二次函数中的相似三角形问题
二次函数与相似三角形问题(含答案 完美打印版)
综合题讲解 函数中因动点产生的相似三角形问题例题 如图1,已知抛物线的顶点为A (2,1),且经过原点O ,与x 轴的另一个交点为B 。
⑴求抛物线的解析式;(用顶点式...求得抛物线的解析式为x x 41y 2+-=) ⑵若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;⑶连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似若存在,求出P 点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. 函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数、对称、旋转等知识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
y xEQ PC B OA 例题2:如图,已知抛物线y=ax 2+4ax+t (a >0)交x 轴于A 、B 两点,交y 轴于点C ,抛物线的对称轴交x 轴于点E ,点B 的坐标为(-1,0). (1)求抛物线的对称轴及点A 的坐标;(2)过点C 作x 轴的平行线交抛物线的对称轴于点P ,你能判断四边形ABCP 是什么四边形并证明你的结论;(3)连接CA 与抛物线的对称轴交于点D ,当∠APD=∠ACP 时,求抛物线的解析式.练习1、已知抛物线2y ax bx c =++经过5330P E ⎫⎪⎪⎝⎭,,,及原点(00)O ,.(1)求抛物线的解析式.(由一般式...得抛物线的解析式为225333y x x =-+) (2)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似若存在,求出Q 点的坐标;若不存在,说明理由.(3)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系为什么练习2、如图,四边形OABC 是一张放在平面直角坐标系中的矩形纸片,点A 在x 轴上,点C 在y 轴上,将边BC 折叠,使点B 落在边OA 的点D处。
二次函数中三角形问题(含问题详解)
二次函数中的三角形一.与三角形面积例1:如图,已知在同一坐标系中,直线22k y kx =+-与y 轴交于点P ,抛物线k x k x y 4)1(22++-=与x 轴交于)0,(),0,(21x B x A 两点。
C 是抛物线的顶点。
(1)求二次函数的最小值(用含k 的代数式表示); (2)若点A 在点B 的左侧,且021<⋅x x 。
①当k 取何值时,直线通过点B ;②是否存在实数k ,使ABC ABP S S ∆∆=?如果存在,请求出此时抛物线的解析式;如果不存在,请说明理由。
例2:已知抛物线)1(3)4(2-+---=m x m x y 与x 轴交于A 、B 两点,与y 轴交于C 点, (1)求m 的取值范围;(2)若0<m ,直线1-=kx y 经过点A ,与y 轴交于点D ,且25=⋅BD AD ,求抛物线的解析式; (3)若A 点在B 点左边,在第一象限内,(2)中所得的抛物线上是否存在一点P ,使直线P A 平分ACD ∆的面积?若存在,求出P 点的坐标;若不存在,请说明理由。
例3.已知矩形ABCD 中,AB =2,AD =4,以AB 的垂直平分线为x 轴,AB 所在的直线为y 轴,建立平面直角坐标系(如图)。
(1)写出A 、B 、C 、D 及AD 的中点E 的坐标;(2)求以E 为顶点、对称轴平行于y 轴,并且经过点B 、C 的抛物线的解析式; (3)求对角线BD 与上述抛物线除点B 以外的另一交点P 的坐标;(4)△PEB 的面积S △PEB 与△PBC 的面积S △PBC 具有怎样的关系?证明你的结论。
A BC DO E x y(第25题图)例4.如图1,已知直线12y x =-与抛物线2164y x =-+交于AB ,两点. (1)求A B ,两点的坐标;(2)求线段AB 的垂直平分线的解析式;(3)如图2,取与线段AB 等长的一根橡皮筋,端点分别固定在A B ,两处.用铅笔拉着这根橡皮筋使笔尖P 在直线AB 上方的抛物线上移动,动点P 将与A B ,构成无数个三角形,这些三角形中是否存在一个面积最大的三角形?如果存在,求出最大面积,并指出此时P 点的坐标;如果不存在,请简要说明理由.二.与三角形形状例5. 如图,抛物线254y ax ax =-+经过ABC △的三个顶点,已知BC x ∥轴,点A 在x 轴上,点C 在y 轴上,且AC BC =.(1)求抛物线的对称轴;(2)写出A B C ,,三点的坐标并求抛物线的解析式;(3)探究:若点P 是抛物线对称轴上且在x 轴下方的动点,是否存在PAB △是等腰三角形.若存在,求出所有符合条件的点P 坐标;不存在,请说明理由.图2图1例 6.如图①,在平面直角坐标系中,点A 的坐标为(12),,点B 的坐标为(31),,二次函数2y x =的图象记为抛物线1l .(1)平移抛物线1l ,使平移后的抛物线过点A ,但不过点B ,写出平移后的一个抛物线的函数表达式: (任写一个即可).(2)平移抛物线1l ,使平移后的抛物线过A B ,两点,记为抛物线2l ,如图②,求抛物线2l 的函数表达式.(3)设抛物线2l 的顶点为C ,K 为y 轴上一点.若ABK ABC S S =△△,求点K 的坐标.(4)请在图③上用尺规作图的方式探究抛物线2l 上是否存在点P ,使ABP △为等腰三角形.若存在,请判断点P 共有几个可能的位置(保留作图痕迹);若不存在,请说明师.x 图①x 图②x 图③例7. 已知:如图,抛物线2y ax bx c =++经过(1,0)A 、(5,0)B 、(0,5)C 三点. (1)求抛物线的函数关系式;(2)若过点C 的直线y kx b =+与抛物线相交于点E (4,m ),请求出△CBE 的面积S 的值; (3)在抛物线上求一点0P 使得△ABP 0为等腰三角形并写出0P 点的坐标;(4)除(3)中所求的0P 点外,在抛物线上是否还存在其它的点P 使得△ABP 为等腰三角形?若存在,请求出一共有几个满足条件的点P (要求简要说明理由,但不证明);若不存在这样的点P ,请说明理由.例8.如图,在直角坐标系中,点A 的坐标为(-2,0),连接OA ,将线段OA 绕原点O 顺时针旋转120°,得到线段OB . (1)求点B 的坐标;(2)求经过A 、O 、B 三点的抛物线的解析式; (3)在(2)中抛物线的对称轴上是否存在点C ,使△BOC 的周长最小?若存在,求出点C 的坐标;若不存在,请说明理由;(4)如果点P 是(2)中的抛物线上的动点,且在x 轴的下方, 那么△P AB 是否有最大面积?若有,求出此时P 点的坐标及△P AB 的最大面积;若没有,请说明理由.(注意:本题中的结果均保留根号)(第25题图)三.二次函数与三角形相似 例9:已知一次函数1243--=x y 的图象分别交x 轴、y 轴于A 、C 两点, (1)求出A 、C 两点的坐标;(2)在x 轴上找出点B ,使ACB ∆∽AOC ∆,若抛物线过A 、B 、C 三点,求出此抛物线的解析式; (3)在(2)的条件下,设动点P 、Q 分别从A 、B 两点同时出发,以相同速度沿AC 、BA 向C 、A 运动,连结PQ ,使m AP =,是否存在m 的值,使以A 、P 、Q 为顶点的三角形与ABC ∆相似,若存在,求出所有m 的值;若不存在,请说明理由。
中考数学压轴题:二次函数综合、相似三角形存在性问题
中考数学压轴题:二次函数综合、相似三角形存在性问题1.如图,抛物线y=ax2+(a+3)x+3(a≠0)与x轴交于点A(4,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<4),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求a的值和直线AB的函数表达式;(2)设△PMN的周长为C1,△AEN的周长为C2,若C1C2=65,求m的值.2.如图,抛物线y=ax2+bx+√3与x轴交于A(﹣3,0),B(1,0)两点.与y轴交于点C.(1)求抛物线的解析式,并直接写出点D的坐标;(2)连接AC,在第二象限内存在点M,使得以M、O、A为顶点的三角形与△AOC相似.请直接写出所有符合条件的点M坐标.3.如图,二次函数y=ax2+bx﹣3的图象与x轴交于A(﹣1,0),B(3,0)两点,与y轴交于点C.该抛物线的顶点为M.(1)求该抛物线的解析式;(2)判断△BCM的形状,并说明理由;(3)探究坐标轴上是否存在点P,使得以点P、A、C为顶点的三角形与△BCM相似?若存在,请直接写出点P的坐标;若不存在,请说明理由.4.如图,已知抛物线经过原点O,顶点为A(1,1),且与直线y=x﹣2交于B,C两点.(1)求抛物线的解析式及点C的坐标;(2)求证:△ABC是直角三角形;(3)若点N为x轴上的一个动点,过点N作MN⊥x轴与抛物线交于点M,则是否存在以O,M,N为顶点的三角形与△ABC相似?若存在,请求出点N的坐标;若不存在,请说明理由.5.如图,抛物线y=ax2+bx﹣1(a≠0)经过A(﹣1,0),B(2,0)两点,与y轴交于点C.(1)求抛物线的解析式及顶点D的坐标;(2)点P在抛物线的对称轴上,当△ACP的周长最小时,求出点P的坐标;(3)点N在抛物线上,点M在抛物线的对称轴上,是否存在以点N为直角顶点的Rt△DNM与Rt△BOC相似?若存在,请求出所有符合条件的点N的坐标;若不存在,请说明理由.6.如图,已知抛物线y=13x2+bx+c经过△ABC的三个顶点,其中点A(0,1),点B(﹣9,10),AC∥x轴,点P是直线AC下方抛物线上的动点.(1)求抛物线的解析式;(2)过点P且与y轴平行的直线l与直线AB、AC分别交于点E、F,当四边形AECP 的面积最大时,求点P的坐标;(3)当点P为抛物线的顶点时,在直线AC上是否存在点Q,使得以C、P、Q为顶点的三角形与△ABC相似,若存在,求出点Q的坐标,若不存在,请说明理由.7.如图,已知抛物线与x轴交于A(﹣1,0),B(4,0),与y轴交于C(0,﹣2).(1)求抛物线的解析式;(2)D是C关于x轴的对称点,P是抛物线上的一点,当△PBD与△AOC相似时,求符合条件的P点的坐标.8.如图,抛物线y=﹣x2+bx+c经过A(﹣1,0),B(4,0)两点,与y轴相交于点C,连接BC,点P为抛物线上一动点,过点P作x轴的垂线l,交直线BC于点G,交x轴于点E.(1)求抛物线的表达式;(2)当P位于y轴右边的抛物线上运动时,过点C作CF⊥直线l,F为垂足,当点P 运动到何处时,以P,C,F为顶点的三角形与△OBC相似?并求出此时点P的坐标;9.如图,已知二次函数y =﹣x 2+bx +c (b ,c 为常数)的图象经过点A (3,1),点C (0,4),顶点为点M ,过点A 作AB ∥x 轴,交y 轴于点D ,交该二次函数图象于点B ,连接BC .(1)求该二次函数的解析式及点M 的坐标;(2)点P 是直线AC 上的动点,若点P ,点C ,点M 所构成的三角形与△BCD 相似,请直接写出所有点P 的坐标.10.如图,抛物线y =ax 2+bx 经过两点A (﹣1,1),B (2,2).过点B 作BC ∥x 轴,交抛物线于点C ,交y 轴于点D .(1)求此抛物线对应的函数表达式及点C 的坐标;(2)若抛物线上存在点M ,使得△BCM 的面积为72,求出点M 的坐标; (3)连接OA 、OB 、OC 、AC ,在坐标平面内,求使得△AOC 与△OBN 相似(边OA 与边OB 对应)的点N 的坐标.11.如图1,抛物线y=ax2+1经过点A(4,﹣3),顶点为点B,点P为抛物线上的一个动点,l是过点(0,2)且垂直于y轴的直线,过P作PH⊥l,垂足为H,连接PO.(1)求抛物线的解析式,并写出其顶点B的坐标;(2)如图2,设点C(1,﹣2),问是否存在点P,使得以P,O,H为顶点的三角形与△ABC相似?若存在,求出P点的坐标;若不存在,请说明理由.。
二次函数-相似三角形存在性问题(一)-含答案
似?若存在,求出点 Q 的坐标;若不存在,请说明理由.
y C
A O
B x
(1)求抛物线的解析式; (2)如图 2,直线 OQ 与线段 BC 相交于点 E,当△OBE 与△ABC 相似时,求点 Q 的坐标.
y
y
A O
B x
C
D
图1
A O
C
B x
E Q
D
图2
第2页,共14页
【分析】
(1)抛物线: y = x2 − 2x − 3;
(2)思路:考虑到△ABC 和△BOE 有一组公共角,公共角必是对应角.
根据线段长度可知∠ABQ 与∠ABC 的两边并不成比例,故(-8,-7)舍掉.
情况二:若∠ABQ=∠BAC,
过点 B 作 AC 平行线,与抛物线交点即为 Q 点.
易得直线 BQ 解析式: y = 3 x − 9 , 42
联立方程:
3 4
x
−
9 2
=
−1 8
x2
+
1 4
x
+
3 ,解得:
x1
=
−10
,
x2
的坐标.
y B
A
C
O
x
第6页,共14页
【分析】 (1) y = 1 x2 − 2x +1 ;
3 (2) tan ABC = 1 ;
2 (3)思路:平行得相等角,构造两边成比例
二次函数与相似三角形综合题
二次函数与相似三角形二次函数与相似三角形例1 如图1,已知抛物线x x 41y 2+-=的顶点为A ,且经过原,与x 轴交于点O 、B 。
(1)若点C 在抛物线的对称轴上,点D 在抛物线上,且以O 、C 、D 、B 四点为顶点的四边形为平行四边形,求D 点的坐标;点的坐标;(2)连接OA 、AB ,如图2,在x 轴下方的抛物线上是否存在点P ,使得△OBP 与△OAB 相似?若存在,求出P 点的坐标;若不存在,说明理由。
点的坐标;若不存在,说明理由。
分析:1.当给出四边形的两个顶点时应以两个顶点的连线.......为四边形的边和对角线来考虑问题以O 、C 、D 、B 四点为顶点的四边形为平行四边形要分类讨论:按OB 为边和对角线两种情况2. . 函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径函数中因动点产生的相似三角形问题一般有三个解题途径① 求相似三角形的第三个顶点时,先要分析已知三角形的边.和角.的特点,进而得出已知三角形是否为特殊三角形。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
根据未知三角形中已知边与已知三角形的可能对应边分类讨论。
②或利用已知三角形中对应角,在未知三角形中利用勾股定理、在未知三角形中利用勾股定理、三角函数、三角函数、三角函数、对称、对称、旋转等知识来推导边的大小。
识来推导边的大小。
③若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解。
度,之后利用相似来列方程求解。
解:⑴如图1,当OB 为边即四边形OCDB 是平行四边形时,CD ∥=OB, 由1)2x (4102+--=得4x ,0x 21==, ∴B(4,0),OB =4. ∴D 点的横坐标为6 将x =6代入1)2x (41y 2+--=,得y =-3, ∴D(6,-3); 例1题图题图 图1 OAByxOAByx图2 COABDyx图1 13E A'OAB Py x图2 (2)先根据A 、C 的坐标,用待定系数法求出直线AC 的解析式,进而根据抛物线和直线AC 的解析式分别表示出点P 、点M 的坐标,即可得到PM 的长;(3)由于∠PFC 和∠AEM 都是直角,F 和E 对应,则若以P 、C 、F 为顶点的三角形和△AEM 相似时,分两种情况进行讨论:①△PFC∽△AEM,②△CFP∽△AEM;可分别用含m 的代数式表示出AE 、EM 、CF 、PF 的长,根据相似三角形对应边的比相等列出比例式,求出m 的值,再根据相似三角形的性质,直角三角形、等腰三角形的判定判断出△PCM 的形状.解答:解:(1)∵抛物线y=ax 2﹣2ax+c (a≠0)经过点A (3,0),点C (0,4), ∴,解得,∴抛物线的解析式为y=﹣x 2+x+4; (2)设直线AC 的解析式为y=kx+b , ∵A(3,0),点C (0,4), ∴,解得,∴直线AC 的解析式为y=﹣43x+4.∵点M 的横坐标为m ,点M 在AC 上,∴M 点的坐标为(m ,﹣43m+4), ∵点P 的横坐标为m ,点P 在抛物线y=﹣x 2+x+4上,∴点P 的坐标为(m ,﹣ m 2+m+4), ∴PM=PE﹣ME=(﹣m 2+m+4)﹣(﹣43m+4)=﹣m 2+73m ,即PM=﹣m 2+73m (0<m <3); (3)在(2)的条件下,连结PC ,在CD 上方的抛物线部分存在这样的点P ,使得以P 、C 、F 为顶点的三角形和△AEM 相似.理由如下:由题意,可得AE=3﹣m ,EM=﹣m+4,CF=m ,PF=﹣m 2+m+4﹣4=﹣m 2+m . 若以P 、C 、F 为顶点的三角形和△AEM 相似,分两种情况:①若△PFC∽△AEM,则PF :AE=FC :EM ,即(﹣m 2+m ):(3﹣m )=m :(﹣ m+4), ∵m≠0且m≠3, ∴m=.∵△PFC∽△AEM,∴∠PCF=∠AME, ∵∠AME=∠CMF,∴∠PCF=∠CMF.在直角△CMF 中,∵∠CMF+∠MCF=90°, ∴∠PCF+∠MCF=90°,即∠PCM=90°, ∴△PCM 为直角三角形;②若△CFP∽△AEM,则CF :AE=PF :EM ,即m :(3﹣m )=(﹣m 2+m ):(﹣m+4), ∵m≠0且m≠3,yxEQP C B OA ∴m=1.∵△CFP∽△AEM,∴∠CPF=∠AME, ∵∠AME=∠CMF,∴∠CPF=∠CMF. ∴CP=CM,∴△PCM 为等腰三角形.综上所述,存在这样的点P 使△PFC 与△AEM 相似.此时m 的值为或1,△PCM 为直角三角形或等腰三角形.点评:此题是二次函数的综合题,其中涉及到运用待定系数法求二次函数、一次函数的解析式,矩形的性质,相似三角形的判定和性质,直角三角形、等腰三角形的判定,难度适中.要注意的是当相似三角形的对应边和对应角不明确时,要分类讨论,以免漏解. 练习1、已知抛物线225333y x x =-+经过53(33)02P E æöç÷ç÷èø,,,及原点(00)O ,. (1)过P 点作平行于x 轴的直线PC 交y 轴于C 点,在抛物线对称轴右侧且位于直线PC 下方的抛物线上,任取一点Q ,过点Q 作直线QA 平行于y 轴交x 轴于A 点,交直线PC 于B 点,直线QA 与直线PC 及两坐标轴围成矩形OABC .是否存在点Q ,使得OPC △与PQB △相似?若存在,求出Q 点的坐标;若不存在,说明理由.点的坐标;若不存在,说明理由.(2)如果符合(2)中的Q 点在x 轴的上方,连结OQ ,矩形OABC 内的四个三角形OPC PQB OQP OQA ,,,△△△△之间存在怎样的关系?为什么?之间存在怎样的关系?为什么?(1)存在.)存在.设Q 点的坐标为()m n ,,则225333n m m =-+, 要使,BQ PB OCP PBQ CP OC =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12232m m ==,.当123m =时,2n =,即为Q 点,所以得(232)Q ,要使,BQ PB OCP QBP OC CP =△∽△,则有3333n m --=,即2253333333m m m +--=解之得,12333m m ==,,当3m =时,即为P 点,点, 当133m =时,3n =-,所以得(333)Q -,. 故存在两个Q 点使得OCP △与PBQ △相似.相似.Q 点的坐标为(232)(333)-,,,.