快速成型原理

合集下载

快速成形技术重点知识

快速成形技术重点知识

快速成形重点知识2011.05.031.快速成型的原理:叠加原理。

2.快速成型建立的理论基础:新材料技术、计算机技术、数控技术、激光技术。

3.四种快速成型工艺的比较如下:4.四种成型工艺的介绍。

(1)液态光敏聚合物选择性固化,光固化成型工艺(SLA).①原理:叠加原理。

②成型系统组成及作用:a激光器→产生激光;b液槽→盛放光敏树脂;c刮刀→保证每层厚度均匀,使新的一层树脂迅速、均匀的涂覆在已固化的层上。

④支撑的作用:a支撑原型件的悬臂或中空结构;b使原型件坚固地黏在底座。

⑤成型所用的材料:液态光敏树脂(由齐聚物、光引发剂、稀释剂组成)(2)薄形材料选择性切割,叠加实体成型工艺(LOM)①原理:叠加原理。

②实质:采用激光束和薄层材料生成任意形状三维物体的方法。

③成型系统组成及作用:a激光器→切割作用;b热压辊→给胶提供能量和施加压力;c可升降工作台→控制成形工件的升降。

④成形的原材料:纸和胶。

⑤对纸的要求:a抗湿性好,保证不会因时间过长而吸水,进而保证在热压过程中不会因水分的损失而变形;b良好的浸润性,保证良好的涂胶能力;c抗拉强度好,保证在加工过程不被拉断;d收缩率小,保证在热压过程不会因水分的损失而变形,剥离性好,稳定性好。

⑥对胶的要求:a良好的热熔稳定性;b在反复的热熔-固化条件下,有好的物理和化学稳定性;c熔融状态下对纸有好的涂挂性和黏结性;d与纸具有足够的黏结强度;e良好的废料剥离分离性能。

⑦涂布工艺:包括涂布形状和涂布厚度。

⑧原型的制作过程主要的两个变形是:热变形和湿变形。

⑨成型所用材料:薄形材料(纸、塑料)、粘结剂(胶)、涂布工艺。

(3)丝状材料选择性熔覆,熔融沉积造型(FDM)①原理:叠加原理。

②成型系统:硬件系统、软件系统、供料系统。

其中供料系统主要有主动辊、从动辊和导向套、压板等。

③支撑结构包括水溶性支撑和易剥离性支撑。

④成型所用材料:低熔点的丝状材料。

(4)粉末材料选择性激光烧结(SLS)①原理:叠加原理。

快速成型技术

快速成型技术
目前快速成型机的数据输入主要有两种途径:一是设计人员利用计算机辅助设计软件 (如 Pro /Engineering , SolidWo rks, IDEAS, M DT, Auto CAD等 ) ,根据产品的要求设计三维模型 , 或将已有产品的二维三视图转换为三维模型; 另一种是对已有的实物进行数字化 , 这些实物可 以是手工模型、工艺品等。这些实物的形体信息可以通过三维数字化仪、 CT和 MRI等手段采集 处理 ,然后通过相应的软件将获得的形体信息等数据转化为快速成型机所能接受的输入数据 。
其在处理速度上都可以很好的满足需求,而且时间跨度不大,有利于实现产品开发的高速闭环反馈。 其二:集成化,快速成型技术使得设计环节和制造环节达到了很好的统一,我们知道在快速 成型的操作过程中,计算机中
的CAD模型数据会通过软件转化的方式,自动生成数控指令,依据数据的转化实现对于部件的合理加工。由此看来设计和 制造之间的鸿沟不再存在,达到了高度的集约化。 其三:适用性,快速成型技术,适翻分层技术制造工艺,将复杂的三维切成二维来处理,极大的简化了加工流程,在不存 在三维刀具的干涉的前提下,高效的处理好复杂的中空结构。无论是从理论上来讲,还是从实践上来讲,其技术的适用性 可以应对任何的复杂构件制造。 其四:可调整性,快速成型技术,即真正意义上的数字化系统,是制造业中的利器,我们操作员仅仅需要合理设置一下相 关的参数和属性, 就可以有针对性的处理好各种产品的样品制造和小批量生产;而且在此过程中,保证了成型过程的柔韧 性。 其五:自动化,快速成型技术,实现了完全的自动化成型,只要操作人员输入相关的参数,在不需要多少干涉的情况下,实 现整个过程的自动运行。
从技术发展角度看,计算机科学、CAD技术、材料科学、激光技术的发展和普及,为新的制造技 术的产生奠定了技术物质基础。

快速成型技术的工作原理

快速成型技术的工作原理

快速成型技术的工作原理快速成型技术(Rapid Prototyping Technology,RPT),也称为快速制造技术(Rapid Manufacturing Technology,RMT),是指采用计算机辅助设计(CAD)、数控加工(CNC)和分层制造技术(SLM)等手段,快速制作出具有复杂内部结构的三维实物模型或器件的一种先进制造技术。

快速成型技术主要包括三个方面的内容:现代制造方式、CAD技术和快速成型技术。

快速成型技术的工作原理是将设计图或CAD模型转为STL文件,再将STL文件通过计算机化控制系统控制加工设备的动作,并以逐层堆积、覆盖、切割、加压等方式将逐层依次进行制造,直至完成所需产品的加工制造。

