一次函数与方程不等式的关系

合集下载

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、不等式的关系

一次函数与方程(组)、不等式及二次函数与二元一次方程、二元一次不等式的关系1、一次函数与一元一次方程从“数”的角度看,解方程kx+b=0相当于一次函数y=kx+b 的函数值为0时,求自变量的取值;从“形”的角度看,解方程kx+b=0,相当于确定直线y=kx+b 与x 轴交点横坐标的值 一次函数与一元一次不等式从“数”的角度看,解不等于式kx+b 〉0(<0)相当于一次函数y=kx+b 的函数值>0(<0)时,求自变量x 的取值范围;从“形”的角度看,求不等于式kx+b>0(<0)的解集,相当于确定直线y=kx+b 在x 轴上(下)方部分所对应的自变量x 取值范围 从“数”的角度看,解不等于式11b x k +〉22b x k +相当于一次函数111b x k y +=与222b x k y +=函数值y 1>y 2时,求自变量的取值范围;从“形”的角度看,解不等于式11b x k +〉22b x k +,相当于确定直线111b x k y +=在直线222b x k y +=上(下)方部分所对应的自变量x 取值范围 一次函数与二元一次方程组从“数”的角度看,解二元一次方程组{y =k 1x +b 1y =k 2x +b 2相当于求自变量x 为何值时相应的两个函数y =k 1x +b 1与y =k 2x +b 2的函数值相等,从“形”的角度看,解二元一次方程组,相当于确定直线y =k 1x +b 1与y =k 2x +b 2交点的坐标类比可得出二次函数与二元一次方程、二元一次不等式的关系:1、从数的角度看,解方程02=c bx ax ++相当于二次函数c bx ax y ++=2的函数值y=0时自变量x 的值,从形的角度看,解方程02=++c bx ax 相当于确定二次函数c bx ax y ++=2与x 轴的交点模坐标的值2、从数的角度看,解方程)0(02<>++c bx ax 相当于二次函数c bx ax y ++=2的函数值y>0(<0)时自变量x 的取值范围,从形的角度看,解方程)0(02<>++c bx ax 相当于确定二次函数c bx ax y ++=2与在x 轴上(下)方部分所对应的自变量x 取值范围。

函数与方程不等式之间的关系

函数与方程不等式之间的关系

函数与方程不等式之间的关系
函数、方程和不等式是数学中的基本概念,它们之间存在密切的联系。

函数是描述两个变量之间关系的数学模型,通常表示为 y = f(x),其中 x 和
y 是变量,f 是函数关系。

函数有多种类型,其中一次函数是最简单的一种,表示为 y = ax + b,其中 a 和 b 是常数,a ≠ 0。

方程是含有未知数的等式,用来表示未知数和已知数之间的关系。

一元一次方程是最简单的一类方程,形如 ax + b = 0,其中 a 和 b 是已知数,a ≠ 0。

解这个方程可以得到未知数的值。

不等式是用不等号连结的两个解析式,表示两个量之间的大小关系。

一元一次不等式是最简单的一类不等式,形如 ax + b > 0 或 ax + b < 0,其中 a 和 b 是已知数,a ≠ 0。

解这个不等式可以得到满足不等式的值的范围。

函数、方程和不等式之间存在密切的联系。

一次函数和一元一次方程、一元一次不等式之间的关系特别重要。

对于一次函数 y = ax + b,当函数的值等于 0 时,自变量 x 的值就是一元一次方程 ax + b = 0 的解。

如果一次函数的值大于 0,则自变量 x 的值满足一元一次不等式 ax + b > 0;如果一次函数的值小于 0,则自变量 x 的值满足一元一次不等式 ax + b < 0。

