范围,按照第3级收费方式,计算即可得到结果.【解答】解:(1)∵15<20,∴该月需缴水费为15×1.6=24(元);故答案为:24;(2)设该月用水量为x吨,经判断20<x<30,根据题意得:20×1.5+(x﹣20)×2.4=44,解得:x=25,故答案为:25;(3)20×1.6+10×2.4+(a﹣20﹣10)×4.8=4.8a﹣88;答:该月需缴交水费(4.8a﹣88)元.【点评】本题考查了整式的加减、列代数式、列一元一次方程解应用题;明确题意得出关系进行计算是解决问题的关键.25.(2014•咸阳模拟)先化简,再求值(1)(3a﹣4a2+1+2a3)﹣(﹣a+5a2+3a3),其中a=﹣1.(2)0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y,其中.【考点】整式的加减—化简求值.【专题】计算题.【分析】(1)先将原式去括号、合并同类项,再把a=﹣1代入化简后的式子,计算即可;(2)先将原式合并同类项,再把x=﹣1,y=代入化简后的式子,计算即可.【解答】解:(1)原式=3a﹣4a2+1+2a3+a﹣5a2﹣3a3=﹣a3﹣9a2+4a+1,当a=﹣1时,原式=1﹣9×1﹣4+1=﹣11;(2)原式=0.2x2y﹣0.5xy2﹣0.3x2y+0.7x2y=0.6x2y﹣0.5xy2,当x=﹣1,y=时,原式=0.6×1×﹣0.5×(﹣1)×=+=.【点评】本题考查了整式的化简求值.整式的加减运算实际上就是去括号、合并同类项,这是各地中考的常考点.26.(2014•咸阳模拟)已知﹣4xy n+1与是同类项,求2m+n的值.【考点】同类项.【专题】计算题.【分析】同类项的含有相同的字母且相同字母的指数相同,由此可得出答案.【解答】解:由题意得:m=1,n+1=4,解得:m=1,n=3.∴2m+n=5.【点评】本题考查同类项的知识,属于基础题,注意掌握同类项的定义.27.(2015春•濮阳校级期中)有一道题,求3a2﹣4a2b+3ab+4a2b﹣ab+a2﹣2ab的值,其中a=﹣1,b=,小明同学把b=错写成了b=﹣,但他计算的结果是正确的,请你通过计算说明这是怎么回事?【考点】整式的加减—化简求值.【专题】计算题.【分析】原式合并同类项得到结果不含b,则有b的取值无关.【解答】解:原式=4a2,当a=﹣1,b=时,原式=4,与b的值无关.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.28.(2014秋•温州期末)有这样一道题:“计算(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)的值,其中”.甲同学把“”错抄成“”,但他计算的结果也是正确的,试说明理由,并求出这个结果.【考点】整式的加减.【专题】应用题.【分析】首先将原代数式去括号,合并同类项,化为最简整式为﹣2y3,与x无关;所以甲同学把“”错抄成“”,但他计算的结果也是正确的.【解答】解:(2x3﹣3x2y﹣2xy2)﹣(x3﹣2xy2+y3)+(﹣x3+3x2y﹣y3)=2x3﹣3x2y﹣2xy2﹣x3+2xy2﹣y3﹣x3+3x2y﹣y3=﹣2y3=﹣2×(﹣1)3=2.因为化简的结果中不含x,所以原式的值与x值无关.【点评】整式的加减运算实际上就是去括号、合并同类项.注意去括号时符号的变化.21。
化简求值经典练习五十题(带答案解析)
化简求值经典练习五十题(带答案解析)化简求值经典练习五十题一.选择题(共1小题)1.(2013秋•包河区期末)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3B.3C.﹣7D.7 二.解答题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再求值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再求值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再求值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋•瑶海区期中)先化简,再求值:3a2b﹣[2a2b ﹣(2ab﹣a2b)﹣其中a=﹣1,b=﹣2.第1页(共20页)4a2]﹣ab2,5.(2017秋•巢湖市期中)先化简,再求值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋•柳州期中)先化简,再求值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),个中x=,y=﹣3.6.(2017秋•蜀山区校级期中)先化简,再求值:,其中a=﹣1,b=.7.(2017秋•安徽期中)先化简,再求值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋•淮安期末)先化简下式,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),个中a=﹣2,b=3.第2页(共20页)9.(2015秋•南雄市期末)已知(x+2)2+|y﹣|=0,求5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.10.(2015秋•庐阳区期末)先化简,再求值:2x3+4x﹣(x+3x2+2x3),个中x=﹣1.11.(2015秋•淮北期末)先化简,再求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),个中12.(2015秋•包河区期末)先化简,再求值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],个中a=﹣3.13.(2014秋•成县期末)化简求值:若(x+2)2+|y﹣1|=0,求4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.第3页(共20页),.14.(2014秋•合肥期末)先化简,再求值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再求值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)理解与思考:在某次作业中有这样的一道题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是多少?”小明是这样来解的:原式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4双方同乘以2,得10a+6b=﹣8.仿照小明的解题方法,完成下面的问题:(1)假如a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,求3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,求2a2+ab+b2的值.第4页(共20页)18.(2013秋•蜀山区校级期末)先化简,再求值(4x3﹣x2+5)+(5x2﹣x3﹣4),个中x=﹣2.19.(2013秋•寿县期末)先化简,再求值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),个中x=20.(2013秋•包河区期末)先化简,再求值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•合肥校级期中)先化简求值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,个中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再求值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.第5页(共20页).23.(2012秋•包河区期末)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期末)若a=|b﹣1|,b是最大的负整数,化简并求代数式3a﹣[b ﹣2(b﹣a)+2a]的值.25.