其具体工作流程如下:1.设计阶段首先,使用计算机辅助设计(CAD)软件将所需产品的三维模型绘制出来。

CAD绘图是快速成型技术的关键环节,决定了产品的实际制造效果和制造成本,需要使用专业的CAD软件进行设计。

2.模型处理阶段CAD设计完成后,需要进行一系列的模型处理。

主要包括增补模型壳体、提高模型强度、修复模型错误等。

这一阶段的处理对制造成型的质量和效率有直接的影响。

3.数据修复阶段接下来进入数据修复阶段,对CAD绘制过程中的错误进行修复和清理,以确保STL文件的精度和准确性,避免在制造过程中出现数据错乱和失真等问题。

4.切片阶段STL文件经过数据处理后,需要切成非常小的层面,比如0.1mm,这个过程称为切片。

通过这个过程将模型切成多个水平层面形成多个切片。

每层镶嵌在一起就变成了整个模型。

5.加工阶段加工阶段就是将切片依次导入数控加工机中,喷射实现逐层累加和压实,也就是通常所说的“逐层堆叠”过程。

这个过程就是快速成型技术的核心技术。

6.后处理阶段最后的后处理阶段可以将产品进行研磨、喷漆、涂料处理等等。

完成整个产品制造的过程。

总之,快速成型技术极大地缩短了从概念到产品推向市场的时间。

快速成型技术的高效加工和制造过程为设计师提供更好的自由度,可以随意尝试和实验不同的设计方案,以最快的速度推向市场产品。

快速成型技术

快速成型技术

b.设计的易达性
• 可以制造任意复杂形状的三维实体模型,快速成型技术不受零件几何 形状的限制,在计算机管理和控制下能够制造出常规加工技术无法实 现的复杂几何形状零件的建模,能充分体现设计细节,尺寸和形状精 度大为提高,零件不需要经一步加工。
c.快速性
• RP技术是一项快速直接地单件零件的技术。可以直接接受产品设计 (CAD)数据,快速制造出新产品的样件、模具或模型,大大缩短新 产品开发周期、降低成本、提高开发质量。
分层实体成型——LOM成ห้องสมุดไป่ตู้工艺
• LOM(Laminated Object Manufacturing)工艺或称为叠层实体 制造,其工艺原理是根据零件分层几 何信息切割箔材和纸等,将所获得的 层片粘接成三维实体。其工艺过程是: 首先铺上一层箔材,然后用CO,激 光在计算机控制下切出本层轮廓,非 零件部分全部切碎以便于去除。当本 层完成后,再铺上一层箔材,用滚子 碾压并加热,以固化黏结剂,使新铺 上的一层牢固地粘接在已成形体上, 再切割该层的轮廓,如此反复直到加 工完毕,最后去除切碎部分以得到完 整的零件。该工艺的特点是工作可靠, 模型支撑性好,成本低,效率高。缺 点是前、后处理费时费力,且不能制 造中空结构件。
选择性激光烧结成型——SLS成型工艺
SLS(Selective Laser Sintering)工艺,常 采用的材料有金属、陶瓷、ABS塑料等材 料的粉末作为成形材料。其工艺过程是: 先在工作台上铺上一层粉末,在计算机控 制下用激光束有选择地进行烧结(零件的 空心部分不烧结,仍为粉末材料),被烧 结部分便固化在一起构成零件的实心部分。 一层完成后再进行下一层,新一层与其上 一层被牢牢地烧结在一起。全部烧结完成 后,去除多余的粉末,便得到烧结成的零 件。该工艺的特点是材料适应面广,不仅 能制造塑料零件,还能制造陶瓷、金属、 蜡等材料的零件。造型精度高,原型强度 高,所以可用样件进行功能试验或装配模 拟。

简述快速成型的原理。

简述快速成型的原理。

简述快速成型的原理。

快速成型是利用计算机辅助设计(CAD)软件将三维物体的设计
文件转化成多层二维截面文件,再通过快速成型设备将这些截面堆叠
起来形成三维实体的技术。

快速成型的原理可以分为以下步骤:
1. 设计模型
使用计算机软件进行三维建模或从扫描仪扫描实际物体得到三维模型。

2. 切片处理
将三维模型分解成数十至数千个薄片,每个薄片有其独立的二维轮廓,这些轮廓由计算机自动处理生成。

3. 控制处理
快速成型设备会根据每个薄片的轮廓来控制相应的成型器件,如激光
束或打印头,将原材料加工成对应形状。

4. 堆叠组装
制成的各个薄片上下按次序堆叠组装,即可得到完整的三维实体模型。

快速成型技术的应用范围很广,可用于生产汽车零配件、医疗假肢、消费品、航空航天和工程原型等领域。

相比于传统的制造成本高、生产周期长的方法,快速成型具有加工速度快、成本低、准确度高的
优势,为生产制造提供了更高效、更经济的解决方案。

快速成型技术原理及应用

快速成型技术原理及应用

快速成型技术原理及应用快速成型技术又称快速原型制造(Rapid Prototyping Manufacturing,简称RPM)技术,诞生于20世纪80年代后期,是基于材料堆积法的一种高新制造技术,被认为是近20年来制造领域的一个重大成果。

