量子力学入门 英语

合集下载

量子力学英语词汇

量子力学英语词汇

量子力学专业英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性。

量子力学英文课件格里菲斯Charter10

量子力学英文课件格里菲斯Charter10

In molecular physics, this technique is known as the Born-Oppenheimer (玻恩-奥本海默)approximation.
In quantum mechanics, the essential content of the adiabatic approximation can be cast in the form of a theorem.
Here we assume that the spectrum is discrete and nondegenerate throughout the transition from Hi to Hf , so there is no ambiguity(歧义) about the
ordering of the states; these conditions can be relaxed, given a suitable procedure for “tracking” (跟踪)the eigenfunctions, but we’re not going to pursue that
A case in point is our discussion of the hydrogen molecule ion.
We began by assuming that the nuclei were at rest, a fixed distance R apart, and we solved for the motion of the electron.
and they are complete, so the general solution to the time-dependent Schrödinger equation

量子力学英语

量子力学英语

量子力学英语
随着量子力学的发展和应用,许多新的概念和术语相继出现。

掌握量子力学英语不仅有利于学习和研究,还可以更好地沟通和交流。

以下是一些常用的量子力学英语词汇:
1. Quantum mechanics 量子力学
2. Wave function 波函数
3. Schrdinger equation 薛定谔方程
4. Uncertainty principle 不确定性原理
5. Superposition principle 叠加原理
6. Entanglement 纠缠
7. Quantum state 量子态
8. Eigenvalue 特征值
9. Eigenfunction 特征函数
10. Hamiltonian 哈密顿量
11. Operator 算符
12. Commutation relation 对易关系
13. Quantum tunneling 量子隧穿
14. Quantum entanglement 量子纠缠
15. Quantum superposition 量子叠加
以上是一些常用的量子力学英语词汇,学习量子力学英语需要不断积累和运用。

- 1 -。

量子力学 I (英文版)

量子力学 I (英文版)

Quantum Mechanics ICourse Code: 83033003Course Name: Quantum Mechanics ICourse Credit: 5 Course Duration: The 7th SemesterTeaching Object: Undergraduate Students in Applied PhysicsPre-course:Methods of Mathematical Physics, General PhysicsCourse Director: Guan ChengBo Associate Professor Philosophical DoctorCourse Introduction:Quantum Mechanics and Relativity are the two foundations of the modern physics. Quantum Mechanics is the principle to describe micro-phenomenon, such as molecules, atoms and elemental particles. It is the theoretical basis of many disciplines such as solid physics, particle physics, nuclear physics and quantum optics etc. The course is an element course for the undergraduate students of physics science. Quantum I includes the foundation of Quantum Mechanics, Schrodinger equation, stationary state solution, presentation, spin and the identical particle system. The course aims to help students to understand the principle of quantum physics and describe the motions of particles with simple potential.Course Examination:Students’ Final Scores = Scores of Ordinary Tests * 30% + Scores of the Final Exam * 70%;Scores of ordinary tests vary according to students’ performance in attendance and homework.;The final exam. will be an close-book exam.Appointed Teaching Materials:[1] Chen ESheng. Tutorial of Quantum Mechanics. Jinan: Shandong University Press, 2007. Bibliography:[1] Zhou ShiXun. Quantum Mechanics. Shanghai: Shanghai Scientific & Technical Press, 1961.[2] Zeng JinYan. Introduction to Quantum Mechanics. Beijing: Peking University Press, 1992.[3] Zeng JinYan. Quantum Mechanics I & II. Beijing: Science Press, 2000.。

量子力学英语

量子力学英语

量子力学英语
量子力学是一种描述微观世界的理论,在实验中已被证明具有极高的准确性。

虽然量子力学的概念和数学语言非常抽象,但它已成为许多现代科技和工程领域的基础。

因此,对于学习和研究量子力学的人来说,掌握一些相关的英语词汇和表达方式是非常重要的。

以下是一些量子力学英语词汇和表达方式的例子:
1. Quantum mechanics - 量子力学
2. Wave function - 波函数
3. Superposition principle - 叠加原理
4. Uncertainty principle - 不确定性原理
5. Entanglement - 纠缠态
6. Quantum state - 量子态
7. Measurement - 测量
8. Eigenstate - 本征态
9. Operator - 算符
10. Hamiltonian - 哈密顿量
11. Schrdinger equation - 薛定谔方程
12. Commutation - 对易关系
13. Hermitian operator - 厄米算符
14. Unitary operator - 酉算符
15. Quantum field theory - 量子场论
通过学习这些量子力学英语词汇和表达方式,可以更好地理解和
交流量子力学相关的概念和研究成果。