(2012秋•靖江市期末)化简求值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再求值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期末)化简并求值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y 的值见数轴表示:第6页(共20页)28.(2012秋•泸县期中)先化简,再求值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010•梧州)先化简,再求值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•长丰县校级期中)化简计算:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式31.(2010秋•包河区期中)先化简,后求值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:第7页(共20页)与﹣2xmy3是同类项,化简求值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn),y=﹣3.32.(2008秋•牡丹江期末)先化简,再求值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•淮北期中)先化简,再求值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋•丰台区期末)先化简,再求值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋•惠山区期末)先化简,再求值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋•翁牛特旗期末)先化简再求值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.第8页(共20页)36.(2017秋•利辛县期末)先化简,再求值:4(3x2y﹣xy2)﹣2(xy2+3x2y),个中x=,y=﹣137.(2017秋•鄞州区期末)先化简,再求值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=338.(2017秋•埇桥区期末)先化简,再求值:2(x2y﹣y2)﹣(3x2y﹣2y2),个中x=﹣5,y=﹣.39.(2017秋•南平期末)先化简,再求值:(5x+y)﹣(3x+4y),个中x=,y=.40.(2016秋•武安市期末)求2x ﹣[2(x+4)﹣3(x+2y)]﹣2y的值,个中第9页(共20页).41.(2016秋•崇安区期末)先化简,再求值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017春•广饶县校级期中)先化简,再求值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有这样一道题:“计算(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲同学把“x=”错抄成“x=﹣”,但他计算的结果也是正确的,你能说明这是为什么吗?45.(2016秋•资中县期末)先化简,再求值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再求值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.第10页(共20页)46.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值与字母x的值无关,求代数式a2﹣2b+4ab的值.47.(2017秋•岑溪市期中)先化简下式,再求值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•蚌埠期中)先化简再求值:求5xy2﹣[2x2y﹣(2x2y﹣3xy2)]的值.(其中x,y两数在数轴上对应的点如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从点A沿数轴向右匍匐2个单元长度抵达点B,点A透露表现的数n为﹣,设点B所透露表现的数为m.(1)求m的值;(2)对﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再求值.第11页(共20页)参考谜底与试题剖析一.选择题(共1小题)1.解:∵a﹣b=5,c+d=2,∴原式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解答题(共49小题)2.解:(1)原式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)原式=x﹣2x+y2+x﹣y2=y2;(3)原式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,原式=+3.解:当x=﹣,y=2时,原式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.解:原式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2 =4a2+2ab﹣ab2当a=﹣1,b=﹣2时,原式=4+4+4=12.第12页(共20页)=.5.解:原式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,原式=9+1﹣=6.解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,原式=﹣6﹣6=﹣12.7.解:原式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,原式=4+3=7.8.解:原式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,原式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,原式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.第13页(共20页)10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则原式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:原式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,原式=﹣3﹣3=﹣6.12.解:原式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:原式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,原式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则原式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,原式=1﹣10=﹣9.15.解:原式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,原式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:原式=x﹣2x+y2﹣x+y2=﹣当x=﹣2,y=﹣2时,原式=17.解:(1)∵a2+a=0,第14页(共20页)x+y2,.∴原式=2015;故答案为:2015;(2)原式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,原式=6+5=11;(3)原式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,原式=×(﹣8+4)=﹣2.18.