因此,函数、方程和不等式是相互联系的,可以通过它们之间的关系来理解和解决数学问题。

一次函数与方程、不等式、方程组关系PPT课件

一次函数与方程、不等式、方程组关系PPT课件

05
CHAPTER
总结与展望
总结一次函数与方程、不等式、方程组的关系
一次函数与方程的关系
一次函数与方程组的关系
一次函数是线性方程的几何表示,通 过将方程中的x替换为函数表达式,可 以得到相应的方程。
一次函数可以用于解决线性方程组问 题,通过消元法或代入法将方程组转 化为一次函数的交点问题。
一次函数与不等式的关系
斜率
一次函数图像的倾斜程度 由斜率k决定,k>0时,图 像为增函数;k<0时,图 像为减函数。
截距
b为y轴上的截距,表示函 数与y轴交点的纵坐标。
一次函数的图像
绘制方法
通过代入一组x值计算对应的y值 ,得到一系列点,将这些点连接 成线即可得到一次函数的图像。
图像特点
一次函数图像是一条直线,斜率为 k,截距为b。
一次函数与方程、不等式、方 程组关系ppt课件
目录
CONTENTS
• 一次函数的基本概念 • 一次函数与方程的关系 • 一次函数与不等式的关系 • 一次函数的应用 • 总结与展望
01
CHAPTER
一次函数的基本概念
一次函数的定义
01
02
03
一次函数
形如y=kx+b(k≠0)的 函数,其中x是自变量,y 是因变量。
一次函数与一元一次不等式组
一元一次不等式组
由两个或两个以上一元一次不等式组成的集合。
关系
对于一元一次不等式组,可以通过将其转化为一次函数的形式,利用函数的交点来求解。例如,解不等式组 $begin{cases} x + 2 > 0 x - 1 < 0 end{cases}$,可以将其转化为两个一次函数的形式,然后找到两个函数的 交点,即解集。

一次函数与方程不等式的关系 说课课件

一次函数与方程不等式的关系 说课课件

80 70 60 50 40 30 20 10 0 1 2 3 4 t(小时) 乙 甲
---辅助练习--某单位用车,又不打算买车,他们准备和一个个体车主和一国营出租车公司中的一家签 定月租车合同.设汽车每月行驶x千米,应付给个体车主的月费用是y1元,应付给出租车公
司的月费用是y2元.y1’y2与x之间的函数的图象(两条射线)如图所示.观察图象,回答下列问
开始,如果设甲班的植树时间为t(小时),植树的棵数分别为y甲、y乙。你认为哪个
班植树比较多?结合函数图像的有关知识解决。.........(你还有其他方法吗?) y(棵)
由图像可知:2小时时一样多,不
足2小时时甲班多,超过2小时时 乙班多. y甲=20t(t≥o) y乙=40t-40(t≥1) y甲=y乙 、y甲≥y乙 、 y乙≥y甲
师真正成为学生学习的参与者和合作者;帮助者和引导者。
教学流程图
●复习回顾
教学过程
●动手动脑
●试着做做
●总结概括
●探索新知
●试试身手
●思维延伸
单击鼠标可按顺序播 点击●可进 一次函数的定义 ☆ ☆ 函数图像的概念 一次函数的图像的画法
k
(0,b) (1,k)
o
x
1
图像,联想结论。
(2)在讲课过程中可能会有一些学生不能很好的理解本节内容,一方面
我可以增加辅助练习,在实际的解决问题过程中让学生进一步体会它们之 间的联系;另一方面,我留给学生思考的时间,其间采取单独辅导予以补 救,尽量做到让每一个学生都能在本节课中有收获,有感悟。
板书设计
一、复习回顾
二、试着做做:问题引入(随堂练习)
(2)解不等式5x-1>3x+2时,我们除了可以直接求出解集以外,还可以借

一次函数与方程不等式的关系

一次函数与方程不等式的关系

一次函数与方程不等式的关系一、什么是一次函数一次函数是指一个未知数的最高次数为1的多项式函数,也就是一次函数的表达式为 y= kx+b ,其中 k 和 b 分别是斜率和截距。

