硅光电池特性的研究

合集下载

硅光电池特性的研究

硅光电池特性的研究

硅光电池特性的研究班级:物本0701姓名:学号:2007091100指导老师:硅光电池特性的研究摘要:目前,太阳能的利用主要集中在热能和发电两方面。

而硅光电池是一种半导体光电转换器件,它能把光能直接转换成电能,具有效率高、重量轻、体积小、寿命长等一系列特点。

是工农业生产和国防建设中开发利用太阳能和用于控制、检测的一种重要元件。

为此,我们尝试在普通物理实验中开设了太阳能电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对这两种性质进行测量。

关键词:半导体;PN;硅光电池;光电子;光伏电池;伏安特性引言:目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理.本实验对硅光电池的基本特性作了初步的探讨,这对广泛认识和利用各种光器件有十分重要的意义。

1 实验原理1.1 PN结的形成及单向导电性原理采用不同的掺杂工艺,将P型半导体与N型半导体制作在同一块硅片上,在它们的交界面就形成空间电荷区称PN结。

PN结:一块单晶半导体中,一部分掺有受主杂质是P型半导体,另一部分掺有施主杂质是N型半导体时,P 型半导体和N型半导体的交界面附近的过渡区称。

PN结有同质结和异质结两种。

用同一种半导体材料制成的PN 结叫同质结,由禁带宽度不同的两种半导体材料制成的PN结叫异质结。

制造PN结的方法有合金法、扩散法、离子注入法和外延生长法等。

制造异质结通常采用外延生长法。

在P 型半导体中有许多带正电荷的空穴和带负电荷的电离杂质。

在电场的作用下,空穴是可以移动的,而电离杂质(离子)是固定不动的。

N 型半导体中有许多可动的负电子和固定的正离子。

当P型和N型半导体接触时,在界面附近空穴从P型半导体向N型半导体扩散,电子从N型半导体向P型半导体扩散。

空穴和电子相遇而复合,载流子消失。

硅光电池特性研究实验

硅光电池特性研究实验

硅光电池特性研究实验【实验原理】在p 型硅片上扩散一层极薄的n 型层,形成pn 结,再在该硅片的上下两面各制一个电极(其中光照面的电极成“梳状”,并在整个光照面镀上增透膜,利于光的入射),这样就构成了硅光电池,如图5.7.1(a)所示。

光电池的符号见图5.7.1(b)。

当光照射在硅光电池的光照面上时,若入射光子能量大于硅的能隙时,光子能量将被半导体吸收,产生电子一空穴对。

它们在运动中一部分重新复合,其余部分在到达pn 结附近时受pn 结内电场的作用,空穴向p 区迁移,使p 区显示正电性,电子向n 区迁移,使n 区带负电,因此在pn 结上产生电动势。

如果在硅光电池两端连接电阻,回路内就形成电流,这是硅光电池发生光电转换的原理。

硅光电池(以下简称光电池)的简化等效电路如图5.7.2所示。

(1)在无光照时,光(生)电流0ph I =,光电池可以简化为二极管如图5.7.3。

根据半导体理论,流经二极管的电流d I 与其两端电压的关系符合以下经验公式0(1)V d I I I e β==- (5.7.1) 式中:β和0I 是常数。

(2)有光照时,ph I >o ,光电池端电压与电流的关系为0(1)V d ph ph I I I I e I β=-=-- (5.7.2)由式(5.7.2),可以得到以下结论:①当外电路短路时,短路电流sc ph I I =-,光电流全部流向外电路。

②当外电路开路时,开路电压1ln 1ph oc o I V I β⎡⎤=+⎢⎥⎣⎦即1ln 1sc oc o I V I β⎡⎤=+⎢⎥⎣⎦,开路电压oc V 与短路电流sc I 满足对数关系;如果sc I 与光通量(或照度)有线性关系,则oc V 与光通量也满足对数关系。

由于二极管的分流作用,负载电阻愈大,光电池的输出电流愈小,实验可以证明这时输出电压却愈大。

因此,在入射光能量不变化的情况下,要从光电池获取最大功率,负载电阻要取恰当的值。

硅光电池基本特性的研究(精)

硅光电池基本特性的研究(精)

实验5 硅光电池基本特性的研究硅光电池又称光生伏特电池,简称光电池.它是一种将太阳或其他光源的光能直接转换成电能的器件.由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对硅光电池寄予厚望.硅光电池很可能成为未来电力的重要来源,同时,硅光电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用硅光电池作为电源.本实验对硅光电池的基本特性做初步研究.一.实验目的1. 了解硅光电池的基本结构及基本原理.2. 研究硅光电池的基本特性:3.硅光电池的开路电压和短路电流以及它们与入射光强度的关系;4.硅光电池的输出伏安特性等。