(2)在Rt OCP △中,因为3tan 3CP COP OC Ð==.所以30COP Ð=. 当Q 点的坐标为(232),时,30BPQ COP Ð=Ð=. 所以90OPQ OCP B QAO Ð=Ð=Ð=Ð=.因此,OPC PQB OPQ OAQ ,,,△△△△都是直角三角形.都是直角三角形.又在Rt OAQ △中,因为3tan 3QA QOA AO Ð==.所以30QOA Ð=. 即有30POQ QOA QPB COP Ð=Ð=Ð=Ð=. 所以OPC PQB OQP OQA △∽△∽△∽△, 又因为QP OP QA OA ,⊥⊥30POQ AOQ Ð=Ð=,所以OQA OQP △≌△.2.在平面直角坐标系xOy 中,已知二次函数223y x x =-++的图象与x 轴交于A B ,两点(点A 在点B 的左边),与y 轴交于点C .(1)若直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),则是否存在这样的直线l ,使得以B O D ,,为顶点的三角形与BAC △相似?若存在,求出该直线的函数表达式及点D 的坐标;若不存在,请说明理由;(10)(30),(03)A B C -,,,, (2)若点P 是位于该二次函数对称轴右边图象上不与顶点重合的任意一点,试比较锐角PCO Ð与ACO Ð的大小(不必证明),并写出此时点P 的横坐标p x 的取值范围.的取值范围.(1)假设存在直线:(0)l y kx k =¹与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似.相似.在223y x x =-++中,令0y =,则由2230x x -++=,解得1213x x =-=,(10)(30)A B \-,,,. 令0x =,得3y =.(03)C \,. 设过点O 的直线l 交BC 于点D ,过点D 作DE x ⊥轴于点E .yCl xB A 1x = 练习3图yx B E A OC D1x =l点B的坐标为(30),,点C的坐标为(03),,点A的坐标为(10)-,.4345.AB OB OC OBC\===Ð=,,223332BC\=+=.要使BOD BAC△∽△或BDO BAC△∽△,已有B BÐ=Ð,则只需BD BOBC BA=,①或.BO BDBC BA=②成立.成立.若是①,则有3329244BO BCBDBA´===.而45OBC BE DEÐ=\=,.\在Rt BDE△中,由勾股定理,得222229224BE DE BE BDæö+===ç÷ç÷èø.解得解得94BE DE==(负值舍去).93344OE OB BE\=-=-=.\点D的坐标为3944æöç÷èø,.将点D的坐标代入(0)y kx k=¹中,求得3k=.\满足条件的直线l的函数表达式为3y x=.[或求出直线AC的函数表达式为33y x=+,则与直线AC平行的直线l的函数表达式为3y x=.此时易知BOD BAC△∽△,再求出直线BC的函数表达式为3y x=-+.联立33y x y x==-+,求得点D的坐标为3944æöç÷èø,.]若是②,则有342232BO BABDBC´===.而45OBC BE DEÐ=\=,.\在Rt BDE △中,由勾股定理,得222222(22)BE DE BE BD +===.解得解得2BE DE ==(负值舍去).321OE OB BE \=-=-=.\点D 的坐标为(12),. 将点D 的坐标代入(0)y kx k =¹中,求得2k =.∴满足条件的直线l 的函数表达式为2y x =.\存在直线:3l y x =或2y x =与线段BC 交于点D (不与点B C ,重合),使得以B O D ,,为顶点的三角形与BAC △相似,且点D 的坐标分别为3944æöç÷èø,或(12),.(2)设过点(03)(10)C E ,,,的直线3(0)y kx k =+¹与该二次函数的图象交于点P . 将点(10)E ,的坐标代入3y kx =+中,求得3k =-. \此直线的函数表达式为33y x =-+.设点P 的坐标为(33)x x -+,,并代入223y x x =-++,得250x x -=. 解得1250x x ==,(不合题意,舍去).512x y \==-,.\点P 的坐标为(512)-,.此时,锐角PCO ACO Ð=Ð.又二次函数的对称轴为1x =,\点C 关于对称轴对称的点C ¢的坐标为(23),. \当5px>时,锐角PCO ACO Ð<Ð;当5p x =时,锐角PCO ACO Ð=Ð; 当25p x <<时,锐角PCO ACO Ð>Ð.OxBEA O C1x =PC ¢ ·3.如图所示,已知抛物线21y x =-与x 轴交于A 、B 两点,与y 轴交于点C ,过点A 作AP ∥CB 交抛物线于点P . 在x 轴上方的抛物线上是否存在一点M ,过M 作MG ^x 轴于点G ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似.若存在,请求出M 点的坐标;否则,请说明理由.否则,请说明理由. 解:解: 假设存在假设存在A (1,0)-B (1,0)C (0,1)- ∵ÐPAB=ÐBAC =45 ∴P A ^AC ∵MG ^x 轴于点G , ∴ÐMGA=ÐPAC =90 在Rt △AOC 中,OA=OC=1 ∴AC=2 在Rt △PAE 中,AE=PE=3 ∴AP= 32 设M 点的横坐标为m ,则M 2(,1)m m - ①点M 在y 轴左侧时,则1m <-(ⅰ) 当D AMG ∽D PCA 时,有AG PA =MG CA∵AG=1m --,MG=21m -即211322m m ---=解得11m =-(舍去)(舍去) 223m =(舍去)(舍去)(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即 211232m m ---=解得:1m =-(舍去)(舍去) 22m =- ∴M (2,3)-② 点M 在y 轴右侧时,则1m > (ⅰ) 当D AMG ∽D PCA 时有AG PA =MGCA∵AG=1m +,MG=21m -G M 图3 C B y P A oxG M 图2 C B y P A ox图1 C P B y A ox∴211322m m +-=解得11m =-(舍去)(舍去) 243m =∴M 47(,)39(ⅱ) 当D MAG ∽D PCA 时有AG CA =MGPA即211232m m +-=解得:11m =-(舍去)(舍去) 24m = ∴M (4,15)∴存在点M ,使以A 、M 、G 三点为顶点的三角形与D PCA 相似相似M 点的坐标为(2,3)-,47(,)39,(4,15)4.4.(2013•曲靖压轴题)如图,在平面直角坐标系(2013•曲靖压轴题)如图,在平面直角坐标系xOy 中,直线y=x+4与坐标轴分别交于A 、B 两点,过A 、B 两点的抛物线y=﹣x 2﹣3x+4..点D 为线段AB 上一动点,过点D 作CD⊥x 轴于点C ,交抛物线于点E .(1)当DE=4时,求四边形CAEB 的面积.的面积. (2)连接BE BE,,是否存在点D ,使得△DBE 和△DAC 相似?若存在,求此点D 坐标;若不存在,说明理由.说明理由.考点: 二次函数综合题. 分析: (1)首先求出点A 、B 的坐标,然后利用待定系数法求出抛物线的解析式;(2)设点C 坐标为(m ,0)(m <0),根据已知条件求出点E 坐标为(m ,8+m );由于点E 在抛物线上,则可以列出方程求出m 的值.在计算四边形CAEB 面积时,利用S 四边形CAEB =S △A CE +S 梯形OCEB ﹣S △BCO ,可以简化计算;(3)由于△ACD为等腰直角三角形,而△DBE和△DAC相似,则△DBE必为等腰直角三角形.分两种情况讨论,要点是求出点E的坐标,由于点E在抛物线上,则可以由此列出方程求出未知数.解答:解:(1)在直线解析式y=x+4中,令x=0,得y=4;令y=0,得x=﹣4,∴A(﹣4,0),B(0,4).∵点A(﹣4,0),B(0,4)在抛物线y=﹣x2+bx+c上,∴,解得:b=﹣3,c=4,∴抛物线的解析式为:y=﹣x 2﹣3x+4.(2)设点C坐标为(m,0)(m<0),则OC=﹣m,AC=4+m.∵OA=OB=4,∴∠BAC=45°,∴△ACD为等腰直角三角形,∴CD=AC=4+m,∴CE=CD+DE=4+m+4=8+m,∴点E坐标为(m,8+m).∵点E在抛物线y=﹣x 2﹣3x+4上,∴8+m=﹣m2﹣3m+4,解得m=﹣2.∴C(﹣2,0),AC=OC=2,CE=6,S四边形CAEB=S△ACE+S梯形OCEB﹣S△BCO=×2×6+(6+4)×2﹣×2×4=12.(3)设点C坐标为(m,0)(m<0),则OC=﹣m,CD=AC=4+m,BD=OC=﹣m,则D(m,4+m).∵△ACD为等腰直角三角形,△DBE和△DAC相似∴△DBE必为等腰直角三角形.i)若∠BED=90°,则BE=DE,∵BE=OC=﹣m,∴DE=BE=﹣m,∴CE=4+m﹣m=4,∴E(m,4).∵点E在抛物线y=﹣x2﹣3x+4上,∴4=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣3,∴D(﹣3,1);ii)若∠EBD=90°,则BE=BD=﹣m,在等腰直角三角形EBD中,DE=BD=﹣2m,∴C E=4+m﹣2m=4﹣m,∴E(m,4﹣m).∵点E在抛物线y=﹣x2﹣3x+4上,∴4﹣m=﹣m2﹣3m+4,解得m=0(不合题意,舍去)或m=﹣2,∴D(﹣2,2).综上所述,存在点D,使得△DBE和△DAC相似,点D的坐标为(﹣3,1)或(﹣2,2).点评:本题考查了二次函数与一次函数的图象与性质、函数图象上点的坐标特征、待定系数法、相似三角形、等腰直角三角形、图象面积计算等重要知识点.第(3)问需要分类讨论,这是本题的难点.5.5.(2013•绍兴压轴题)抛物线(2013•绍兴压轴题)抛物线y=y=((x ﹣3)(x+1x+1))与x 轴交于A ,B 两点(点A 在点B 左侧),与y 轴交于点C ,点D 为顶点.为顶点.(1)求点B 及点D 的坐标.的坐标.(2)连结BD BD,,CD CD,抛物线的对称轴与,抛物线的对称轴与x 轴交于点E .①若线段BD 上一点P ,使∠DCP=∠BDE,求点P 的坐标.的坐标.②若抛物线上一点M ,作MN⊥CD,交直线CD 于点N ,使∠CMN=∠BDE,求点M 的坐标.的坐标.考点: 二次函数综合题.3718684分析: (1)解方程(x ﹣3)(x+1)=0,求出x=3或﹣1,根据抛物线y=(x ﹣3)(x+1)与x轴交于A ,B 两点(点A 在点B 左侧),确定点B 的坐标为(3,0);将y=(x ﹣3)(x+1)配方,写成顶点式为y=x 2﹣2x ﹣3=(x ﹣1)2﹣4,即可确定顶点D 的坐标;(2)①根据抛物线y=(x ﹣3)(x+1),得到点C 、点E 的坐标.连接BC ,过点C 作CH⊥DE 于H ,由勾股定理得出CD=,CB=3,证明△BCD 为直角三角形.分别延长PC 、DC ,与x 轴相交于点Q ,R .根据两角对应相等的两三角形相似证明△BCD∽△QOC,则==,得出Q 的坐标(﹣9,0),运用待定系数法求出直线CQ 的解析式为y=﹣x ﹣3,直线BD 的解析式为y=2x ﹣6,解方程组,即可求出点P 的坐标;②分两种情况进行讨论:(Ⅰ)当点M 在对称轴右侧时.若点N 在射线CD 上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G,先证明△MCN∽△DBE,由相似三角形对应边成比例得出MN=2CN.设CN=a,再证明△CNF,△MGF均为等腰直角三角形,然后用含a的代数式表示点M的坐标,将其代入抛物线y=(x﹣3)(x+1),求出a的值,得到点M的坐标;若点N在射线DC上,同理可求出点M的坐标;(Ⅱ)当点M在对称轴左侧时.由于∠BDE<45°,得到∠CMN<45°,根据直角三角形两锐角互余得出∠MCN>45°,而抛物线左侧任意一点K,都有∠KCN<45°,所以点M不存在.解答:解:(1)∵抛物线y=(x﹣3)(x+1)与x轴交于A,B两点(点A在点B左侧),∴当y=0时,(x﹣3)(x+1)=0,解得x=3或﹣1,∴点B的坐标为(3,0).∵y=(x﹣3)(x+1)=x2﹣2x﹣3=(x﹣1)2﹣4,∴顶点D的坐标为(1,﹣4);(2)①如右图.∵抛物线y=(x﹣3)(x+1)=x2﹣2x﹣3与与y轴交于点C,∴C点坐标为(0,﹣3).∵对称轴为直线x=1,∴点E的坐标为(1,0).连接BC,过点C作CH⊥DE于H,则H点坐标为(1,﹣3),∴CH=DH=1,∴∠CDH=∠BCO=∠BCH=45°,∴CD=,CB=3,△BCD为直角三角形.分别延长PC、DC,与x轴相交于点Q,R.∵∠BDE=∠DCP=∠QCR,∠CDB=∠CDE+∠BDE=45°+∠DCP,∠QCO=∠RCO+∠QCR=45°+∠DCP,∴∠CDB=∠QCO,∴△BCD∽△QOC,∴==,∴OQ=3OC=9,即Q(﹣9,0).∴直线CQ的解析式为y=﹣x﹣3,直线BD的解析式为y=2x﹣6.由方程组,解得.∴点P的坐标为(,﹣);②(Ⅰ)当点M在对称轴右侧时.若点N在射线CD上,如备用图1,延长MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=∠DCF=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN+NF=3a,∴MG=FG=a,∴CG=FG﹣FC=a,∴M(a,﹣3+a).代入抛物线y=(x﹣3)(x+1),解得a=,∴M(,﹣);若点N在射线DC上,如备用图2,MN交y轴于点F,过点M作MG⊥y轴于点G.∵∠CMN=∠BDE,∠CNM=∠BED=90°,∴△MCN∽△DBE,∴==,∴MN=2CN.设CN=a,则MN=2a.∵∠CDE=45°,∴△CNF,△MGF均为等腰直角三角形,∴NF=CN=a,CF=a,∴MF=MN﹣NF=a,∴MG=FG=a,点评: 本题是二次函数的综合题型,其中涉及到的知识点有二次函数图象上点的坐标特征,二次函数的性质,运用待定系数法求一次函数、二次函数的解析式,勾股定理,等腰直角三角形、相似三角形的判定与性质,综合性较强,有一定难度.(2)中第②问进行分类讨论及运用数形结合的思想是解题的关键.6.6.(2013•恩施州压轴题)如图所示,直线(2013•恩施州压轴题)如图所示,直线l :y=3x+3与x 轴交于点A ,与y 轴交于点B .把△AOB 沿y 轴翻折,点A 落到点C ,抛物线y=y=x x 2﹣4x+3过点B 、C 和D (3,0). (1)若BD 与抛物线的对称轴交于点M ,点N 在坐标轴上,以点N 、B 、D 为顶点的三角形与△MCD 相似,求所有满足条件的点N 的坐标.的坐标. (2)在抛物线上是否存在点P ,使S △PBD =6=6?若存在,求出点?若存在,求出点P 的坐标;若不存在,说明理由.由.考点: 二次函数综合题.分析: (1)由待定系数法求出直线BD 和抛物线的解析式;(2)首先确定△MCD 为等腰直角三角形,因为△BND 与△MCD 相似,所以△BND 也是等腰直角三角形.如答图1所示,符合条件的点N 有3个;(3)如答图2、答图3所示,解题关键是求出△PBD 面积的表达式,然后根据S △PBD =6的已知条件,列出一元二次方程求解.解答: (1)抛物线的解析式为:y=x 2﹣4x+3=(x ﹣2)2﹣1,∴抛物线的对称轴为直线x=2,顶点坐标为(2,﹣1).直线BD :y=﹣x+3与抛物线的对称轴交于点M ,令x=2,得y=1,∴M(2,1).设对称轴与x 轴交点为点F ,则CF=FD=MN=1,∴△MCD 为等腰直角三角形.∵以点N 、B 、D 为顶点的三角形与△MCD 相似,∴△BND 为等腰直角三角形.如答图1所示:(I )若BD 为斜边,则易知此时直角顶点为原点O ,∴N 1(0,0);(II )若BD 为直角边,B 为直角顶点,则点N 在x 轴负半轴上,∵OB=OD=ON 2=3,∴N 2(﹣3,0);(III)若BD为直角边,D为直角顶点,则点N在y轴负半轴上,∵OB=OD=ON3=3,∴N3(0,﹣3).∴满足条件的点N坐标为:(0,0),(﹣3,0)或(0,﹣3).(2)假设存在点P,使S△PBD=6,设点P坐标为(m,n).(I)当点P位于直线BD上方时,如答图2所示:过点P作PE⊥x轴于点E,则PE=n,DE=m﹣3.S△PBD=S梯形PEOB﹣S△BOD﹣S△PDE=(3+n)•m﹣×3×3﹣(m﹣3)•n=6,化简得:m+n=7 ①,∵P(m,n)在抛物线上,∴n=m2﹣4m+3,代入①式整理得:m2﹣3m﹣4=0,解得:m1=4,m2=﹣1,∴n1=3,n2=8,∴P1(4,3),P2(﹣1,8);(II)当点P位于直线BD下方时,如答图3所示:过点P作PE⊥y轴于点E,则PE=m,OE=﹣n,BE=3﹣n.S△PBD=S梯形PEOD+S△BOD﹣S△PBE=(3+m)•(﹣n)+×3×3﹣(3﹣n)•m=6,化简得:m+n=﹣1 ②,∵P(m,n)在抛物线上,∴n=m 2﹣4m+3,代入②式整理得:m2﹣3m+4=0,△=﹣7<0,此方程无解.故此时点P不存在.综上所述,在抛物线上存在点P,使S△PBD=6,点P的坐标为(4,3)或(﹣1,8).点评:本题是中考压轴题,综合考查了二次函数的图象与性质、待定系数法、相似三角形的判定与性质、图形面积计算、解一元二次方程等知识点,考查了数形结合、分类讨论的数学思想.第(2)(3)问均需进行分类讨论,避免漏解.。
初三中考数学专题复习:二次函数综合题(相似三角形问题)含答案