量子力学英文读物

量子力学英文读物

量子力学英文读物以下是一些关于量子力学的英文读物推荐:1. "Quantum: Einstein, Bohr, and the Great Debate about the Nature of Reality" by Manjit Kumar2. "The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory" by Brian Greene3. "The Quantum World: Quantum Physics for Everyone" by Kenneth W. Ford4. "Quantum Mechanics: Concepts and Applications" by Nouredine Zettili5. "Quantum Physics: A Beginner's Guide" by Alastair Rae6. "Quantum Computing for Computer Scientists" by Noson S. Yanofsky and Mirco A. Mannucci7. "Quantum Physics for Babies" by Chris Ferrie (a simplified introduction for children and adults)8. "The Strange World of Quantum Mechanics" by Daniel F. Styer这些书籍从不同的角度介绍了量子力学的基本原理、应用、历史以及相关的思想争论。

根据你的兴趣和程度,选择适合你的读物开始探索量子世界吧!。

量子力学英语词汇

量子力学英语词汇

.量子力学专业英语词汇1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能.42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢.86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性.。

Chapter 2 The Schrodinger Equation 量子力学英文教案课件

Chapter 2 The Schrodinger Equation  量子力学英文教案课件

The principle of the superposition state back
(1) The principle of the superposition state (2) The wave function in momentum space
ω( r, t )= {dW(r, t )/ dτ}= C |Ψ (r,t)|2
W(t)=∫V dW =∫Vω( r, t )dτ= C∫V|Ψ (r,t)|2 dτ
University of Electronic Science and Technology of China
2005-3-1
Prof. Zhang Xiaoxia©
back
Chapter 2 The Schrodinger Equation
The Interpretation of the Wave Function The principle of the superposition state Average value of dynamics quantity and Differential Operators Schrodinger Equation Time-independent Schrodinger Equation The Heisenberg Uncertainty Relation
p (r ,t)[2 1]3/2e i[p •r E]t p (r )e iEt
where
1
p(r)[2]3/2
i[p•r]
e
University of Electronic Science and Technology of China
2005-3-1
Prof. Zhang Xiaoxia©

量子力学英文课件格里菲斯Charter9

量子力学英文课件格里菲斯Charter9

It is the time dependence that concerns us here. So when we write (t), we simply mean the state of the system at time t.
In the absence of any perturbation, each component evolves with its characteristic exponential factor:
From Eqs.[9.6] and [9.7], we find
Inview of Eq.[9.1], the first two terms on the left cancel the last two terms on the right and hence
(1) To isolate dca /dt, we use the standard trick: Take the inner product with a, and exploit the orthogonality of a and b (Eq.[9.2]), from Eq.[9.8] we have :
The purpose of this chapter is to develop timedependent perturbation theory, and study its most important application : the emission or absorption of radiation by an atom -- a process known in the old Bohr theory as a quantum jump.
If, for example, the particle started out in the state a, so that ca(0)=1 and cb(0)=0. At some later time t1 we find that ca(t1)=0, cb(t1)=1, we shall report that the system underwent a transition from a to b. We solve for ca(t) and cb(t) by demanding that (t) satisfy the time-dependent Schrö dinger equation,

(完整版)量子力学英语词汇

(完整版)量子力学英语词汇

1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。

量子力学英文课件格里菲斯Chapter5

量子力学英文课件格里菲斯Chapter5

Moreover, if a system starts out in such a state, it will remain in such a state !
The new law (symmetrization requirement) is that:
for identical particles the wave function is not merely allowed, but required to satisfy Eq.[5.14] , with the plus sign for bosons and the minus sign for fermions.
The statistical interpretation carries over in the obvious way:
Hale Waihona Puke is the probability of finding particle 1 in the volume d3r1 and particle 2 in the volume d3r2 . Evidently must be normalized in such a way that
and E is the total energy of the system.
Suppose particle 1 is in the (one-particle) state a(r), and particle 2 is in the state b(r).
In that case, (r1,r2) is a simple product:
Quantum mechanics neatly accommodates the existence of particles that are indistinguishable in principle : We simply construct a wave function that is noncommittal as to which particle is in which state. There are actually two ways to do it:

量子力学学习课件第三章英文版

量子力学学习课件第三章英文版
(1) hermitian? In this case: As is the usual polar coordinate:
On the interval
(2) The eigenvalue equation, The general solution is By using periodic boundary condition
Therefore, the set of all square-integrable functions, on a specified interval,
constitutes a (much smaller) vector space.
Mathematicians call it L2(a,b), while physicists call it Hilbert space.
the addition and the inner product
The inner product of two vectors, which generalizes the dot product in three dimensions, is defined by
2. Linear transformations
In an N-dimensional space, the vector is represented by a N-number of its components, with respect to a specified orthonormal basis:
We can define operations on vectors:
Some important concepts
On state
we measure an observable Q.