解:原式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,原式=﹣24+16+1=﹣7.19.解:原式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,原式=﹣12×(﹣)﹣6=10﹣6=4;20.解:原式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,原式=×(﹣9)=﹣4.21.解:原式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,原式=﹣=﹣.22.解:原式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,原式=12﹣10﹣4=﹣2.23.解:原式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,原式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的负整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,原式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,原式=﹣1﹣2=﹣3.第15页(共20页)25.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=26.解:原式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代入,原式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:原式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣根据数轴上点的位置得:x=2,y=﹣1,则原式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代入得:﹣16+8+384=376;时,原式=﹣42+4×﹣6=﹣21.xy+y2,(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代入得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:原式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).第16页(共20页)∵x=﹣2,∴原式=﹣16.30.解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式∴m=2,n=3,与﹣2xmy3是同类项,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,原式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,原式=2xy2=2××(﹣3)2=9.32.解:原式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.解:原式=3a﹣3a+abc﹣c2+c2﹣c第17页(共20页)=abc﹣c,当a=﹣,b=2,c=﹣3时原式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:原式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,原式=﹣6.35.解:原式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时原式=﹣6+4=﹣2.36.解:原式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,原式=5.37.解:原式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当x=,y=﹣1时,原式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:原式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,原式=﹣6+3=﹣3.39.解:原式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,原式=第18页(共20页).40.解:原式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,原式=2×﹣3×=1﹣2=﹣1.41.解:原式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,原式=1+2﹣8=﹣5.42.解:原式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,原式=4+2=6.43.解:(1)原式=﹣y2﹣y,当y=﹣1时,原式=﹣1+1=0;(2)原式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,原式=﹣54.44.解:原式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,原式=2.故“x=”错抄成“x=﹣”,但他计较的成效也是精确的.45.解:原式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,原式=﹣4﹣8=﹣12.46.解:(1)原式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,原式=2﹣12=﹣10;第19页(共20页)(2)原式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,原式=﹣2﹣6=﹣8.47.解:原式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值与x的值无关,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代入得:原式=4.5﹣2﹣12=﹣9.5.48.解:原式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,原式=﹣6×﹣3×3=﹣12.49.解:原式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,原式=4.50.解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn] =﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn。
代数式化简求值练习题.doc