二. 实验仪器YJ-CGQ-I典型传感特性综合实验仪、光源、负载电阻箱.数字万用表.连接线1. 实验装置实验装置由光源和硅光电池两部分组成, 如图1所示.图12. 负载电阻箱如图2所示.图2三. 实验原理1.硅光电池的基本结构.硅光电池用半导体材料制成,多为面结合PN结型,靠PN结的光生伏特效应产生电动势.常见的有硅光电池和硒光电池.在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结.从P层和N层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形.硅光电池的基本结构如图3所示.图32.硅光电池的基本原理当两种不同类型的半导体结合形成PN结时.由于分界层(PN结)两边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场.当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对.这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区.结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是硅光电池的电动势.若硅光电池接有负载,电路中就有电流产生.这就是硅光电池的基本原理.单体硅光电池在阳光照射下,其电动势为0.5-0.6V,最佳负荷状态工作电压为0.4-0.5V,根据需要可将多个硅光电池串并联使用.3.硅光电池的光电转换效率硅光电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能.例如,在太阳照射下,硅光电池转换效率最高,但目前也仅达22%左右.其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子-空穴对,但能量再大,一个光子也只能激发一个电子-空穴对;在离PN较远处被激发的电子-空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子-空穴对重新复合;光电流通过PN结时会有漏电等.4. 硅光电池的基本特性4.1 硅光电池的开路电压与入射光强度的关系硅光电池的开路电压是硅光电池在外电路断开时两端的电压,用U∞表示,亦即硅光电池的电动势.在无光照射时,开路电压为零.硅光电池的开路电压不仅与硅光电池材料有关,而且与入射光强度有关,而且与入射光强度有关.在相同的光强照射下,不同材料制做的硅光电池的开路电压不同.理论上,开路电压的最大值等于材料禁带宽度有1/2.例如,禁带宽度为1.1eV的硅做硅光电池,开路电压为0.5-0.6V.对于给定的硅光电池,其开路电压随入射光强度变化而变化.其规律是:硅光电池开路电压与入射光强度的对数成正比,即开路电压随入射光强度增大而增大,但入射光强度越大,开路电压增大得越缓慢.4.2 硅光电池的短路电流与入射光的关系硅光电池的短路电流就是它无负载时回路中电流,用I SC表示.对给定的硅光电池,其短路电流与入射光强度成正比.对此,我们是容易理解的,因为入射光强度越大,光子越多,从而由光子激发的电子-空穴对越多,短路电流也就越大.4.3在一定入射光强度下硅光电池的输出特性当硅光电池两端连接负载而使电路闭合时,如果入射光强度一定,则电路中的电流I和路端电压U均随负载电阻的改变而改变,同时,硅光电池的内阻也随之变化.硅光电池的输出伏安特性曲线如图4所示.图4中,I SC 为U =0,即短路时的电流,I SC .U∞为I=0,即开路时的路端电压,也就是硅光电池在该入射光强度下的开路电压,曲线上任一点对对应的I 和U 的乘积(在图中则是一个矩形的面积),就是硅光电池在相应负载电阻时的输出功率P .曲线上有一点M ,它的对应I mp 和U mp 的乘积(即图中画斜线的矩形面积)最大.可见,硅光电池仅在它的负载电阻值为U mp 和Imp 值时,才有最大输出功率.这个负载电阻称为最佳负载电阻,用R mp 表示.因此,我们通过研究硅光电池在一定入射光强度下的输出特性,可以找出它在该入射光强度下的最佳负载电阻.它在该负载电阻时工作状态为最佳状态,它的输出功率最大.4.4硅光电池在一定入射光强度下的曲线因子(或填充因子)F ·F曲线因子定义式为F ·F =(U mp I mp )/(U ∞I SC )我们知道,在一定入射光强度下,硅光电池的开路电压U ∞和短路电流I SC 是一定的.而U mp 和I mp 分别为硅光电池在该入射光强度下输出功率最大时的电压和电流.可见,曲线因子的物理意义是表示硅光电池在该入射光强度下的最大输出效率.从硅光电池的输出伏安特性曲线来看,曲线因子F ·F 的大小等于斜线矩形的面积(与M 点对应)与矩形I SC U ∞的面积(与M 点对应)之比.如果输出伏安特性曲线越接近矩形,则M 与M ′就越接近重合,曲线因子F · F 就越接近1,硅光电池的最大输出效率就越大.四.实验内容与步骤1. 硅光电池基本常数的测定(1) 测定在一定入射光强度下硅光电池的开路电压U∞和短路电流ISC.调节光源与硅光电池处于适当位置不变.b.测出硅光电池的开路电压U∞c.测出硅光电池的短路电流ISC.(2) 测定硅光电池的开路电压和短路电流与入射光强度的关系.a.光源与硅光电池正对时,测出开路电压U∞1和短路电流ISC1.b.转动硅光电池一定角度(如15o)测出U∞2和ISC2.c.转动硅光电池角度为30o、45o、60o、75o、90o时,测出不同位置下的U∞和ISC.d. 自拟数据表格,并用坐标纸画出ISC—Ө及U∞—Ө曲线.2. 在一定入射光强度下,研究硅光电池的输出特性.保持光源和硅光电池处于适当的位置不变,即保持入射光强度不变.(1) 测量开路电压U∞和短路电流ISC.(2) 分别测出不同负载电阻下的电流I和电压U.(3) 根据U∞、ISC及一系列相应的R、U、I值.填入自拟表格中.(4) 计算在该入射光强度下,与各个R相对应的输出功率P=IU,求出最大输出功率P max,以及相应的硅光电池的最佳负载电阻Rmp、Ump、Imp值.(5) 作P—R及输出伏安特性I—U曲线.(6) 计算曲线因子F·F=(UmpImp)/(U∞ISC).。

硅光电池特性的研究实验报告2

硅光电池特性的研究实验报告2

硅光电池基本特性的研究太阳能是一种清洁能源、绿色能源,许多国家正投入大量人力物力对太阳能接收器进行研究和利用。

硅光电池是一种典型的太阳能电池,在日光的照射下,可将太阳辐射能直接转换为电能,具有性能稳定,光谱围宽,频率特性好,转换效率高,能耐高温辐射等一系列优点,是应用极其广泛的一种光电传感器。

因此,在普通物理实验中开设硅光电池的特性研究实验,介绍硅光电池的电学性质和光学性质,并对两种性质进行测量,联系科技开发实际,有一定的新颖性和实用价值。

[实验目的]1.测量太阳能电池在无光照时的伏安特性曲线;2.测量太阳能电池在光照时的输出特性,并求其的短路电流I SC、开路电压U OC、最大FF3.测量太阳能电池的短路电流I及开路电压U与相对光强J /J0的关系,求出它们的近似函数关系;[实验原理]1、硅光电池的基本结构目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。

零偏反偏正偏图 2-1. 半导体PN结在零偏﹑反偏﹑正偏下的耗尽区图2-1是半导体PN结在零偏﹑反偏﹑正偏下的耗尽区,当P型和N型半导体材料结合时,由于P型材料空穴多电子少,而N型材料电子多空穴少,结果P 型材料中的空穴向N型材料这边扩散,N型材料中的电子向P型材料这边扩散,扩散的结果使得结合区两侧的P型区出现负电荷,N型区带正电荷,形成一个势垒,由此而产生的电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。

当PN结反偏时,外加电场与电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN结正偏时,外加电场与电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。

实验五十二硅光电池特性的研究(精)

实验五十二硅光电池特性的研究(精)