中考数学专题复习:二次函数综合题(相似三角形问题)1.如图①,二次函数y =﹣x 2+bx +c 的图象与x 轴交于点A (﹣1,0)、B (3,0),与y 轴交于点C ,连接BC ,点P 是抛物线上一动点.(1)求二次函数的表达式.(2)当点P 不与点A 、B 重合时,作直线AP ,交直线BC 于点Q ,若①ABQ 的面积是①BPQ 面积的4倍,求点P 的横坐标.(3)如图①,当点P 在第一象限时,连接AP ,交线段BC 于点M ,以AM 为斜边向①ABM 外作等腰直角三角形AMN ,连接BN ,①ABN 的面积是否变化?如果不变,请求出①ABN 的面积;如果变化,请说明理由.2.如图,二次函数2314y x bx =++的图像经过点()8,3A ,交x 轴于点B ,C (点B 在点C 的左侧),与y 轴交于点D .(1)填空:b = ______;(2)点P 是第一象限内抛物线上一点,直线PO 交直线CD 于点Q ,过点P 作x 轴的垂线交直线CD 于点T ,若PQ QT =,求点P 的坐标;(3)在x 轴的正半轴上找一点E ,过点E 作AE 的垂线EF 交y 轴于F ,若AEF 与EFO △相似,求OE 的长.3.如图,已知抛物线2y ax bx c =++与x 轴相交于点()1,0A -,()3,0B ,与y 轴的交点()0,6C .(1)求抛物线的解析式;(2)点(),P m n 在平面直角坐标系第一象限内的抛物线上运动,设PBC 的面积为S ,求S 关于m 的函数表达式(指出自变量m 的取值范围)和S 的最大值;(3)点M 在抛物线上运动,点N 在y 轴上运动,是否存在点M 、点N 使得①CMN =90°,且∆CMN 与OBC ∆相似,如果存在,请求出点M 和点N 的坐标.4.如图,抛物线L 1:y =ax 2﹣2x +c (a ≠0)与x 轴交于A 、B (3,0)两点,与y 轴交于点C (0,﹣3),抛物线的顶点为D .抛物线L 2与L 1关于x 轴对称.(1)求抛物线L 1与L 2的函数表达式;(2)已知点E 是抛物线L 2的顶点,点M 是抛物线L 2上的动点,且位于其对称轴的右侧,过M 向其对称轴作垂线交对称轴于P ,是否存在这样的点M ,使得以P 、M 、E 为顶点的三角形与△BCD 相似,若存在请求出点M 的坐标,若不存在,请说明理由.5.如图,在平面直角坐标系中,已知直线4y x =+与x 轴、y 轴分别相交于点A 和点C ,抛物线21y x kx k =++-的图象经过点A 和点C ,与x 轴的另一个交点是点B .(1)求出此抛物线的解析式; (2)求出点B 的坐标;(3)若在y 轴的负半轴上存在点D .能使得以A ,C ,D 为顶点的三角形与①ABC 相似,请求出点D 的坐标.6.如图1,已知抛物线23y ax bx =++经过点()1,5D ,且交x 轴于A ,B 两点,交y 轴于点C ,已知点()1,0A -,(),P m n 是抛物线在第一象限内的一个动点,PQ BC ⊥于点Q .(1)求抛物线的解析式;(2)当PQ =m 的值;(3)是否存在点P ,使BPQ 与BOC 相似?若存在,请求出P 点的坐标;若不存在,请说明理由.7.如图,在平面直角坐标系中,直线y =12x +2与x 轴交于点A ,与y 轴交于点C .抛物线y =ax 2+bx +c的对称轴是x=-32且经过A、C两点,与x轴的另一交点为点B.(1)求二次函数y=ax2+bx+c的表达式;(2)点P为线段AB上的动点,求AP+2PC的最小值;(3)抛物线上是否存在点M,过点M作MN垂直x轴于点N,使得以点A,M,N为顶点的三角形与①ABC 相似?若存在,求出点M的坐标;若不存在,请说明理由.8.如图,抛物线y=−x2+bx+c与x轴相交于A(−1,0),B(3,0)两点,与y轴交于点C,顶点为点D,抛物线的对称轴与BC相交于点E,与x轴相交于点F.(1)求抛物线的函数关系式;(2)连结DA,求sin A的值;(3)若点H线段BC上,BOC与BFH△相似,请直接写出点H的坐标.9.如图,抛物线y=1-2x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与①OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.10.如图,抛物线23y ax bx =++与x 轴交于1,0A 、()3,0B -两点,与y 轴交于点C ,设抛物线的顶点为D .(1)求该抛物线的表达式与顶点D 的坐标; (2)试判断BCD △的形状,并说明理由;(3)探究坐标轴上是否存在点P ,使得以P 、A 、C 为顶点的三角形与BCD △相似?若存在,请求出点P 的坐标;若不存在,请说明理由.11.如图,抛物线y =ax 2﹣2ax ﹣3a (a ≠0)与x 轴交于点A ,B .与y 轴交于点C .连接AC ,BC .已知ABC 的面积为2.(1)求抛物线的解析式;(2)平行于x 轴的直线与抛物线从左到右依次交于P ,Q 两点.过P ,Q 向x 轴作垂线,垂足分别为G ,H .若四边形PGHQ 为正方形,求正方形的边长;(3)抛物线上是否存在一点N ,使得①BCN =①CAB ﹣①CBA ,若存在,请求出满足条件N 点的横坐标,若不存在请说明理由.12.如图,二次函数2y x bx c =-++的图像与x 轴交于点A (-1,0),B (2,0),与y 轴相交于点C .(1)求这个二次函数的解析式;(2)若点M 在此抛物线上,且在y 轴的右侧.①M 与y 轴相切,过点M 作MD ①y 轴,垂足为点D .以C ,D ,M 为顶点的三角形与①AOC 相似,求点M 的坐标及①M 的半径长.13.如图,在平面直角坐标系中,抛物线2()0y ax bx c ac =++≠与x 轴交于点A 和点B (点A 在点B 的左侧),与y 轴交于点C .若线段OA OB OC 、、的长满足2OC OA OB =⋅,则这样的抛物线称为“黄金”抛物线.如图,抛物线22(0)y ax bx a =++≠为“黄金”抛物线,其与x 轴交点为A ,B (其中B 在A 的右侧),与y 轴交于点C .且4OA OB =(1)求抛物线的解析式;(2)若P 为AC 上方抛物线上的动点,过点P 作PD AC ⊥,垂足为D . ①求PD 的最大值;①连接PC ,当PCD 与ACO △相似时,求点P 的坐标.14.如图,在平面直角坐标系xOy 中,已知抛物线2y x bx c =++与x 轴交于点A 、B 两点,其中1,0A ,与y 轴交于点()0,3C .(1)求抛物线解析式;(2)如图1,过点B 作x 轴垂线,在该垂线上取点P ,使得①PBC 与①ABC 相似,请求出点P 坐标;(3)如图2,在线段OB 上取一点M ,连接CM ,请求出12CM BM +最小值.15.如图,抛物线y =ax 2+k (a >0,k <0)与x 轴交于A ,B 两点(点B 在点A 的右侧),其顶点为C ,点P 为线段OC 上一点,且PC =14OC .过点P 作DE ①AB ,分别交抛物线于D ,E 两点(点E 在点D 的右侧),连接OD ,DC .(1)直接写出A ,B ,C 三点的坐标;(用含a ,k 的式子表示) (2)猜想线段DE 与AB 之间的数量关系,并证明你的猜想;(3)若①ODC =90°,k =﹣4,求a 的值.16.如图,抛物线223y x bx c =++与x 轴交于A ,B 两点,与y 轴交于C 点,连接AC ,已知B (﹣1,0),且抛物线经过点D (2,﹣2).(1)求抛物线的表达式;(2)若点E 是抛物线上第四象限内的一点,且2ABES=,求点E 的坐标;(3)若点P 是y 轴上一点,以P ,A ,C 三点为顶点的三角形是等腰三角形,求P 点的坐标.17.如图,在直角坐标系xOy 中,抛物线y =ax 2+bx +2(a ≠0)与x 轴交于点A (﹣1,0)和B (4,0),与y 轴交于点C ,点P 是抛物线上的动点(不与点A ,B ,C 重合).(1)求抛物线的解析式;(2)当点P 在第一象限时,设①ACP 的面积为S 1,①ABP 的面积为S 2,当S 1=S 2时,求点P 的坐标; (3)过点O 作直线l ①BC ,点Q 是直线l 上的动点,当BQ ①PQ ,且①BPQ =①CAB 时,请直接写出点P 的坐标.18.如图,在平面直角坐标系xOy中,直线y=﹣x+3与两坐标轴交于A、B两点,抛物线y=x2+bx+c 过点A和点B,并与x轴交于另一点C,顶点为D.点E在对称轴右侧的抛物线上.(1)求抛物线的函数表达式和顶点D的坐标;(2)若点F在抛物线的对称轴上,且EF①x轴,若以点D,E,F为顶点的三角形与①ABD相似,求出此时点E的坐标;(3)若点P为坐标平面内一动点,满足tan①APB=3,请直接写出①P AB面积最大时点P的坐标及该三角形面积的最大值.19.如图,在平面直角坐标系中,抛物线y=ax2+bx+c(a≠0)与x轴交于点A、B,与y轴交于点C,且OC=2OB=6OA=6,点P是第一象限内抛物线上的动点.(1)求抛物线的解析式;(2)连接BC与OP,交于点D,当S△PCD:S△ODC的值最大时,求点P的坐标;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N.使①CMN=90°,且①CMN与①BOC 相似,若存在,请求出点M、点N的坐标.20.如图,抛物线y=x2+bx+12(b<0)与x轴交于A,B两点(A点在B点左侧),且OB=3OA.(1)请直接写出b=,A点的坐标是,B点的坐标是;(2)如图(1),D点从原点出发,向y轴正方向运动,速度为2个单位长度/秒,直线BD交抛物线于点E,若BE=5DE,求D点运动时间;(3)如图(2),F点是抛物线顶点,过点F作x轴平行线MN,点C是对称轴右侧的抛物线上的一定点,P 点在直线MN上运动.若恰好存在3个P点使得①P AC为直角三角形,请求出C点坐标,并直接写出P点的坐标.答案1.(1)y =﹣x 2+2x +3.(2)P 352或 (3)①ABN 的面积不变,为4.2.(1)2-(2)5⎛ ⎝⎭或5⎛ ⎝⎭(3)4或493.(1)2246y x x =-++(2)S 关于m 的函数表达式为239(03)S m m m =-+<<,S 的最大值是274 (3)存在,M (1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M (3,0),N (0,﹣32)4.(1)抛物线L 1:223y x x =--,抛物线L 2:2y x 2x 3=-++;(2)435(,)39M 或(4,5)M -.5.(1)254y x x =++(2)点B 的坐标为(-1,0)(3)点D 的坐标是(0,-203) 6.(1)215322y x x =-++ (2)1或5(3)存在;P (53,529)7.(1)抛物线表达式为:213222y x x =--+;(2)AP +2PC 的最小值是4;(3)存在M(0,2)或(-3,2)或(2,-3)或(5,-18),使得以点A 、M 、N 为顶点的三角形与ABC 相似.8.(1)y =-x 2+2x +3(3)点H 的坐标为(1,2)或(2,1)9.(1)21382y x x =++ (2)P 1(1,10.5),P 2(7,4.5)(3)存在,(3,8)或(3,5或(3,11)30.(1)y =﹣x 2﹣2x +3,(﹣1,4);(2)直角三角形,理由见解析;(3)存在,(0,0)或(0,﹣13)或(-9,0)11.(1)y =﹣13x 2+23x +1(2)﹣6﹣(3)存在,5或11712.(1)22y x x =-++; (2)M 的坐标为(12,94),(32, 54 ),(3,-4),①M 的半径长为12或32或313.(1)213222y x x =--+(2)①PD ①P 坐标为(3,2)-或325()28,-14.(1)243y x x =-+(2)P 点坐标为()3,9或()3,215.(1)点A 、B 、C 的坐标分别为(、、(0,k ) (2)DE =12AB(3)a =1316.(1)224233y x x =--(2)E ,-1)(3)P 点的坐标(0,2)或(02)或(0,﹣2或(0,54)17.(1)213222y x x =-++ (2)点P 的坐标为(103,139)(3)点P 的坐标为(32,﹣2)或(32,﹣2)或(173,﹣509)18.(1)y =x 2﹣4x +3,(2,﹣1)(2)(5,8)或(73,89-)(3)①P AB ,此时P )19.(1)y =﹣2x 2+4x +6 (2)点P 的坐标为(32,152) (3)存在,M 、N 的坐标分别为(3,0)、(0,﹣32)或(94,398)、(0,38)或(1,8)、(0,172)或(74,558)、(0,838)20.(1)﹣8,(2,0),(6,0)(2)3秒或212秒 (3)C 点坐标为(143,﹣329),P 点的坐标为(103,﹣4)或(﹣103,﹣4)或(11027,﹣4)。
二次函数综合(动点)问题——相似三角形存在问题培优教案(横版)
考点/易错点2
相似三角形的性质: (1)相似三角形的对应角相等。 (2)相似三角形的对应边成比例。 (3)相似三角形的对应高线的比,对应中线的比和对应角平分线的比都等于相似比。 (4)相似三角形的周长比等于相似比。 (5)相似三角形的面积比等于相似比的平方。
考点/易错点 3 相似三角形模型探究与解题技巧: 1、课堂导入题解 如图,在平面直角坐标系中有两点 A(4,0)、B(0,2),如果点 C 在 x 轴上(C 与 A 不重合),当 点 C 的坐标为_________________时,使得由点 B、O、C 组成的三角形与△AOB 相似(至少找出两个满 足条件的点的坐标).
解:∵点 C 在 x 轴上,∴点 C 的纵坐标是 0,且当∠BOC=90°时,由点 B、O、C 组成的三角形与△AOB 相似,即∠BOC 应该与∠BOA=90°对应,
①当△AOB∽△COB,即 OC 与 OA 相对应时,则 OC=OA=4,C(-4,0); ②当△AOB∽△BOC,即 OC 与 OB 对应,则 OC=1,C(-1,0)或者(1,0). 故答案可以是:(-1,0);(1,0). 解析:分类讨论:①当△AOB∽△COB 时,求点 C 的坐标;②当△AOB∽△BOC 时,求点 C 的坐标; 如果非直角三角形也要分类讨论,对应边不一样就得到不同的结果。
图象
开口 对称轴 顶点坐标 最值
a>0
a<0
当 x=
时,y 有最
当 x= 值是
是
时,y 有最 值
增 在对称轴左侧 y 随 x 的增大而
减 在对称轴右侧 y 随 x 的增大而
性
y 随 x 的增大而 y 随 x 的增大而
(二)梯形的性质:一组对边平行,另一组对边不平行的四边形; 直角梯形的性质:有两个角是直角的梯形; 等腰梯形:两底角相等,两顶角相等,两腰相等,对角线相等的梯形。
【中考数学几何模型】第二十五节:二次函数三角形相似存在性问题
中考数学几何模型第二十五节:二次函数三角形相似存在性问题448.二次函数三角形相似存在性问题(初三)x2+bx+c与x轴交于A,B两点,点A,B分别位于原点的左、右两侧,B0=3A0=3,过点B的直如图,抛物线y=3+36线与y轴正半轴和抛物线的交点分别为C,D,BC=3CD(1)求b,c的值;(2)求直线BD的函数解析式;(3)点P在抛物线的对称轴上且在x轴下方,点Q在射线BA上.当△ABD与△BPQ相似时,请直接写出所有满足条件的点Q的坐标.449.二次函数线段最大值三角形相似存在性问题(初三),D 如图,抛物线y=ax2+bx+2与x轴交于A,B两点,且OA=20B,与y轴交于点C,连接BC,抛物线对称轴为直线x=12为第一象限内抛物线上一动点,过点D作DE⊥OA于点E,与AC交于点F,设点D的横坐标为m.(1)求抛物线的表达式;(2)当线段DF的长度最大时,求D点的坐标;(3)抛物线上是否存在点D,使得以点0,D,E为顶点的三角形与△BOC相似?若存在,求出m的值;若不存在,请说明理由.450.二次函数铅垂定理面积最大值三角形形似存在性(初三)如图,已知抛物线y=ax2+bx+6经过两点A(―1,0),B(3,0),C是抛物线与y轴的交点.(1)求抛物线的解析式;(2)点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,设△PBC的面积为S,求S关于m的函数表达式(指出自变量m的取值范围)和S的最大值;(3)点M在抛物线上运动,点N在y轴上运动,是否存在点M、点N使得∠CMN=90∘,且△CMN与△OBC相似,如果存在,请求出点M和点N的坐标.451.二次函数三角形面积定值三角形相似存在性问题(初三)如图,抛物线y=ax2+bx+8(a≠0)与x轴交于点A(―2,0)和点B(8,0),与y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;S△ABC时,求点P的坐标;(2)点P是第一象限内抛物线上的动点,连接PB,PC,当S△PBC=35(3)点N是对称轴1右侧抛物线上的动点,在射线ED上是否存在点M,使得以点M,N,E为顶点的三角形与△OBC相似?若存在,求点M的坐标;若不存在,请说明理由.452.二次函数平行四边形存在性三角形相似存在性问题(初三)如图,二次函数y=ax2+bx+4的图象与x轴交于点A(―1,0),B(4,0),与y轴交于点C,抛物线的顶点为D,其对称轴与线段BC交于点E,垂直于x轴的动直线1分别交抛物线和线段BC于点P和点F,动直线1在抛物线的对称轴的右侧(不含对称轴)沿x轴正方向移动到B点.(1)求出二次函数y=ax2+bx+4和BC所在直线的表达式;(2)在动直线1移动的过程中,试求使四边形DEFP为平行四边形的点P的坐标;(3)连接CP,CD,在动直线1移动的过程中,抛物线上是否存在点P,使得以点P,C,F为顶点的三角形与△DCE相似?如果存在,求出点P的坐标;如果不存在,请说明理由.453.二次函数三角形相似存在性问题(初三)已知抛物线y =ax 2+bx +3与x 轴分别交于A(―3,0),B(1,0)两点,与y 轴交于点C .(1)求抛物线的表达式及顶点D 的坐标;(2)点F 是线段AD 上一个动点.①如图1,设k =AFAD ,当k 为何值时,CF =12AD ?②如图2,以A,F,0为顶点的三角形是否与△ABC 相似?若相似,求出点F 的坐标;若不相似,请说明理由.454.二次函数三角形相似存在性问题(初三)如图1,直线y =―12x +b 与抛物线y =ax 2交于A,B 两点,与y 轴于点C ,其中点A 的坐标为(―4,8).(1)求a,b 的值;(2)将点A 绕点C 逆时针旋转90∘得到点D .①试说明点D 在抛物线上;②如图2,将直线AB 向下平移,交抛物线于E,F 两点(点E 在点F 的左侧),点G 在线段OC 上.若△GEF ∼△DBA (点G,E,F 分别与点D,B,A 对应),求点G 的坐标.455.二次函数三角形存在性问题面积倍分动点问题(初三)如图,已知抛物线y =ax 2+bx(a ≠0)过点A(3,―3)和点B(33,0).过点A 作直线AC//x 轴,交y 轴于点C .(1)求抛物线的解析式;(2)在抛物线上取一点P ,过点P 作直线AC 的垂线,垂足为D .连接OA ,使得以A,D,P 为顶点的三角形与△AOC 相似,求出对应点P 的坐标;(3)抛物线上是否存在点Q ,使得S △AOC =13S △ACQ ?若存在,求出点Q 的坐标;若不存在,请说明理由.答案448.【解】(1)∵BO=3AO=3,∴点B(3,0),点A(-1,0),∴抛物线解析式为:y =3+36(x +1)(x -3)=3+36x 2-3+33x -3+32,∴b =-3+33,c =-3+32;(2)如图1,过点D 作DE ⊥AB 于E,∴CO//DE,∴BCCD =BOOE ,∵BC =3CD,BO =3,∴3=3OE,∴OE =3,∴点D 横坐标为-3,∴点D 坐标为(-3,3+1),设直线BD 的函数解析式为:y =kx +m,把点B(3,0),D(-3,3+1)代入得:{3+1=-3k +m0=3k +m ,解得:{k =-33m =3,∴直线BD 的函数解析式为y =-33x +3;(3)∵点B(3,0),点A(-1,0),点D(-3,3+1),∴AB =4,AD =22,BD =23+2,对称轴为直线x =1,∵直线BD:y =-33x +3与y 轴交于点C,∴点C(0,3),∴OC =3,∵tan ∠CBO =COBO =33,∴∠CBO =30∘,如图1,过点A 作AF ⊥BD 于F,∴AF =12AB =2,BF =3AF =23,BD =2DE =23+2∴DF =BD -BF =23+2-23=2,∴DF =AF,∴∠ADB =45∘,设对称轴与x 轴的交点为N,即点N (1,0),BN =3-1=2,现在分两种情况讨论:第一种情况:若∠CBO =∠PBO =30∘,如图3:∴BN =3PN =2,BP =2PN,∴PN =233,BP =433,(1)当△BAD ∽△BPQ,∴BP BA=BQBD ,∴BQ =2+233,∴点Q1(1-233,0);(2)当△BAD ∽△BQP,∴BPBD=BQAB ,∴BQ =4-433,∴点Q2(-1+433,0);第二种情况:若∠PBO =∠ADB =45∘,如图3:∴BN =PN =2,BP =2BN =22,(3).当△DAB ∽△BPQ,∴BP AD=BQBD ,∴2222=BQ23+2,∴BQ =23+2,∴点Q3(1-23,0);(4).当△BAD ∽△PQB,∴BPBD=BQAD ,∴2223+2=BQ22,∴BQ ==23-2,∴点Q4(5-23,0);综上所述:满足条件的点Q 的坐标为(1-233,0)或(-1+433,0)或(1-23,0)或(5-23,0).449.【解】(1).