成型原理:基于离散-叠加原理而实现快速加工原型或零件特点:不需机加工设备或者模具即可快速制造形状极为复杂的工件简介:(Rapid Prototyping&Manufacturing, 缩写为RP)是二十世纪八十年代末九十年代初兴起并迅速发展起来的新的先进制造技术. 其特点是可以不需机加工设备或者模具即可快速制造形状极为复杂的工件, 从而在小批量产品生产或新产品试制时节省时间和初始投资.这里所说的快速加工原型是指能代表一切性质和功能的实验件,一般数量较少,常用来在新产品试制时作评价之用. 而这里所说的快速成型零件是指最终产品,已经具有最佳的特性,功能和经济性.快速成型技术(RP)的成型过程: 首先建立目标件的三维计算机辅助设计(CAD 3D)模型, 然后对该实体模型在计算机内进行模拟切片分层,沿同一方向(比如Z轴)将CAD 实体模型离散为一片片很薄的平行平面; 把这些薄平面的数据信息传输给快速成型系统中的工作执行部件,将控制成型系统所用的成型原材料有规律地一层层复现原来的薄平面, 并层层堆积形成实际的三维实体,最后经过处理成为实际零件.经过20多年的发展, 快速成型技术(RP)有较大发展, 应用非常广泛,尤其在汽车制造,航天航空,建筑,家电,卫生医疗及娱乐等领域有强大的应用.目前基于快速成型技术(RP)开发的工艺种类较多, 可以分别按所用材料划分, 成型方法划分等.1) 利用激光或其它光源的成型工艺的成型:---(SL)---(简称LOM)---(简称SLS)---形状层积技术(简称SDM);2) 利用原材料喷射工艺的成型:---(简称FDM)---三维印刷技术(简称3DP)其它类型工艺有:---树脂热固化成型 (LTP)---实体掩模成型 (SGC)---弹射颗粒成型 (BFM)---空间成型 (SF)---实体薄片成型 (SFP)应用:RPM技术的发展水平而言,在国内主要是应用于新产品(包括产品的更新换代)开发的设计验证和模拟样品的试制上,即完成从产品的概念设计(或改型设计),造型设计,结构设计,基本功能评估,模拟样件试制这段开发过程。

快速成型制造技术

快速成型制造技术
第八章 快速成型制造技术
Rapid Prototyping Manufacturing Technique
一、快速原型技术简介
快速成型(Rapid Prototyping) 是由三维 CAD模型直接驱动的快速制造任意复杂形状 三维实体的总称。 它集成了CAD技术、数控技术、激光技 术和材料技术等现代科技成果,是先进制造 技术的重要组成部分。
立体光固化成型法原理图
二、RP 工艺方法简介
1.光固化法
Stereo Lithography Apparatus——SLA
SLA工艺的优点是精度较高,一 般尺寸精度可控制在0.01mm;表面质 量好;原材料利用率接近100%;能制造 形状特别复杂、精细的零件;设备市场 占有率很高。缺点是需要设计支撑;可 以选择的材料种类有限;制件容易发生 翘曲变形;材料价格较昂贵。 该工艺适合比较复杂的中小型零 件的制作。
(1)成型材料种类多, (1)成型速度快; 成型件强度高; (2)成型设备便宜。 (2)精度高,表面质 量好,易于装 配; (3)无公害,可在办 公室环境下进 行。
缺点
(1)需要支撑结构; (2)成型过程发生物 理和化学变化 ,容易翘曲变 形; (3)原材料有污染; (4)需要固化处理, 且不便进行。
紫外光快速成型机的工作原理
三、SCPS350紫外光快速成型机及制作过程 (1)基本原理
光敏树脂快速成型中激光束按照 数控指令扫描,工作平台容器内液态 光敏树脂逐层固化并粘结在一起。从 最底层开始,逐层固化,生成三维原 形实体。工作台每次下降高度即为分 层厚度,分层越薄,加工出的零件的 精度越高。
激光头 热压辊 涂覆纸
工件
4.分层实体制造
Laminated Object Manufacturing——LOM

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理

四种典型的快速成型技术的成型原理一、激光烧结成型原理激光烧结成型(Selective Laser Sintering,简称SLS)是一种快速成型技术,其成型原理是利用激光束对粉末材料进行烧结,逐层堆积形成所需的三维实体。

激光烧结成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将烧结材料粉末均匀地铺在工作台上,使其表面平整。

接下来,利用激光束控制系统,将激光束按照预定的路径和参数扫描在粉末层表面,使其局部熔融烧结。

激光束的能量使粉末颗粒之间发生熔融和烧结,形成一层固体物质。

再次铺上一层新的粉末材料,重复上述步骤,逐层堆积,直至形成整个三维实体。

最后,将成品从未熔融的粉末中清理出来,并进行后续处理,如热处理或表面处理。

激光烧结成型技术具有成型速度快、制作精度高、制造复杂度高等优点。

由于其成型过程中无需使用支撑材料,可以制造出具有复杂内部结构的零件,因此被广泛应用于航空航天、汽车、医疗器械等领域。

二、光固化成型原理光固化成型(Stereolithography,简称SLA)是一种常见的快速成型技术,其成型原理是利用紫外线激光束对光固化树脂进行逐层固化,最终形成所需的三维实体。