234实验五十二 硅光电池特性的研究一、实验目的1.掌握PN 结形成原理及其工作机理; 2.了解LED 发光二极管的驱动电流和输出光功率的关系;3.掌握硅光电池的工作原理及其工作特性。

二、仪器设备1.TKGD ―1型硅光电池特性实验仪; 2.信号发生器;3.双踪示波器。

三、实验原理1.引言目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光电效应理论和光伏电池产生机理。

图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,耗尽区的特点是无自由载流子,呈现高阻抗。

当PN 结反偏时,外加电场与内电场方向一致,耗尽区在外电场作用下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使载流子扩散运动继续形成电流,此即为PN 结的单向导电性,电流方向是从P 指向N 。

2.LED 的工作原理当某些半导体材料形成的PN 结加正向电压时,空穴与电子在PN 结复合时将产生特定波长的光,发光的波长与半导体材料的能级间隙E g 有关。

发光波长λp可由下式确定:式(1)中h 为普朗克常数,c 为光速。

在实际的半导体材料中能级间隙E g 有一个宽度,因此发光二极管发出光的波长不是单一的,其发光波长半宽度一般在25~40nm 左右,随半导体材料的不同而有差别。

发光二极管输出光功率P 与驱动电流I 的关系由下式决定:式(2)中,η为发光效率,E p 是光子能量,e 是电荷常数。

实验五十二硅光电池特性的研究(精)

实验五十二硅光电池特性的研究(精)

实验五⼗⼆硅光电池特性的研究(精)234实验五⼗⼆硅光电池特性的研究⼀、实验⽬的1.掌握PN 结形成原理及其⼯作机理; 2.了解LED 发光⼆极管的驱动电流和输出光功率的关系;3.掌握硅光电池的⼯作原理及其⼯作特性。

⼆、仪器设备1.TKGD ―1型硅光电池特性实验仪; 2.信号发⽣器;3.双踪⽰波器。

三、实验原理1.引⾔⽬前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到⼴泛应⽤,硅光电池是半导体光电探测器的⼀个基本单元,深刻理解硅光电池的⼯作原理和具体使⽤特性可以进⼀步领会半导体PN 结原理﹑光电效应理论和光伏电池产⽣机理。

图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空⽳多电⼦少,⽽N 型材料电⼦多空⽳少,结果P型材料中的空⽳向N 型材料这边扩散,N 型材料中的电⼦向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成⼀个势垒,由此⽽产⽣的内电场将阻⽌扩散运动的继续进⾏,当两者达到平衡时,在PN 结两侧形成⼀个耗尽区,耗尽区的特点是⽆⾃由载流⼦,呈现⾼阻抗。

当PN 结反偏时,外加电场与内电场⽅向⼀致,耗尽区在外电场作⽤下变宽,使势垒加强;当PN 结正偏时,外加电场与内电场⽅向相反,耗尽区在外电场作⽤下变窄,势垒削弱,使载流⼦扩散运动继续形成电流,此即为PN 结的单向导电性,电流⽅向是从P 指向N 。

2.LED 的⼯作原理当某些半导体材料形成的PN 结加正向电压时,空⽳与电⼦在PN 结复合时将产⽣特定波长的光,发光的波长与半导体材料的能级间隙E g 有关。

发光波长λp可由下式确定:式(1)中h 为普朗克常数,c 为光速。

在实际的半导体材料中能级间隙E g 有⼀个宽度,因此发光⼆极管发出光的波长不是单⼀的,其发光波长半宽度⼀般在25~40nm 左右,随半导体材料的不同⽽有差别。

发光⼆极管输出光功率P 与驱动电流I 的关系由下式决定:式(2)中,η为发光效率,E p 是光⼦能量,e 是电荷常数。

硅光电池特性研究实验报告

硅光电池特性研究实验报告

硅光电池特性研究实验报告一、引言。

硅光电池是一种将太阳能转化为电能的设备,是目前最常见的太阳能利用设备之一。

在本次实验中,我们将对硅光电池的特性进行研究,以期更好地了解其工作原理和性能表现。

二、实验目的。

本次实验的主要目的是通过对硅光电池的特性进行研究,探索其在不同条件下的性能表现,为进一步优化硅光电池的设计和应用提供参考。

三、实验方法。

1. 实验材料,硅光电池、光照强度计、直流电源、电阻箱、万用表等。

2. 实验步骤:a. 将硅光电池置于不同光照强度下,记录其输出电压和电流值。

b. 改变外加电压,记录硅光电池的输出电流和电压值。

c. 通过改变外接电阻,测量硅光电池在不同负载下的输出电压和电流值。

四、实验结果与分析。

1. 光照强度对硅光电池输出特性的影响。

实验结果表明,随着光照强度的增加,硅光电池的输出电压和电流值均呈现出增加的趋势。

这表明光照强度的增加可以提高硅光电池的输出功率,从而提高其能量转换效率。

2. 外加电压对硅光电池输出特性的影响。

当外加电压增大时,硅光电池的输出电流呈现出增加的趋势,而输出电压则呈现出下降的趋势。

这说明在一定范围内增加外加电压可以提高硅光电池的输出功率,但过大的外加电压会导致输出电压下降,影响硅光电池的性能。

3. 外接电阻对硅光电池输出特性的影响。

实验结果显示,随着外接电阻的增加,硅光电池的输出电压呈现出增加的趋势,而输出电流则呈现出下降的趋势。

这表明在一定范围内增加外接电阻可以提高硅光电池的输出电压,但过大的外接电阻会导致输出电流下降,影响硅光电池的性能。

五、结论。

通过本次实验,我们对硅光电池的特性进行了研究,发现光照强度、外加电压和外接电阻对硅光电池的输出特性均有影响。

在实际应用中,我们可以根据这些特性对硅光电池进行优化设计,提高其能量转换效率和稳定性。

六、致谢。

感谢实验中给予我们帮助和支持的老师和同学们。

七、参考文献。

1. 张三, 李四. 太阳能电池原理与技术. 北京: 中国科学出版社, 2010.2. 王五, 赵六. 硅光电池特性研究. 光电技术, 2008, 30(5): 12-15.以上就是本次硅光电池特性研究实验报告的全部内容。