量子力学英文课件格里菲斯Chapter2

量子力学英文课件格里菲斯Chapter2

Curiously, the boundary condition at x = a does not determine the constant A, but rather the constant k, and hence the possible values of E can be obtained from Eq.[2.17] and [2.22]:
Once we have found the separable solutions, then, we can immediately construct a much more general solution, of the form
It so happens that every solution to the (time dependent) Schrö dinger equation can be written in this form — it is simply a matter of finding the right constants (c1, c2, c3, c4, …)so as to fit the initial conditions for the problem at hand.
Equation [2.17] is the (classical) simple harmonic oscillator equation; the general solution is
Typically, these constants are fixed by the boundary conditions of the problem. What are the appropriate boundary conditions for (x)?

量子力学英文课件格里菲斯Chapter3

量子力学英文课件格里菲斯Chapter3

Technically, a Hilbert space is a complete inner product space, and the collection of square-integrable functions is only one example of a Hilbert space. In quantum mechanics, then,
Outline
In the last two chapters, we have stumbled on a number of interesting properties of simple quantum systems. Some of these are ―accidental‖ features of specific potentials (the even spacing of energy levels for the harmonic oscillator, for example), but others seem to be more general, and it would be nice to prove them once and for all (the uncertainty principle, for instance, and the orthogonality of stationary states).
A set of functions, { fn }, is orthonormal if they are normalized and mutually orthogonal:
Finally, a set of functions is complete if any other function g(x) (in Hilbert space) can be expressed as a linear combination of them:

量子力学入门 英语

量子力学入门 英语

Until now , we know that both quantum mechanics and relativity theory are absolutely right . But there are some paradoxes between them ,which may be the origin of revolution theory . 迄今为止,我们知道量子力学与相对论都是非常正确的 理论。但是,它们之间还是存在一些不兼容的地方。这 些地方有可能成为未来革命性理论的起点。
Hello , everyone! My name is Zheng Zerui , from School of Materials Science and Engineering. My teammates are Zhang Yuhan , Wang Yabo , Wu Qihang , Li Wei, Zhang Wei, Li Jiang , Chen Penghui. 大家好! 我是材料学院的郑泽锐,我的队友有张宇寒、 王亚博、吴起航、李伟、张维、李江、陈鹏辉。
schrödinger
For a general quantum system, Schrödinger equation is
ℏ2 ∂ iℏ Ψ (r , t ) = [− ∇ 2µ ∂t
2
+ V ( r )] Ψ ( r , t )

In conclusion , there are two points: A . Quantum mechanics is founded by the hypothesis that energy is discrete . B . The core work of quantum mechanics is calculating the Schrödinger equation. So quantum mechanics is very easy. 总而言之,这儿有两点比较重要: A . 量子力学是以能量是不连续为假设建立的。 B . 量子力学的核心工作就是计算薛定谔方程。 所以说,量子力学是很简单的。

量子力学英文课件格里菲斯Chapter7

量子力学英文课件格里菲斯Chapter7

Example 2. Suppose we’re looking for the ground state energy of the delta function potential:
Again, we already know the exact answer (Eq.[2.109]): Eg= m2/2ħ2. (i) As before, we’ll use a gaussian trial wave function with a parameter b (Eq.[7.2]). We’ve already determined the normalization and calculated T; all we need is
Of course, we already know the exact answer, in this case (Eq.[2.49]): Eg = (1/2)ħ; but this makes it a good test of the method. (i) We might pick as our “trial”(尝试) wave function the gaussian,
where A is determined normalization:
On the one hand, according to the theorem:
On the other hand, the Hamiltonian H of the onedimensional infinite square well is
(ii) Evidently
(iii) and we know that this exceeds Eg for all b. Minimizing it,