代数式化简求值练习题1、-5ab+3ab、18p-9q+5-9qT0p3、-ab+ab-12521b2a4> 32-423625、2ab~5ab+3ab7、 18p-9q+5+9q~16p9、-11、 n-36、5x2yT2y2x4+3x4y2-6yx28、5a- 10、- 12、a+5 13、—7 14、2ab-15、 6a2-4ab-4 16、 3x- [5x-] 11217、3x-5x+20、 2a2-22、 x2+24、- (- [-])218、4-31、-* 3、-- 5、3_426、 -3+427、- {+ [-]} + {- [-]}28、2x2-12~8xy30、 y2-l32、 x+ [-6y+] 3334、 4-3536、 -3729、-2- [2b2-2ab]、 9x2- [x-] 、 -、 x+ [-]、 -3a+38、 - [-] 39、_341、 +2-442、-43、 -+4-24445、 7a+3a2+2a~a2+34647、 -4ab+8-2b2-9ab-849、 2y+6y+2xy-55051、 x-f+5x-4f52、-xy2+3xy 、 3a+2b-5a~b 、 3b-3a3+l+a3-2b 、3f+2f-7f 、 2a+3b+6a+9b-8a+12b53、 3pq+7pq+4pq+pq、 30a2b+2b2c-15a2b-4b2c55、7xy-8wx+5xyT2xy56、4+357、 4x~5859、 a+-061、 8x-263、 -6465、~6、4a-、 3一、 3x+l—2 、 n—3代数式求值合并同类项化简求值1、当x-2时,求代数式-3x2+5x-0. 5x2+xT的值、当p=3, q=3 时,求代数式 8p2-7q+6q-7p2-7 的值3、当x--5时,求代数式6x+2x2-3x+2x+l的值4、当x=2, y=~3时,求代数式4x2+3xy-x2-9的值5、当 m-6, n-2 时,求代数式 13m-32n-516n-6m的值6、当 m=5, p=]3, q=-32时,求代数式 3pq-45m-4pq的值7、当x=-2时,求代数式9x+6x2-3 的值8、当 x=l2时,求代数式14-的值9、当a=T, b=l时,求代数式+-的值10、当a=-2, b=2时,求代数式2-2-2ab2-2 的值11、当 X=-12,y=T时,求代数式2x2y+1的值12、当x=-2时,求代数式x+1X的值13、当 x--l, y-~2 时,求代数式 2xy+3x2y-6xy-4x2y 的值14、当 m-5, p-133,q=-2时,求代数式3pq-45m-4pq+m 的值15、当m2-mn-l, 4mn-3n2--2 时,求代数式m2+3mn-3n2 的值 16、当 x--l, y--2 时,求代数式 3-2xy+3yx2+6xy-4x2y 的值17、当x2-xy=3a, xy-y2=-2a 时,求代数式x2-y2 的值18、当 x=2004, y=T 时,求代数式 A=x2-xy+y2, B=-x2+2xy+y2, A+B 的值19、当a=5时,求代数式-的值20、当x=-2时,求代数式9x+6x2-3 的值21、当x=5时,求代数式1-4的值22、当 x=l2,时,求代数式-+的值23、当 x2+xy=2, y2+xy=5 时,求代数式 x2+2xy+y2 的值4、当a-b=4, c+d=-6时,求代数式-的值25、当 a=l,b=l时,求代数式a22+3ab~b2 的值26、当 a=17, b=143时,求代数式4+4-4的值27、当a=6, b=3时,求代数式ab?24的值28、当a--2,b-23时,求代数式112312a-2-的值3229、当a二,时,求代数式1—3的值30、当 2+ | y+1 I =0 时,求代数式 5xy2- [2x2y-]的值代数式求值合并同类项化简求值1、当x=~2, y=~4时,代数式x2-2xy+y2的值是2、在代数式 2x2y3-x3y+y4-5x4y3 中,其中 x-0, y=~2, 这个代数式的值为3、x=-2时,代数式x+的值是4、当x二5时,代数式x+4=5、代数式x2+2008的最小值是,此时x二6、已知:a2+3a+5=7,求 3a2+9a_2 的值7、已知 3a2_a_2-0,则 5+2a_6a2-8、己知:a, b互为相反数,c,dm=2,求代数式的值9、当a=~l, b=-6时,代数式a的值是10、当a=4, b=5, c二时,代数式1215142a?b- b?2cl2212251x25a?b+m2-cdl0mll 、当x+y-15, xy--10 时,求代数式 6x+5xy+6y 的值12、当a?b24=3时,求代数式-的值a?ba?b313、已知:a2+2a+l=0,求 2a2+4a-3 的值二、合并同类项:1、-5ab+3ab、 18p-9q+5-9q~10p3、-ab+ab-13256212b2a、 32-425 、2ab-5ab+3ab5x2yT2y2x4+3x4y2-6yx218p-9q+5+9qT6p8、5a-9、- 10、-11、n-312、 a+513、—7 14、2ab-15、 6a2-4ab-4 16、 3x- [5x-]17、 3x-5x+18、 4-319、A=x2+xy+y2, B--3xy-x2,求 B-AA-3B20、2a2-1、-I-22、 x2+23、--24、- (- [-]) 5、 3-426、-3+427、- {+ [-]} + (- [-])28、2x2--8xy、~2~ [_2b2-2ab]30、 y2- 1、 9x2- [x-]32、x+ [-6y+] 3、-34、 4-335、 x+ [-]36、—7、—3a+38、 - ] 9、 -340、A=4a2+5b, B=-3a2-2b,求 2A-B41、+2-442、-43、 -4-24、 -xy2+3xy245、 7a+3a2+2a-a2+346、 3a+2b_5a_b47、 -4ab+8-2b2-9ab-848> 3b-3a3+l+a3-2b 49、 2y+6y+2xy-0、 3f+2f-7f 12121251、 x-f+5x-4f、 2a+3b+6a+9b-8a+12b53、3pq+7pq+4pq+pq、30a2b+2b2cT5a2b-4b2c 55、7xy-8wx+5xyT2xy、4+357、 4x-、 4a-59、 a0、 362、-63、 -64、 3x+l-265、 -66、 n-367、 16a-88、 t+69、一7 0、 -+71、 -82、 4-773、 -2n-74、 a-+75、 -3+6s、 1—77、 3-、 14+379、 3+0、 -4+81、5x4+3x2yT0-3x2y+x4T、p2+3pq+6-8p2+pq83、— 4、——385、 2+3、 -3+487、3b2—b288> x+-89、 -2+90、 2a2—8ab91、-42++3、5x3+3x2y-10-3x2y+x3-1 4、-3-4 121316x3121423二、先化简,再求值1、当x-2时,求代数式-3x2+5x-0. 5x2+xT的值2、当 p=3, q=3 时,求代数式 8p2-7q+6q-7p2-7 的值3、当x--5时,求代数式6x+2x2-3x+2x+l的值4、当x=2, y=-3时,求代数式4x2+3xy-x2-9的值161346、当 m=5, p=, q=-时,求代数式 3pq-m-4pq 的值2527、当x=~2时,求代数式9x+6x2-3的值1118、当x二时,求代数式-的值425、当m=6, n=2时,求代数式m-n-n-m的值1332569、当a=T,b=l时,求代数式+-的值10、当a=-2, b=2时,求代数式2-2-2ab2-2的值11、当x=-,y=T时,求代数式2x2y+l的值12、当x=-2时,求代数式x+的值13、当 x--l, y--2 时,求代数式 2xy+3x2y-6xy-4x2y的值14、当 m=5, p二,q二-时,求代数式 3pq-m-4pq+m 的值15、当m2-mn-l, 4mn-3n2--2 时,求代数式m2+3mn-3n2 的值16、当x--l, y--2 时,求代数式3-2xy+3yx2+6xy-4x2y 的值17、当 x2-xy=3a, xy-y2=-2a 时,求代数式 x2-y2 的值18、当 x-2004, y--l 时,求代数式 A=x2-xy+y2,B=-x2+2xy+y2, A+B 的值19、当a=5时,求代数式-的值20、当x=~2时,求代数式9x+6x2-3的值31332451x1221、当x=5时,求代数式-4的值22、当x二,时,求代数式-+的值23、当x2+xy=2,y2+xy=5 时,求代数式x2+2xy+y2 的值24、当a-b=4, c+d=-6时,求代数式-的值1211426、当a=,b二时,求代数式4+4-4的值3121313121425、当 a=, b=l 时,求代数式 a2+3ab-b2 的值27、当a=6,b=3时,求代数式23ab?4122 的值 13321328、当 a=-2, b二时,求代数式a-2-的值29、当a二,时,求代数式1--3的值30、当 2+ | y+1 | =0 时,求代数式 5xy2- [2x2y-]的值。
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)
2019-2020年七年级上册代数式的化简求值问题典型例题(含答案)一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m=4将m=4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式的值为8,求当x =2时,代数式的值。
