第七章第三节 万有引力定律

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第七章第三节 万有引力定律 理解领悟

本节在前一节得出太阳与行星间引力规律的基础上,进一步将“天上”的力与“人间”的力统一起来,得出了万有引力定律。要了解万有引力定律得出的思路和过程,了解万有引力定律的含义,并会初步应用万有引力定律进行分析与求解。

1. 猜想Ⅰ:“天上”的力与“人间”的力可能出于同一个本源

通过上节的分析,我们对于行星的运动规律可以理解了。但是,太阳与行星间的引力使得行星不能飞离太阳;而地面上的物体,如苹果被抛出后总要落回地面,是什么力使得苹果不离开地球呢?

牛顿设想:苹果不离开地球,是否也是由于地球对苹果的引力造成的?地球对苹果的引力和太阳对行星的引力是否根本就是同一种力呢?若真是这样,物体离地面越远,其受到地球的引力就应该越小。可是地面上的物体距地面很远时,如在高山上,似乎重力没有明显地减弱,是物体离地面还不够远吗?这样的高度比起天体之间的距离来,真的不算远!再往远处设想,如果物体延伸到月球那么远,物体是否也会像月球那样围绕地球运动?地球对月球的力、地球对地面上物体的力、太阳对行星的力,也许真是同一种力!

2. 验证:月—地检验

假定上述猜想成立,即维持月球绕地球运动的力与使得苹果下落的力是同一种力,同样遵从“平方反比”律,那么,由于月球轨道半径约为地球半径(苹果到地心的距离)的60倍,所以月球轨道上一个物体受到的引力,比它在地面附近时受到的引力要小,前者只有后者的1/602。根据牛顿第二定律,物体在月球轨道上运动时的加速度(月球公转的向心加速度)也就应该是它在地面附近下落时的加速度(自由落体加速度)的1/602。

在牛顿的时代,重力加速度、月—地距离、月球的公转周期都已能较精确地测定,从而能够算出月球运动的向心加速度。计算结果表明,月球运动的向心加速度确实等于地面重力加速度的1/602,这说明地面物体所受地球的引力,与月球所受地球的引力,真的是同一种力!至此,“平方反比”律已经扩展到太阳与行星间、地球与月球间、地球与地面物体间。

3. 猜想Ⅱ:推广到宇宙中的一切物体

牛顿在上述推断的基础上,作了更大胆的猜想:任意两个物体之间都存在着这样的引力,它与两个物体的质量成正比,与它们之间距离的二次方成反比。只是由于一般物体的质量比天体的质量小得多,我们不易觉察。于是,上述结论被推广到宇宙中的一切物体之间。 牛顿当时的魄力、胆识和惊人的想象力实在让我们敬佩!物理学的许多重大理论的发现,不是简单的实验结果的总结,它需要直觉和想象力、大胆的猜想和假设,再引入合理的模型,需要深刻的洞察力、严谨的数学处理和逻辑思维,常常是一个充满曲折和艰辛的过程。

4. 万有引力定律

经过上述第Ⅱ步猜想,牛顿的结论是:

自然界中任何两个物体都相互吸引,引力的大小与物体的质量m 1和m 2的乘积成正比,与它们之间距离r 的二次方成反比,即

2

21r m m G F 。 需要指出的是,上述结论至此还只是一种猜想,尽管这个推广是十分自然的,但仍要接受事实的直接或间接的检验。在下一节“万有引力理论的成就”中讨论的问题表明,由此得

出的结论与事实相符。于是,它成为科学史上最伟大的定律之一——万有引力定律。

5. 对万有引力定律的进一步说明

关于万有引力定律,我们可从以下几方面来加深理解:

① 万有引力是宇宙间的一种基本的相互作用力,万有引力定律是一个非常重要的定律,它适用于宇宙中的一切物体。万有引力定律的发现,对物理学和天文学的发展具有深远的影响。

② 万有引力公式只适用于两质点间的引力的计算,因为对一般物体而言,“两个物体之间的距离”到底是指物体哪两部分的距离,无法确定。实际物体当它们之间的距离远大于它们本身的尺度时,可视为质点。对质量均匀分布的球体,也可以用此公式计算它们之间的引力,其中的距离即两球心之间的距离。但是,对于一般物体间的万有引力,切不可用它们质心间的距离代入上式计算。