二、一次函数的图像特征对于一次函数,它的图像是一条直线,有以下的图像特征:1. 斜率 k 决定了图像在坐标系中的倾斜程度。

2. 截距 b 决定了图像与 y 轴的交点位置。

三、一次函数的解析式一次函数的解析式为 y= kx+b ,其中 k 和 b 是常数。

通过给定的 k 和 b 的值,可以构建出这个一次函数的解析式。

四、一次不等式的解法对于一次不等式 ax+b >0 (其中 a 和 b 都是实数,在本节中我们以一次不等式大于0为例),解法如下:1. 如果 a > 0 ,则不等式的解集为 x>-b/a 。

2. 如果 a < 0 ,则不等式的解集为 x<-b/a 。

注:不等式的解集指的是所有满足不等式的实数 x 的集合。

五、一次函数与一次不等式的关系一次函数与一次不等式之间有着紧密的联系。

如果一个一次函数的表达式为y= kx+b ,则对于x 的取值范围可以转化为一次不等式的形式:1. 当 k>0 ,b>=0 时,函数图像位于 y 轴上方,此时函数图像上的点对应的 x 值范围应为 x>-b/k 。

因此,该一次函数对应的一次不等式为kx+b >0,此时其解集为 x>-b/k 。

2. 当 k>0 ,b<0 时,函数图像位于 y 轴下方,此时函数图像上的点对应的 x 值范围应为 x>-b/k 。

因此,该一次函数对应的一次不等式为kx+b >0,此时其解集为 x>-b/k 。

3. 当 k<0 ,b>=0 时,函数图像位于 y 轴上方,此时函数图像上的点对应的 x 值范围应为 x<-b/k 。

因此,该一次函数对应的一次不等式为kx+b <0,此时其解集为 x<-b/k 。

浅议一次函数与方程(不等式)的关系

浅议一次函数与方程(不等式)的关系

浅议一次函数与方程(不等式)的关系发表时间:2018-09-11T10:57:13.667Z 来源:《教学与研究》2018年11期作者:董检容[导读] 从初中数学教材来看,七年级学习了一元一次方程和一元一次不等式,八年级学习了一次函数知识,学生一般对于这三方面知识了解得比较透彻董检容(湖南省耒阳市实验中学湖南耒阳 421800)摘要:从初中数学教材来看,七年级学习了一元一次方程和一元一次不等式,八年级学习了一次函数知识,学生一般对于这三方面知识了解得比较透彻,但对于三者之间的联系却知之甚少,因而教师应该贯穿着三方面的知识,使学生体会到一次函数与一元一次方程、一元一次不等式的密切联系,感受到“数形结合”在数学研究的作用。

关键词:一元一次方程,一元一次不等式,关系。

中图分类号:G623.5 文献标识码:A 文章编号:ISSN0257-2826 (2018)11-014-02一、一次函数形如y=kx+b(k.b是常数,k≠0),用自变量的一次整式表示的函数叫一次函数.特别地,当b=0时,一次函数y=kx(k≠0)叫做正比例函数。

通过该公式更能清楚的看到x和y的一一对应关系,只要确定了x(y),就能确定唯一的y(x)与之对应。

通过列表、描点、连线得到了一次函数的图像是一条直线。

那么学生知道了找直线与坐标轴的交点并连线就可以得到y=kx+b(k≠0)的图像.其中正比例函数象是经过原点的直线.在此基础上,还学习一次函数的图像与性质.例如.当k>0时,图象一定经过第一.三象限,当k<0时图像一定经过第二,四象限.而b>0时图像与y轴交于正半轴,b<0时图象与y轴交于负半轴.初学时学生感到枯燥,难懂,所以教师得借助多媒体课件进行授课.应用多媒体课件直观,明了,激发学生学习积极性。