分析: 因为当x=-2时, 得到,所以146822235-=--=++c b a当x=2时,=206)14(622235-=--=-++c b a例3.当代数式的值为7时,求代数式的值.分析:观察两个代数式的系数由 得 ,利用方程同解原理,得2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。
例4. 已知,求的值.分析:解法一(整体代人):由 得所以:解法二(降次):方程作为刻画现实世界相等关系的数学模型,还具有降次的功能。
化简代数式50道题
化简代数式50道题一、化简下列代数式(1 - 20题带解析)1. 化简:3x + 2x- 解析:根据合并同类项的法则,同类项的系数相加,字母和指数不变。
这里3x和2x是同类项,将它们的系数3和2相加,得到(3 + 2)x=5x。
2. 化简:5a - 3a- 解析:5a和3a是同类项,按照合并同类项的方法,将系数相减,即(5 - 3)a = 2a。
3. 化简:4x+3y - 2x + y- 解析:- 合并同类项4x和-2x,得到(4 - 2)x = 2x。
- 然后,合并同类项3y和y,得到(3+1)y = 4y。
- 所以,化简后的结果为2x + 4y。
4. 化简:2a^2+3a^2- 解析:2a^2和3a^2是同类项,合并同类项时,系数相加,字母和指数不变,即(2 + 3)a^2=5a^2。
5. 化简:6xy-4xy- 解析:6xy和-4xy是同类项,将系数相减,得到(6 - 4)xy = 2xy。
6. 化简:3x^2y+2x^2y - 5x^2y- 解析:- 先合并3x^2y和2x^2y,系数相加得(3 + 2)x^2y=5x^2y。
- 再用5x^2y减去5x^2y,即(5 - 5)x^2y = 0。
7. 化简:4(a + b)-3(a + b)- 解析:- 把(a + b)看作一个整体,4(a + b)和-3(a + b)是同类项。
- 合并同类项得(4 - 3)(a + b)=a + b。
8. 化简:2m^2-3m + 4m^2-m- 解析:- 先合并同类项2m^2和4m^2,得到(2+4)m^2=6m^2。
- 再合并同类项-3m和-m,得到(-3 - 1)m=-4m。
- 所以化简结果为6m^2-4m。
9. 化简:3(a - b)+2(b - a)- 解析:- 先将2(b - a)变形为- 2(a - b)。
- 然后合并同类项3(a - b)和-2(a - b),得到(3-2)(a - b)=a - b。
代数式的化简与求值习题打印版G6
代数式的化简与求值(打印版)1.设a>b>0,a²+b²=82ab,则(a+b)/(a-b)的值等于________。
2.如果多项式p=a²+16b²+32a+32b+2624,则p的最小值是________。
3.已知a+(1/b)=b+(1/c)=c+(1/a),a≠b≠c,则a²b²c²=________。
4.一个正数x的两个平方根分别是a+86与a-183,则a值为________。
5.已知实数a满足|2661-a|+√(a-2467)=a,那么a-2661²=_______。
6.已知m是方程x²-2417x+3=0的一个根,则m²-2416m+7251/(m²+3)+53的值等于_______。
7.若x²+6x-224=0,则x³+45x²+10x+32=_______。
8.若a²+b-16a-18√b+145=0,则代数式a^(a+b)*b^(a-b)=________。
9.若m为实数,则代数式|m|+m的值一定是________。
10.若x<-26,则y=|161-|161+x||等于________。
11.已知非零实数a,b 满足|12a-68|+|b+28|+√[(a-3)*b²]+68=12a,则a+b等于________。
12.当x>162时,化简代数式√[x+18√(x-81)]+√[x-18√(x-81)]= ________。
13.将代数式x³+(2b+1)x²+(b²+2b-1)x+(b²-1)分解因式,得________。
14.已知a=-1+√6,则8a³+2a²-18a+72的值等于________.15.已知p是方程x²-1997x+1=0的一个根,则p²-1996p+1997/(p²+1)+185的值等于________。
培优专题5代数式的化简和求值(含答案)-
培优专题5 代数式的化简和求值用数值代替代数式里的字母,按照代数式里指明的运算计算出的结果,就叫代数式的值,经常利用代数式的值实行比较、推断代数式所反映的规律.在求代数式的值时,我们经常先将代数式化简,再代入数值计算,从而到达简化计算的目的.在化简代数式时常用到去括号法则、合并同类项法则、绝对值的意义及分类讨论的思想等.例1已知x<-3,化简│3+│2-│1+x│││.分析这是一个含有多层绝对值符号的问题,能够从里到外一层一层地去绝对值符号.解:∵x<-3,∴1+x<0,3+x<0原式=│3+│2+(1+x)││=│3+│3+x││=│3-(3+x)│=│-x│=-x.练习11.化简:3x2y-[2xy2-2(xy-32x2y)+xy]+3xy2.2.当x<-2时,化简|1|1||2xx+--.3.化简:│3x+1│+│2x-1│.例2 设(2x-1)5=a5x5+a4x4+a33x+a22x+a1x+a0,求:(1)a1+a2+a3+a4+a5+a6的值;(2)a0-a1+a2-a3+a4-a5的值;(3)a0+a2+a4的值.分析能够取x的特殊值.解:(1)当x=1时,等式左边=(2×1-1)5=1,等式右边=a5+a4+a3+a2+a1+a0,∴a0+a1+a2+a3+a4+a5=1.①(2)当x=-1时,等式左边=[2×(-1)-1]5=-243,等式右边=-a5+a4-a3+a2-a1+a0∴a0-a1+a2-a3+a4-a5=-243.②(3)①+②得,2a0+2a2+2a2=-242.∴a0+a2+a4=-121.练习21.当x=2时,代数式a x3-bx+1的值等于-17,那么当x=-1时,代数式12ax-3bx3-5的值等于_________.2.某同学求代数式10x9+9x8+8x7+7x6+6x5+5x4+4x3+3x2+2x+1,当x=-1时的值时,•该生因为将式子中某一项前的“+”号误看成“-”号,算得代数式的值为7,那么这位同学看错了几次项前的符号?3.已知y=a x7+bx5+cx3+d x+e,其中a、b、c、d、e为常数,当x=2时,y=23;当x=-2时,y=-35;那么e的值为().A.-6 B.6 C.-12 D.12例3若x y za b b c c a==---,求x+y+z的值.分析对于连等我们常设它们的比值为k,或用其中一个表示数的字母把其它的数表示出来.设x y za b b c c a==---=k,则:x=k(a-b),y=k(b-c),z=k(c-a)即x=ka-kb,y=kb-kc,z=kc-ka,∴x+y+z=0 练习31.已知xy z+=y zx z x y=++,求xy z+.2.已知a=3b,c=5a,求a b ca b c+++-的值.3.已知1x-1y=2,求3533x xy yx xy y---++的值.例4 若a+b+c=0,且b c c a a b a b c---++=0, 求222222bc b c ca c a ab a b b c c a a b +-+-+-++的值. 分析 先代入使a+b+c=0、=0成立的a 、b 、c 的特殊值,如a=b=1,c=-2,可求得所求代数式的值为0,给出求值方向.下面我们来说明所求代数式的值为0.解:由:a+b+c=0,两边同乘以abc ,得:a 2bc+ab 2c+abc 2=0 ①由b c c a a b a b c---++=0,两边同乘以abc ,得: bc (b-c )+ac (c-a )+ab (a-b )=0,即 a 2(b-c )+b 2(c-a )+c 2(a-b )=0. ②①+②得:a 2(bc+b-c )+b 2(ac+c-a )+c 2(ab+a-b )=0两边同除以a 2b 2c 2得: 222222bc b c ca c a ab a b b c c a a b+-+-+-++=0 ∴原式的值为0.