硅光电池特性研究_2

硅光电池特性研究_2

硅光电池特性研究光电池是一种光电转换元件,它不需外加电源而能直接把光能转换为电能。

光电池的种类很多,常见的有硒、锗、硅、砷化镓、氧化铜、氧化亚铜、硫化铊、硫化镉等。

其中最受重视、应用最广的是硅光电池。

硅光电池是根据光生伏特效应而制成的光电转换元件。

它有一系列的优点:性能稳定,光谱响应范围宽,转换效率高,线性相应好,使用寿命长,耐高温辐射,光谱灵敏度和人眼灵敏度相近等。

所以,它在分析仪器、测量仪器、光电技术、自动控制、计量检测、计算机输入输出、光能利用等很多领域用作探测元件,得到广泛应用,在现代科学技术中有十分重要的地位。

通过实验对硅光电池的基本特性和简单应用作初步的了解和研究,有利于了解使用日益广泛的各种光电器件。

具有十分重要的意义。

[实验目的]1.掌握PN结形成原理及其单向导电性等工作机理。

2.了解LED发光二极管的驱动电流和输出光功率的关系。

3.掌握硅光电池的工作原理及负载特性。

[实验仪器]THKGD-1型硅光电池特性实验仪,函数信号发生器,双踪示波器。

[实验原理]1.引言目前半导体光电探测器在数码摄像﹑光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN结原理﹑光电效应理论和光伏电池产生机理。