设OB =t,则OA =2t,则点A 、B 的坐标分别为(2t,0)、(-t,0),则x =12=12(2t -t),解得:t =1,故点A 、B 的坐标分别为(2,0)、(-1,0),则抛物线的表达式为:y =a(x -2)(x +1)=ax 2+bx +2,解得:a =-1,b =1,故抛物线的表达式为:y =-x 2+x +2;(2).对于y =-x 2+x +2,令x =0,则y =2,故点C(0,2),由点A 、C 的坐标得,直线AC 的表达式为:y =-x +2,设点D 的横坐标为m,则点D (m,-m 2+m +2),则点F(m,-m +2),则DF =-m 2+m +2-(-m +2)=-m 2+2m,∵-1<0,故DF 有最大值,DF 最大时m =1,∴点D(1,2);(3)存在,理由如下:点D (m,-m 2+m +2)(m >0),则OE =m,DE =-m 2+m +2,以点O,D,E 为顶点的三角形与△BOC 相似,则DEOE =OBOC 或DEOE =OCOB ,即DOOE =12或DOOE =2,即-m 2+m +2m=12或-m 2+m +2m=2,解得:m =1或-2(舍去)或1+334或1-334(舍去),经检验m =1或1+334是方程的解,且符合题意,故m =1或1+334.450.【解】(1)将A(-1,0)、B(3,0)代入y =ax 2+bx +6,得:{a -b +6=09a +3b +6=0,解得:{a =-2b =4,∴抛物线的解析式为y =-2x 2+4x +6.(2)过点P 作PF ⊥x 轴,交BC 于点F,如图1所示.当x =0时,y =-2x 2+4x +6=6,∴点C 的坐标为(0,6).设直线BC 的解析式为y =kx +c,将B(3,0)、C(0,6)代入y =kx +c,得:{3k +c =0c =6,解得:{k =-2c =6,∴直线BC 的解析式为y =-2x +6.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴点P 的坐标为(m,-2m 2+4m +6),则点F 的坐标为(m,-2m +6),∴PF =-2m 2+4m +6-(-2m +6)=-2m 2+6m,∴S =12PF ⋅OB =-3m 2+9m =-3(m -32)2+274,∴当m =32时,△PBC 面积取最大值,最大值为274.∵点P(m,n)在平面直角坐标系第一象限内的抛物线上运动,∴0<m <3.综上所述,S 关于m 的函数表达式为:S =-3m 2+9m(0<m <3),S 的最大值为274.(3)存在点M 、点N 使得∠CMN =90∘,且△CMN 与△OBC 相似.第一种情况:如图2,∠CMN =90∘,当点M 位于点C 上方,过点M 作MD ⊥y 轴于点D,∵∠CDM =∠CMN =90∘,∠DCM =∠NCM,∴△MCD ∼△NCM,若△CMN 与△OBC 相似,则△MCD 与△OBC 相似,设M (a,-2a 2+4a +6),C(0,6),∴DC =-2a 2+4a,DM =a,当DMCD =OBOC =36=12时,△COB ∽△CDM ∽△CMN,∴a-2a 2+4a =12,解得,a =1,∴M(1,8),此时ND =12DM =12,∴N (0,172),当CDDM =OBOC =12时,△COB ∼△MDC ∼△NMC,∴-2a 2+4a a=12,解得a =74,∴M (74,558),∴DN =2DM =72此时N (0,838).第二种情况:如图3,当点M 位于点C 的下方,过点M 作ME ⊥y 轴于点E,设M (a,-2a 2+4a +6),C(0,6),∴EC =2a 2-4a,EM =a,同理可得:2a 2-4aa =12或2a 2-4aa=2,△CMN 与△OBC 相似,解得a =94或a =3,∴M (94,398)或M(3,0),此时N 点坐标为(0,38)或(0,-32).综合以上得,存在M(1,8),N (0,172)或M (74,558),N (0,838)或M (94,398),N (0,38)或M(3,0),N (0,-32),使得∠CMN =90∘,且△CMN 与△OBC 相似.451.【解】(1)∵抛物线y =ax 2+bx +8(a ≠0)过点A (-2,0)和点B(8,0),∴{4a -2b +8=064a +8b +8=0,解得{a =-12b =3.∴拋物线解析式为:y =-12x 2+3x +8;(2)当x =0时,y =8,∴C(0,8),∴直线BC 解析式为:y =-x +8,∵S △ABC =12AB ×OC =12×10×8=40,∴S △PBC =35S △ABC =24,如图1,过点P 作PG ⊥x 轴,交x 轴于点G,交BC 于点F,设p (x,-12x 2+3x +8),∴F(x,-x +8),∴PF =-12x 2+4x,∵S △PBC =12×PF ×OB =24,∴12×(-12x 2+4x )×8=24,∴t 1=2,t 2=6,∴P 1(2,12),P 2(6,8);(3)存在,理由如下:∵C(0,8),B(8,0),∠COB =90∘,∴△OBC 为等腰直角三角形,易知拋物线的对称轴为x =3,∴点E 的横坐标为3,又∵点E 在直线BC 上,∴点E 的纵坐标为5,∴E(3,5),设M(3,m),N (n,-12n 2+3n +8),(1)如图2,当MN =EM,∠EMN =90∘,△NME ∽△COB,则{m -5=n -3-12n 2+3n +8=m ,解得{n =6m =8或{n =-2m =0(舍去),∴此时点M 的坐标为(3,8),(2)如图3,当ME =EN,∠MEN =90∘时,△MEN ∼△COB,则{m -5=n -3-12n 2+3n +8=5,解得:{m =5+15n =3+15或{m =5-15n =3-15(舍去),∴此时点M 的坐标为(3,5+15);(3)如图4,当MN =EN,∠MNE =90∘时,此时△MNE 与△COB 相似,此时的点M 与点E 关于(1)的结果(3,8)对称,设M(3,m),则m -8=8-5,解得m =11,∴M(3,11);此时点M 的坐标为(3,11);故在射线ED 上存在点M,使得以点M,N,E 为顶点的三角形与△OBC 相似,点M 的坐标为:(3,8)或(3,5+15)或(3,11).452.【解】(1)将点A(-1,0),B(4,0),代入y =ax 2+bx +4,得:{0=a -b +40=16a +4b +4,解得:{a =-1b =3,∴次函数的表达式为:y =-x 2+3x +4,当x =0时,y =4,∴C(0,4),设BC 所在直线的表达式为:y =mx +n,将C(0,4)、B(4,0)代入y =mx +n,得:{4=n o =4m +n ,解得:{m =-1n =4,∴BC所在直线的表达式为:y=-x+4;(2)∵DE⊥x轴,PF⊥x轴,∴DE//PF,只要DE=PF,四边形DEFP即为平行四边形,∵y=-x2+3x+4=-(x-32)2+254,∴点D的坐标为:(32,254),将x=32代入y=-x+4,即y=-32+4=52,∴点E的坐标为:(32,52),∴DE=254-52=154,设点P的横坐标为t,则P的坐标为:(t,-t2+3t+4),F的坐标为:(t,-t+4),∴PF=-t2+3t+4-(-t+4)=-t2+4t,由DE=PF得:-t2+4t=154,解得:t1=32(不合题意舍去),t2=52,当t=52时,-t2+3t+4=-(52)2+3×52+4=214,∴点P的坐标为(52,214);(3)存在,理由如下:如下图,连接CD,连接CP:由(2)得:PF//DE,∴∠CED=∠CFP,又∵∠PCF与∠DCE有共同的顶点C,且∠PCF在∠DCE的内部,∴∠PCF≠∠DCE,∴只有∠PCF=∠CDE时,△PCF∼△CDE,∴PFCE =CFDE,∵C(0,4),E(32,52),∴CE=322,由(2)得:DE=154,PF=-t2+4t,F的坐标为:(t,-t+4),∴CF=2t,∴-t2+4t322=2t154,∵t≠0,∴154(-t+4)=3,解得:t =165,当t =165时,-t 2+3t +4=-(165)2+3×165+4=8425,∴点P 的坐标为:(165,8425).453.【解】(1)∵抛物线y =ax 2+bx +3过点A(-3,0),B(1,0),∴{9a -3b +3=0a +b +3=0,解得:{a =-1b =-2,∴拋物线解析式为y =-x 2-2x +3;∵y =-x 2-2x +3=-(x +1)2+4∴顶点D 的坐标为(-1,4);(2)①∵在Rt △AOC 中,OA =3,OC =3,∴AC 2=OA 2+OC 2=18∵D(-1,4),C(0,3),A(-3,0),∴CD 2=12+12=2∴AD 2=22+42=20∴AC 2+CD 2=AD 2∴△ACD 为直角三角形,且∠ACD =90∘.求得直线AD 的解析式为y =2x +6,设F(m,2m +6),∵CF =12AD,∴(2m +6-3)2+m 2=(5)2,解得m =-2或m =-25(舍去),∴F(-2,2),∴F 为AD 的中点,∴AFAD=12,∴k =12.②在Rt △ACD 中,tan ∠CAD =DC AC =232=13,在Rt △OBC 中,tan ∠OCB =OBOC =13,∴∠CAD =∠OCB,∵OA =OC∴∠OAC =∠OCA =45∘,∴∠FAO =∠ACB,若以A,F,O 为顶点的三角形与△ABC 相似,则可分两种情况考虑:第一种情况:当∠AOF =∠ABC 时,△AOF ∼△CBA,∴OF//BC,设直线BC 的解析式为y =kx +b,∴{k +b =0b =3,解得:{k =-3b =3,∴直线BC 的解析式为y =-3x +3,∴直线OF 的解析式为y =-3x,设直线AD 的解析式为y =mx +n,∴{-k +b =4-3k +b =0,解得:{k =2b =6,∴直线AD 的解析式为y =2x +6,联立方程组,并解得:x =-65:,y =185∴F (-65,185).第二种情况:当∠AOF =∠CAB =45∘时,△AOF ∼△CAB,∵∠CAB =45∘,∴OF ⊥AC,即OF 是∠AOC 的角平分线,∴直线OF 的解析式为y =-x,∴联立得:{y =-xy =2x +6,解得:{x =-2y =2,∴F(-2,2).综合以上可得F 点的坐标为F (-65,185)或(-2,2).454.【解】(1)由题意,得{-12×(-4)+b =8(-4)2×a =8,解得{a =12b =6.(2)①如图,分别过点A,D 作AM ⊥y 轴于点M,DN ⊥y 轴于点N.由(1)可知,直线AB 的解析式为y =-12x +6,∴C(0,6),∵∠AMC =∠DNC =∠ACD =90∘,∴∠ACM +∠DCN =90∘,∠DCN +∠CDN =90∘,∴∠ACM =∠CDN∵CA =CD,∴△AMC ≅△CND(SAS)∴AN =AM =4,DN =CM =2,∴D(-2,2),当x =-2时,y =12×22=2,∴点D 在抛物线y =12x 2上.②由{y =-12x +6y =12x 2,解得{x =-4y =8或{x =3y =92,∴点B 的坐标为(3,92),∴直线AD 的解析式为y =-3x -4,直线BD 的解析式为y =12x +3,设E (t,12t 2),∴直线EF 的解析式为y =-12x +12t 2+12t,由{y =-12x +12t 2+12t y =12x 2,解得{y =t y =12t 2或{x =-t -1y =12(t +1)2,∴F (-t -1,12(t +1)2),∵△GEF ∼△DBA,EF//AB,由题意可知,EG//DB,GF//AD,∴直线EG 的解析式为y =12x +12t 2-12t,直线FG 的解析式为y =-3x +12(t +1)2-3(t +1),联立,解得:{x =-37t -57y =12t 2-57t -514,∴G (-37t -57,12t 2-57t -514),令-37t -57=0,解得t =-53,∴G (0,209)455.【解】(1)把A(3,-3)和点B(33,0)代入拋物线得:{3a +3b =-327a +33b =0,解得:a =12,b =-332,则抛物线解析式为y =12x 2-332x;(2)存在,分两种情况讨论:第一种情况:当P 在直线AD 上方时,设P 坐标为(x,12x 2-332x ),则有AD =x -3,PD =12x 2-332x +3,①当△OCA ∽△ADP 时,OCAD =CADP ,即3x -3=312x 2-332x +3,整理得:3x 2-93x +18=23x -6,即3x 2-113x +24=0,解得:x =833或x =3(舍去),此时P(833,-43);②.当△OCA ∽△PDA 时,OCPD =CAAD ,即312x 2-332x +3=3x-3,整理得:3x 2-9x +63=6x -63,即x 2-53x +12=0,解得:x =43或x =3(舍去),此时P(43,6);当点P(0,0)时,也满足△OCA ∽△PDA;第二种情况,当P 在直线AD 下方时,同理可得:P 的坐标为(433,-103),综上所述,P 的坐标为(833,-43)或(43,6)或(433,-103)或(0,0);(3)在Rt △AOC 中,OC =3,AC =3,根据勾股定理得:OA =23,∵12OC ⋅AC =12OA ⋅h,∴h =32,∵S △AOC =13S △AOQ =332,∴△AOQ 边OA 上的高为∴S =12×PM ×OA =12(-x 2-3x )×392,过O 作OM ⊥OA,截取OM =92,过M 作MN//=-32(x +32)2+278.当x =-32时,S 最大=278,OA,交y 轴于点N,如下图所示:在Rt △OMN 中,ON =2OM =9,即N(0,9),过M 作MH ⊥x 轴,在Rt △OMH 中,MH =12OM =94,OH =32OM =934,即M (934,94),设直线MN 解析式为y =kx +9,把M(934,94)代入得:94=934k +9,即k =-3,即y =-3x +9,联立得:{y =-3x +9y =12x 2-332x,解得:{x =33y =0或{x =-23y =15,即Q(33,0)(此时与B 点重合)或(-23,15),则拋物线上存在点Q,使得S △AOC =13S △AOQ ,此时点Q 的坐标为(33,0)或(-23,15).。
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)(含简单答案)
2023年九年级数学中考专题:二次函数综合压轴题(相似三角形问题)1.如图,二次函数216y x bx c =++的图象交坐标轴于点()4,0A ,()0,2B -,点P 为x 轴上一动点.(1)求二次函数216y x bx c =++的表达式; (2)将线段PB 绕点P 逆时针旋转90︒得到线段PD ,若D 恰好在抛物线上,求点D 的坐标; (3)过点P 作PQ x ⊥轴分别交直线AB ,抛物线于点Q ,C ,连接AC .若以点B 、Q 、C 为顶点的三角形与APQ △相似,直接写出点P 的坐标. 2.抛物线25y ax bx =++经过点1,0A 和点()5,0B .(1)求该抛物线所对应的函数解析式;(2)该抛物线与直线25y x =+相交于C 、D 两点,点P 是抛物线上的动点且位于x 轴下方,直线PM y ∥轴,分别与x 轴和直线CD 交于点M 、N .①连结PC PD 、,如图1,在点P 运动过程中,PCD 的面积是否存在最大值?若存在,求出这个最大值;若不存在,说明理由;①连结PB ,过点C 作CQ PM ⊥,垂足为点Q ,如图2,是否存在点P ,使得CNQ 与PBM 相似?若存在,直接写出满足条件的点P 的坐标;若不存在,说明理由.3.已知抛物线24y ax ax b =-+与x 轴交于A ,B 两点,(A 在B 的左侧),与y 轴交于C ,若OB OC =,且03C (,).(1)求抛物线的解析式;(2)设抛物线的顶点为D ,点P 在抛物线的对称轴上,且APD ACB ∠=∠,求点P 的坐标; (3)在抛物线上是否存在一点M ,过M 作MN x ⊥轴于N ,以A 、M 、N 为顶点的三角形与AOC ∆相似,若存在,求出所有符合条件的M 点坐标,若不存在,请说明理由. 4.如图.在平面直角坐标系中.抛物线212y x bx c =++与x 轴交于A 、B 两点,与y 轴交于点C .点A 的坐标为()1,0-,点C 的坐标为()0,2-.已知点(),0E m 是线段AB 上的动点(点E 不与点A ,B 重合).过点E 作PE x ⊥轴交抛物线于点P ,交BC 于点F .(1)求该抛物线的表达式;(2)若:1:2EF PF =,请求出m 的值;(3)是否存在这样的m ,使得BEP △与ABC 相似?若存在,求出此时m 的值;若不存在,请说明理由;(4)当点E 运动到抛物线对称轴上时,点M 是x 轴上一动点,点N 是抛物线上的动点,在运动过程中,是否存在以C 、B 、M 、N 为顶点的四边形是平行四边形?若不存在,请说明理由;若存在,请直接写出点M 的坐标.5.如图,二次函数212y x bx c =-++图像交x 轴于点A ,B (A 在B 的左侧),与y 轴交于点(0,3)C ,CD y ⊥轴,交抛物线于另一点D ,且5CD =,P 为抛物线上一点,PE y轴,与x 轴交于E ,与BC ,CD 分别交于点F ,G .(1)求二次函数解析式;(2)当P 在CD 上方时,是否存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,若存在,求出CPG △与FBE 的相似比,若不存在,说明理由.(3)点D 关于直线PC 的对称点为D ,当点D 落在抛物线的对称轴上时,此时点P 的坐标为________.6.如图,抛物线22y ax bx =++与x 轴交于点A ,B ,与y 轴交于点C ,已知A ,B 两点坐标分别是(1,0)A ,(4,0)B -,连接,AC BC .(1)求抛物线的表达式;(2)将ABC ∆沿BC 所在直线折叠,得到DBC ∆,点A 的对应点D 是否落在抛物线的对称轴上?若点D 在对称轴上,请求出点D 的坐标;若点D 不在对称轴上,请说明理由;(3)若点P 是抛物线位于第二象限图象上的一动点,连接AP 交BC 于点Q ,连接BP ,BPQ ∆的面积记为1S ,ABQ ∆的面积记为2S ,求12S S 的值最大时点P 的坐标. 7.已知,二次函数23y ax bx =+-的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于C 点,点A 的坐标为()1,0-,且OB OC =.(1)求二次函数的解析式;(2)当04x ≤≤时,求二次函数的最大值和最小值分别为多少?(3)设点C '与点C 关于该抛物线的对称轴对称.在y 轴上是否存在点P ,使PCC '△与POB 相似,且PC 与PO 是对应边?若存在,求出点P 的坐标;若不存在,请说明理由.8.已知菱形OABC 的边长为5,且点(34)A ,,点E 是线段BC 的中点,过点A ,E 的抛物线2y ax bx c =++与边AB 交于点D ,(1)求点E 的坐标;(2)连接DE ,将BDE △沿着DE 翻折痕.①当B 点的对应点B '恰好落在线段AC 上时,求点D 的坐标;①连接OB ,BB ',若BB D '△与BOC 相似,请直接写出此时抛物线二次项系数=a ______. 9.如图,抛物线22(0)y ax x c a =-+≠与x 轴交于A 、()3,0B 两点,与y 轴交于点()0,3C -,抛物线的顶点为D .