练习41.已知(x-3)2+│n-2│=0,求代数式3x n +13x n-1-(x 3+13x n-1-3)的值.2.已知A=3x 2-9xy+y 2,B=3x 2-9xy-y 2,化简:2A-{3B-[A+2(B-A )]}.3.如果无论x 取什么值,代数式34ax bx ++(分母不为零)都得到同样的值,那么a 与b•应满足什么条件?例5 已知三个正数a 、b 、c 满足abc=1,求111a b c ab a bc b ac c ++++++++的值. 分析 本题若直接通分,计算较复杂,考虑到abc=1,可将原式第二个分式的分子、分母同乘以a ,第三个分式的分子、分母同乘以ab ,达到通分的目的.解:原式=1a ab a +++2ab abc abc ab a a bc abc ab+++++ =1a ab a +++111ab ab a a ab+++++ =11a ab ab a ++++=1.练习51.若a 、b 为正数,且ab=1,求11a b a b +++的值.2.已知a+1b =1,b+1c =1,求c+1a 的值.3.若a 、b 、c 、d 是四个正数,且abcd=1, 求1111a b c d abc ab a bcd bc b cda cd c dab da d +++++++++++++++的值.答案:练习11.x y2+xy.原式=3x2y-[2xy2-2xy+3x2y+xy]+3xy2=3x2y-2xy2+2xy-3x2y-xy+3xy2=xy2+xy.2.1 │+│1-x││(因为1-x>0)=│1+1-x│=│2-x│(因为2-x>0)=2-x∴原式=1.3.当x<13时,原式=-5x;当13≤x<12时,原式=x+2;当x≥12时,原式=5x.用零点区间讨论法:由3x+1=0、2x-1=0,得零点,x=-13,、x=12,把这两个零点标在数轴上,•可把数轴分为三部分,即x<-13、-13≤x<12、x≥12,这样就可以分类讨论化简原式了.当x<-13时,原式=-(3x+1)-(2x-1)=-5x;当-13≤x〈12时,原式=(3x+1)-(2x-1)=x+2;当x≥12时,原式=(3x+1)+(2x-1)=5x.练习21.22.当x=2时,8a-2b+1=-17,即4a-b=-9;当x=-1时,-12a+3b-5=-3(4a-b)-5=-3×(-9)-5=22.2.5.设看错的是x的n次项前的符号,那么他计算的代数式实际是10x9+9x8+…+2x+1-2(n+1)x n,由题意得:10×(-1)9+9×(-1)8+…+2×(-1)+1-2(n+1)(-1)n=7,即(n+1)(-1)n=-6.∴n=5.3.A.当x=2时,27·a+25·b+23·c+2d+e=23 ①当x=-2时,-27·a-25·b-23·c-2d+e=-35 ②①+②得2e=-12,∴e=-6.选A.练习31.12或-1.设xy z+=y zx z x y=++=k,则:x=k(y+z)①;y=k(x+z)②;z=k(x+y)③.①+②+③得:x+y+z=2k(x+y+z),∴(x+y+z)(2k-1)=0.当x+y+z=0时,xy z+=xx-=-1,当2k-1=0时,k=12,即xy z+=12.2.-1911.c=5a=15b,把a=3b,c=15b代入原式,原式=3151931511b b b bb b b b++=+--=-1911.3.-115.由1x-1y=2,知y-x=2xy,故原式3()565()323y x xy xy xyy x xy xy xy-----=-++=-115.练习41.3 由题意知x=3,n=2.原式=3x n+13x n-1-x3-13x n-1+3=3x n-x3+3=3×32-33+3=3.2.2y2.原式=2A-{3B-[A+2B-2A]}=2A-{3B-A-2B+2A}=2A-3B+A+2B-2A=A-B=3x2-9xy+y2-(3x2-9xy-y2)=2y2.3.4a=3b.因不论x取什么值,代数式34axbx++的值都相同,所以我们可以取x=0,得:34axbx++=34,即不论x取什么值,该代数式的值都为34,再取x=1,得34axbx++=34,故4a=3b.练习5.1.1.由ab=1得,a=1b,故原式=111bb++1bb+=11b++1bb+=1.2.1.由题意知a=1-1b =1b b -,∴1a =1b b -. ∵1c =1-b ,∴c=11b -=-11b -. ∴c+1a =-11b -+1b b -=1. 3.1.利用abcd=1把它们化为同分母:1(1)1a a d ad abc ab a abc ab a d abd ad d ==+++++++++; 1(1)1b b ad abd bcd bc b bcd bc b ad abd ad d ==+++++++++; 11(1)1c c abd cda ad c cda cd c abd ad d abd ==+++++++++ ∴原式=1.。
化简求值经典练习五十题(带答案解析)
化简供值典范训练五十题之阳早格格创做一.采用题(共1小题)1.(2013秋•包河区期终)已知a﹣b=5,c+d=2,则(b+c)﹣(a﹣d)的值是()A.﹣3B.3C.﹣7D.7二.解问题(共49小题)2.(2017秋•庐阳区校级期中)先化简,再供值:(1)化简:(2x2﹣+3x)﹣4(x﹣x2+)(2)化简:(3)先化简再供值:5(3a2b﹣ab2)﹣2(ab2+3a2b),其中a=,b=.3.(2017秋•包河区校级期中)先化简,再供值2x2y﹣2(xy2+2x2y)+2(x2y﹣3xy2),其中x=﹣,y=24.(2017秋•瑶海区期中)先化简,再供值:3a2b﹣[2a2b﹣(2ab ﹣a2b)﹣4a2]﹣ab2,其中a=﹣1,b=﹣2.5.(2017秋•巢湖市期中)先化简,再供值:﹣3[y﹣(3x2﹣3xy)]﹣[y+2(4x2﹣4xy)],其中x=﹣3,y=.5.(2017秋•柳州期中)先化简,再供值:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2),其中x=,y=﹣3.6.(2017秋•蜀山区校级期中)先化简,再供值:,其中a=﹣1,b=.7.(2017秋•安徽期中)先化简,再供值:3x2﹣[7x﹣(4x﹣2x2)];其中x=﹣2.8.(2015秋•淮安期终)先化简下式,再供值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣2,b=3.9.(2015秋•北雄市期终)已知(x+2)2+|y﹣|=0,供5x2y﹣[2x2y﹣(xy2﹣2x2y)﹣4]﹣2xy2的值.10.(2015秋•庐阳区期终)先化简,再供值:2x3+4x﹣(x+3x2+2x3),其中x=﹣1.11.(2015秋•淮北期终)先化简,再供值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中,.12.(2015秋•包河区期终)先化简,再供值:2a2﹣[a2﹣(2a+4a2)+2(a2﹣2a)],其中a=﹣3.13.(2014秋•成县期终)化简供值:若(x+2)2+|y﹣1|=0,供4xy﹣(2x2+5xy﹣y2)+2(x2+3xy)的值.14.(2014秋•合肥期终)先化简,再供值:3a2b+(﹣2ab2+a2b)﹣2(a2b+2ab2),其中a=﹣2,b=﹣1.16.(2015秋•包河区期中)先化简,再供值:x﹣2(x﹣y2)+(﹣x+y2),其中x=﹣2,y=﹣2.17.(2015秋•包河区期中)明白取思索:正在某次做业中有那样的一讲题:“如果代数式5a+3b的值为﹣4,那么代数式2(a+b)+4(2a+b)的值是几?”小明是那样去解的:本式=2a+2b+8a+4b=10a+6b把式子5a+3b=﹣4二边共乘以2,得10a+6b=﹣8.仿照小明的解题要领,完毕底下的问题:(1)如果a2+a=0,则a2+a+2015=.(2)已知a﹣b=﹣3,供3(a﹣b)﹣5a+5b+5的值.(3)已知a2+2ab=﹣2,ab﹣b2=﹣4,供2a2+ab+b2的值.18.(2013秋•蜀山区校级期终)先化简,再供值(4x3﹣x2+5)+(5x2﹣x3﹣4),其中x=﹣2.19.(2013秋•寿县期终)先化简,再供值:2(3x3﹣2x+x2)﹣6(1+x+x3)﹣2(x+x2),其中x=.20.