光固化成型的过程主要包括以下几个步骤:首先,利用计算机辅助设计(CAD)软件将待制造的物体进行三维建模,并将模型数据转化为机器能够识别的格式。

然后,将液态光固化树脂均匀地铺在工作台上。

接下来,利用紫外线激光束扫描器,将激光束按照预定的路径和参数照射在树脂表面,使其局部固化。

激光束的能量使树脂中的光敏物质发生聚合反应,从而使树脂由液态变为固态。

再次涂覆一层新的液态光固化树脂,重复上述步骤,逐层固化,最终形成整个三维实体。

最后,将成品从未固化的树脂中清洗出来,并进行后续处理,如烘干或光刻。

光固化成型技术具有成型速度快、制造精度高、制造复杂度高等优点。

快速成型(RP)的原理方法及应用

快速成型(RP)的原理方法及应用

快速成型(RP)的原理方法及应用快速成型(RP)的原理方法及应用快速成型(RP)技术是一种集计算机、数控、激光和材料技术于一体的先进制造技术。

本文通过介绍快速成型系统的原理方法和特点,阐述其工艺特点及开发和应用,探讨快速成型技术在现代制造业中起到的重要作用和产生的巨大效益,分析快速成型技术的优点和缺点,并提出快速成型技术未来的发展方向和深远意义。

1前言当今时代,制造业市场需求不断向多样化、高质量、高性能、低成本、高科技的方向发展,一方面表现为消费者兴趣的短时效和消费者需求日益主体化、个性化和多元化;另一方面则是区域性、国际市场壁垒的淡化或打破,要求制造业的厂商必须着眼于全球市场的激烈竞争。

因此快速地将多样化、性能好的产品推向市场成为了制造业厂商把握市场先机的关键,由此导致了制造价值观从面向产品到面向顾客的重定位,制造战略重点从成本与质量到时间与响应的转移,也就是各国致力于CIMS(ComputerIntegratedManufactureSystem)、并行工程、敏捷制造等现代制造模式的研究与实践的原因。

快速成型(RapidPrototyping)技术正是在这种时代的需求下应运而生的。

它是由三维CAD模型直接驱动的快速制造任意复杂形状三维实体的总称。

它集成了CAD技术、数控技术、激光技术和材料技术等现代科技成果,是先进制造技术的重要组成部分。

2快速成型的原理及特点快速成型技术采用离散/堆积成型原理,根据三维CAD模型,对于不同的工艺要求,按照一定厚度进行分层,将三维数字模型变成厚度很薄的二维平面模型。

再将数据进行一定的处理,加入加工参数,产生数控代码,在数控系统控制下以平面加工方式连续加工出每个薄层,并使之粘结而成形。

实际上就是基于“生长”或“添加”材料原理一层一层地离散叠加,从底到顶完成零件的制作过程。

它是计算机辅助设计与制造技术、逆向工程技术、分层制造技术、材料去除成形、材料增加成形技术以及它们的集成的总称。

快速成型的原理及应用

快速成型的原理及应用

题目:1、快速成型原理是什么?其技术有何特点?2、按制造工艺原理分,快速成型工艺主要分成哪几类?3、简述快速成型技术有哪些应用?4、典型的快速成型工艺有哪几种?试分析成型工艺的特点。

5、反求工程的基本含义是什么?应用在那几个方面?6、结合课程知识点,谈谈快速成型技术对新产品设计的作用。

1、快速成型原理是什么?其技术有何特点?快速成型原理RP系统可以根据零件的形状,每次制做一个具有一定微小厚度和特定形状的截面,然后再把它们逐层粘结起来,就得到了所需制造的立体的零件。

当然,整个过程是在计算机的控制下,由快速成形系统自动完成的。

不同公司制造的RP系统所用的成形材料不同,系统的工作原理也有所不同,但其基本原理都是一样的,那就是"分层制造、逐层叠加"。

这种工艺可以形象地叫做"增长法"或"加法"。

每个截面数据相当于医学上的一张CT像片;整个制造过程可以比喻为一个"积分"的过程。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。

自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。

其成形原理分别介绍如下:(1)SLA快速成形系统的成形原理:成形材料:液态光敏树脂;制件性能:相当于工程塑料或蜡模;主要用途:高精度塑料件、铸造用蜡模、样件或模型。

第4章 快速成型概述

第4章 快速成型概述

精选2021版课件
8
4.1.2 快速成型的过程
快速成型基于离散/堆积的思想, 将一个物理实体复杂的三维加工,离散 成一系列二维层片,然后逐点、逐面进行 材料的堆积成型。 是一种降维制造或者 称增材制造技术。
精选2021版课件
9
4.1.2 快速成型的过程
精选2021版课件
10
CAD模型 Z向离散化(分层)
第4章 快速成型技术概述
4.1 快速成型的原理
4.2 快速成型制造工艺的分类
4.2 快速成型技术的应用
4.3 快速成型技术的研究现状及发展趋

精选2021版课件
1
4.1 快速成型的原理
4.1.1 快速成型制造的基本概念 4.1.2 快速成型的过程 4.1.3 快速成型技术的特点
精选2021版课件
2
5)技术的高度集成。 集成了CAD、CAM、CNC、
激光、材料等技术。与反求工程(RE)、网络技
术等结合,成为产品精选开2021发版课的件 有力工具。
14
4.2 快速成型制造工艺的分类
一、按制造工艺所使用的材料的状态、 性能特征分为:
▪ 液态聚合、固化:原材料是液态的,利用光能 或热能使特殊的液态聚合物固化从而形成所需 的形状
数字模型可视化,可以进行设计评价、干涉检验,
甚至某些功能测试,将设计缺陷消灭在初步设计阶
段,减少损失。
精选2021版课件
19
1. 概念模型的可视化、零件的观感评价 2. 结构设计验证与装配效验 3. 性能和功能测试
精选2021版课件
20
应用一: 概念模型的可视化、零件的观感评价
消费品
精选2021版课件
精选2021版课件