(1)求抛物线的解析式;(2)已知点M 是x 轴上的动点,过点M 作x 轴的垂线交抛物线于点G ,是否存在这样的点M ,使得以点A 、M 、G 为顶点的三角形与BCD △相似,若存在,请求出点M 的坐标;若不存在,请说明理由.(3)在直线BC 下方抛物线上一点P ,作PQ 垂直BC 于点Q ,连接CP ,当CPQ 中有一个角等于ACO ∠时,求点P 的坐标.10.如图,抛物线顶点D 在x 轴上,且经过(0,3)-和(4,3)-两点,抛物线与直线l 交于A 、B 两点.(1)直接写出抛物线解析式和D 点坐标;(2)如图1,若()03A ,-,且 94ABDS =,求直线l 解析式; (3)如图2,若90ADB ∠=︒,求证:直线l 经过定点,并求出定点坐标.11.如图1,已知抛物线2=23y x x --与x 轴交于A 、B 两点(点A 在点B 的左侧),与y 轴交于点C ,连接BC ,点P 是线段BC 下方抛物线上一动点,过点P 作∥PE BC ,交x 轴于点E ,连接OP 交BC 于点F .(1)直接写出点A ,B ,C 的坐标以及抛物线的对称轴; (2)当点P 在线段BC 下方抛物线上运动时,求BFPE取到最小值时点P 的坐标; (3)当点P 在y 轴右边抛物线上运动时,过点P 作PE 的垂线交抛物线对称轴于点G ,是否存在点P ,使以P 、E 、G 为顶点的三角形与①AOC 相似?若存在,来出点P 的坐标;若不存在,请说明理由.12.如图,抛物线212ax ax b =-+y 经过()1,0A -,32,2C ⎛⎫⎪⎝⎭两点,与x 轴交于另一点B .(1)求此抛物线的解析式;(2)若抛物线的顶点为M ,点P 为线段OB 上一动点(不与点B 重合),点Q 在线段MB 上移动,且2PM MQ MB =⋅,设线段OP x =,2MQ y =,求2y 与x 的函数关系式,并直接写出自变量x 的取值范围;并直接写出PM APPQ BQ-的值;(3)在同一平面直角坐标系中,两条直线x m =,x n =分别与抛物线交于点E ,G ,与(2)中的函数图象交于点F ,.H 问四边形EFHG 能否为平行四边形?若能,求m ,n 之间的数量关系;若不能,请说明理由.13.已知抛物线213222y x x =-++交x 轴于A 、B 两点,A 在B 的左边,交y 轴于点C .(1)求抛物线顶点的坐标;(2)如图1,若10,2E ⎛⎫- ⎪⎝⎭,P 在抛物线上且在直线AE 上方,PQ AE ⊥于O ,求PQ 的最大值;(3)如图2,点(),3D a (32a <)在抛物线上,过A 作直线交抛物线于第四象限另一点F ,点M 在x 轴上,以M 、B 、D 为顶角的三角形与AFB △相似,求点M 的坐标. 14.如图,抛物线23y ax bx =+-与x 轴交于点()1,0A 、()3,0B ,与y 轴交于点C ,联结AC 、BC .(1)求该抛物线的表达式及顶点D 的坐标;(2)如果点P 在抛物线上,CB 平分ACP ∠,求点P 的坐标:(3)如果点Q 在抛物线的对称轴上,DBQ 与ABC 相似.求点Q 的坐标.15.如图,抛物线23y ax x c =-+与x 轴交于(4,0)A -,B 两点,与y 轴交于点(0,4)C ,点D 为x 轴上方抛物线上的动点,射线OD 交直线AC 于点E ,将射线OD 绕点O 逆时针旋转45︒得到射线OP ,OP 交直线AC 于点F ,连接DF .(1)求抛物线的解析式; (2)当点D 在第二象限且34DE EO =时,求点D 的坐标; (3)当ODF △为直角三角形时,请直接写出点D 的坐标.16.如图①,抛物线与x 轴交于A ,B 两点,与y 轴交于点C (0,3),顶点为D (4,-1),对称轴与直线BC 交于点E ,与x 轴交于点F .(1)求二次函数的解析式;(2)点M 在第一象限抛物线的对称轴上,若点C 在BM 的垂直平分线上,求点M 的坐标; (3)如图①,过点E 作对称轴的垂线在对称轴的右侧与抛物线交于点H ,x 轴上方的对称轴上是否存在一点P ,使以E ,H ,P 为顶点的三角形与EFB △相似,若存在,求出P点坐标;若不存在,请说明理由.17.如图,在平面直角坐标系xOy 中,已知抛物线2y ax x c =++经过()2,0A -,()0,4B 两点,直线3x =与x 轴交于点C .(1)求a ,c 的值;(2)经过点O 的直线分别与线段AB ,直线3x =交于点D ,E ,且BDO △与OCE △的面积相等,求直线DE 的解析式;(3)P 是抛物线上位于第一象限的一个动点,在线段OC 和直线3x =上是否分别存在点F ,G ,使B ,F ,G ,P 为顶点的四边形是以BF 为一边的矩形?若存在,求出点F的坐标;若不存在,请说明理由.18.如图1,抛物线2y ax bx c =++与x 轴交于A ,B (点A 在点B 左侧),与y 轴负半轴交于C ,且满足2OA OB OC ===.(1)求抛物线的解析式;(2)如图2,D 为y 轴负半轴上一点,过D 作直线l 垂直于直线BC ,直线l 交抛物线于E ,F 两点(点E 在点F 右侧),若3DF DE =,求D 点坐标; (3)如图3,点M 为抛物线第二象限部分上一点,点M ,N 关于y 轴对称,连接MB ,P 为线段MB 上一点(不与M 、B 重合),过P 点作直线x t =(t 为常数)交x 轴于S ,交直线NB 于Q ,求QS PS -的值(用含t 的代数式表示).参考答案:1.(1)211266y x x =-- (2)()3,1D -或()8,10D -(3)点P 的坐标为()011-,或()10,.2.(1)265y x x =-+ (2)37,24⎛⎫- ⎪⎝⎭或()3,4-3.(1)243y x x =-+ (2)()2,2P 或()2,2-(3)存在符合条件的M 点,且坐标为:110(3M ,7)9-,()26,15M ,38(3M ,5)9-4.(1)213222y x x =--; (2)2m =;(3)存在,m 的值为0或3;(4)存在,M 点的坐标为()7,0或()1,0M 或⎫⎪⎪⎝⎭或⎫⎪⎪⎝⎭.5.(1)215322y x x =-++;(2)存在点P ,使得以C ,P ,G 为顶点的三角形与FBE 相似,CPG △与FBE 的相似比为2或25;(3)P 点横坐标55.6.(1)213222y x x =--+(2)点D 不在抛物线的对称轴上, (3)(2,3)-7.(1)2=23y x x --(2)函数的最大值为5,最小值为4- (3)存在,(0,9)P -或9(0,)5P -8.(1)13(2)2E , (2)①11(4)2D ,或23(4)6D ,;①47-9.(1)2=23y x x --(2)()0,0,()6,0,8,03⎛⎫ ⎪⎝⎭,10,03⎛⎫⎪⎝⎭(3)57,24⎛⎫- ⎪⎝⎭或者315,24⎛⎫- ⎪⎝⎭10.(1)()2324y x =--,()2,0D (2)334y x =-或1534y x =- (3)证明见解析,定点坐标为423⎛⎫- ⎪⎝⎭,11.(1)A (﹣1,0),B (3,0),C (0,﹣3),对称轴为直线x =1(2)当t =32时,BF PE 最小,最小值为47,此时P (32,﹣154).(3)存在,点P 的坐标为(2,﹣3)12.(1)211322y x x =-++(2)22150322y x x x =-+≤<(),PM AP PQ BQ -的值为0 (3)m 、n 之间的数量关系是2(1)m n m +=≠13.(1)(32,258)答案第3页,共3页(3)(2,0)或(-5,0)或13,07⎛⎫ ⎪⎝⎭或2205⎛⎫- ⎪⎝⎭,14.(1)2=+43y x x --,(21)D , (2)111639⎛⎫ ⎪⎝⎭,- (3)(2,−2)或12,3⎛⎫ ⎪⎝⎭15.(1)234y x x =--+(2)(1,6)D -或(3,4)D -(3)(3,4)-或(0,4)或2⎫⎪⎪⎝⎭或2⎫⎪⎪⎝⎭16.(1)21234y x x =-+(2)(4,3(3)存在P 1)或(4,1),使以E ,H ,P 为顶点的三角形与EFB △相似,17.(1)12a =-,4c = (2)23y x =- (3)存在这样的点F ,点F 的坐标为(2,0)或18.(1)2122y x =- (2)()0,1D -或190,8D ⎛⎫- ⎪⎝⎭, (3)24QS PS t -=-+。
二次函数中的三角形相似
二次函数中的三角形相似三角形相似是中学数学重要数学工具之一,是我们必须掌握的内容,学习了二次函数后,与三角形相似相结合的题型成为了中考的热点,下面给大家列举一下相关的题型。
一、 求关系式型例1、 如图1所示,在边长为a 的正方形ABCD 的BC 边上任取一点E ,作EF ⊥AE ,交CD 于点F ,如果BE=x ,CF=y ,那么x 与y 的函数关系式 为()A 、21y x x a =-+B 、2x y x a =-C 、2x y x a =-+D 、2x y x a=+ 分析:欲求x 与y 的函数关系式,发现它们分别处在Rt ΔABE 和Rt ΔECF 中,由EF ⊥AE ,易求Rt ΔABE 和Rt ΔECF 相似,根据对应边比例关系即可求出。
解:在正方形ABCD 中,∠B=∠C=90º,∵EF ⊥AE ,∴∠AEB+∠CEF=90º,又∵∠AEB+∠BAE=90º,∴∠CEF=∠BAE∴Rt ΔABE ∽ Rt ΔECF ,AB BE EC CF =,a x a x y =-,∴21y x x a=-+,选A. 例2、 如图2所示,等腰Rt ΔABC 的斜边AB 所在的直线上有点E 、F ,且∠E+∠F=45º,AE=3,设AB=x,BF=y ,则y 关于x 的函数关系式为 。
分析:由等腰Rt ΔABC 及∠E+∠F=45º,利用外角的 知识,易得∠E=∠BCF ,∠ECA=∠F ,从而证得ΔEAC ∽ ΔCBF ,根据对应边比例关系即可求出。
解:在等腰Rt ΔABC 中,AB=x ,得∠CAB=∠ABC=45º,AC BC x ==,又因为∠CAB=∠E+∠ECA ,∠E+∠F=45º,得∠ECA=∠F ,同理可得∠E=∠BCF ,所以,ΔEAC ∽ ΔCBF ,EA AC CB BF =22y=,∴216y x =. 二、 求面积最大型例3、如图3所示,要建一个长方形养鸡场,鸡场的一边靠墙,如果用50m 长的篱笆围成中间有一道篱笆墙的养鸡场,设它的长为xm , ⑴要使鸡场面积最大,鸡场的长应为多少?⑵如果中间有n (n 是大于1的整数)道篱笆墙,要使鸡场面积最大,鸡场的长应为多少? 分析:长方形的长为xm ,则可以把它的宽表示出来,再根据长方形的面积公式得出关系式,C D E y F 图1C EA B F图2 图3根据最大值去求出即可。
中考数学二次函数存在性问题 及参考答案
中考数学二次函数存在性问(Wen)题 及参考答案一、二次函数中相似三(San)角形的存在性问题 1.如图,把抛(Pao)物线向左(Zuo)平移(Yi)1个(Ge)单位,再向下平移(Yi)4个单位,得(De)到抛物线2y x =.所得抛物线与2y x =轴交于A ,B 两点(点A 在点B 的左边),与2y x =轴交于点C ,顶点为D.(1)写出2y x =的值;(2)判断△ACD 的形状,并说明理由;(3)在线段AC 上是否存在点M ,使△AOM ∽△ABC ?若存在,求出点M 的坐标;若不存在,说明理由.2.如图,已知抛物线经过A (﹣2,0),B (﹣3,3)及原点O ,顶点为C . (1)求抛物线的解析式;(2)若点D 在抛物线上,点E 在抛物线的对称轴上,且A 、O 、D 、E 为顶点的四边形是平行四边形,求点D 的坐标;(3)P 是抛物线上的第一象限内的动点,过点P 作PM 2y x =x 轴,垂足为M ,是否存在点P ,使得以P 、M 、A 为顶点的三角形△BOC 相似?若存在,求出点P 的坐标;若不存在,请说明理由.二、二次函数中面积的存(Cun)在性问题3.如图,抛物(Wu)线2y x =与(Yu)双曲线2y x =相(Xiang)交于点(Dian)A ,B .已(Yi)知点(Dian)B 的坐标(Biao)为(-2,-2),点A 在第一象限内,且tan ∠AOX =4.过点A 作直线AC ∥2y x =轴,交抛物线于另一点C . (1)求双曲线和抛物线的解析式; (2)计算△ABC 的面积;(3)在抛物线上是否存在点D ,使△ABD 的面积等于△ABC 的面积.若存在,请你写出点D 的坐标;若不存在,请你说明理由.4.如图,抛物线y =ax 2+c (a >0)经过梯形ABCD 的四个顶点,梯形的底AD 在x 轴上, 其中A (-2,0),B (-1, -3).(1)求抛物线的解析式;(3分)(2)点(Dian)M 为(Wei)y 轴上(Shang)任意一点,当点M 到(Dao)A 、B 两点的距离之和为最小时(Shi),求此时点M 的(De)坐标;(2分(Fen))(3)在(Zai)第(2)问的结论下,抛物线上的点P 使S △PAD =4S △ABM 成立,求点P 的坐标.(4分)(4)在抛物线的BD 段上是否存在点Q 使三角形BDQ 的面积最大,若有,求出点Q 的坐标,若没有,请说明理由。
重难点02二次函数中相似三角形问题(原卷版)
重难点02 二次函数中相似三角形问题二次函数背景下的相似三角形考点分析:1.先求函数的解析式,然后在函数的图像上探求符合几何条件的点;2.简单一点的题目,就是用待定系数法直接求函数的解析式;3.复杂一点的题目,先根据图形给定的数量关系,运用数形结合的思想,求得点的坐标,继而用待定系数法求函数解析式;4.还有一种常见题型,解析式中由待定字母,这个字母可以根据题意列出方程组求解;5.当相似时:一般说来,这类题目都由图像上的点转化到三角形中的边长的问题,再由边的数量关系转化到三角形的相似问题;6.考查利用几何定理和性质或者代数方法建立方程求解的方法。
一、单选题1.(2022·浙江绍兴·九年级期末)如图,已知点()16,0A ,O 为坐标原点,P 是线段OA 上任意一点(不含端点O ,A ),过P ,O 两点的二次函数1y 和过P ,A 两点的二次函数2y 的图象开口均向下,它们的顶点分别为B ,C ,射线OB 与AC 相交于点D ,当10OD AD ==时,这两个二次函数的最大值之和等于( )A .10B .8C .6D .4二、填空题 2.(2022·浙江宁波·九年级期末)已知过点()4,1B 的抛物线21522y x x c =-+与坐标轴交于点A ,C 如图所示,连结AC ,BC ,AB ,第一象限内有一动点M 在抛物线上运动,过点M 作AM MP ⊥交y 轴于点P ,当点P 在点A 上方,且AMP 与ABC 相似时,点M 的坐标为______.三、解答题能力拓展技巧方法3.(2022·浙江丽水·三模)定义:对于抛物线()2240y ax bx c b ac =++->,把它在x 轴下方的部分图形作关于x 轴的轴对称图形,所得的图形称为2y ax bx c =++的“W 型曲线”.如图为242y mx x =-+的“W 型曲线”,与x 轴的交点为A ,B ,与y 轴的交点为C ,与对称轴的交点为P ,有CP x ∥轴.(1)求m 的值.(2)若直线y x n =+与242y mx x =-+的“W 型曲线”有且只有三个公共点,求n 的值.(3)在242y mx x =-+的“W 型曲线”是否存在点Q ,使得1tan 2POQ ∠=,若存在,求点Q 的横坐标;若不存在,说明理由.4.(2022·浙江湖州·中考真题)如图1,已知在平面直角坐标系xOy 中,四边形OABC 是边长为3的正方形,其中顶点A ,C 分别在x 轴的正半轴和y 轴的正半轴上,抛物线2y x bx c =-++经过A ,C 两点,与x 轴交于另一个点D .(1)①求点A ,B ,C 的坐标;②求b ,c 的值.(2)若点P 是边BC 上的一个动点,连结AP ,过点P 作PM ⊥AP ,交y 轴于点M (如图2所示).当点P 在BC 上运动时,点M 也随之运动.设BP =m ,CM =n ,试用含m 的代数式表示n ,并求出n 的最大值.5.(2022·浙江金华·二模)如图1,已知等腰ABC ∆中,10,12,AB AC BC AD BC ===⊥,垂足为点D ,动点P 从点A 出发,以1.5个单位每秒速度,沿AB 方向运动,同时,点Q 从点B 出发,以1个单位每秒速度,沿BC 方向运动,当点P 到达点B 时,点Q 即停止运动,设运动时间为t 秒,过点P 作PR AD ⊥,垂足为R ,连结,QR PQ ,作PQR ∆关于QR 的对称MQR ∆.(1)如图2,当PQ AB ⊥时,求PQ 的长度.(2)求PBQ ∆与PQR ∆面积差的最大值.(3)当点M 落在ABC ∆的边上时,求t 的值.6.(2022·浙江宁波·九年级期末)如图1,已知二次函数()2416133y x =-++的图象与x 轴交于A ,B 两点(点A 在点B 的左边),与y 轴交于点C ,点D 是抛物线的顶点.(1)求点A ,点C 的坐标;(2)如图2,连结AC ,DC ,过点C 作CE AB ∥交抛物线于点E .求证:∠DCE =∠CAO ;(3)如图3,在(2)的条件下,连结BC ,在射线EC 上有点P ,使以点D ,E ,P 为顶点的三角形与△ABC 相似,求EP 的长.7.(2022·浙江湖州·九年级期中)抛物线23y ax bx =++过点A (-1,0),点B (3,0),顶点为C .(1)求抛物线的表达式及点C的坐标;(2)如图1,点P在抛物线上,连接CP并延长交x轴于点D,连接AC,若△DAC是以AC为底的等腰三角形,求点P的坐标;(3)如图2,在(2)的条件下,点E是线段AC上(与点A,C不重合)的动点,连接PE,作PEF CAB∠=∠,边EF交x轴于点F,当AF的长度最大时,求点E的坐标.8.(2021·浙江金华·一模)如图1,抛物线y=ax2﹣6ax+6(a≠0)与x轴交于点A(8,0),与y轴交于点B,在x轴上有一动点E(m,0)(0<m<8),过点E作x轴的垂线交直线AB于点N,交抛物线于点P,过点P作PM⊥AB于点M.(1)求抛物线的函数表达式;(2)当△PMN的周长是△AOB周长的35时,求m的值;(3)如图2,在(2)的条件下,将线段OE绕点O逆时针旋转得到OE′,旋转角为30°,连接E′A、E′B,在平面直角坐标系内找一点Q,使△AOE′∽△BOQ,并求出点Q的坐标.9.(2021·浙江温州·九年级期末)如图,y=ax22ax+a4与x轴负半轴交于A,交y轴于B,过抛物线顶点C作CD y轴,垂足为D,四边形AOCD是平行四边形.(1)求抛物线的对称轴以及二次函数的解析式;(2)作BE x∥轴交抛物线于另一点E,交OC于F,求EF的长;(3)该二次函数图象上有一点G(m,n)若点G到y轴的距离小于2,则n的取值范围为___.10.(2022·浙江·嘉兴一中一模)如图,抛物线y=1-x2+bx+c与x轴交于点A(﹣2,0)和点B(8,0),与2y轴交于点C,顶点为D,连接AC,BC,BC与抛物线的对称轴l交于点E.(1)求抛物线的表达式;(2)点P 是第一象限内抛物线上的动点,连接PB ,PC ,当S △PBC =720S △ABC 时,求点P 的坐标; (3)点N 是对称轴l 右侧抛物线上的动点,在射线ED 上是否存在点M ,使得以点M ,N ,E 为顶点的三角形与△OBC 相似?若存在,求点M 的坐标;若不存在,请说明理由.11.(2022·浙江金华·一模)如图,把两个全等的Rt AOB 和Rt COD 分别置于平面直角坐标系中,使直角边OB 、OD 在x 轴上.已知点()2,4A ,过A 、C 两点的直线分别交x 轴、y 轴于点E 、F ,抛物线2y ax bx c =++经过O 、A 、C 三点.(1)求该抛物线的函数解析式;(2)点G 为抛物线上位于线段OC 所在直线上方部分的一动点,求G 到直线OC 的最大距离和此时点G 的坐标;(3)点P 为线段OC 上一个动点,过点P 作y 轴的平行线交抛物线于点M ,交x 轴于点N ,问是否存在这样的点P ,使得四边形ABPM 的边AM 与边BP 相等?若存在,求出此时点P 的坐标;若不存在,请说明理由.12.(2022·浙江绍兴·九年级期末)在平面直角坐标系xOy 中,如果抛物线()20y ax bx c a =++≠上存在一对点P 和P ',且它们关于坐标原点O 对称,那么我们把点P 和P '叫做这条抛物线的成对点.(1)已知点()2,P m -与P '是抛物线224y x x =--的成对点,求P '的坐标.(2)如图,已知点A 与C 为抛物线22y x x c =--+的成对点,且A 为该抛物线的顶点.①求c 的值.②若这条抛物线的对称轴与x 轴交于点B ,连结AC ,BC ,点D 是射线AB 上一点.如果∠ADC =∠ACB ,求点D 的坐标.13.(2021·浙江·天台县赤城中学一模)如图,抛物线y =ax 2+bx +c 交x 轴于点A ,B ,其中点A (﹣1,0),交y 轴于点C (0,2),对称轴交x 轴于点M (32,0).(1)求抛物线的解析式;(2)作点C关于点M的对称点D,顺次连接A,C,B,D,判断四边形ACBD的形状,并说明理由;(3)在该抛物线的对称轴上是否存在点P,使△BMP与△BAD相似?若存在,求出所有满足条件的P点的坐标;若不存在,请说明理由.14.(2022·浙江金华·九年级期末)已知抛物线:y=ax2﹣6ax﹣16a(a>0)与x轴交点为A,B(A在B的左侧),与y轴交于点C,点G是AC的中点.(1)求点A ,B 的坐标及抛物线的对称轴.(2)直线y =﹣32x 与抛物线交于点M 、N ,且MO =NO ,求抛物线解析式. (3)已知点P 是(2)中抛物线上第四象限内的动点,过点P 作x 轴的垂线交BC 于点E ,交x 轴于点F .若以点C ,P ,E 为顶点的三角形与△AOG 相似,求点P 的坐标.15.(2022·浙江宁波·九年级期末)如图,抛物线213222y x x =--与x 轴交于点A ,B ,与y 轴交于点C .点P 是线段BC 上的动点(点P 不与点B ,C 重合),连结AP 并延长AP 交抛物线于另一点Q ,连结CQ ,BQ ,设点Q 的横坐标为x x .(1)①写出A ,B ,C 的坐标:A ( ),B ( ),C ( );②求证:ABC 是直角三角形;(2)记BCQ △的面积为S ,求S 关于x 的函数表达式;(3)在点P 的运动过程中,PQ AP是否存在最大值?若存在,求出的最大值;若不存在,请说明理由.16.(2021·浙江金华·九年级期末)已知抛物线()()12y x x m m =+-与x 轴负半轴交于点A ,与x 轴正半轴交于点B ,与y 轴交于点C ,点P 为抛物线上一动点(点P 不与点C 重合).(1)当ABC为直角三角形时,求ABC的面积轴于点Q,求BQ的长.(2)如图,当AP BC∥时,过点P作PQ x(3)当以点A,B,P为顶点的三角形和ABC相似时(不包括两个三角形全等),求m的值.。