(2013秋•包河区期终)先化简,再供值:﹣ab2+(3ab2﹣a2b)﹣2(ab2﹣a2b),其中a=﹣,b=﹣9.21.(2014秋•合肥校级期中)先化简供值:2(x2y+xy)﹣3(x2y﹣xy)﹣4x2y,其中x=,y=﹣1.22.(2014秋•包河区期中)先化简,再供值:﹣(x2+5x﹣4)+2(5x﹣4+2x2),其中,x=﹣2.23.(2012秋•包河区期终)先化简,后供值:(3x2y﹣xy2)﹣3(x2y﹣2xy2),其中x=﹣1,y=﹣2.24.(2012秋•蜀山区期终)若a=|b﹣1|,b是最大的背整数,化简并供代数式3a﹣[b﹣2(b﹣a)+2a]的值.25.(2012秋•靖江市期终)化简供值6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],其中x=4,y=﹣.26.(2013秋•包河区期中)先化简,再供值:(2a+5﹣3a2)+(2a2﹣5a)﹣2(3﹣2a),其中a=﹣2.27.(2011秋•瑶海区期终)化简并供值:3(x2﹣2xy)﹣[(﹣xy+y2)+(x2﹣2y2)],其中x,y的值睹数轴表示:28.(2012秋•泸县期中)先化简,再供值(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,其中a=4;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),其中a=﹣3,b=﹣2.28.(2010•梧州)先化简,再供值:(﹣x2+5x+4)+(5x﹣4+2x2),其中x=﹣2.30.(2010秋•少歉县校级期中)化简估计:(1)3a2﹣2a﹣a2+5a(2)(3)若单项式取﹣2x m y3是共类项,化简供值:(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)31.(2010秋•包河区期中)先化简,后供值:(3x2y﹣xy2)﹣3(x2y﹣xy2),其中:,y=﹣3.32.(2008秋•牡丹江期终)先化简,再供值:5x2﹣[x2+(5x2﹣2x)﹣2(x2﹣3x)],其中x=.33.(2007秋•淮北期中)先化简,再供值3a+abc﹣c2﹣3a+c2﹣c,其中a=﹣,b=2,c=﹣3.33.(2017秋•歉台区期终)先化简,再供值:5x2y+[7xy﹣2(3xy﹣2x2y)﹣xy],其中x=﹣1,y=﹣.34.(2017秋•惠山区期终)先化简,再供值:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),其中a=﹣1,b=﹣2.35.(2017秋•翁牛特旗期终)先化简再供值:2(ab﹣a+b)﹣(3b+ab),其中2a+b=﹣5.36.(2017秋•利辛县期终)先化简,再供值:4(3x2y﹣xy2)﹣2(xy2+3x2y),其中x=,y=﹣137.(2017秋•鄞州区期终)先化简,再供值:2(a2﹣ab)﹣3(a2﹣ab﹣1),其中a=﹣2,b=338.(2017秋•埇桥区期终)先化简,再供值:2(x2y﹣y2)﹣(3x2y﹣2y2),其中x=﹣5,y=﹣.39.(2017秋•北仄期终)先化简,再供值:(5x+y)﹣(3x+4y),其中x=,y=.40.(2016秋•武安市期终)供2x﹣[2(x+4)﹣3(x+2y)]﹣2y 的值,其中.41.(2016秋•崇安区期终)先化简,再供值:(8mn﹣3m2)﹣5mn﹣2(3mn﹣2m2),其中m=2,n=﹣.43.(2017秋•广饶县校级期中)先化简,再供值:(1)2y2﹣6y﹣3y2+5y,其中y=﹣1.(2)8a2b+2(2a2b﹣3ab2)﹣3(4a2b﹣ab2),其中a=2,b=3.44.(2017秋•邗江区校级期中)有那样一讲题:“估计(2x4﹣4x3y﹣2x2y2)﹣(x4﹣2x2y2+y3)+(﹣x4+4x3y﹣y3)的值,其中x=,y=﹣1.甲共教把“x=”错抄成“x=﹣”,但是他估计的截止也是精确的,您能证明那是为什么吗?45.(2016秋•资中县期终)先化简,再供值:2(x2﹣xy)﹣(3x2﹣6xy),其中x=2,y=﹣1.46.(2017秋•雁塔区校级期中)先化简,再供值:(1)3(a2﹣ab)﹣(a2+3ab2﹣3ab)+6ab2,其中a=﹣1,b=2.(2)4x2﹣3(x2+2xy﹣y+2)+(﹣x2+6xy﹣y),其中x=2013,y=﹣1.46.(2017秋•黄冈期中)若代数式(2x2+ax﹣y+6)﹣(2bx2﹣3x+5y﹣1)的值取字母x的值无闭,供代数式a2﹣2b+4ab的值.47.(2017秋•岑溪市期中)先化简下式,再供值,2(3a2b+ab2)﹣6(a2b+a)﹣2ab2﹣3b,其中a=,b=3.49.(2017秋•蚌埠期中)先化简再供值:供5xy2﹣[2x2y﹣(2x2y ﹣3xy2)]的值.(其中x,y二数正在数轴上对于应的面如图所示).50.(2017秋•夏邑县期中)如图,一只蚂蚁从面A沿数轴背左爬止2个单位少度到达面B,面A表示的数n为﹣,设面B所表示的数为m.(1)供m的值;(2)对于﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]化简,再供值.参照问案取试题剖析一.采用题(共1小题)1.解:∵a﹣b=5,c+d=2,∴本式=b+c﹣a+d=﹣(a﹣b)+(c+d)=﹣5+2=﹣3,故选:A.二.解问题(共49小题)2.解:(1)本式=2x2﹣+3x﹣4x+4x2﹣2=6x2﹣x﹣;(2)本式=x﹣2x+y2+x﹣y2=y2;(3)本式=15a2b﹣5ab2﹣2ab2﹣6a2b=9a2b﹣7ab2,当a=﹣,b=时,本式=+=.3.解:当x=﹣,y=2时,本式=2x2y﹣2xy2﹣4x2y+2x2y﹣6y2=﹣2xy2﹣6y2=﹣2×(﹣)×4﹣6×4=2﹣24=﹣224.解:本式=3a2b﹣2a2b+2ab﹣a2b+4a2﹣ab2=4a2+2ab﹣ab2当a=﹣1,b=﹣2时,本式=4+4+4=12.5.解:本式=﹣3y+9x2﹣9xy﹣y﹣8x2+8xy=x2﹣xy﹣4y当x=﹣3,y=时,本式=9+1﹣=6.解:2xy﹣(4xy﹣8x2y2)+2(3xy﹣5x2y2)=2xy﹣2xy+4x2y2+6xy﹣10x2y2=6xy﹣6x2y2,当x=,y=﹣3时,本式=﹣6﹣6=﹣12.7.解:本式=2a2﹣ab+2a2﹣8ab﹣ab=4a2﹣9ab,当a=﹣1,b=时,本式=4+3=7.8.解:本式=3x2﹣(7x﹣4x+2x2)=3x2﹣7x+4x﹣2x2=x2﹣3x当x=﹣2时,本式=(﹣2)2﹣3×(﹣2)=4﹣(﹣6)=10.9.解:5(3a2b﹣ab2)﹣4(﹣ab2+3a2b),=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣2,b=3时,本式=3×(﹣2)2×3﹣(﹣2)×32=36+18=54.10.解:∵(x+2)2+|y﹣|=0,∴x=﹣2,y=,则本式=5x2y﹣2x2y+xy2﹣2x2y+4﹣2xy2=x2y﹣xy2+4=2++4=6.11.解:本式=2x3+4x﹣x﹣3x2﹣2x3=3x﹣3x2,当x=﹣1时,本式=﹣3﹣3=﹣6.12.解:本式=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当,.13.解:本式=2a2﹣a2+2a+4a2﹣2a2+4a=3a2+6a,当a=﹣3时,本式=27﹣18=9.14.解:∵(x+2)2+|y﹣1|=0,∴x+2=0,y﹣1=0,即x=﹣2,y=1,则本式=4xy﹣2x2﹣5xy+y2+2x2+6xy=y2+5xy,当x=﹣2,y=1时,本式=1﹣10=﹣9.15.解:本式=3a2b﹣2ab2+a2b﹣2a2b﹣4ab2=2a2b﹣6ab2,当a=﹣2,b=﹣1时,本式=2×4×(﹣1)﹣6×(﹣2)×1=4.16.解:本式=x﹣2x+y2﹣x+y2=﹣x+y2,当x=﹣2,y=﹣2时,本式=.17.解:(1)∵a2+a=0,∴本式=2015;故问案为:2015;(2)本式=3a﹣3b﹣5a+5b+5=﹣2(a﹣b)+5,当a﹣b=﹣3时,本式=6+5=11;(3)本式=(4a2+7ab+b2)=[4(a2+2ab)﹣(ab﹣b2)],当a2+2ab=﹣2,ab﹣b2=﹣4时,本式=×(﹣8+4)=﹣2.18.