二、一次函数与一元一次方程和一元一次不等式之间的关系从数学表达式上看,一次函数的表达式是y=kx+b,一元一次方程的表达式是kx+b=0,一元一次不等式的表达式是kx+b>(<)0.由此可见,一元一次方程式表达的是函数y=0时x的数值,而一元一次不等式表达的是y>0或者y<0时x的取值范围.以下举例说明:问:画出函数的图像,根据图像指出:(1)x取何值时,函数值y等于零?(2)x取何值时,函数值y大于零?【分析】:教师利用多媒体演示画出的图象.由图象可知当x=-2时,函数值等于零;当x>-2时函数值大于零归纳:从数的角度来看,一次函数y=kx+b(k≠0)的函数值是0时.对应的x的值就是一元一次方程kx+b=0的解;当一次函数y=kx+b的值大于0时,对应的x的值就是一元一次方程kx+b=0的解;当一次函数y=kx+b的值大于0时对应部分x取值的集合,就是不等式kx+b>0的解集;当一次函数y=kx+b的值小于0时,对应部分x的取值的集合,就不等式kx+b<0的解集. 从形的角度来看,直线y=kx+b(k≠0 )与 x轴交点的横坐标就是方程kx+b=0的解;直线y=kx+b位于x轴上方部分对应的x的值的集合,就是不等式kx+b>0的解集;直线y=kx+b位于x轴下方部分对应的x值的集合,就是不等式kx+b<0的解集【例】. 某零件制造车间有工人20名,已知每人每天可以制造甲种零件6个或乙种零件5个,且每制造一个甲种零件可获利润150元,每制造一个乙种零件可获利润260元,在这20人中,车间每天安排x人制造甲种零件,其余工人制造乙种零件。

8年级一次函数与不等式方程的关系.doc

8年级一次函数与不等式方程的关系.doc

一次函数与方程及一元一次不等式一、核心纲要1. 一次函数与一元一次方程的关系直线y = hc + b(k 丰0)与x 轴交点的横坐标,就是一元一次方程kx + b = 0仗丰0)的解。

求直线y = kx + bb hb 与天轴交点时•,可令尸0,得到方程kx + b = 0,解方程得x = -Y ,直线y = kx + b 交%轴于点(-?, 0), 一?k kk就是直线y = kx + b 与兀轴交点的横坐标。

注:(I)从“数”看:kx + b = 0(k 0)的解O 在一次函数y = kx + b(k 0)中,令y=0时,兀的值。

(2)从“形”看:d + b = 0仗工0)的解o —次函数y = la + b(k^0)的图像与x 轴交点的横坐标。

2. 一次函数与一元一次不等式的关系(1) 任何一元一次不等式都可以转化为ax + b>0或ax + b<0 (a,b 为常数,QH O)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范馬。

(2) 函数图像的位置决定两个函数值的大小关系:哪一个函数图像处于上方,则哪一个比较大。

特别说明:函数y 的图像在无轴上方oy>0;函数y 的图像在兀轴下方oyVO 。

3. 一次函数与二元一次方程(组)的关系(1) 一次函数的解析式y = kx + b(k^Q)^身就是一个二元一次方程,直线y = +上有无数个点,每个点的横纵坐标都满足二元一次方程$ =总+ /?伙工0),因此二元一次方程的解也就有无数个。

(2) 一次函数y = kx + b(k^0)① 从“数”看:它是一个二元一次方程;② 从“形”看:它是一条直线。

二—直线y=kx-b(k=0)上的每一个点的横、纵坐标 廿:声T 的解<^=^>直线比与门的交点的横纵坐标 y ?=k ?x-rb ?4. 两条直线的位置关系与二元一次方程组的解V =化无+也〜1'有唯一解O •百线V 二心兀+勺不平行于玄线V = + H 怎y = k 1x^b 1二兀一次方程y=kx-b(k= 0)的每一组解 方程组(1)二元一次方程组I y = k.x^b.亠,一亠,(2)二兀一次方程组{ 无解O直线y =斤[无+也平行于直线y = k^x + b^ o k{ = k2.b} b2I y = k2x + b2 y = k.x + b}(3)二元一次方程组{ 有无数多个解o直线y = 3 + ®与y = k^x + b^重合o k}= k»b、=[y = k2x^b25.比较两个函数值人小的方法(1)画图像,求交点;(2)过交点作平行于y轴的氏线:(3)谁高谁大。