快速成型专业技术及原理

快速成型专业技术及原理

RP技术简介快速原型制造技术,又叫快速成形技术,(简称RP技术);英文:RAPID PROTOTYPING(简称RP技术),或RAPID PROTOTYPING MANUFACTUREING,简称RPM。

快速成型(RP)技术是九十年代发展起来的一项先进制造技术,是为制造业企业新产品开发服务的一项关键共性技术, 对促进企业产品创新、缩短新产品开发周期、提高产品竞争力有积极的推动作用。

自该技术问世以来,已经在发达国家的制造业中得到了广泛应用,并由此产生一个新兴的技术领域。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

不同种类的快速成型系统因所用成形材料不同,成形原理和系统特点也各有不同。

但是,其基本原理都是一样的,那就是"分层制造,逐层叠加",类似于数学上的积分过程。

形象地讲,快速成形系统就像是一台"立体打印机"。

RP技术是在现代CAD/CAM技术、激光技术、计算机数控技术、精密伺服驱动技术以及新材料技术的基础上集成发展起来的。

RP技术的基本原理是:将计算机内的三维数据模型进行分层切片得到各层截面的轮廓数据,计算机据此信息控制激光器(或喷嘴)有选择性地烧结一层接一层的粉末材料(或固化一层又一层的液态光敏树脂,或切割一层又一层的片状材料,或喷射一层又一层的热熔材料或粘合剂)形成一系列具有一个微小厚度的的片状实体,再采用熔结、聚合、粘结等手段使其逐层堆积成一体,便可以制造出所设计的新产品样件、模型或模具。

快速成型机的工艺立体光刻成型sla层合实体制造lom熔融沉积快速成型fdm激光选区烧结法SLS多相喷射固化mjs多孔喷射成型mjm直接壳法产品铸造dspc激光工程净成型lens选域黏着及热压成型SAHP层铣工艺lmp分层实体制造som自美国3D公司1988年推出第一台商品SLA快速成形机以来,已经有十几种不同的成形系统,其中比较成熟的有SLA、SLS、LOM和FDM等方法。