THKGD-1型硅光电池特性实验仪主要由半导体发光二极管恒流驱动单元,硅光电池特性测试单元等组成。

利用它可以进行以下实验内容:1) 硅光电池输出短路时光电流与输入光信号关系。

2) 硅光电池输出开路时产生光伏电压与输入光信号关系。

3) 硅光电池的频率响应。

4) 硅光电池输出功率与负载的关系。

2.PN结的形成及单向导电性采用反型工艺在一块N型(P型)半导体的局部掺入浓度较大的三价(五价)杂质,使其变为P型(N型)半导体。

如果采用特殊工艺措施,使一块硅片的一边为P型半导体,另一边为N 型半导体则在P型半导体和N型半导体的交界面附近形成PN结。

硅光电池特性研究

硅光电池特性研究

硅光电池特性研究
硅光电池是一种常见的太阳能电池,其主要成分是硅材料。

硅光电池具有许多特性,比如高效率、长寿命、可靠性等。

下面,我们将对硅光电池的特性进行研究。

首先,硅光电池的高效率是其最重要的特性之一。

硅光电池在太阳辐射照射下能够将光能转化为电能,其转化效率高达20%左右。

相比之下,其他类型的太阳能电池的转化效率一般较低。

由于硅光电池具有高效率的特点,它能够更充分地利用太阳能资源,从而提高了电能的产量。

其次,硅光电池的长寿命也是其重要的特性之一。

硅光电池的寿命一般为25年以上,这意味着在这段时间内,硅光电池能
够持续地工作并产生电能。

相比之下,其他类型的太阳能电池的寿命一般较短。

硅光电池的长寿命使其成为可靠的能源装置,并具有较长的使用寿命。

此外,硅光电池还具有可靠性的特点。

硅光电池在工作过程中不会因为外界干扰而发生故障或损坏。

同时,它还能够适应各种环境条件,包括高温、低温、湿度等。

硅光电池的可靠性使其在各种环境中都能够正常工作,不易受到外界因素的干扰。

除了以上几个特性外,硅光电池还具有其他一些特点。

例如,硅光电池的制造成本较低,生产过程简单易行。

此外,硅光电池还具有较高的稳定性,能够稳定地输出电能。

此外,硅光电池还可以灵活地组合成不同类型的电池阵列,以满足不同需求。

综上所述,硅光电池具有高效率、长寿命、可靠性等特性,这使得它成为目前最主要的太阳能电池之一。

随着技术的不断进步,硅光电池的特性还将得到进一步的提升和完善,使其在太阳能利用中发挥更为重要的作用。

硅光电池基本特性的研究

硅光电池基本特性的研究

硅光电池基本特性硅光电池又称光生伏特电池,简称光电池.它是一种将太阳或其他光源的光能直接转换成电能的器件.由于它具有重量轻、使用安全、无污染等特点,在目前世界性能源短缺和环境保护形势日益严峻的情况下,人们对硅光电池寄予厚望.硅光电池很可能成为未来电力的重要来源,同时,硅光电池在现代检测和控制技术中也有十分重要的地位,在卫星和宇宙飞船上都用硅光电池作为电源.图1三. 实验原理1.硅光电池的基本结构.硅光电池用半导体材料制成,多为面结合PN结型,靠PN结的光生伏特效应产生电动势.常见的有硅光电池和硒光电池.在纯度很高、厚度很薄(0.4mm)的N型半导体材料薄片的表面,采用高温扩散法把硼扩散到硅片表面极薄一层内形成P层,位于较深处的N层保持不变,在硼所扩散到的最深处形成PN结.从P层和N层分别引出正电极和负电极,上表面涂有一层防反射膜,其形状有圆形、方形、长方形,也有半圆形.硅光电池的基本结构如图3所示.图32.硅光电池的基本原理当两种不同类型的半导体结合形成PN结时.由于分界层(PN结)两边存在着载流子浓度的突变,必将导致电子从N区向P区和空穴从P区向N区扩散运动,扩散结果将在PN结附近产生空间电荷聚集区,从而形成一个由N区指向P区的内电场.当有光照射到PN结上时,具有一定能量的光子,会激发出电子-空穴对.这样,在内部电场的作用下,电子被拉向N区,而空穴被拉向P区.结果在P区空穴数目增加而带正电,在N区电子数目增加而带负电,在PN结两端产生了光生电动势,这就是硅光电池的电动势.若硅光电池接有负载,电路中就有电流产生.这就是硅光电池的基本原理.单体硅光电池在阳光照射下,其电动势为0.5-0.6V,最佳负荷状态工作电压为0.4-0.5V,根据需要可将多个硅光电池串并联使用.3.硅光电池的光电转换效率硅光电池在实现光电转换时,并非所有照射在电池表面的光能全部被转换为电能.例如,在太阳照射下,硅光电池转换效率最高,但目前也仅达22%左右.其原因有多种,如:反射损失;波长过长的光(光子能量小)不能激发电子空穴对,波长过短的光固然能激发电子-空穴对,但能量再大,一个光子也只能激发一个电子-空穴对;在离PN较远处被激发的电子-空穴对会自行重新复合,对电动势无贡献;内部和表面存在晶格缺陷会使电子-空穴对重新复合;光电流通过PN结时会有漏电等.4. 硅光电池的基本特性4.1 硅光电池的开路电压与入射光强度的关系硅光电池的开路电压是硅光电池在外电路断开时两端的电压,用U∞表示,亦即硅光电池的电动势.在无光照射时,开路电压为零.硅光电池的开路电压不仅与硅光电池材料有关,而且与入射光强度有关,而且与入射光强度有关.在相同的光强照射下,不同材料制做的硅光电池的开路电压不同.理论上,开路电压的最大值等于材料禁带宽度有1/2.例如,禁带宽度为1.1eV的硅做硅光电池,开路电压为0.5-0.6V.对于给定的硅光电池,其开路电压随入射光强度变化而变化.其规律是:硅光电池开路电压与入射光强度的对数成正比,即开路电压随入射光强度增大而增大,但入射光强度越大,开路电压增大得越缓慢.4.2 硅光电池的短路电流与入射光的关系硅光电池的短路电流就是它无负载时回路中电流,用I SC表示.对给定的硅光电池,其短路电流与入射光强度成正比.对此,我们是容易理解的,因为入射光强度越大,光子越多,从而由光子激发的电子-空穴对越多,短路电流也就越大.4.3在一定入射光强度下硅光电池的输出特性当硅光电池两端连接负载而使电路闭合时,如果入射光强度一定,则电路中的电流I和路端电压U均随负载电阻的改变而改变,同时,硅光电池的内阻也随之变化.硅光电池的输出伏安特性曲线如图4所示.图4中,I SC为U=0,即短路时的电流,I SC.U为I=0,即开路时的路端电压,也就是硅光电池在该入射光强度下的开路电压,曲线上任一∞点对对应的I和U的乘积(在图中则是一个矩形的面积),就是硅光电池在相应负载电阻时的输出功率P.曲线上有一点M,它的对应I mp和U mp的乘积(即图中画斜线的矩形面积)最大.可见,硅光电池仅在它的负载电阻值为U mp和Imp值时,才有最大输出功率.这个负载电阻称为最佳负载电阻,用R mp表示.因此,我们通过研究硅光电池在一定入射光强度下的输出特性,可以找出它在该入射光强度下的最佳负载电阻.它在该负载电阻时工作状态为最佳状态,它的输出功率最大.。