《一次函数与方程、不等式的关系》教学设计-01

《一次函数与方程、不等式的关系》教学设计-01

《一次函数与方程、不等式的关系》教学设计一、教材分析及设计思路本节内容着重建立了一次函数与一次方程、一次不等式的联系,并利用一次函数的图象求一元一次方程的解和一次不等式的解集,这对发展学生“数形结合”的思想和辩证思维能力具有重要的意义。

在本节课教学内容之前,学生已学过一元一次方程和一次不等式的解法以及一次函数的相关知识,但是把它们利用函数图象联系在一起,结合数形结合的思想,来理解它们之间的关系,这对于八年级学生来说,理解起来还是会有点困难,因此,在本节课的教学中,要让学生反复实践,引导学生观察、思考、探究、交流,然后再启发学生归纳得出结论,以发展学生数形结合的思想和方法。

二、教学目标:1、知识与能力:理解一次函数与一次方程、一次不等式的关系,能根据一次函数的图象求一元一次方程的解和一次不等式的解集,进一步发展数形结合的意识;2、过程与方法:通过对一次函数与一次方程、一次不等式关系的探究,引导学生认识事物部分与整体的辩证统一关系,发展学生的辩证思维能力;3、情感态度与价值观:通过对一次函数与一次方程、一次不等式关系的探究,让学生体会数学知识的融会贯通,发现数学的美,以激发学生学习数学的兴趣和克服困难的信心。

三、教学重点、难点:教学重点:理解一次函数与一次方程、一次不等式的关系;教学难点:根据一次函数的图象求一元一次方程的解和一次不等式的解集,发展学生数形结合的思想和辩证思维能力。

四、教学过程设计:(一)回顾延伸,引入课题首先,让我们重新观察一下平面直角坐标系,思考:(1)x 轴上,点的纵坐标有何规律呢?(2)x 轴的上方,点的纵坐标有何规律呢?(3)x 轴的下方,点的纵坐标有何规律呢?(说明:先让学生观察、回答,然后结合图形补充、明确)(1)x(2)x y>0;(3)x y<0。

(二)动手操作 请画出一次函数y=2x+6的图象(说明:让学生独立完成画图,并请学生上讲台展示,给予鼓励)问题:1 2y=0? ) (四)归纳 x 轴交点坐标为(-3,0),而-3 x y=0y<0y>0因为,任何一个一元一次方程都可以化简为kx+b=0的形式,所以解一元一次方程kx+b=0,都可转化为求函数y=kx+b中y=0时的x的值。

一次函数和方程关系解不等式的方法一次函数与一元一次不等式

一次函数和方程关系解不等式的方法一次函数与一元一次不等式
(3)一元一次方程ax+b=0(a≠0)是一次函数y=ax+b(a≠0)的函数值=0的情形;反之,使函数值y=0的x的取值就是方程ax+b=0(a≠0)的解。
一次函数和方程关系:
一次函数
一元一次方程
形式
y=kx+b
ax+b=0
内容
表示的是一对(x,y)之间的关系,
它有无数对解
表示的是未知数x的值,
最多只有1个值
一元一次不等式与一元一次方程、一次函数的关系:
(1)一元一次不等式ax+b>0(a≠0)是一次函数y=ax+b(a≠0)的函数值>0的情形;一元一次不等式ax+b<0(a≠0)是一次函数y=ax+b(a≠0)的函数值<0的情形。
(2)直线y=ax+b上使函数值y>0(x轴上方的图像)的x的取值范围是ax+b>0的解集;使函数值y<0(x轴下方的图像)的x的取值范围是ax+b<0的解集。
相互关系
一次函数与x轴交点的横坐标就是相应的一元一次方程的根
例如:
y=4x+8与x轴的交点是(2,0),
则一元一次方程4x+8=0的根是x=2。
函数和不等式:
解不等式的方法:从函数的角度看,就是寻求使一次函数y=kx+b的值大于(或小于)0的自变量x的取值范围;
从函数图像的角度看,就是确定直线y=kx+b在x轴上(或下)方部分所有的点的横坐标所构成的集合。
对应一次函数y=kx+b,它与x轴交点为(b/k,0)。
当k>0时,不等式kx+b>0的解为:x> b/k,不等式kx+b<0的解为:x< b/k;