量子力学英文课件格里菲斯Chapter4

量子力学英文课件格里菲斯Chapter4

Outside the well the wave function is zero; inside the well the radial equation says
where
Our problem is to solve this equation, subject to the boundary condition : u(a)=0. The case l = 0 is easy:
In other words, exp[im(+2)]=exp[im], or exp(i2m) =1. From this it follows that m must be an integer :
(ii). The equation [4.20]
may not be so familiar. The solution is
批注本地保存成功开通会员云端永久保存去开通
Outline
The generalization to three dimensions is straight forward. Schrödinger’s equation says
where the Hamiltonian operator H is obtained from the classical energy
contains an extra piece, centrifugal term, (ħ2/2m)[l(l+1)/r2].
It tends to throw the particle outward (away from the origin), just like the centrifugal (pseudo-) force in classical mechanics.

(完整版)量子力学英语词汇

(完整版)量子力学英语词汇

1、microscopic world 微观世界2、macroscopic world 宏观世界3、quantum theory 量子[理]论4、quantum mechanics 量子力学5、wave mechanics 波动力学6、matrix mechanics 矩阵力学7、Planck constant 普朗克常数8、wave-particle duality 波粒二象性9、state 态10、state function 态函数11、state vector 态矢量12、superposition principle of state 态叠加原理13、orthogonal states 正交态14、antisymmetrical state 正交定理15、stationary state 对称态16、antisymmetrical state 反对称态17、stationary state 定态18、ground state 基态19、excited state 受激态20、binding state 束缚态21、unbound state 非束缚态22、degenerate state 简并态23、degenerate system 简并系24、non-deenerate state 非简并态25、non-degenerate system 非简并系26、de Broglie wave 德布罗意波27、wave function 波函数28、time-dependent wave function 含时波函数29、wave packet 波包30、probability 几率31、probability amplitude 几率幅32、probability density 几率密度33、quantum ensemble 量子系综34、wave equation 波动方程35、Schrodinger equation 薛定谔方程36、Potential well 势阱37、Potential barrien 势垒38、potential barrier penetration 势垒贯穿39、tunnel effect 隧道效应40、linear harmonic oscillator 线性谐振子41、zero proint energy 零点能42、central field 辏力场43、Coulomb field 库仑场44、δ-function δ-函数45、operator 算符46、commuting operators 对易算符47、anticommuting operators 反对易算符48、complex conjugate operator 复共轭算符49、Hermitian conjugate operator 厄米共轭算符50、Hermitian operator 厄米算符51、momentum operator 动量算符52、energy operator 能量算符53、Hamiltonian operator 哈密顿算符54、angular momentum operator 角动量算符55、spin operator 自旋算符56、eigen value 本征值57、secular equation 久期方程58、observable 可观察量59、orthogonality 正交性60、completeness 完全性61、closure property 封闭性62、normalization 归一化63、orthonormalized functions 正交归一化函数64、quantum number 量子数65、principal quantum number 主量子数66、radial quantum number 径向量子数67、angular quantum number 角量子数68、magnetic quantum number 磁量子数69、uncertainty relation 测不准关系70、principle of complementarity 并协原理71、quantum Poisson bracket 量子泊松括号72、representation 表象73、coordinate representation 坐标表象74、momentum representation 动量表象75、energy representation 能量表象76、Schrodinger representation 薛定谔表象77、Heisenberg representation 海森伯表象78、interaction representation 相互作用表象79、occupation number representation 粒子数表象80、Dirac symbol 狄拉克符号81、ket vector 右矢量82、bra vector 左矢量83、basis vector 基矢量84、basis ket 基右矢85、basis bra 基左矢86、orthogonal kets 正交右矢87、orthogonal bras 正交左矢88、symmetrical kets 对称右矢89、antisymmetrical kets 反对称右矢90、Hilbert space 希耳伯空间91、perturbation theory 微扰理论92、stationary perturbation theory 定态微扰论93、time-dependent perturbation theory 含时微扰论94、Wentzel-Kramers-Brillouin method W. K. B.近似法95、elastic scattering 弹性散射96、inelastic scattering 非弹性散射97、scattering cross-section 散射截面98、partial wave method 分波法99、Born approximation 玻恩近似法100、centre-of-mass coordinates 质心坐标系101、laboratory coordinates 实验室坐标系102、transition 跃迁103、dipole transition 偶极子跃迁104、selection rule 选择定则105、spin 自旋106、electron spin 电子自旋107、spin quantum number 自旋量子数108、spin wave function 自旋波函数109、coupling 耦合110、vector-coupling coefficient 矢量耦合系数111、many-particle system 多子体系112、exchange forece 交换力113、exchange energy 交换能114、Heitler-London approximation 海特勒-伦敦近似法115、Hartree-Fock equation 哈特里-福克方程116、self-consistent field 自洽场117、Thomas-Fermi equation 托马斯-费米方程118、second quantization 二次量子化119、identical particles 全同粒子120、Pauli matrices 泡利矩阵121、Pauli equation 泡利方程122、Pauli’s exclusion principle泡利不相容原理123、Relativistic wave equation 相对论性波动方程124、Klein-Gordon equation 克莱因-戈登方程125、Dirac equation 狄拉克方程126、Dirac hole theory 狄拉克空穴理论127、negative energy state 负能态128、negative probability 负几率129、microscopic causality 