快速成型工艺

快速成型工艺

快速成型工艺快速成型工艺是一种先进的制造技术,它可以快速地制造出各种复杂的零件和产品。

这种技术的出现,极大地提高了制造业的效率和质量,同时也为各行各业的发展带来了新的机遇。

快速成型工艺的基本原理是利用计算机辅助设计软件将三维模型转化为可供机器识别的数字化文件,然后通过快速成型机器将数字化文件转化为实体模型。

这种技术可以快速地制造出各种复杂的零件和产品,而且制造出来的产品精度高、质量好、成本低,可以满足各种不同的需求。

快速成型工艺的应用范围非常广泛,它可以应用于汽车、航空、医疗、电子、玩具等各个领域。

在汽车制造领域,快速成型工艺可以用于制造汽车零部件,如发动机、变速器、底盘等。

在航空领域,快速成型工艺可以用于制造飞机零部件,如机翼、机身、发动机等。

在医疗领域,快速成型工艺可以用于制造人体器官模型、义肢、牙齿矫正器等。

在电子领域,快速成型工艺可以用于制造手机外壳、电脑键盘、电视机壳体等。

在玩具领域,快速成型工艺可以用于制造各种玩具模型、动漫人物等。

快速成型工艺的优点主要有以下几点:1.快速成型工艺可以快速地制造出各种复杂的零件和产品,而且制造出来的产品精度高、质量好、成本低。

2.快速成型工艺可以大大缩短产品的研发周期,提高产品的研发效率。

3.快速成型工艺可以减少产品的设计和制造成本,提高企业的竞争力。

4.快速成型工艺可以满足客户的个性化需求,提高客户的满意度。

快速成型工艺的发展趋势是向着高精度、高效率、低成本、多材料、多功能、智能化的方向发展。

未来,快速成型工艺将会更加广泛地应用于各个领域,成为制造业的重要组成部分。

快速成型工艺是一种先进的制造技术,它可以快速地制造出各种复杂的零件和产品,提高制造业的效率和质量,为各行各业的发展带来新的机遇。

我们应该积极推广和应用这种技术,为社会的发展做出更大的贡献。

快速成型的原理

快速成型的原理

快速成型的原理快速成型(Rapid Prototyping,RP)是一种利用计算机辅助设计(CAD)数据,通过逐层堆积材料的方式,快速制造出所需产品的技术。

它是一种通过数字模型直接制造实体模型的技术,也被称为增材制造(Additive Manufacturing,AM)。

快速成型的原理主要包括数字建模、切片处理、材料堆积和后处理等步骤。

首先,数字建模是快速成型的第一步。

它利用CAD软件对产品进行三维建模,将设计好的产品转化为数字化的模型数据。

这些模型数据包括产品的外形、结构、尺寸等信息,为后续的加工提供了基础。

接下来是切片处理。

数字模型需要经过切片处理,将三维模型切割成数个薄层,每一层的厚度由具体的快速成型设备和材料决定。

切片处理将三维模型转化为一系列二维截面图像,为后续的堆积加工提供了数据支持。

然后是材料堆积。

根据切片处理得到的二维截面图像,快速成型设备逐层堆积材料,将产品逐层制造出来。

常见的堆积方式包括激光烧结、熔融沉积、光固化等,不同的堆积方式适用于不同类型的材料和产品。

最后是后处理。

快速成型出来的产品通常需要进行后处理,包括去除支撑结构、表面光洁处理、热处理等。

后处理的目的是使产品达到设计要求的表面光洁度和机械性能,提高产品的质量和精度。

快速成型的原理是基于数字化设计和增材制造技术,通过逐层堆积材料来制造产品。

它可以快速、灵活地制造出复杂结构的产品,广泛应用于航空航天、汽车制造、医疗器械等领域。

随着材料和设备的不断进步,快速成型技术将会在未来发挥越来越重要的作用。

快速成型技术的原理

快速成型技术的原理

快速成型技术的原理快速成型技术(Rapid Prototyping,RP)是一种利用计算机辅助设计和制造技术,通过逐层堆积材料来制造三维实体模型的先进制造技术。

它是一种以增量方式制造物体的技术,与传统的减量方式(如切削加工)相比,RP技术具有制造过程简单、制造周期短、制造精度高等优点,因此在工程设计、医学、航空航天等领域得到了广泛应用。

快速成型技术的原理主要包括建模、切片、堆积和后处理四个主要步骤。

首先,建模是快速成型技术的第一步。

它利用计算机辅助设计软件(CAD)对产品进行三维建模,将产品的设计图形转换为由许多小体积元素组成的三维模型。

建模的关键是准确地描述产品的几何形状和内部结构,以便后续的切片和堆积操作。

其次,切片是快速成型技术的第二步。

在切片过程中,建模软件将三维模型分解为许多薄层,每一层的厚度通常在几十微米到几毫米之间。

切片的精度和层厚度决定了最终制造出的实体模型的表面粗糙度和精度。

接下来是堆积,也就是快速成型技术的核心步骤。

在堆积过程中,通过逐层堆积材料,将切片后的二维轮廓堆积成三维实体模型。

常见的堆积方法包括激光烧结、熔融沉积、光固化等。

不同的堆积方法适用于不同的材料和精度要求,但它们的共同目标是逐层堆积,逐渐形成最终的产品。

最后是后处理,也是快速成型技术的最后一步。

在堆积完成后,通常需要对实体模型进行后处理,包括去除支撑结构、表面处理、热处理等。

后处理的目的是使实体模型达到设计要求的精度和表面质量。

总的来说,快速成型技术的原理是通过建模、切片、堆积和后处理四个主要步骤,利用计算机辅助设计和制造技术,逐层堆积材料来制造三维实体模型。

这种制造技术具有制造过程简单、制造周期短、制造精度高的优点,因此在工程设计、医学、航空航天等领域得到了广泛应用。

随着材料和技术的不断进步,快速成型技术将在未来发展出更多的应用和可能性。

快速原型制造技术快速成形原理及特点

快速原型制造技术快速成形原理及特点
快速原型制造技术快速成形原理及 特点
成型过程示意图
快速原型制造技术快速成形原理及 特点
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期;
------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力;
------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率;
快速成型的基本过程:
→→→首先设计出所需零件的计算机三维模型(数字模型、 CAD模型)
→→→按照一定的规律将该模型离散为一系列有序的单元, 通常在Z向将其按一定厚度进行离散(习惯称为分 层),把原来的三维CAD模型变成一系列的层片
→→→再根据每个层片的轮廓信息,输入加工参数,自动生 成数控代码
→→→最后由成形系统成形一系列层片并自动将它们联接起 来,得到一个三维物理实体。
快速原型制造技术快速成形原理及 特点
三、快速成型机及成形方法:
1、快速成形机 快速成形机是分层叠加成形(包括截面轮廓
制作和截面轮廓叠合)的基本设备。 成形机都是基于“增长”成形法原理,即用一
层层的小薄片轮廓逐步叠加成三维工件。其差别 主要在于薄片采用的原材料类型,由原材料构成 截面轮廓的方法,以及截面层之间的连接方式。
------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施;
------节省了大量的开模费用,成倍降低新产品研发成本。
快速原型制造技术快速成形原理及 特点
• 自1986年出现至今,短短十几年,世界上已有大约二十多 种不同的成型方法和工艺,其中比较成熟的有SLA、SLS、 LOM和FDM等方法。其成形原理分别介绍如下:

快速成型技术

快速成型技术

2)三维模型的近似处理。 由于产品往往有一些不规则的自由曲面,加工前要对模型进行近似处理, 以方便后续的数据处理工作。由于STL格式文件格式简单、实用,目前 已经成为快速成型领域的准标准接口文件。它是用一系列的小三角形平 面来逼近原来的模型,每个小三角形用3个顶点坐标和一个法向量来描 述,三角形的大小可以根据精度要求进行选择。STL文件有二进制码和 ASCll码两种输出形式,二进制码输出形式所占的空间比ASCII码输出 形式的文件所占用的空间小得多,但ASCII码输出形式可以阅读和检查。 典型的CAD软件都带有转换和输出STL格式文件的功能。
2)快速性。通过对一个CAD模型的修改或重组就可获 得一个新零件的设计和加工信息。从几个小时到几十个 小时就可制造出零件,具有快速制造的突出特点。
3)高度柔性。无需任何专用夹具或工具即可完成复杂的 制造过程,快速制造工模具、原型或零件。
4)快速成型技术实现了机械工程学科多年来追求的两 大先进目标.即材料的提取(气、液固相)过程与制造 过程一体化和设计(CAD)与制造(CAM)一体化。
型头(激光头或喷头)按各截面轮廓信息做扫描运动,在工 作台上一层一层地堆积材料,然后将各层相粘结,最终得到 原型产品。
5)成型零件的后处理 从成型系统里取出成型件,进行打磨、抛光、涂挂,或放在 高温炉中进行后烧结,进一步提高其强度。
3、特点
1)可以制造任意复杂的三维几何实体。由于采用离散/堆 积成型的原理.它将一个十分复杂的三维制造过程简化为二 维过程的叠加,可实现对任意复杂形状零件的加工。越是复 杂的零件越能显示出RP技术的优越性此外,RP技术特别适 合于复杂型腔、复杂型面等传统方法难以制造甚至无法制造 的零件。
3)三维模型的切片处理。 根据被加工模型的特征选择合适的加工方向,在成型高度 方向上用一系列一定间隔的平面切割近似后的模型,以便 提取截面的轮廓信息。间隔一般取0.05mm~0.5mm,常 用0.1mm。间隔越小,成型精度越高,但成型时间也越长, 效率就越低,反之则精度低,但效率高。