二次函数三角形相似解题思路
二次函数三角形相似解题思路
一、二次函数三角形相似的解题思路:
1. 了解二次函数三角形的基本特性:
二次函数三角形是由三个二次函数组成的一个边长相等的三角形的
形状,它的三角形的内角都为60°,而且三角形的每条边都是一个二次
函数,且都相互垂直。
2. 根据二次函数三角形的特性来找出两个三角形之间的相似性:
(1)根据三角形的内角和边长都相等来判断两个三角形是否相似;
(2)根据二次函数的斜率和顶点的特征值来判断两个三角形的形
状是否相似;
(3)根据二次函数三角形的面积特征值来判断两个三角形的面积
是否相似。
3. 根据相似性来解决相关数学问题:
利用二次函数三角形的相似性可以解决多种数学问题,比如:求出
两个三角形之间一定比例的边长;求出一定比例的三角形内角;计算
两个三角形面积的比例等等。
二、解决二次函数三角形相似问题的一般步骤:
1. 画出问题的初始条件图;
2. 找出两个三角形之间的相似性:
(1)根据三角形的内角和边长都相等来判断两个三角形是否相似;
(2)根据二次函数的斜率和顶点的特征值来判断两个三角形的形
状是否相似;
(3)根据二次函数三角形的面积特征值来判断两个三角形的面积
是否相似。
3. 推断出两三角形间的关系;
4. 根据关系给出问题的解答。
2024年九年级数学中考专题:二次函数相似三角形问题 课件
04
方法归纳
四、方法归纳
在平面直角坐标系中,二次函数背景下 当两个三角形相似,求点的坐标,一般 情况下,相似的两个三角形都是特殊的 三角形(常见直角三角形),且有一条 直角边在坐标轴上,或者垂直平行坐标 轴,结合相似三角形模型,对应边成比 例,求出点的坐标即可
05
学以致用
五、学以致用
如图,抛物线经过A(4,0),B(1,0),C(0,−2)三点。 (1)求出抛物线的解析式; (2)P是抛物线上一动点,过P作PM⊥x轴,垂足为M,是否存在P点,使得以 A,P,M为顶点的三角形与ΔOAC相似?若存在,请求出符合条件的点P的 坐标;若不存在,请说明理由
一、相似三角形
相似三角形判定:(1)两角对应分别相等的两个三角形相似。 (2)三边对应成比例的两个三角形相似。 (3)两边对应成比例且它们的夹角相等的两个三角形 相似。
02
相似三角形模型
(1) A字型(反A型)
二、相似三角形模型
(2)8字型(反8型)
(3)一线三垂直
二
例题讲解
三、例题讲解
抛物线与x轴交于A、B两点,与y轴交于点C,且点A的坐标为(-3,0),顶点D 的坐标为(-1,4) (1)求抛物线的表达式和B、C两点的坐标 (2)连接AD 、 AC 、 CD 、 BC,在y轴上是否存在点M,使得以M 、B 、 C 为顶点的三角形与ΔACD相似?若存在,请求出点M的坐标;若不存在,请 说明理由
中考专题: 二次函数三角形相似问题
目录
01
02
03
04 05
相
相
例
方
学
似
似
题
法
以
三
三
讲
归
2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(含答案)
2024年九年级数学中考必刷题:二次函数中的相似三角形问题专项特训(1)求抛物线的表达式;(2)如图1,直线交轴于点,点为线段下方抛物线上的一点,过点作轴交直线于点,在直线上取点,连接,使得的最大值及此时点的坐标;(3)连接,把原抛物线沿射线方向平移个单位长度,是平移后新抛物线上的一点,过点作垂直轴于点,连接,直接写出所有使得的点的横坐标.(1)求抛物线的表达式;(2)如图1,连接,在y 轴的负半轴是否存在点Q ,使得?若存在,求Q 点的坐标;若不存在,请说明理由.CD x ()2,0D P AC PH y ∥CD H CD Q PQ HQ PQ =524PQ PH -P BC 214y x bx c =++BC 25M MN x N AM AMN ABC ∽ M AC 12OQC OAC ∠∠=(1)如图1,当,时,求的值;(2)如图2,当时,过点作直线的垂线交轴于点,求坐标;(3)如图3,当时,平移直线,使之与抛物线交于两点,点关于轴的对称点为,求证:.4.在平面直角坐标系中,已知抛物线与x 轴分别交于(1)求抛物线的函数表达式;(2)如图1,点D 为第四象限抛物线上一点,连接交于点E ,求(3)如图2,连接,过点O 作直线,点P ,Q 分别为直线点,试探究:在第一象限是否存在这样的点P ,Q ,使.若存在,请求出所有符合条件的点P 的坐标;若不存在,请说明理由.5.如图,在平面直角坐标系中,点,,抛物线1a =1k =b 12a =A l y T T 1k =l C M N ,P y Q MQP NQP ∠=∠xOy 23y ax ax c =-+(1,0)A -AD BC ,AC BC ,l BC ∥PQB CAB ∽()1,2A ()5,0B 22y ax =-(1)求点C 的坐标和直线的表达式;(2)设抛物线分别交边①若与相似,求抛物线表达式;②若是等腰三角形,则a 的值为6.如图,抛物线经过(1)求抛物线的解析式:(2)点为第四象限抛物线上一动点,点横坐标为.①如图1,若时,求的值:②如图2,直线与抛物线交于点,连接(1)求抛物线的解析式;AB 22(0)y ax ax a =->CDB △BOA △OAE △2y x mx n =++C C BC 90ACB ∠=︒t BD E(1)若,.①如图1,求点A 、B 、C 和点P 的坐标;②如图2,当时,求点M 的坐标;(2)若点A 的坐标为,且,当标.(1)求点、、的坐标;(2)连接,抛物线的对称轴、为顶点的三角形与理由.2b =3c =3105MN =,03c ⎛⎫- ⎪⎝⎭PM BC ∥93102AN MN +=A B C BC C D(1)求抛物线的解析式及点C 的坐标;(2)求证:是直角三角形;(3)若点N 为x 轴上的一个动点,过点N 作轴与抛物线交于点M ,则是否存在以为顶点的三角形与相似?若存在,请求出点N的坐标;若不存在,请说明理由.11.如图,在平面直角坐标系中,抛物线的顶点P 在抛物线上.(1)求a 的值;(2)直线与抛物线,分别交于点A ,B ,若的最大值为3,请求出m 的值;(3)Q 是x 轴的正半轴上一点,且的中点M 恰好在抛物线上.试探究:此时无论m 为何负值,在y 轴的负半轴上是否存在定点G ,使总为直角?若存在,请求出点G 的坐标;若不存在,请说明理由.12.如图,二次函数经过点、,点P 是x 轴正半轴上一个动点,过点P 作垂直于x 轴的直线分别交抛物线和直线于点E 和点F .设点P 的横坐标为m .ABC MN x ⊥O M N ,,ABC xOy ()()221:20C y x m m m =--+<22:C y ax =()x t t m =>1C 2C AB PQ 2C PQG ∠2y x bx c =-++()40A ,()02B ,AB(1)求二次函数的表达式;(2)若E 、F 、P 三个点中恰有一点是其它两点所连线段的中点(三点重合除外)时,求m 的值.(3)点P 在线段上时,若以B 、E 、F 为顶点的三角形与相似,求m 的值.13.如图,已知二次函数的图象经过,两点.(1)求此二次函数的解析式;(2)设二次函数的图象与轴的另一个交点为,它的顶点为,连接,,,.请你判断与是否相似,并说明理由;(3)当时,求此二次函数的最大值和最小值.14.如图,已知抛物线与轴交于两点,与轴交于点,.OA FPA V 2y x bx c =-++()1,0A -()0,3B 2y x bx c =-++x C D AB BC BD CD BCD △OBA △03x ≤≤y 21:3C y ax bx =++x ,A B y C 3OB OC OA ==(1)求抛物线的解析式;(2)如图2,已知点为第一象限内抛物线上的一点,点的坐标为,,求点的坐标;(3)如图3,将抛物线平移到以坐标原点为顶点,记为,点在抛物线上,过点作分别交抛物线于两点,求证:直线过定点,并求出该定点的坐标.15.在平面直角坐标系中,点B 从原点出发以每秒1个单位长度的速度沿x 轴正方向运动.是等腰直角三角形,其中,,点C 在第一象限,过C 作轴,垂足为D ,连接交于E ,设运动时间为秒.(1)证明:≌;(2)当与相似时,求t 的值;(3)在(2)条件下,抛物线m 经过A ,B ,D 三点,请问在抛物线m 上否存在点P ,使得面积与的面积相等?若存在,请求出.1C P 1C Q ()1,045POC OCQ ∠+∠=︒P 1C 2C ()1,1T -2C T TM TN ⊥2C ,M N MN ABC 90ABC ∠=︒()0,2A CD x ⊥AD BC (0)t t >AOB BDC AEC △BED ADP △ABD △参考答案:。
中考数学二次函数与相似三角形有关的问题知识解读
二次函数与相似三角形有关的问题知识解读【专题说明】二次函数与相似三角形是中考数学的压轴题,具有一定的难度,也是中考考频比较高的,本节未同学们提供解题途径,希望能够助同学们轻松解题。
【解题思路】关于函数与相似三角形的问题一般三个解决途径:(1)求相似三角形的第三个顶点时,先要分析已知三角形的边和角的特点,进而得出已知三角形是否为特殊三角形.根据未知三角形中已知边与已知三角形的可能对应边分类讨论;(2)利用已知三角形中对应角,在未知三角形中利用勾股定理、三角函数来推导边的大小;(3)若两个三角形的各边均未给出,则应先设所求点的坐标进而用函数解析式来表示各边的长度,之后利用相似来列方程求解.【典例分析】【典例1】(2019•娄底)如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),点B(3,0),与y轴交于点C,且过点D(2,﹣3).点P、Q是抛物线y=ax2+bx+c上的动点.(1)求抛物线的解析式;(2)直线OQ与线段BC相交于点E,当△OBE与△ABC相似时,求点Q的坐标.【解答】解:(1)函数的表达式为:y=a(x+1)(x﹣3),将点D坐标代入上式并解得:a=1,故抛物线的表达式为:y=x2﹣2x﹣3…①;(2)∵OB=OC=3,∴∠OCB=∠OBC=45°,∵∠ABC=∠OBE,故△OBE与△ABC相似时,分为两种情况:①当∠ACB=∠BOQ时,AB=4,BC=3,AC=,过点A作AH⊥BC于点H,S△ABC=×AH×BC=AB×OC,解得:AH=2,则sin∠ACB==,则tan∠ACB=2,则直线OQ的表达式为:y=﹣2x…②,联立①②并解得:x=或﹣,故点Q(,﹣2)或(﹣,2),②∠BAC=∠BOQ时,tan∠BAC==3=tan∠BOQ,则点Q(n,﹣3n),则直线OQ的表达式为:y=﹣3x…③,联立①③并解得:x=,故点Q(,)或(,);综上,当△OBE与△ABC相似时,Q的坐标为:(,﹣2)或(﹣,2)或(,)或(,).【变式1-1】(2022•贵港)如图,已知抛物线y=﹣x2+bx+c经过A(0,3)和B(,﹣)两点,直线AB与x轴相交于点C,P是直线AB上方的抛物线上的一个动点,PD⊥x轴交AB于点D.(1)求该抛物线的表达式;(2)若以A,P,D为顶点的三角形与△AOC相似,请直接写出所有满足条件的点P,点D的坐标.【解答】解:(1)将A(0,3)和B(,﹣)代入y=﹣x2+bx+c,,解得,∴该抛物线的解析式为y=﹣x2+2x+3;(3)①当△AOC∽△DP A时,∵PD⊥x轴,∠DP A=90°,∴点P纵坐标是3,横坐标x>0,即﹣x2+2x+3=3,解得x=2,∴点D的坐标为(2,0);∵PD⊥x轴,∴点P的横坐标为2,∴点P的纵坐标为:y=﹣22+2×2+3=3,∴点P的坐标为(2,3),点D的坐标为(2,0);②当△AOC∽△DAP时,此时∠APG=∠ACO,过点A作AG⊥PD于点G,∴△APG∽△ACO,∴,设点P的坐标为(m,﹣m2+2m+3),则D点坐标为(m,﹣m+3),则,解得:m=,∴D点坐标为(,1),P点坐标为(,),综上,点P的坐标为(2,3),点D的坐标为(2,0)或P点坐标为(,),D 点坐标为(,1).【变式1-2】(2022•绵阳)如图,抛物线y=ax2+bx+c交x轴于A(﹣1,0),B两点,交y轴于点C(0,3),顶点D的横坐标为1.(1)求抛物线的解析式;(2)在y轴的负半轴上是否存在点P使∠APB+∠ACB=180°,若存在,求出点P的坐标,若不存在,请说明理由;(3)过点C作直线l与y轴垂直,与抛物线的另一个交点为E,连接AD,AE,DE,在直线l下方的抛物线上是否存在一点M,过点M作MF⊥l,垂足为F,使以M,F,E三点为顶点的三角形与△ADE相似?若存在,请求出M点的坐标,若不存在,请说明理由.【解答】解:(1)∵顶点D的横坐标为1,∴抛物线的对称轴为直线x=1,∵A(﹣1,0),∴B(3,0),∴设抛物线的解析式为:y=a(x+1)(x﹣3),将C(0,3)代入抛物线的解析式,则﹣3a=3,解得a=﹣1,∴抛物线的解析式为:y=﹣(x+1)(x﹣3)=﹣x2+2x+3.(2)存在,P(0,﹣1),理由如下:∵∠APB+∠ACB=180°,∴∠CAP+∠CBP=180°,∴点A,C,B,P四点共圆,如图所示,由(1)知,OB=OC=3,∴∠OCB=∠OBC=45°,∴∠APC=∠ABC=45°,∴△AOP是等腰直角三角形,∴OP=OA=1,∴P(0,﹣1).(3)存在,理由如下:由(1)知抛物线的解析式为:y=﹣x2+2x+3,∴D(1,4),由抛物线的对称性可知,E(2,3),∵A(﹣1,0),∴AD=2,DE=,AE=3.∴AD2=DE2+AE2,∴△ADE是直角三角形,且∠AED=90°,DE:AE=1:3.∵点M在直线l下方的抛物线上,∴设M(t,﹣t2+2t+3),则t>2或t<0.∴EF=|t﹣2|,MF=3﹣(﹣t2+2t+3)=t2﹣2t,若△MEF与△ADE相似,则EF:MF=1:3或MF:EF=1:3,∴|t﹣2|:(t2﹣2t)=1:3或(t2﹣2t):|t﹣2|=1:3,解得t=2(舍)或t=3或﹣3或(舍)或﹣,∴M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).综上,存在点M,使以M,F,E三点为顶点的三角形与△ADE相似,此时点M的坐标为(3,0)或(﹣3,﹣12)或(﹣,).【典例2】(2022•玉林)如图,已知抛物线:y=﹣2x2+bx+c与x轴交于点A,B(2,0)(A在B的左侧),与y轴交于点C,对称轴是直线x=,P是第一象限内抛物线上的任一点.(1)求抛物线的解析式;(2)过点P作x轴的垂线与线段BC交于点M,垂足为点H,若以P,M,C为顶点的三角形与△BMH相似,求点P的坐标.【解答】解:(1)由题意得:,解得:,∴抛物线的解析式为:y=﹣2x2+2x+4;(2)设点P的坐标为(t,﹣2t2+2t+4),则OH=t,BH=2﹣t,分两种情况:①如图2,△CMP∽△BMH,∴∠PCM=∠OBC,∠BHM=∠CPM=90°,∴tan∠OBC=tan∠PCM,∴====2,∴PM=2PC=2t,MH=2BH=2(2﹣t),∵PH=PM+MH,∴2t+2(2﹣t)=﹣2t2+2t+4,解得:t1=0,t2=1,∴P(1,4);②如图3,△PCM∽△BHM,则∠PCM=∠BHM=90°,过点P作PE⊥y轴于E,∴∠PEC=∠BOC=∠PCM=90°,∴∠PCE+∠EPC=∠PCE+∠BCO=90°,∴∠BCO=∠EPC,∴△PEC∽△COB,∴=,∴=,解得:t1=0(舍),t2=,∴P(,);综上,点P的坐标为(1,4)或(,).【变式2-1】(2022•辽宁)抛物线y=ax2﹣2x+c经过点A(3,0),点C(0,﹣3),直线y=﹣x+b经过点A,交抛物线于点E.抛物线的对称轴交AE于点B,交x轴于点D,交直线AC于点F.(1)求抛物线的解析式;(2)如图,连接CD,点Q为平面内直线AE下方的点,以点Q,A,E为顶点的三角形与△CDF相似时(AE与CD不是对应边),请直接写出符合条件的点Q的坐标.【解答】解:(1)将A(3,0),点C(0,﹣3)代入y=ax2﹣2x+c,∴,解得,∴y=x2﹣2x﹣3;(2)∵C(0,﹣3),D(1,0),F(1,﹣2),∴CD=,CF=,DF=2,∵E(﹣2,5),A(3,0),∴AE=5,设Q(x,y),①当△CDF∽△QAE时,==,∴==,∴AQ=5,EQ=5,∴,解得或(舍去),∴Q(﹣7,5);②当△CDF∽△AQE时,==,∴==,∴AQ=5,QE=10,∴,解得(舍去)或,∴Q(﹣12,5);③当△CDF∽△EQA时,==,∴==,∴EQ=5,AQ=10,∴,解得或(舍去),∴Q(3,﹣10);④当△CDF∽△QEA时,==,∴==,∴EQ=5,AQ=5,∴,解得或(舍去),∴Q(3,﹣5);综上所述:Q点坐标为(﹣7,5)或(﹣12,5)或(3,﹣10)或(3,﹣5).【变式2-2】(2022•桂林)如图,抛物线y=﹣x2+3x+4与x轴交于A,B两点(点A位于点B的左侧),与y轴交于C点,抛物线的对称轴l与x轴交于点N,长为1的线段PQ (点P位于点Q的上方)在x轴上方的抛物线对称轴上运动.(1)直接写出A,B,C三点的坐标;(2)过点P作PM⊥y轴于点M,当△CPM和△QBN相似时,求点Q的坐标.【解答】解:(1)在y=﹣x2+3x+4中,令x=0得y=4,令y=0得x=﹣1或x=4,∴A(﹣1,0),B(4,0),C(0,4);(2)如图:由在y=﹣x2+3x+4得抛物线对称轴为直线x=﹣=,设Q(,t),则P(,t+1),M(0,t+1),N(,0),∵B(4,0),C(0,4);∴BN=,QN=t,PM=,CM=|t﹣3|,∵∠CMP=∠QNB=90°,∴△CPM和△QBN相似,只需=或=,①当=时,=,解得t=或t=,∴Q(,)或(,);②当=时,=,解得t=或t=(舍去),∴Q(,),综上所述,Q的坐标是(,)或(,)或(,).【变式2-3】(2021•黑龙江)如图,抛物线y=ax2+bx+3(a≠0)与x轴交于点A(1,0)和点B(﹣3,0),与y轴交于点C,连接BC,与抛物线的对称轴交于点E,顶点为点D.(1)求抛物线的解析式;(2)点P是对称轴左侧抛物线上的一个动点,点Q在射线ED上,若以点P、Q、E为顶点的三角形与△BOC相似,请直接写出点P的坐标.【解答】解:(1)∵抛物线y=ax2+bx+3过点A(1,0),B(﹣3,0),∴,解得,∴抛物线的解析式为:y=﹣x2﹣2x+3;(2)令x=0,y=3,∴OC=OB=3,即△OBC是等腰直角三角形,∵抛物线的解析式为:y=﹣x2﹣2x+3,∴抛物线对称轴为:x=﹣1,∵EN∥y轴,∴△BEN∽△BCO,∴,∴,∴EN=2,①若△PQE∽△OBC,如图所示,过点P作PH⊥ED垂足为H,∴∠PEH=45°,∴∠PHE=90°,∴∠HPE=∠PEH=45°,∴PH=HE,∴设点P坐标(x,﹣x﹣1+2),∴代入关系式得,﹣x﹣1+2=﹣x2﹣2x+3,整理得,x2+x﹣2=0,解得,x1=﹣2,x2=1(舍),∴点P坐标为(﹣2,3),②若△EPQ∽△OCB,如图所示,设P(x,2),代入关系式得,2=﹣x2﹣2x+3,整理得,x2+2x﹣1=0,解得,(舍),∴点P的坐标为(﹣1﹣,2),综上所述点P的坐标为(﹣1﹣,2)或(﹣2,3)。