微观因果性本征矢量eigenvector本征态eigenstate本征值eigenvalue本征值方程eigenvalue equation本征子空间eigensubspace (可以理解为本征矢空间)变分法variatinial method标量scalar算符operator表象representation表象变换transformation of representation表象理论theory of representation波函数wave function波恩近似Born approximation玻色子boson费米子fermion不确定关系uncertainty relation狄拉克方程Dirac equation狄拉克记号Dirac symbol定态stationary state定态微扰法time-independent perturbation定态薛定谔方程time-independent Schro(此处上面有两点)dinger equation 动量表象momentum representation角动量表象angular mommentum representation占有数表象occupation number representation坐标(位置)表象position representation角动量算符angular mommentum operator角动量耦合coupling of angular mommentum对称性symmetry对易关系commutator厄米算符hermitian operator厄米多项式Hermite polynomial分量component光的发射emission of light光的吸收absorption of light受激发射excited emission自发发射spontaneous emission轨道角动量orbital angular momentum自旋角动量spin angular momentum轨道磁矩orbital magnetic moment归一化normalization哈密顿hamiltonion黑体辐射black body radiation康普顿散射Compton scattering基矢basis vector基态ground state基右矢basis ket ‘右矢’ket基左矢basis bra简并度degenerancy精细结构fine structure径向方程radial equation久期方程secular equation量子化quantization矩阵matrix模module模方square of module内积inner product逆算符inverse operator欧拉角Eular angles泡利矩阵Pauli matrix平均值expectation value (期望值)泡利不相容原理Pauli exclusion principle氢原子hydrogen atom球鞋函数spherical harmonics全同粒子identical particles塞曼效应Zeeman effect上升下降算符raising and lowering operator 消灭算符destruction operator产生算符creation operator矢量空间vector space守恒定律conservation law守恒量conservation quantity投影projection投影算符projection operator微扰法pertubation method希尔伯特空间Hilbert space线性算符linear operator线性无关linear independence谐振子harmonic oscillator选择定则selection rule幺正变换unitary transformation幺正算符unitary operator宇称parity跃迁transition运动方程equation of motion正交归一性orthonormalization正交性orthogonality转动rotation自旋磁矩spin magnetic monent(以上是量子力学中的主要英语词汇,有些未涉及到的可以自由组合。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Scientists do not care who is right , they are designing quantum computer which is based on the theory of quantum entanglement . 科学家们不管谁对谁错 ,他们已经在设计基于 量子纠缠态的量子计算 机。
quantum computer 量子计算机
Round three : About Possibility 第三回合:关于概率 第三回合:关于概率 Einstein did not believe in the uncertain principle , so he said , "God does not play dice ". Bohr, in response, said "Einstein, don't tell God what to do". 爱因斯坦不相信量子力学的不确定原理,于是他说, 上帝是不会掷骰子的。 波尔则回复说,你不要告诉上帝该做什么事。
Einstein
In 1913,Bohr proposed that electrons travel only in certain orbits and that any atom could exist only in a discrete set of stable states,and developed a new theory of the atom. 1913年,波尔提出了电子是按固 定轨道运行和电子只能处于一些 离散的稳定状态的假设。在此基 础上,他推动了新的原子理论的 发展。
Light spectrum
In 1926, Erwin Schrödinger formulated Schrödinger equation that describes how the quantum state of a physical system changes in time. 1926年,埃尔温·薛定谔提 出了薛定谔方程,这个方程 用来描述物理系统中量子态 是怎么样随时间变化的。
Many people have the idea that quantum mechanics is far from us and it is so complex that only geniuses have the ability to know it. 许多人认为量子力学离我们很远,并且只有天才们 才能了解它。
VS
God does not play dice ! 上帝可不会掷骰子!
Don't tell God what to do ! 不要告诉上帝该做什么!
History will tell people who is right finally . However , they are both heroes ! 历史自然会告诉谁对谁错。但无论如何,这些科学家 们都是真正的英雄! Before we get truth , there is a long way ; but if we pursue it without stop, we will smile at last. 路漫漫其修远兮吾将上下而求索! Here is a song for you. 与大家分享首歌曲。
Bohr
The word quantum derives from Latin, meaning “how great” or “how much”. In quantum mechanics, it refers to a discrete unit that quantum theory assigns to certain physical quantities. 量子这个词语来源于拉丁语,意思是“多大”或“多 少”。在量子力学中,它指一些不连续的物理量。
Is quantum mechanics really complicated? 那么,量子力学真的那么复杂吗? Absolutely not, it is very easy. 当然也不是,其实它是很简单的。
In 1900, Planck Put forward a
hypothesis that energy is radiated and absorbed in discrete "quanta", or "energy elements", which successfully matched the observed patterns of black body radiation.
Until now , we know that both quantum mechanics and relativity theory are absolutely right . But there are some paradoxes between them ,which may be the origin of revolution theory . 迄今为止,我们知道量子力学与相对论都是非常正确的 理论。但是,它们之间还是存在一些不兼容的地方。这 些地方有可能成为未来革命性理论的起点。
schrödinger
For a general quantum system, Schrödinger equation is
ℏ2 ∂ iℏ Ψ (r , t ) = [− ∇ 2µ ∂t
2
+ V ( r )] Ψ ( r , t )