快速成型技术在医学中的应用

快速成型技术在医学中的应用

快速成型技术在医学中的应用随着现代科技的不断发展,快速成型技术在各个领域中得到了广泛的应用,尤其是在医学领域中。

医学工程正在迅速成为一个重要的领域,而快速成型技术在其中扮演者重要的角色。

本文将就快速成型技术在医学中的应用进行详细探讨。

一、快速成型技术的基本原理快速成型技术是一种利用计算机辅助设计、制造和生物医学工程学来制造零件的技术。

其基本原理是依据任意三维几何体的CAD模型,利用计算机辅助制造技术将其分层处理,依次通过向前推进材料或熔融材料的方式,将物体一层层地制造出来,直到形成完整的物体模型,这个过程称为快速成型。

快速成型技术的优点是快速制造、高度精度、低成本、设计灵活多变、无需特殊工具、任何形状均可制造而不需要限制。

这些优点使得快速成型技术在医学领域中大有用武之地。

二、快速成型技术在医学中的应用1、医学模型的制造医学模型制造是快速成型技术在医学领域中的一个可以发挥重要作用的应用。

其主要包括骨头、心脏、肺部等的三维打印模型。

这些模型的制造可以帮助医生更加深入地了解病人的情况。

采用三维打印技术可以为外科医生提供直观的、可触摸的模型,以促进对病人的诊断和治疗。

此外,还可以提高难度手术的成功率并减少医疗事故的发生。

2、手术和创口辅助器材的制造利用快速成型技术制造手术和创口辅助器材也是医疗领域的重要应用。

手术辅助器材可以帮助医生更好地掌握手术的精确度和安全性,同时也可以减少手术风险。

而利用快速成型技术3D打印的创口辅助器材,可以减少手术的痛苦和恢复时间,增加病人的生活质量。

3、人工器官和植入物的制造利用快速成型技术制造人工器官和植入物也是医学领域中的重要应用。

这种技术包括制造人工眼角膜、人工植髓材料、人工关节等。

随着自体提取组织等技术的发展,快速成型技术制造出的人工器官和植入物已经成为当前医学领域中的重要方向之一。

三、快速成型技术在医学中的未来发展随着计算机、材料和制造技术的日益提高,快速成型技术在医学领域中的应用前景也非常广阔。

快速成型技术的发展趋势以及对智能制造的影响

快速成型技术的发展趋势以及对智能制造的影响

快速成型技术的发展趋势以及对智能制造的影响一、快速成型技术的基本成型原理
近十几年来,随着全球市场一体化的形成,制造业的竞争十分激烈。

尤其是计算机技术的迅速普遍和CAD/CAM技术的广泛应用,使得快速成型技术(Rapid Prototyping 简称RP)得到了异乎寻常的高速发展,表现出很强的生命力和广阔的应用前景。


传统的加工技术是采用去材料的加工方式,在毛坯上把多余的材料去除,得到我们想要的产品。

而快速成型技术基本原理是∶借助计算机或三维扫描系统构建目标零件的三维数字化模型,之后将该信息传输到计算机控制的机电控制系统,计算机将模型按一定厚度进行"切片"处理,即将零件的3D数据信息离散成一系列2D 轮廓信息,通过逐点逐面的增材制造方法将材料逐层堆积,获得实体零件,最后进行必要的少量加工和热处理,使零件性能、尺寸等满足设计要求。

它集机械工程、CAD、逆向工程技术、分层制造技术、数控技术、材料科学、激光技术于一身,可以自动、直接、快速、精确地将设计思想转变为具有一定功能的原型或直接制造零件,从而为零件原型制作、新设计思想的校验等方面提供了种高效低成本的实现手段。


目前,快速成形的工艺方法已有几十种之多,大致可分为7大类,包括立体印刷、叠层实体制造、选择性激光烧结、熔融沉积成型、三维焊接、三维打印、数码累积成型等。

二、快速成型技术在产品开发中的应用
不断提高RP技术的应用水平是推动RP技术发展的重要方面。

目前,西安交通大学机械学院,快速成型国家工程研究中心,教育部快速成型工程研究中心快速成型技术已在工业造型、机械制造、航空航天、军事、建筑、影视、家电、轻工、医学、考古、文化艺术、雕刻、首饰等领域都得到了广泛应用。

并且随着这一技术本身的发展,其应用领域将不断拓展。

RP 技术的实际应用主要集中在以下几个方面∶
1.用于新产品的设计与试制。


(1)CAID 应用∶工业设计师在短时间内得到精确的原型与业者作造形研讨。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