二次函数背景下的三角形相似(全等) (解析版)
备战2020年中考数学压轴题之二次函数专题07 二次函数背景下的三角形相似(全等)【方法综述】三角形全等是三角形相似的特殊情况。
三角形的全等和相似是综合题中的常见要素,解答时注意应用全等三角形和相似的判定方法。
另外,注意题目中“≅”与全等表述、“~”和相似表述的区别。
全等和相似的符号,标志着三角形全等(相似)的对应点的一一对应关系。
解答时,对于确定的对应边角可以直接利用于解题。
而全等、相似的语言表述,标志着对应点之间的组合关系,解答时,要进行对应边的分类讨论。
【典例示范】类型一确定的全等三角形条件的判定应用例1:如图,在平面直角坐标系中,已知抛物线y=ax2+bx-8与x轴交于A,B两点,与y轴交于点C,直线l经过坐标原点O,与抛物线的一个交点为D,与抛物线的对称轴交于点E,连接CE,已知点A,D 的坐标分别为(-2,0),(6,-8).(1)求抛物线的解析式,并分别求出点B和点E的坐标;(2)试探究抛物线上是否存在点F,使△FOE≌△FCE.若存在,请直接写出点F的坐标;若不存在,请说明理由.【答案】(1) y=12x2-3x-8;(2)点F的坐标为(3+17,-4)或(3-17,-4).【思路引导】(1)根据待定系数法求出抛物线解析式即可求出点B坐标,求出直线OD解析式即可解决点E 坐标.(2)抛物线上存在点F使得△FOE≌△FCE,此时点F纵坐标为-4,令y=-4即可解决问题.【解析】(1)∵抛物线y=ax2+bx-8经过点A(-2,0),D(6,-8),∴4280 {36688a ba b--+--==解得1 {23 ab==∴抛物线的函数表达式为y=12x2−3x−8;∵y=12x2−3x−8=12(x−3)2−252,∴抛物线的对称轴为直线x=3.又抛物线与x轴交于A,B两点,点A的坐标为(-2,0).∴点B的坐标为(8,0),设直线L的函数表达式为y=kx.∵点D(6,-8)在直线L上,∴6k=-8,解得k=-43,∴直线L的函数表达式为y=-43 x,∵点E为直线L和抛物线对称轴的交点,∴点E的横坐标为3,纵坐标为-43×3=-4,∴点E的坐标为(3,-4);(2)抛物线上存在点F,使△FOE≌△FCE.∵OE=CE=5,∴FO=FC,∴点F在OC的垂直平分线上,此时点F的纵坐标为-4,∴12x2-3x-8=-4,解得,∴点F的坐标为(3-4)或(-4).【方法总结】本题考查二次函数综合题、一次函数的性质、待定系数法,等腰三角形的判定和性质等知识,解题的关键是学会分类讨论,不能漏解,学会用方程的思想思考问题,属于中考压轴题针对训练1.综合与探究:已知二次函数y=﹣12x2+32x+2的图象与x轴交于A,B两点(点B在点A的左侧),与y轴交于点C.(1)求点A ,B ,C 的坐标;(2)求证:△ABC 为直角三角形;(3)如图,动点E ,F 同时从点A 出发,其中点E 以每秒2个单位长度的速度沿AB 边向终点B 运动,点F AC 方向运动.当点F 停止运动时,点E 随之停止运动.设运动时间为t 秒,连结EF ,将△AEF 沿EF 翻折,使点A 落在点D 处,得到△DEF .当点F 在AC 上时,是否存在某一时刻t ,使得△DCO ≌△BCO ?(点D 不与点B 重合)若存在,求出t 的值;若不存在,请说明理由.【答案】(1)点A 的坐标为(4,0),点B 的坐标为(﹣1,0),点C 的坐标为(0,2);(2)证明见解析;(3)t =34. 【解析】 (1)解:当y =0时,﹣21322x +x +2=0, 解得:x 1=1,x 2=4,∴点A 的坐标为(4,0),点B 的坐标为(﹣1,0),当x =0时,y =2,∴点C 的坐标为(0,2);(2)证明:∵A (4,0),B (﹣1,0),C (0,2),∴OA =4,OB =1,OC =2.∴AB =5,AC ===BC =,∴AC 2+BC 2=25=AB 2,∴△ABC 为直角三角形;(3)解:由(2)可知△ABC 为直角三角形.且∠ACB =90°,∵AE =2t ,AF ,∴AF AB AE AC ==, 又∵∠EAF =∠CAB ,∴△AEF ∽△ACB ,∴∠AEF =∠ACB =90°,∴△AEF 沿EF 翻折后,点A 落在x 轴上点 D 处,由翻折知,DE =AE ,∴AD =2AE =4t ,当△DCO ≌△BCO 时,BO =OD ,∵OD =4﹣4t ,BO =1,∴4﹣4t =1,t =34, 即:当t =34秒时,△DCO ≌△BCO .2.如图,已知抛物线y =√32x 2+bx +6√3与x 轴交于A 、B 两点,其中点A 的坐标为(2,0),抛物线的顶点为P .(1)求b 的值,并求出点P 、B 的坐标;(2)在x 轴下方的抛物线上是否存在点M ,使△AMP ≌△AMB ?如果存在,请直接写出点M 的坐标;如果不存在,试说明理由.【答案】(1)(6,0)(2)存在,(163,−10√39) 【解析】(1)∵抛物线y =√32x 2+bx +6√3经过A(2,0), ∴√32×22+2b +6√3=0,解得:b =−4√3,∴抛物线的表达式为y =√32x 2−4√3x +6√3. ∵y =√32x 2+bx +6√3=√32(x −4)2−2√3, ∴点P 的坐标为(4,−2√3).令y =0得:√32x 2+bx +6√3=0,解得x =2或x =6,∴B 的坐标为(6,0).(2)存在,点M(163,−10√39). 如图:过点P 作PC ⊥x 轴,垂足为C ,连接AP 、BP ,作∠PAB 的平分线,交PB 与点N ,交抛物线与点M ,连接PM 、BM .∵A(2,0),B(6,0),P(4,−2√3),∴AB =4,AP =√(4−2)2+(−2√3)2=4,BP =√(4−6)2+(−2√3)2=4,∴△ABP 是等边三角形,∵∠APB =∠ABP ,AP =AB .∴AM ⊥PB ,PN =BN ,∠PAM =∠BAM .在△AMP 和△AMB 中,{AP =AB∠PAM =∠BAM AM =AM,∴△AMP ≌△AMB .∴存在这样的点M ,使得△AMP ≌△AMB .∵B(6,0),P(4,−2√3),点N 是PB 的中点,∴N(5,−√3).设直线AM 的解析式为y =kx +b ,将点A 和点N 的坐标代入得:{2k +b =05k +b =−√3 ,解得:{k =−√33b =2√33, ∴直线AM 的解析式为y =−√33x +2√33.将y =−√33x +2√33代入抛物线的解析式得:√32x 2−4√3x +6√3=−√33x +2√33,解得:x =163或x =2(舍去), 当x =163时,y =−10√39, ∴点M 的坐标为(163,−10√39). 类型二 全等三角形的存在性探究例2.如图,抛物线y=ax 2+bx+c 与x 轴的交点分别为A (﹣6,0)和点B (4,0),与y 轴的交点为C (0,3).(1)求抛物线的解析式;(2)点P 是线段OA 上一动点(不与点A 重合),过P 作平行于y 轴的直线与AC 交于点Q ,点D 、M 在线段AB 上,点N 在线段AC 上.①是否同时存在点D 和点P ,使得△APQ 和△CDO 全等,若存在,求点D 的坐标,若不存在,请说明理由; ②若∠DCB=∠CDB ,CD 是MN 的垂直平分线,求点M 的坐标.【答案】(1)y=﹣18x 2﹣14x+3;(2)①点D 坐标为(﹣32,0);②点M (32,0). 【分析】(1)应用待定系数法问题可解;(2)①通过分类讨论研究△APQ 和△CDO 全等②由已知求点D 坐标,证明DN ∥BC ,从而得到DN 为中线,问题可解【解析】(1)将点(-6,0),C (0,3),B (4,0)代入y=ax 2+bx+c ,得{36a −6b +c =016a +4b +c =0c =0,解得:{a =−18b =−14c =3 , ∴抛物线解析式为:y=-18x 2-14x+3;(2)①存在点D,使得△APQ和△CDO全等,当D在线段OA上,∠QAP=∠DCO,AP=OC=3时,△APQ和△CDO全等,∴tan∠QAP=tan∠DCO,OC OA =ODOC,∴36=OD3,∴OD=32,∴点D坐标为(-32,0).由对称性,当点D坐标为(32,0)时,由点B坐标为(4,0),此时点D(32,0)在线段OB上满足条件.②∵OC=3,OB=4,∴BC=5,∵∠DCB=∠CDB,∴BD=BC=5,∴OD=BD-OB=1,则点D坐标为(-1,0)且AD=BD=5,连DN,CM,则DN=DM,∠NDC=∠MDC,∴∠NDC=∠DCB,∴DN∥BC,∴ANNC =ADDB=1,则点N为AC中点.∴DN 时△ABC 的中位线,∵DN=DM=12BC=52, ∴OM=DM -OD=32∴点M (32,0)【点评】本题是二次函数综合题,考查了二次函数待定系数法、三角形全等的判定、锐角三角形函数的相关知识.解答时,注意数形结合 针对训练1.如图,在平面直角坐标系中,以点M (2,0)为圆心的⊙M 与y 轴相切于原点O ,过点B (﹣2,0)作⊙M 的切线,切点为C ,抛物线y =−√33x 2+bx +c 经过点B 和点M .(1)求这条抛物线解析式;(2)求点C 的坐标,并判断点C 是否在(1)中抛物线上;(3)动点P 从原点O 出发,沿y 轴负半轴以每秒1个单位长的速度向下运动,当运动t 秒时到达点Q 处.此时△BOQ 与△MCB 全等,求t 的值.【答案】(1)y =﹣√33x 2+4√33;(2)点C 在(1)的抛物线上;(3)t =2√3.【解析】(1)将点M (2,0)、B (﹣2,0)代入 y =−√33x 2+bx +c 中,得: {−4√33+2b +c =0−4√33−2b +c =0解得:{b =0c =4√33∴抛物线的解析式:y =−√33x 2+4√33. (2)连接MC ,则MC ⊥BC ;过点C 作CD ⊥x 轴于D ,如图,在Rt △BCM 中,CD ⊥BM ,CM =2,BM =4,则:DM =CM 2BM =224=1,CD =√CM 2−DM 2=√22−1=√3,OD =OM ﹣DM =1,∴C (1,√3).当x =1时,y =−√33x 2+4√33=√3,所以点C 在(1)的抛物线上.(3)△BCM 和△BOQ 中,OB =CM =2,∠BOQ =∠BCM =90°,若两三角形全等,则:OQ =BC =√BM 2−CM 2=√42−22=2√3,∴当t =2√3时,△MCB 和△BOQ 全等.2.(广西田阳县实验中学2019届九年级中考一)如图所示,抛物线y =−(x −√3m)2(m >0)的顶点为A ,直线l:y =√33x −m 与y 轴的交点为点B.(1)求出抛物线的对称轴及顶点A 的坐标(用含m 的代数式表示);(2)证明点A 在直线l 上,并求∠OAB 的度数;(3)动点Q 在抛物线对称轴上,问:抛物线上是否存在点P ,使以点P 、Q 、A 为顶点的三角形与△OAB 全等?若存在,求出m 的值,并写出所有符合上述条件的点P 的坐标;若不存在,请说明理由.【答案】(1)抛物线的对称轴为直线x =√3m ,顶点A 的坐标为(√3m ,0);(2)∠OAB=30°;(3)存在,①m =13时, P1(0,-13),P 2(23√3,-13);②m =√3时,P 3(3-√3,-3),P 4(3+√3,-3);③m =2时, P 5(√3,-3),P 6(√33,-3);④m =23时, P 7(√33,-13),P 8(√3,-13).【解析】(1)对称轴:x=√3m ;顶点:A (√3m ,0).(2)将x=√3m 代入函数y=√33x -m ,得y=√33×√3m -m=0∴点A (√3m ,0)在直线l 上.当x=0时,y=-m ,∴B (0,-m )tan ∠OAB=√3m =√33, ∴∠OAB=30度.(3)以点P 、Q 、A 为顶点的三角形与△OAB 全等共有以下四种情况: ①当∠AQP=90°,PQ=√3m ,AQ=m 时,如图1,此时点P 在y 轴上,与点B 重合,其坐标为(0,-m ),代入抛物线y=-(x -√3m )2得-m=-3m 2,∵m >0,∴m=13 这时有P 1(0,-13) 其关于对称轴的对称点P 2(2√33,- 13)也满足条件. ②当∠AQP=90°,PQ=m ,AQ=√3m 时 点P 坐标为(√3m -m ,-√3m ),代入抛物线y=-(x -√3m )2得√3m=m 2,∵m >0, ∴m=√3这时有P 3(3-√3,-3)还有关于对称轴的对称点P 4(3+√3,-3). ③当∠APQ=90°,AP=√3m ,PQ=m 时点P 坐标为(√32m ,−32m ),代入抛物线y=-(x -√3m )2得32m=34m 2, ∵m >0, ∴m=2这时有P 5(√3,-3)还有关于对称轴的对称点P 6(3√3,-3).④当∠APQ=90°,AP=m ,PQ=√3m 时 点P 坐标为(√32m ,−12m ), 代入抛物线y=-(x -√3m )2 得12m=34m 2, ∵m >0, ∴m=23这时有P 7(√33,-13)还有关于对称轴对称的点P 8(√3,-13). 所以当m=13时,有点P 1(0,-13),P 2(2√33,-13);当m=√3时,有点P 3(3-√3,-3),P 4(3+√3,-3); 当m=2时,有点P 5(√3,-3),P 6(3√3,-3); 当m=23时,有点P 7(√33,-13),P 8(√3,-13).3.如图1,抛物线y 1=ax 2﹣12x+c 与x 轴交于点A 和点B (1,0),与y 轴交于点C (0,34),抛物线y 1的顶点为G ,GM ⊥x 轴于点M .将抛物线y 1平移后得到顶点为B 且对称轴为直线l 的抛物线y 2.(1)求抛物线y 2的解析式;(2)如图2,在直线l 上是否存在点T ,使△TAC 是等腰三角形?若存在,请求出所有点T 的坐标;若不存在,请说明理由;(3)点P 为抛物线y 1上一动点,过点P 作y 轴的平行线交抛物线y 2于点Q ,点Q 关于直线l 的对称点为R ,若以P ,Q ,R 为顶点的三角形与△AMG 全等,求直线PR 的解析式. 【答案】(1)y 2=-14x 2+12x -14;(2)存在;(3)y=﹣12x+34或y=﹣12x −14.【解析】(1)由已知,c=34,将B (1,0)代入,得:a ﹣12+34=0, 解得a=﹣14,抛物线解析式为y 1=14x 2-12 x+34,∵抛物线y 1平移后得到y 2,且顶点为B (1,0), ∴y 2=﹣14(x ﹣1)2,即y 2=-14x 2+12 x -14; (2)存在,如图1:抛物线y 2的对称轴l 为x=1,设T (1,t ), 已知A (﹣3,0),C (0,34), 过点T 作TE ⊥y 轴于E ,则 TC 2=TE 2+CE 2=12+(34)2=t 2﹣32t+2516,TA 2=TB 2+AB 2=(1+3)2+t 2=t 2+16, AC 2=15316,当TC=AC 时,t 2﹣32t+2516=15316,解得:t 1=3+√1374,t 2=3−√1374;当TA=AC 时,t 2+16=15316,无解; 当TA=TC 时,t 2﹣32t+2516=t 2+16, 解得t 3=﹣778;当点T 坐标分别为(1,3+√1374),(1,3−√1374),(1,﹣778)时,△TAC 为等腰三角形;(3)如图2:设P (m ,−14m 2−12m +34),则Q (m ,−14m 2+12m −14), ∵Q 、R 关于x=1对称∴R (2﹣m ,−14m 2+12m −14), ①当点P 在直线l 左侧时, PQ=1﹣m ,QR=2﹣2m , ∵△PQR 与△AMG 全等,∴当PQ=GM 且QR=AM 时,m=0, ∴P (0,34),即点P 、C 重合, ∴R (2,﹣14),由此求直线PR 解析式为y=﹣12x+34,当PQ=AM 且QR=GM 时,无解; ②当点P 在直线l 右侧时, 同理:PQ=m ﹣1,QR=2m ﹣2, 则P (2,﹣54),R (0,﹣14), PQ 解析式为:y=﹣12x −14;∴PR 解析式为:y=﹣12x+34或y=﹣12x −14.类型三 确定的相似三角形条件的判定应用例3:如图,已知二次函数22y x x m =-+的图象与x 轴交于点A 、B ,与y 轴交于点C ,直线AC 交二次函数图象的对称轴于点D ,若点C 为AD 的中点.(1)求m 的值;(2)若二次函数图象上有一点Q ,使得tan 3ABQ ∠=,求点Q 的坐标;(3)对于(2)中的Q 点,在二次函数图象上是否存在点P ,使得QBP ∆∽COA ∆?若存在,求出点P 的坐标;若不存在,请说明理由.【答案】(1)3m =-;(2)()4,21Q -或()2,3Q -;(3)不存在,理由见解析. 【思路引导】(1)设对称轴与x 轴交于点E ,如图1,易求出抛物线的对称轴,可得OE 的长,然后根据平行线分线段成比例定理可得OA 的长,进而可得点A 的坐标,再把点A 的坐标代入抛物线解析式即可求出m 的值; (2)设点Q 的横坐标为n ,当点Q 在x 轴上方时,过点Q 作QH ⊥x 轴于点H ,利用tan 3ABQ ∠=可得关于n 的方程,解方程即可求出n 的值,进而可得点Q 坐标;当点Q 在x 轴下方时,注意到tan 3BAC ∠=,所以点Q 与点C 关于直线1x =对称,由此可得点Q 坐标;(3)当点Q 为x 轴上方的点时,若存在点P ,可先求出直线BQ 的解析式,由BP ⊥BQ 可求得直线BP 的解析式,然后联立直线BP 和抛物线的解析式即可求出点P 的坐标,再计算此时两个三角形的两组对应边是否成比例即可判断点P 是否满足条件;当点Q 取另外一种情况的坐标时,再按照同样的方法计算判断即可. 