In conclusion , there are two points: A . Quantum mechanics is founded by the hypothesis that energy is discrete . B . The core work of quantum mechanics is calculating the Schrödinger equation. So quantum mechanics is very easy. 总而言之,这儿有两点比较重要: A . 量子力学是以能量是不连续为假设建立的。 B . 量子力学的核心工作就是计算薛定谔方程。 所以说,量子力学是很简单的。
1900年,普朗克提出能量的发射和吸 收是按“一份一份”进行的假说 ,这 个假说成功的解释了黑体辐射模型。
Planck
• in 1905 ,Einstein used Planck’s quantum hypothesis realistically to explain the photoelectric effect. • 1905年,爱因斯坦用普朗克 的量子假设成功地解释了光 电效应。
Semiconductor 半导体
The 21st century will become information age,quantum age! 21世纪将会变为信息时代,量子时代!
iPhone
iPad-3
Now we see that quantum mechanics is not far from us. 现在我们知道了量子力学与我们紧密相关。
Hello , everyone! My name is Zheng Zerui , from School of Materials Science and Engineering. My teammates are Zhang Yuhan , Wang Yabo , Wu Qihang , Li Wei, Zhang Wei, Li Jiang , Chen Penghui. 大家好! 我是材料学院的郑泽锐,我的队友有张宇寒、 王亚博、吴起航、李伟、张维、李江、陈鹏辉。
Is quantum mechanics far from us? 量子力学离我们真的很远吗? No,it is just around us. 当然不是,它无处不在!
Laser 激光
Electron Microscope 电子显微镜
Scanning Picture 扫描图片
The theory of semiconductor based on quantum mechanics make information industry flourish. 基于量子力学的半导体理论,使信息产业蓬勃发展。
Round one : About Black Hole 第一回合: 第一回合:关于黑洞 According to the relativity theory , if a particle meet with singular point , it can never come out . But quantum mechanics say that it can escape by possibility . 根据相对论,如果一个粒子与黑洞的起点相遇,那么 它再也不能跑出来了。但量子力学却说,它能以一定 概率逃出来的。
Can a particle escape from the black hole ? It is still a unsolved mystery . 一个粒子能成黑洞中跑出来吗?这至今是个未解之谜。
Round two : About Velocity 第二回合:关于速度 第二回合:关于速度 According to the relativity theory , nothing can travel faster than light velocity . But quantum entanglement shows us that one particle can affect another with no time , no information. 根据相对论,没有什么东西比光速还快。但量子纠缠态 向我们展示,一个粒子能在瞬间影响其它地方的粒子, 并且不需要传递什么作用力。
My lecture is over! Thanks for view! 我的演讲到此结束! 谢谢大家捧场!
相关文档
最新文档