解:本式=4x3﹣x2+5+5x2﹣x3﹣4=3x3+4x2+1,当x=﹣2时,本式=﹣24+16+1=﹣7.19.解:本式=6x3﹣4x+2x2﹣6﹣6x﹣6x3﹣2x﹣2x2=﹣12x﹣6,当x=﹣,本式=﹣12×(﹣)﹣6=10﹣6=4;20.解:本式=﹣ab2+3ab2﹣a2b﹣2ab2+2a2b=a2b,当a=﹣,b=﹣9时,本式=×(﹣9)=﹣4.21.解:本式=2x2y+2xy﹣3x2y+3xy﹣4x2y=﹣5x2y+5xy,当x=,y=﹣1时,本式=﹣=﹣.22.解:本式=﹣x2﹣5x+4+10x﹣8+4x2=3x2+5x﹣4,当x=﹣2时,本式=12﹣10﹣4=﹣2.23.解:本式=(3x2y﹣xy2)﹣3(x2y﹣2xy2)=3x2y﹣xy2﹣3x2y+6xy2=5xy2,当x=﹣1,y=﹣2时,本式=5xy2=5×(﹣1)×(﹣2)2=﹣20.24.解:∵最大的背整数为﹣1,∴b=﹣1,∴a=|﹣1﹣1|=2,本式=3a﹣b+2b﹣2a﹣2a=b﹣a,当a=2,b=﹣1时,本式=﹣1﹣2=﹣3.25.解:6x2﹣[3xy2﹣2(2xy2﹣3)+7x2],=6x2﹣3xy2+4xy2﹣6﹣7x2,=﹣x2+xy2﹣6;当x=4,y=时,本式=﹣42+4×﹣6=﹣21.26.解:本式=2a+5﹣3a2+2a2﹣5a﹣6+4a=﹣a2+a﹣1,将a=﹣2代进,本式=﹣(﹣2)2+(﹣2)﹣1=﹣7.27.解:本式=3x2﹣6xy+xy+y2﹣x2+2y2=2x2﹣xy+y2,根据数轴上面的位子得:x=2,y=﹣1,则本式=8+11+1=20.28.解:(1)5a2﹣|a2﹣(2a﹣5a2)﹣2(a2•3a)|,=5a2﹣|a2﹣2a+5a2﹣6a3|,=5a2﹣|6a2﹣2a﹣6a3|,=5a2﹣6a2+2a+6a3,=﹣a2+2a+6a3把a=4代进得:﹣16+8+384=376;(2)﹣2﹣(2a﹣3b+1)﹣(3a+2b),=﹣2﹣2a+3b﹣1﹣3a﹣2b,=﹣5a+b﹣3把a=﹣3,b=﹣2.代进得:﹣5×(﹣3)+(﹣2)﹣3=10.29.解:本式=(﹣x2+5x+4)+(5x﹣4+2x2)=﹣x2+5x+4+5x﹣4+2x2=x2+10x=x(x+10).∵x=﹣2,∴本式=﹣16.30.解:(1)3a2﹣2a﹣a2+5a,=(3﹣1)a2+(5﹣2)a,=2a2+3a;(2)(﹣8x2+2x﹣4)﹣(x﹣1),=﹣2x2+x﹣1﹣x+,=﹣2x2﹣;(3)∵单项式取﹣2x m y3是共类项,∴m=2,n=3,(m+3n﹣3mn)﹣2(﹣2m﹣n+mn)=m+3n﹣3mn+4m+2n﹣2mn=(1+4)m+(﹣3﹣2)mn+(3+2)n=5m﹣5mn+5n,当m=2,n=3时,本式=5×2﹣5×2×3+5×3=10﹣30+15=﹣5.31.解:(3x2y﹣xy2)﹣3(x2y﹣xy2),=3x2y﹣xy2﹣3x2y+3xy2,=2xy2;当x=,y=﹣3时,本式=2xy2=2××(﹣3)2=9.32.解:本式=5x2﹣(x2+5x2﹣2x﹣2x2+6x)=x2﹣4x当x=时,上式=33.解:本式=3a﹣3a+abc﹣c2+c2﹣c=abc﹣c,当a=﹣,b=2,c=﹣3时本式=abc﹣c=﹣×2×(﹣3)﹣(﹣3)=1+3=4.34.解:本式=5x2y+7xy﹣6xy+4x2y﹣xy=9x2y,当x=﹣1,y=﹣时,本式=﹣6.35.解:本式=15a2b﹣5ab2+4ab2﹣12a2b=3a2b﹣ab2,当a=﹣1,b=﹣2时本式=﹣6+4=﹣2.36.解:本式=ab﹣2a+2b﹣3b﹣ab=﹣2a﹣b=﹣(2a+b),当2a+b=﹣5时,本式=5.37.解:本式=12x2y﹣4xy2﹣2xy2﹣6x2y=6x2y﹣6xy2,当 x=,y=﹣1 时,本式=6×()2×(﹣1)﹣6××(﹣1)2=﹣﹣3=﹣4.38.解:本式=2a2﹣2ab﹣2a2+3ab+3=ab+3,当a=﹣2,b=3时,本式=﹣6+3=﹣3.39.解:本式=2x2y﹣2y2﹣3x2y+2y2=﹣x2y,当x=﹣5,y=﹣时,本式=.40.解:本式=5x+y﹣3x﹣4y=2x﹣3y,当x=,y=时,本式=2×﹣3×=1﹣2=﹣1.41.解:本式=2x﹣2x﹣8+3x+6y﹣2y=3x+4y﹣8,当x=,y=时,本式=1+2﹣8=﹣5.42.解:本式=8mn﹣3m2﹣5mn﹣6mn+4m2=m2﹣3mn,当m=2,n=﹣时,本式=4+2=6.43.解:(1)本式=﹣y2﹣y,当y=﹣1时,本式=﹣1+1=0;(2)本式=8a2b+4a2b﹣6ab2﹣12a2b+3ab2=﹣3ab2,当a=2,b=3时,本式=﹣54.44.解:本式=2x4﹣4x3y﹣2x2y2﹣x4+2x2y2﹣y3﹣x4+4x3y﹣y3=﹣2y3,当y=﹣1时,本式=2.故“x=”错抄成“x=﹣”,但是他估计的截止也是精确的.45.解:本式=2x2﹣2xy﹣3x2+6xy=﹣x2+4xy,当x=2,y=﹣1时,本式=﹣4﹣8=﹣12.46.解:(1)本式=3a2﹣3ab﹣a2﹣3ab2+3ab+6ab2=2a2+3ab2,当a=﹣1,b=2时,本式=2﹣12=﹣10;(2)本式=4x2﹣3x2﹣6xy+3y﹣6﹣x2+6xy﹣y=2y﹣6,当y=﹣1时,本式=﹣2﹣6=﹣8.47.解:本式=2x2+ax﹣y+6﹣2bx2+3x﹣5y+1=(2﹣2b)x2+(a+3)x﹣6y+7,∵代数式的值取x的值无闭,∴2﹣2b=0,a+3=0,解得:a=﹣3,b=1,将a=﹣3,b=1代进得:本式=4.5﹣2﹣12=﹣9.5.48.解:本式=6a2b+2ab2﹣6a2b﹣6a﹣2ab2﹣3b=﹣6a﹣3b,当a=,b=3时,本式=﹣6×﹣3×3=﹣12.49.解:本式=5xy2﹣[2x2y﹣2x2y+3xy2]=5xy2﹣2x2y+2x2y﹣3xy2=2xy2,当x=2,y=﹣1时,本式=4.50.解:(1)m=﹣+2=;(2)﹣2(mn﹣3m2)﹣[m2﹣5(mn﹣m2)+2mn]=﹣2mn+6m2﹣m2+5mn﹣5m2﹣2mn=mn.当m=,n=﹣时,本式=×(﹣)=﹣.。
代数式的化简求值问题(含答案)
第二讲:代数式的化简求值问题一、知识链接1. “代数式”是用运算符号把数字或表示数字的字母连结而成的式子。
它包括整式、分式、二次根式等内容,是初中阶段同学们应该重点掌握的内容之一。
2.用具体的数值代替代数式中的字母所得的数值,叫做这个代数式的值。
注:一般来说,代数式的值随着字母的取值的变化而变化3.求代数式的值可以让我们从中体会简单的数学建模的好处,为以后学习方程、函数等知识打下基础。
二、典型例题例1.若多项式()x y x x x mx 537852222+--++-的值与x 无关,求()[]m m m m +---45222的值.分析:多项式的值与x 无关,即含x 的项系数均为零因为()()83825378522222++-=+--++-y x m x y x x x mx所以 m =4将m =4代人,()[]44161644452222-=-+-=-+-=+---m m m m m m利用“整体思想”求代数式的值例2.x =-2时,代数式635-++cx bx ax 的值为8,求当x =2时,代数式635-++cx bx ax 的值。
分析: 因为8635=-++cx bx ax当x =-2时,8622235=----c b a 得到8622235-=+++c b a ,所以146822235-=--=++c b a当x =2时,635-++cx bx ax =206)14(622235-=--=-++c b a例3.当代数式532++x x 的值为7时,求代数式2932-+x x 的值.分析:观察两个代数式的系数由7532=++x x 得232=+x x ,利用方程同解原理,得6932=+x x2008200712007200720072222323=+=++=+++=++a a a a a a a 20082007120072007220072)1(200722007222222223=+=++=++-=++-=++=++a a a a a a a a a a a a a 整体代人,42932=-+x x代数式的求值问题是中考中的热点问题,它的运算技巧、解决问题的方法需要我们灵活掌握,整体代人的方法就是其中之一。