【解析】解:(1)设抛物线的对称轴与x 轴交于点E ,如图1,∴y 轴//ED ,∴::1AC CD AO OE ==, ∵抛物线的对称轴是直线212x -=-=,∴OE =1,∴1AO OE ==,∴()1,0A - ∴将点()1,0A -代入函数表达式得:120m ++=,∴3m =-;(2)设()2,23Q n n n --,①点Q 在x 轴上方时,0n <,如图2,过点Q 作QH ⊥x 轴于点H ,∵tan 3ABQ ∠=,∴22333n n n--=-,解得:4n =-或3n =(舍),∴()4,21Q -;②点Q 在x 轴下方时,∵OA =1,OC =3,∴tan 3BAC ∠=,∵tan 3ABQ ∠=,∴点Q 与点C 关于直线1x =对称,∴()2,3Q -;(3)①当点Q 为()4,21-时,若存在点P ,使QBP ∆∽COA ∆,则∠PBQ =∠COA =90°, 由B (3,0)、Q ()4,21-可得,直线BQ 的解析式为:39y x =-+,所以直线PB 的解析式为:113y x =-,联立方程组:211323y x y x x ⎧=-⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2223119x y ⎧=-⎪⎪⎨⎪=-⎪⎩,∴211,39P ⎛⎫-- ⎪⎝⎭, ∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在;②当点Q 为()2,3-时,如图4,由B (3,0)、Q ()2,3-可得,直线BQ 的解析式为:39y x =-,所以直线PB 的解析式为:113y x =-+, 联立方程组:211323y x y x x ⎧=-+⎪⎨⎪=--⎩,解得:1130x y =⎧⎨=⎩,2243139x y ⎧=-⎪⎪⎨⎪=⎪⎩,∴413,39P ⎛⎫- ⎪⎝⎭,∵:1:3OA OC =,:1:3BP BQ =≠, ∴::BP BQ OA OC ≠,∴P 不存在.综上所述,不存在满足条件的点P ,使QBP ∆∽COA ∆. 【方法总结】本题考查了平行线分线段成比例定理、二次函数图象上点的坐标特征、一元二次方程的解法、相似三角形的判定和性质、锐角三角函数和两个函数的交点等知识,综合性强、具有相当的难度,熟练掌握上述知识、灵活应用分类和数形结合的数学思想是解题的关键.针对训练1.如果一条抛物线y =ax 2+bx +c (a ≠0)与x 轴有两个交点,那么以抛物线的顶点和这两个交点为顶点的三角形称为这条抛物线的“抛物线三角形”,[a ,b ,c ]称为“抛物线系数”. (1)任意抛物线都有“抛物线三角形”是______(填“真”或“假”)命题;(2)若一条抛物线系数为[1,0,-2],则其“抛物线三角形”的面积为________;(3)若一条抛物线系数为[-1,2b ,0],其“抛物线三角形”是个直角三角形,求该抛物线的解析式; (4)在(3)的前提下,该抛物线的顶点为A ,与x 轴交于O ,B 两点,在抛物线上是否存在一点P ,过P 作PQ ⊥x 轴于点Q ,使得△BPQ ∽△OAB ,如果存在,求出P 点坐标,如果不存在,请说明理由. 【答案】(1)假;(2)2√2;(3)y =-x 2+2x 或y =-x 2-2x ;(4)P (1,1)或P (-1,-3)或P (1,-3)或(-1,1).【解析】(1)当△>0时,抛物线与x 轴有两个交点,此时抛物线才有“抛物线三角形”,故此命题为假命题; (2)由题意得:y =x 2−2,令y =0,得:x =±√2,∴ S =12×2√2×2=2√2; (3)依题意:y =-x 2+2bx ,它与x 轴交于点(0,0)和(2b ,0); 当抛物线三角形是直角三角形时,根据对称性可知它一定是等腰直角三角形.∵y=-x2+2bx=−(x−b)2+b2,∴顶点为(b,b2),由直角三角形斜边上的中线等于斜边的一半得到:b2=12×|2b|,∴b2=|b|,解得:b=0(舍去)或b=±1,∴y=-x2+2x 或y=-x2-2x.(4)①当抛物线为y=-x2+2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2+2a),∴Q((a,0),则|-a2+2a|=|2-a|,即|a(a−2)|=|a−2|.∵a-2≠0,∴|a|=1,∴a=±1,∴P(1,1)或(-1,-3).②当抛物线为y=-x2-2x 时.∵△AOB为等腰直角三角形,且△BPQ∽△OAB,∴△BPQ为等腰直角三角形,设P(a,-a2-2a),∴Q((a,0),则|-a2-2a|=|2+a|,即|a(a+2)|=|a+2|.∵a+2≠0,∴|a|=1,∴a=±1,∴P(1,-3,)或(-1,1).综上所述:P(1,1)或P(-1,-3)或P(1,-3,)或(-1,1).2.如图1,一次函数y=﹣x+3的图象交x轴于点A,交y轴于点D,抛物线y=ax2+bx+c(a≠0)的顶点为C,其图象过A、D两点,并与x轴交于另一个点B(B点在A点左侧),若ABAD =√23;(1)求此抛物线的解析式;(2)连结AC、BD,问在x轴上是否存在一个动点Q,使A、C、Q三点构成的三角形与△ABD相似.如果存在,求出Q点坐标;如果不存在,请说明理由.(3)如图2,若点P是抛物线上一动点,且在直线AD下方,(点P不与点A、点D重合),过点P作y轴的平行线l与直线AD交于点M,点N在直线AD上,且满足△MPN∽△ABD,求△MPN面积的最大值.【答案】(1)y=x2﹣4x+3;(2)见解析;(3)△MPN的面积的最大值为:24364.【解析】(1)当x=0时,y=﹣x+3=3,则D(3,0);当y=0时,﹣x+3=0,解得x=3,则A(3,0),∵OD=OA,∴△OAD为等腰直角三角形,∴AD=3√2,∵ABAD =√23,∴AB=2,∴B(1,0),设抛物线解析式为y=a(x﹣1)(x﹣3),把D(0,3)代入得a•(﹣1)•(﹣3)=3,解得a=1,∴抛物线解析式为y=(x﹣1)(x﹣3),即y=x2﹣4x+3;(2)作CH⊥x轴,如图1,∵y=x2﹣4x+3=(x﹣2)2﹣1,∴C(2,﹣1)∴AH=CH=1,∴△ACH为等腰直角三角形,∴∠CAH=45°,AC=√2,∵△OAD为等腰直角三角形,∴∠DAO=45°,∵∠CAQ=∠DAB,∴当AQAD =ACAB时,△AQC∽△ADB,即3√2=√22,解得AQ=3,此时Q(0,0);当AQAB =ACAD时,△AQC∽△ABD,即AQ2=√23√2,解得AQ=23,此时Q(73,0);综上所述,Q点的坐标为(0,0)或(73,0);(3)作PE⊥AD于E,如图2,∵△MPN∽△ABD,∴MNAD =MPAB,∴MN =3√22MP , 设P (x ,x 2﹣4x+3),则M (x ,﹣x+3),∴MP =﹣x+3﹣(x 2﹣4x+3)=﹣x 2+3x =﹣(x ﹣32)2+94,当x =32时,MP 有最大值94,∴MN 的最大值为3√22×94=27√28, ∵∠PME =45°,∴PE =√22PM ,∴PE 的最大值为√22×94=9√28,∴△MPN 的面积的最大值为12×27√28×9√28=24364 .3.如图,抛物线y=ax 2+bx+c 过原点O 、点A (2,﹣4)、点B (3,﹣3),与x 轴交于点C ,直线AB 交x 轴于点D ,交y 轴于点E .(1)求抛物线的函数表达式和顶点坐标;(2)直线AF ⊥x 轴,垂足为点F ,AF 上取一点G ,使△GBA ∽△AOD ,求此时点G 的坐标;(3)过直线AF 左侧的抛物线上点M 作直线AB 的垂线,垂足为点N ,若∠BMN=∠OAF ,求直线BM 的函数表达式.【答案】(1)y=x 2-4x ;(2,-4);(2)G (2, −83);(3)y=−13x −2或y=-3x+6. 【解析】(1)解:将原点O (0,0)、点A (2,﹣4)、点B (3,﹣3),分别代入y=ax 2+bx+c ,得,解得 ,∴y=x 2-4x=, ∴顶点为(2,-4). (2)解:设直线AB 为y=kx+b ,由点A (2,-4),B (3,-3),得解得,∴直线AB 为y=x -6.当y=0时,x=6,∴点D (6,0).∵点A (2,-4),D (6,0),B (3,-3),∴OA= ,OD=6,AD= ,AF=4,OF=2,DF=4,AB= , ∴DF=AF ,又∵AF ⊥x 轴,∴∠AD0=∠DAF=45°,∵△GBA ∽△AOD ,∴ ,∴, 解得 ,∴FG=AF -AG=4- ,∴点G (2,). (3)解:如图1,∵∠BMN=∠OAF,,∴∠MBN=∠AOF,设直线BM与AF交于点H,∵∠ABH=∠AOD,∠HAB=∠ADO,∴∴,则,解得AH= ,∴H(2,).设直线BM为y=kx+b,∵将点B、G的坐标代入得,解得.∴直线BM的解析式为y= ;如图2,BD=AD -AB= .∵∠BMN=∠OAF ,∠GDB=∠ODA ,∴△HBD ∽△AOD .∴ ,即 ,解得DH=4.∴点H 的坐标为(2,0).设直线BM 的解析式为y=kx+b .∵将点B 和点G 的坐标代入得:,解得k=-3,b=6.∴直线BM 的解析式为y=-3x+6.综上所述,直线MB 的解析式为y=或y=-3x+6. 类型四 相似三角形存在性探究例4.在平面直角坐标系中,已知抛物线L :经过点A (-3,0)和点B (0,-6),L 关于原点O 对称的抛物线为.(1)求抛物线L 的表达式;(2)点P 在抛物线上,且位于第一象限,过点P 作PD ⊥y 轴,垂足为D.若△POD 与△AOB 相似,求符合条件的点P 的坐标.()2y ax c a x c =+-+L 'L '【答案】(1) y =-x 2-5x -6;(2)符合条件的点P 的坐标为(1,2)或(6,12)或(,)或(4,2)。
二次函数与三角形相似问题
二次函数与三角形相似问题二次函数是初中数学中的重要内容,而三角形相似问题是初中几何中的重点难点。
在解决一些复杂的几何问题时,我们常常需要将二次函数和三角形相似问题结合起来进行思考。
本文将从几个方面探讨二次函数与三角形相似问题的关系和应用。
一、二次函数的解析式与三角形的边长关系在解决与三角形相似的二次函数问题时,我们需要先确定三角形的边长关系。
例如,已知一个直角三角形的两条直角边分别为3和4,那么这个直角三角形的斜边长为5。
如果以这个直角三角形的斜边为底边构造一个新的直角三角形,那么它的另一条直角边就是原来直角三角形的斜边的一半,即2.5。
因此,我们可以得出以下结论:当一个直角三角形的一条直角边与另一个直角三角形的斜边相等时,这两个直角三角形是相似的。
二、二次函数的最大值与最小值与三角形的高线关系在解决与三角形相似的二次函数问题时,我们还需要考虑二次函数的最大值和最小值与三角形的高线的关系。
例如,已知一个抛物线的顶点坐标为(0,2),对称轴为y轴。
如果以这个抛物线的顶点为原点构造一个新的抛物线,那么它的顶点坐标就是原来的顶点坐标加上或减去某个常数c。
因此,我们可以得出以下结论:当一个抛物线的顶点与另一个抛物线的顶点之间的距离等于它们到某个固定点的距离之差时,这两个抛物线是相似的。
三、二次函数的对称性与三角形的对称性关系在解决与三角形相似的二次函数问题时,我们还需要考虑二次函数的对称性和三角形的对称性之间的关系。
例如,已知一个抛物线的对称轴为x=1,如果以这个抛物线的对称轴为中心构造一个新的抛物线,那么它的对称轴就是原来的对称轴加上或减去某个常数d。
因此,我们可以得出以下结论:当一个抛物线的对称轴与另一个抛物线的对称轴之间的距离等于它们到某个固定点的距离之和时,这两个抛物线是相似的。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二次函数与相似三角形的综合问题
宜良八中 陈红
二次函数与相似三角形的综合问题也是上海中考数学试卷中常见的热点问题如:2012年的最后第二题,就是二次函数与相似三角形相结合的综合问题.先来看这个问题:
2012年中考第23题:如图,在平面直角坐标系中,二次函数2
6y ax x c =++的图像经过点()4,0A 、()1,0B -,与y 轴交于点C ,点D 在线段OC 上,=OD t ,点E 在第二象限,∠=90ADE ,1
=
2
tan DAE ∠,EF OD ⊥,垂足为F .
(1)求这个二次函数的解析式;
(2)求线段EF 、OF 的长(用含t 的代数式表示); (3)当∠ECA =∠OAC 时,求t 的值. 解:(1)二次函数c x ax y ++=62
图像经过 点A (4,0),B (-1,0), ∴⎩⎨
⎧=+-=++0602416c a c a ,解得⎩⎨⎧=-=8
2
c a .
∴这个二次函数的解析式为8622
++-=x x y .
(2)易证△ED F ∽△DAO ,∴
DA
ED
AO DF DO EF =
=. 在R t △ADE 中,=90ADE ,∵2
1
tan ==∠AD DE DAE ,
∴21==AO DF DO EF ,即2
1=t EF ,∴t EF 21=. ∵点A 的坐标为(4,0),∴OA =4,DF =2,∴OF =t -2. (3)由(1)得,点C 的坐标为(0,8). 延长CE 交x 轴于点G ,设G 点的坐标为(x ,0),
∵ECA =∠OAC ,∴CG= AG , ∴()22
48-=
+x x ,解得6-=x ,∴GO =6.
由已知,可得点F 在线段OD 上,
又∵OF =t -2,∴FC =OC -OF =10- t ,
∵EF ∥GO ,∴CO CF GO EF =
,∴8
1062t
t
-=,解得6=t . 【点评】本题是利用二次函数图像上的点组成图形与相似形结合,主要是运用了相似三角形中线段的比例关系来解决问题. 难点是角相等这个条件的运用,如何由角的关系转化为边的关系.
下面我们来看解答这类问题的具体方法:
例题1 如图,二次函数图像的顶点为坐标原点O 、且经过点A (3,3),一次函数的图像经过点A 和点B (6,0).
(1)求二次函数与一次函数的解析式;
(2)如果一次函数图像与y 相交于点C ,点D 在线段AC 上,与y 轴平行的直线DE 与二次函数图像相交于点E ,∠DOE =45º,求点D 的坐标.
分析:第(1)小题用待定系数法确定两个函数的解析式;第(2)小题利用△CDO ∽△OED 得比例式,设点D 坐标建立方程解决.
解:(1)设二次函数解析式为2ax y =, ∵点A (3,3)在二次函数图像上,∴a 93=,∴3
1
=
a ,∴二次函数解析式为231x y =.
设一次函数解析式为b kx y +=,∵一次函数的图像经过点A (3,3)和点B (6,0), ∴⎩⎨⎧+=+=,60,33b k b k ∴⎩
⎨⎧=-=6,1b k ∴一次函数解析式为6+-=x y .
(2)∵OC=OB ,∠BOC =90º,∴∠OCB =45º,∵∠DOE =45º,∴∠OCD =∠DOE . 又∵DE//y 轴,∴∠COD =∠ODE ,∴△CDO ∽△OED .∴CO
DO
DO DE =
, ∴CO DE DO ⋅=2.
设点D 的坐标为(6,+-m m ),∴点E 的坐标为(2
31,
m m ). ∴36122)6(2222+-=-+=m m m m OD ,231
6m m DE -+-=.
∵点C (0,6),∴CO =6.∴)31
6(63612222m m m m -+-=+-,
∴2
3,(0,064212==∴=-m ),m m m 舍去不符合题意.∴点D 的坐标为)29
,23(.
【点评】本题以二次函数为载体,结合了一次函数,观察、发现图中的相似三角形,运用相似三角形边的关系建立方程,从而求出点的坐标.
例题2 如图,已知点O 为坐标原点,二次函数)2(22+-+=m x mx y 的图象与x 轴相交于点A 、B ,点C (2,1)在二次函数的图象上,判断∠ACO 与∠CBO 之间的大小关系. 解:∵点C (2,1)在二次函数的图象上,∴,1)2(44=+-+m m ∴.31
-=m ∴函数解析式为3
52312-+-=x x y . 当0=y 时, 03
5
2312=-+-
x x ,.5,121==x x ∴A(1,0), B(5,0).
∴,512,5,122=+===OC OB OA
∴
,515,55
5====OA OC OC OB ∴OA OC
OC OB =, 又∵∠AOC =∠COB ,∴△AOC ∽△COB ,∴∠ACO=∠CBO .
【点评】本题由二次函数图像上的点,确定线段的长度,从而利用边的关系判定三角
形相似,得出角相等,这是函数图像问题中证明角相等常用的方法.
例题3 已知在平面直角坐标系中,O 为坐标原点,二次函数)0(2>+-=b c bx x y 的图像经过点A (-1,b ),与y 轴相交于点B ,且∠ABO 的余切值为3.如果这个函数图像的顶点为C ,求证:∠ACB =∠ABO .
解:根据题意,得b =1+b +c .∴c = -1.∴B (0,-1). 过点A 作AH ⊥y 轴,垂足为点H .∵∠ABO 的余切值为3, ∴3cot ==
∠AH
BH
ABO . 而AH =1,∴BH =3. ∵BO =1,∴HO =2. ∴b =2. ∴所求函数的解析式为122--=x x y .
由2)1(122
2
--=--=x x x y ,得顶点C 的坐标为(1,-2). ∴52=AC ,10=AB ,2=BC ,5=AO ,BO =1. ∴
2===BO
BC
AO AB AB AC . ∴△ABC ∽△AOB . ∴∠ACB =∠ABO .
【点评】本题由于点A 在函数图像上,所以点A 的坐标满足函数解析式,从而求得点B 的坐标,由0>b ,可知点A 在第二象限.由点B 的坐标和∠ABO 的余切值为3,就可以画出线段AB .再过点A 作y 轴的垂线,求出点A 的坐标,由点A 的坐标就可求出这个二次函数的解析式,从而得到顶点C 的坐标.然后与上题类似,利用边的关系得到相似三角形,故问题解决.
例题4 如图,一次函数m x y +-=4
3
的图像与x 轴、y 轴分别相交于点A 和点B ,二次函数64
12
++-
=bx x y 的图像经过A 、B 两点.如果点C 在这个二次函数的图像上,且点C 的横坐标为5,求tan ∠CAB 的值.
解:由题意,得点B 的坐标为(0,6).∴m =6.∴一次函数的解析式为64
3
+-=x y .
解:由题意,得点A 的坐标为(8,0).∴6884
102
++⨯-
=b .
∴4
5=b .
∴二次函数的解析式为64
5412++-=x x y . ∵点C 在这个二次函数的图像上,且点C 的横坐标为5,
∴6654
55412=+⨯+⨯-=y . ∴点C 的坐标为(5,6).
作CH ⊥AB ,垂足为点H .
∵点B 与点C 的纵坐标相等,∴BC ∥x 轴. ∴∠CBH =∠BAO .
又∵∠CHB =∠BOA =90°,∴△CHB ∽△BOA .∴AB
BO
BC CH =
. ∵OB =6,OA =8,∴AB =10. ∴10
6
5=CH .∴CH =3,BH =4,AH =6.
∴2
1
63tan ==∠CAB .
【点评】由于本题二次函数解析式的常数项是确定的,所以直接可以得出它的图像与y 轴的交点坐标.解决本题的关键是利用二次函数的解析式确定点C 坐标,在求三角比时,运用了相似三角形的方法,当然还可以运用面积的方法来解.
【这类问题的解题反思】在解决二次函数与相似三角形的综合问题过程中,主要是运用二次函数的解析式和图形的对称性以及相似三角形相关知识,往往还会涉及方程、距离公式、锐角三角比等相关知识,有时会运用图形运动的相关知识.
在解决问题的过程中,首先要会熟练地用待定系数法、配方法等数学方法.还要会用有关的数学思想,如化归思想、方程思想、函数思想、数形结合思想,特别是分类讨论思想.。