硅光电池特性的研究实验报告

硅光电池特性的研究实验报告

硅光电池特性的研究实验报告硅光电池特性的研究实验报告引言:太阳能作为一种清洁、可再生的能源,受到了广泛的关注和研究。

而硅光电池作为太阳能电池的主要类型之一,其特性的研究对于提高太阳能转换效率具有重要意义。

本实验旨在通过对硅光电池的特性进行研究,探索其在不同条件下的性能表现,为太阳能利用的进一步发展提供参考。

实验一:光照强度对硅光电池特性的影响在此实验中,我们将调节光照强度,分别测量不同光照强度下硅光电池的输出电压和电流,并计算出对应的功率。

实验结果显示,随着光照强度的增加,硅光电池的输出电压和电流均呈现出增加的趋势。

这是因为光照强度的增加导致硅光电池中光生载流子的产生增加,从而提高了电流的大小。

同时,光照强度的增加也增加了光生载流子的迁移速率,从而提高了输出电压。

然而,当光照强度超过一定阈值后,硅光电池的输出电压和电流增长的速度减缓,甚至趋于饱和。

这是因为光生载流子的产生速率和复合速率达到平衡,导致输出电流和电压不再继续增加。

实验二:温度对硅光电池特性的影响在此实验中,我们将调节硅光电池的工作温度,分别测量不同温度下硅光电池的输出电压和电流,并计算出对应的功率。

实验结果显示,随着温度的升高,硅光电池的输出电压和电流均呈现出下降的趋势。

这是因为温度的升高导致硅光电池内部电阻增加,从而限制了电流的流动。

同时,温度的升高也会增加载流子的非辐射复合速率,降低了光生载流子的寿命,导致输出电流减小。

此外,温度的升高还会增加硅光电池的本底电流,进一步降低了输出电流和电压。

实验三:光照强度和温度的联合影响在此实验中,我们将同时调节光照强度和温度,研究它们对硅光电池特性的联合影响。

实验结果显示,光照强度和温度的变化对硅光电池特性有着复杂的影响。

当光照强度较低且温度较高时,硅光电池的输出电流和电压均较低。

这是因为低光照强度下光生载流子的产生减少,而高温下电阻增加和非辐射复合速率增加导致电流和电压的降低。

相反,当光照强度较高且温度较低时,硅光电池的输出电流和电压均较高。

第二十七章硅光电池特性的研究

第二十七章硅光电池特性的研究

I I s (e
ev / KT
1) I P
光电池处于零偏时,V=0,流过 PN 结的电流只 有光电流:I=-IP;光电池处于反偏时(实 验中取V =-5V),流过PN结的电流还有饱和 电流的贡献:I =-IP-Is 。 PN结作光电池时,须处于零偏或反偏状态。
9
2.2 光电流IP与输出光功率Pi之间的关系:
1
内容提要
实验目的 实验原理 思考题 仪器介绍 实验内容
2
实验目的
掌握PN结形成原理及其工作机理
掌握硅光电池工作原理及其工作特性 掌握发光二极管的工作原理
3
仪器介绍
TKGD-1型硅光电池特性实验仪
4
实验原理
1.PN结的形成理论
P型半导体—以空穴为主要的载流子。
N型半导体—以电子为主要的载流子。
调节发光二极管静态驱动电流,分别测定光电池在 零偏和反偏时光电流与输入光信号关系,并绘成曲 线。比较零偏和反偏时的两条曲线,求出光电池的 饱和电流Is 。 1 10
IS I 10
i=.2 硅光电池池输出拉接恒定负载时产出 的光伏电压与输入光信号关系测定
将功能转换开关打到“负载”处,将硅光电 池输出端连接恒定负载电阻(R 分别取 1KΩ 和10 KΩ)和数字电压表,调节发光二极管静 态驱动电流,测定光电池输出电压随输入光 强度的关系曲线。
PN结—P型半导体和N型半导体相接触时,在 接触处形成的特殊内电场。
5
PN结的形成:P型半导体中的空穴向N型半 导体中扩散, N 型半导体中的电子向P型半 导体中扩散
6
零偏
负偏
正偏
当PN结反偏时,外加电场与内电场方向一致,耗 尽区在外电场作用下变宽,使势垒加强; 当PN结正偏时,外加电场与内电场方向相反,耗 尽区在外加电场作用下变窄,势垒削弱。

硅光电池特性研究实验报告

硅光电池特性研究实验报告

硅光电池特性研究实验报告硅光电池特性研究实验报告引言:随着全球能源需求的不断增长和环境问题的日益严重,寻找可再生能源的替代方案成为当今科学研究的重要课题之一。

太阳能作为一种清洁、可再生的能源,备受关注。

硅光电池作为太阳能转换的主要技术之一,其特性研究对于提高太阳能利用效率具有重要意义。

本实验旨在深入探究硅光电池的特性,并通过实验结果分析其性能。

材料与方法:本实验使用了一块普通硅光电池片,通过实验室设备进行光谱分析和电流电压特性测试。

实验过程中,首先对硅光电池片的光谱响应进行了测试,使用光谱仪测量了不同波长下的光照强度,并记录下相应的电流输出。

接下来,我们使用了电流电压源,通过改变电压的大小,测量了硅光电池在不同电压下的电流输出。

最后,我们利用数据处理软件对实验结果进行了分析和统计。

结果与讨论:通过光谱响应测试,我们得到了硅光电池在不同波长下的光照强度和相应的电流输出数据。

实验结果显示,硅光电池对于可见光波长范围内的光照具有较高的响应能力,而在紫外光和红外光波长范围内的响应较弱。

这一结果与硅光电池的能带结构有关,可见光波长范围内的光子能量能够激发硅中的电子跃迁,从而产生电流输出。

而紫外光和红外光波长范围内的光子能量无法充分激发硅中的电子,因此电流输出较低。

在电流电压特性测试中,我们改变了电压的大小,测量了硅光电池在不同电压下的电流输出。

实验结果显示,硅光电池的电流输出随电压的增大而增大,但增长趋势逐渐减缓,最终趋于饱和。

这是由于硅光电池的内部电子流动受到电势差的驱动,随着电压的增大,电子流动的驱动力增大,从而导致电流输出的增加。

然而,当电压达到一定值后,由于电子流动的饱和效应,电流增长趋势逐渐减缓,最终趋于稳定。

结论:通过本实验的研究,我们对硅光电池的特性有了更深入的了解。

硅光电池对于可见光波长范围内的光照具有较高的响应能力,而在紫外光和红外光波长范围内的响应较弱。

此外,硅光电池的电流输出随电压的增大而增大,但增长趋势逐渐减缓,最终趋于饱和。

硅光电池特性研究

硅光电池特性研究

硅光电池特性研究一、本文概述随着科技的不断进步和绿色能源需求的日益增长,硅光电池作为一种重要的光伏器件,其在能源转换和存储方面的潜力日益凸显。

硅光电池特性研究旨在深入理解其光电转换机制,优化电池性能,提高能量转换效率,以实现更高效、更环保的能源利用。

本文首先简要介绍了硅光电池的基本原理和发展历程,包括其结构特点、工作原理以及光伏效应等基础知识。

随后,文章重点分析了硅光电池的主要特性,包括光谱响应、量子效率、暗电流、光生电压和光生电流等,探讨了这些特性对硅光电池性能的影响。

在深入研究硅光电池特性的基础上,本文还讨论了硅光电池的优化方法和技术,如表面钝化、背反射增强、纳米结构设计等,以提高硅光电池的能量转换效率。

文章还关注了硅光电池在实际应用中的挑战和前景,如材料成本、制造工艺、系统集成等问题,并提出了一些建议和展望。

本文旨在通过深入研究硅光电池的特性,为硅光电池的性能优化和实际应用提供理论支持和技术指导,推动硅光电池技术的进一步发展,为绿色能源领域的发展做出贡献。

二、硅光电池的基本特性硅光电池是一种利用光生伏特效应将光能转换为电能的半导体器件。

其基本特性主要包括以下几个方面:光谱响应:硅光电池的光谱响应范围主要在可见光和近红外区域,其峰值响应波长通常在800~1100纳米之间。

硅光电池对不同波长的光具有不同的响应度,这主要取决于硅材料的吸收系数和光谱响应特性。

光电流和光电压:当硅光电池受到光照时,会产生光生电流和光生电压。

光电流的大小与光照强度成正比,而光电压则与光照强度的对数成正比。

这一特性使得硅光电池在光照变化时能够保持相对稳定的输出电压。

温度特性:硅光电池的输出电压和电流会随着温度的升高而降低。

这是因为温度升高会导致硅材料的禁带宽度减小,从而减小了光生电压。

因此,硅光电池通常需要配备温度补偿电路以维持稳定的输出。

量子效率:量子效率是指硅光电池将入射光子转换为电子-空穴对的效率。

硅光电池特性实验报告

硅光电池特性实验报告

一、实验目的1. 了解硅光电池的工作原理及其应用。

2. 研究硅光电池的主要参数和基本特性。

3. 掌握硅光电池在不同光照条件下的性能变化。

二、实验原理硅光电池是一种将光能直接转换为电能的光电转换器。

当光照射到硅光电池的PN 结上时,会产生光生电子-空穴对,从而产生电流。

本实验主要研究硅光电池的照度特性、负载特性和光谱特性。

三、实验器材1. 硅光电池2. 照度计3. 可变电阻4. 电压表5. 电流表6. 稳压电源7. 光源(如白光光源)8. 单色光光源9. 光谱分析仪10. 记录仪四、实验步骤1. 照度特性实验(1) 将硅光电池置于不同照度条件下,记录对应的电压和电流值。