• 自1986年出现至今,短短十几年,世界上已有大约二十多 种不同的成型方法和工艺,其中比较成熟的有SLA、SLS、 LOM和FDM等方法。其成形原理分别介绍如下:
• (1)SLA快速成形系统的成型原理: 成形材料:液态光敏树脂; 制件性能:相当于工程塑料或蜡模; 主要用途:高精度塑料件、铸造用蜡模、样件或模型。 • (2)SLS快速成形系统的成型原理: 成形材料:工程塑料粉末; 制件性能:相当于工程塑料、蜡模、砂型; 主要用途:塑料件、铸造用蜡模、样件或模型。 • (3)LOM快速成形系统的成型原理: 成形材料:涂敷有热敏胶的纤维纸; 制件性能:相当于高级木材; 主要用途:快速制造新产品样件、模型或铸造用木模。 • (4)FDM快速成形系统的成型原理: 成形材料:固体丝状工程塑料; 制件性能:相当于工程塑料或蜡模; 主要用途:塑料件、铸造用蜡模、样件或模型。
随着高度的 增加,层片轮廓 的面积和形状都 会发生变化,当 形状发生较大的 变化时,上层轮 廓就不能给当前 层提供充分的定 位和支撑作用, 这就需要设计一 些辅助结构- “支撑”,对后 续层提供定位和 支撑,以保证成 形过程的顺利实 现。
填充 轮廓
支撑
建模
载入
加工
建模
载入
加工
建模软件: Solid Works Pro/E AutoCAD UG
成型过程示意图
• 快速成型工艺的优势:
------使模型或模具的制造时间缩短数倍甚至数十倍,大大缩 短新产品研制周期; ------使复杂模型的直接制造成为可能,提高了制造复杂零件 的能力; ------可以及时发现产品设计的错误,做到早找错、早更改, 避免更改后续工序所造成的大量损失,显著提高新产品 投产的一次成功率; ------使设计、交流和评估更加形象化,使新产品设计、样品 制造、市场定货、生产准备、等工作能并行进行,支持 同步(并行)工程的实施; ------节省了大量的开模费用,成倍降低新产品研发成本。
FDM的特点
• 不使用激光,维护简单,成本低
• 塑料丝材,清洁,更换容易 • 后期处理简单 • 成型速度较快
PRINT 3D 快速成型机
熔融挤出成型 (FDM)工艺的材料一 般是热塑性材料,如 蜡、ABS、PC、尼 龙等,以丝状供料。 材料在喷头内被加热 熔化。喷头沿零件截 面轮廓和填充轨迹运 动,同时将熔化的材 料挤出,材料迅速固 化,并与周围的材料 粘结。每一个层片都 是在上一层上堆积而 成,上一层对当前层 起到定位和支撑的作 用。
(不能有错误)
另存为 *.stl 格式
建模
载入
加工
1. 打开软件。(打开软件前要插入加密锁)
建模
载入ห้องสมุดไป่ตู้
加工
2. 初始化软件。
建模
载入
加工
3. 载入模型。
建模
载入
加工
卸载模型
载入多个模型
建模
载入
加工
4. 调整模型。
建模
载入
加工
建模
载入
加工
选择N3精细
将填充间隔改为3
工作台高度为默认值,不要改变
支撑
支撑
支撑
注意:每次加工完,如果不关机,继续新的加工,要恢复就绪状态。
1. 加工范围:223mm×262mm×315mm 过大的形体需要进行拆分,用丙酮作为胶剂粘接。
2. 不同表面的成型质量不同,上表面好于下表面,水平面好于垂直面, 垂直面好于斜面。选择重要的表面作为上表面。 水平方向精度好于垂直方向的精度,水平面上的圆孔、立柱质量精 度最好,垂直面上的较差。如果有较小直径(小于10mm)的立柱、 内孔等特征,尽量选择垂直方向成型。 3. 水平方向的强度高于垂直方向的强度。如果需要保证强度,选择强 度要求高的方向为水平方向。 4. 模型表面有平面时,以平行和垂直于大部分平面的方向摆放。 5. 减少支撑面积,降低支撑高度。避免出现投影面积小,高度高的支 撑面出现。
快速成型的基本过程:
→→→首先设计出所需零件的计算机三维模型(数字模型、 CAD模型) →→→按照一定的规律将该模型离散为一系列有序的单元, 通常在Z向将其按一定厚度进行离散(习惯称为分 层),把原来的三维CAD模型变成一系列的层片 →→→再根据每个层片的轮廓信息,输入加工参数,自动生 成数控代码 →→→最后由成形系统成形一系列层片并自动将它们联接起 来,得到一个三维物理实体。
快速成型原理 及PRINT 3D操作说明
种道玉 chongdy4156@
快速成型技术简介
快速成型制造技术又叫快速原型制造技术;是指由CAD模 型直接驱动的快速制造任意复杂形状三维物理实体的技术总 称。 英文:RAPID PROTOTYPING,简称RP, 或 RAPID PROTOTYPING MANUFACTUREING,简称 RPM。 不同种类的快速成型系统因所用成形材料不同,成形原理和 系统特点也各有不同。但是,其基本原理都是一样的,那就是 “分层制造,逐层叠加“。形象地讲,快速成形系统就像是一 台” 立体打印机"。
相关文档
最新文档