③ 求一个质点受到多个质点的万有引力时,可先用万有引力公式求出各个质点的引力,再求它们的矢量和。

④ 万有引力公式中G 的是比例系数,叫做引力常量,是自然界中少数几个最重要的物

理常量之一,通常取 G=6.67×10-11N·m 2/kg 2。

6. 牛顿发现万有引力定律的思路

现在,我们来回顾一下牛顿发现万有引力定律的思路。万有引力定律的发现是按照下面的思路展开的:

① 观察方法获得规律:行星运动的开普勒定律。问题:行星运动为什么会有这样的规律?

② 猜想原因:太阳对行星的引力作用。问题:太阳对行星的引力与什么因素有关? ③ 数学演绎得到规律:根据已知规律(开普勒行星运动定律和牛顿运动定律)推出太阳与行星间的引力遵从的规律: 2

r Mm F ∝。 ④ 进一步猜想:地球使地面上物体下落的力,与太阳使行星运动的力、地球使月球运动的力是否出于同一原因?

⑤ 猜想得到检验:月—地检验使猜想得到证实。

⑥ 更大胆地猜想:自然界任何两个物体之间是否也有这样的吸引力?

⑦ 得到万有引力定律: 2

21r m m G F =。

7. 探索“行星运动的原因”的历史

公元1世纪,古希腊哲学家柏拉图认为,匀速圆周运动是最和谐、最完美的,不需要任何外力的推动和维持。一个半世纪以后的伽利略时代,开始用动力学理论来解释天体运动的原因。开普勒受到英国医生吉尔伯特的影响,提出引力是来自同一发出的“磁力流”,它们像轮辐一样沿太阳旋转的方向而转动,沿切线的方向推动着行星的公转。法国的笛卡尔则用

“漩涡”来解释引力现象,提出了“以太”的流质存在。牛顿同一时代的科学家胡克、哈雷、伦恩等关心引力问题的研究,1680年胡克给牛顿的信中提到了行星受到太阳的引力,这个引力与距离的平方成反比,但是他们无法证明在椭圆轨道下引力也遵循同样的规律。牛顿早在1666年,也就是苹果砸到头上的日子里,牛顿就在考虑这个问题,经过20多年的探索,终于在1687年发表的《自然哲学的数学原理》一书中公布了万有引力定律。

8. 有关月—地检验的计算

牛顿进行了著名的月—地检验,验证了地面上的重力与地球吸引月球的力是相同性质的力。

假设地面的重力 21R

G ≈

, 月球受到的引力 21r F ≈, 因为 2

2

,,r R g a ma F mg G ===, 又因为月心到地心的距离是地球半径的60倍,即R r 60=,所以 232s /m 107.2s /m 3600

8.93600,36001-⨯≈===g a g a 。 月球绕地球做匀速圆周运动,向心加速度

r T r a 22

2

4πω==, 经天文观察月球绕地球运动的周期

27.3s 2436003.27⨯⨯==天T ,

m 104.660606

⨯⨯==R r , 所以 232622

s /m 107.2s /m 104.660)

3.27243600(1

4.34-⨯≈⨯⨯⨯⨯⨯⨯=a 。 两种计算结果一致,验证了地面上的重力与地球吸引月球的力是相同性质的力。

9. 不能看成质点的物体间的引力

如果两个物体的距离很远,就可以忽略它们的形状和大小,把它们看成质点,直接运用万有引力公式计算它们之间的引力。如果两个物体相距不太远,在计算它们之间的万有引力时,一般就不能把它们看成质点,而应将每一物体看成一个质点系。物体A 包含的所有质点与物体B 包含的所有质点之间都有引力。

如图7—3所示,物体B 的各质点m 1’、m 2’、m 3’、……m k ’ 对物体A 的任一质点均有引力,所以质点m 1所受引力的总和为 ∑'=k k k r m m G

F 2111(矢量和)。 物体B 的各质点m 1’、m 2’、m 3’、……m k ’ 对物体A 的其它质点m 2、m 3、m 4、……m i 均有引力,这些力的合力就是物体B 对物体A 的引力,可用下式表示:

图7—3

相关文档
最新文档