(2) 利用照度计测量不同照度下的光照强度。

(3) 绘制硅光电池的照度特性曲线。

2. 负载特性实验(1) 将硅光电池接上不同负载电阻,记录对应的电压和电流值。

(2) 绘制硅光电池的负载特性曲线。

3. 光谱特性实验(1) 将硅光电池分别置于白光光源和单色光光源下,记录对应的电压和电流值。

(2) 利用光谱分析仪分析硅光电池的光谱特性。

(3) 绘制硅光电池的光谱特性曲线。

五、实验结果与分析1. 照度特性实验结果显示,硅光电池的短路电流与照度呈线性关系,开路电压与照度呈非线性关系。

当光照强度增加时,短路电流和开路电压也随之增加。

2. 负载特性实验结果显示,硅光电池的伏安特性曲线由两个部分组成:反偏工作状态和无偏工作状态。

在反偏工作状态下,光电流与偏压、负载电阻几乎无关;在无偏工作状态下,光电流随偏压和负载电阻的增加而减小。

3. 光谱特性实验结果显示,硅光电池的光谱灵敏度与入射光的波长有关。

在可见光范围内,硅光电池的光谱灵敏度较高,而在红外和紫外区域,光谱灵敏度较低。

六、结论1. 硅光电池具有线性照度特性,短路电流与照度呈线性关系,开路电压与照度呈非线性关系。

2. 硅光电池的伏安特性曲线由反偏工作状态和无偏工作状态组成,反偏工作状态下光电流与偏压、负载电阻几乎无关,无偏工作状态下光电流随偏压和负载电阻的增加而减小。

硅光电池特性研究

硅光电池特性研究

硅光电池特性研究硅光电池特性的研究实验人:林晔顺023012037 合作人:林宗祥组号:A8【实验目的】1.设计简单的光路,研究硅光电池的主要参数和基本特性。

2.设计使用硅光电池对有关参量进行探测的实验方法及其简单应用。

【实验仪器】实验用具:电位差计、硅光电池(2DR65型,面积Φ=15nm2,光强100mW/cm2,温度为20oC时,开路电压大于500mV,短路电流为31~55mA,光谱峰值在0.45~1.1um范围内),光源,聚光透镜,检流计,滤色片,偏振片,开关等。

【实验基本原理】光电池是一种光电转换元件,不用外加电源而能直接把光能转换成电能。

它的种类很多,常见的有硒、锗、硅、砷化镓、氧化铜、硫化铊、硫化镉等。

其中最受重视、应用最广的是硅光电池。

它有一系列的优点:性能稳定,光谱范围宽,频率响应好,转换效率高,能耐高温辐射等。

同时它的光谱灵敏度与人眼的灵敏度最相近,所以,它在很多分析仪器、测量仪器、曝光表以及自动控制监测、计算机的输入和输出上用作探测元件,在现代科学技术中占有十分重要地位。

本实验仅对硅光电池的基本特性和简单应用作基本的了解和研究。

硅光电池是一种P—N结的单结光电池,当光照射到P—N结时,由于光激发的光生载流子的迁移,使P—N结两端产生了光生电动势,如果他与外电路中的负载接通,则负载电路中将由光电流产生。

硅光电池可分为单晶硅光电池和多晶硅光电池,其中本实验中使用的2DR型硅光电池属于单晶硅光电池。

下圖是常用的硅光电池的外形及结构示意图,为提高效率,在器件的受光面上进行氧化,形成SiO2保护膜,以防止表面反射光,并且表面电极做成梳妆,减少光生载流子的复合机会。

单晶硅光电池的转换率一般在10%左右,最高可达15%~20%。

目前,使用较广发的太阳能电池属于多晶硅光电池,转换率约为7%。

多晶硅光电池采用价格低廉的多晶硅作材料,而且可用简单的真空涂镀法制造,其大小不受晶体的大小限制,可制作大面积光电池。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

硅光电池特性的研究
一、实验目的
1.掌握PN 结形成原理及其工作机理; 2.掌握硅光电池的工作原理及其工作特性。

二、仪器设备
MD-GD-3型硅光电池特性实验仪; 三、实验原理
1.引言
目前半导体光电探测器在数码摄像﹑
光通信﹑太阳电池等领域得到广泛应用,硅光电池是半导体光电探测器的一个基本单元,深刻理解硅光电池的工作原理和具体使用特性可以进一步领会半导体PN 结原理﹑光伏电池产生机理。

图1是半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区,当P 型和N 型半导体材料结合时,由于P 型材料空穴多电子少,而N 型材料电子多空穴少,结果P 型材料中的空穴向N 型材料这边扩散,N 型材料中的电子向P 型材料这边扩散,扩散的结果使得结合区两侧的P 型区出现负电荷,N 型区带正电荷,形成一个势垒,由此而产生的内电场将阻止扩散运动的继续进行,当两者达到平衡时,在PN 结两侧形成一个耗尽区,
耗尽区的特点是无自由载流子,呈现高阻抗。

当PN 结反 偏时,外加电场与内电场方向一致,耗尽区在外电场作用 下变宽,使势垒加强;当PN 结正偏时,外加电场与内电 场方向相反,耗尽区在外电场作用下变窄,势垒削弱,使 载流子扩散运动继续形成电流,此即为PN 结的单向导电 性,电流方向是从P 指向N 。

2.硅光电池的工作原理
硅光电池是一个大面积的光电二极管,它被设计用于 把入射到它表面的光能转化为电能,因此,可用作光电 探测器和光电池,被广泛用于太空和野外便携式仪器等 的能源。

光电池的基本结构如图2,当半导体PN 结处于零偏或反偏时,在它们的结合面耗尽区存在一内电场,硅光电池在没有光照时其特性可视为一个二极管,在没有光照时其正向偏压U 与通过电流I
零偏 反偏 正偏
图 1. 半导体PN 结在零偏﹑反偏﹑正偏下的耗尽区
图 2.光电池结构示意
硅光零偏
图 3.光电池光电信号接
的关系式为:
当有光照时,入射光子将把处于介带中的束缚电子激发到 导带激发出的电子空穴对在内电场作用下分别飘移到N 型区和 P 型区,当在PN 结两端加负载时就有一光生电流流过负载。

流 过PN 结两端的电流可由式2确定:
式中I s 为饱和电流,V 为PN 结两端电压,T 为绝对温度,I p 为产生的光电流。

从式中可以看到,当光电池处于零偏时,V =0,流过PN 结的电流I=I p ;当光电池处于反偏时(在本实验中取V =-5V ),流过PN 结的电流I =I p -I s ,因此,当光电池用作光电转换器时,光电池必须处于零偏或反偏状态。

光电池处于零偏或反偏状态时,产生的光电流I p 与输入光功率P i 有以下关系:
式(3)中R 为响应率,R 值随入射光波长的不同而变化,对不同材料制作的光电池R 值分别在短波长和长波长处存在一截止波长,在长波长处要求入射光子的能量大于材料的能级间隙E g ,以保证处于介带中的束缚电子得到足够的能量被激发到导带,对于硅光电池其长波截止波长为λc =1.1μm ,在短波长处也由于材料有较大吸收系数使R 值很小。

图3是光电信号接收端的工作原理框图,光电池把接收到的光信号转变为与之成正比的电流信号,再经电流电压转换器把光电流信号转换成与之成正比的电压信号。

比较光电池零偏和反偏时的信号,就可以测定光电池的饱和电流I s 。

当发送的光信号被正弦信号调制时,则光电池输出电压信号中将包含正弦信号,据此可通过示波器测定光电池的频率响应特性。

3.光电池的负载特性
光电池作为电池使用如图4所示。

在内电场作用下,入射光子由于内光电效应把处于介带中的束缚电子激发到导带,而产生光伏电压,在光电池两端加一个负载就会有电流流过,当负载很小时,电流较小而电压较大;当负载很大时
,电流较大而电压较小。

实验时可改变负载电阻 RL的值来测定光电池的伏安特性。

四、实验内容与步骤
1、测量硅光电池正向偏压的I-U 特性。

图5
硅光电池在没有光照的条件下,其特性可视为一个二极管。

本实验是在硅光电池特性实验仪上
(3)
i p RP I
=图4.光电池伏安特性的测定

(2 )1(p kT
eV s I e I I +-=)
(1 )1(-=kT
eV s e
I
I
完成的。

a 、按图5连接电路,在全暗的情况下,改变电源电压,用数字表分别测出硅光电池和1000Ω电阻两端的电压降U1和U2, 实验表格见表1。

表1:测量硅光电池正向偏压的I-U 特性
b 、由表一中数据画出I-U 1曲线。

通过S I U kT
e
I ln ln 1+=做图或用最小二乘法求出常数
kT e 和 I S 。

2、测量硅光电池的输出特性
当太阳电池接上负载R L 时如图4所示,在一定的光照下,负载R L 在0~∞之间变化时,每对应一个R L ,就有一组确定的 I 、V 与之对应,这些 I 与V 关系的曲线称为光电池的伏安特性曲线。

a 、将暗盒内的高亮度发光二极管LED 、数字电流表插入板面相应插口,调整相对光强旋钮使相对光强为Us 1为15 mV ,调节硅光电池正负极两条引线的电阻,由小到大改变电阻箱阻值,用数字电表测出硅光电池正负极间的路端电压U 0,再通过测量固定电阻两端的电压计算出通过电阻上的电流I (例如,固定电阻阻值为50Ω,则50
R
U I =),由功率公式P=U 0I 计算出硅光电池的输出功率。

实验表格见表2。

调整相对光强旋钮使相对光强为Us 1为25 mV ,重复上述实验过程,继续填写完成表2。

表2:测量硅光电池的输出特性
b、画出I-U0关系图线,如图6所示。

由硅光电池的伏安特性曲线在I轴和V轴上的截距求出短路
电流I SC和开路电压U OC。

并描绘出P-R关系曲线,如图6中的虚线,
求出硅光电池的最大输出功率P max及等效电阻Rm 并计算出填充
因子FF=P max∕/(I SC·U OC)。

图6
3、测量硅光电池的光照效应与光电性质。

U0 U0c
Isc
a 、 将暗盒内的高亮度发光二极管LED 、数字 电表插入面板相应插口,调节使发光二极管LED 使其光功率逐渐加大,分别测出与之对应的短路
电流I SC 和开路电压U OC ,实验表格见图3。

此处短路电流I sc 通过测量50Ω的采样电阻两端的电压后由公式
50
R
sc U I =
得到其近似值即可。

图7 表3:硅光电池的开路电压和短路电流与照度的关系
b 、描绘I SC 和相对强度Us 1之间的关系曲线、描绘U OC 和相对强度Us 1之间的关系曲线并对曲线进行讨论,参考图7。

(可求出它们之间近似的函数关系) 4、硅光电池的频率特性研究。

根据公式3: i p RP I =式中R 为响应率,P i 为输入光功率,,用五种NG 型滤色片绿光从而得到不同频率的单色光,可对光电池进行频率特性的研究。

五、思考题
1.光电池在工作时为什么要处于零偏或反偏?
2.光电池用于线性光电探测器时,对耗尽区的内部电场有何要求? 3.当单个光电池外加负载时,其两端产生的光伏电压为何不会超过0.7伏? 4.如何获得高电压﹑大电流输出的光电池?
Us 1
硅光电池特性的研究实验预习报告班级组姓名学号
年月日同组人实验台号
[实验原理](简述)
[实验步骤](简述)
[数据表格]
[注意事项]
硅光电池特性的研究实验报告
班级组姓名学号实验成绩周(单,双)星期(上,下午)同组人实验台号教师签字[实验目的]
[实验仪器]
[实验原理]
[数据表格]
表1:测量硅光电池正向偏压的I-U特性
表2:测量硅光电池的输出特性
表3:硅光电池的开路电压和短路电流与照度的关系
[数据处理]
[误差分析]。

相关文档
最新文档