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学:一次函数的性质与应用问题真题+模拟(原卷版北京专用)

中考数学一次函数的性质与应用问题【方法归纳】(1)一次函数与方程、不等式之间的关系:利用待定系数法确定一次函数的解析式,一次函数与x轴和y轴交点、不等式的解集、一次函数的平移、参数的确定等、(2)一次函数与几何图形的面积问题:首先要根据题意画出草图,结合图形分析其中的几何图形,再求出面积.(3)一次函数的优化问题:通常一次函数的最值问题首先由不等式找到x的取值范围,进而利用一次函数的增减性在前面范围内的前提下求出最值.(4)用函数图象解决实际问题:从已知函数图象中获取信息,求出函数值、函数表达式,并解答相应的问题.2.一次函数的应用(1)分段函数问题:分段函数是在不同区间有不同对应方式的函数,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.(2)函数的多变量问题:解决含有多变量问题时,可以分析这些变量的关系,选取其中一个变量作为自变量,然后根据问题的条件寻求可以反映实际问题的函数.(3)常见题型:行程问题、表格问题、图象问题、最大利润问题、方案问题常用的解题思路:①建立函数模型的方法;②分段函数思想的应用.【典例剖析】【例1】(2022·北京·中考真题)在平面直角坐标系xOy中,函数y=kx+b(k≠0)的图象经过点(4,3),(−2,0),且与y轴交于点A.(1)求该函数的解析式及点A的坐标;(2)当x>0时,对于x的每一个值,函数y=x+n的值大于函数y=kx+b(k≠0)的值,直接写出n的取值范围.【例2】(2021·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图x的图象向下平移1个单位长度得到.象由函数y=12(1)求这个一次函数的解析式;(2)当x>−2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【真题再现】必刷真题,关注素养,把握核心1.(2016·北京·中考真题)如图,在平面直角坐标系xOy中,过点A(−6,0)的直线l1与直线l2:y= 2x相交于点B(m,4).(1)求直线l1的表达式;(2)过动点P(n,0)且垂直于x轴的直线与l1,l2的交点分别为C,D,当点C位于点D上方时,写出n的取值范围.2.(2019·北京·中考真题)在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=−k分别交于点A,B,直线x=k与直线y=−k交于点C.(1)求直线l与y轴的交点坐标;(2)横、纵坐标都是整数的点叫做整点.记线段AB,BC,CA围成的区域(不含边界)为W.①当k=2时,结合函数图象,求区域W内的整点个数;②若区域W内没有整点,直接写出k的取值范围.3.(2020·北京·中考真题)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象平移得到,且经过点(1,2).(1)求这个一次函数的解析式;(2)当x>1时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.【模拟精练】一、解答题1.(2022·北京房山·二模)已知,在平面直角坐标系xOy中,直线l:y=ax+b(a≠0)经过点A(1,2),与x轴交于点B(3,0).(1)求该直线的解析式;(2)过动点P(0,n)且垂直于y轴的直线与直线l交于点C,若PC≥AB,直接写出n的取值范围.2.(2022·北京朝阳·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,2).(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.3.(2022·北京东城·二模)如图,在平面直角坐标系xOy中,双曲线y=k(k≠0)经过点xA(2,−1),直线l:y=−2x+b经过点B(2,−2).(1)求k,b的值;(2)过点P(n,0)(n>0)作垂直于x轴的直线,与双曲线y=k(k≠0)交于点C,与直线l交于点xD.①当n=2时,判断CD与CP的数量关系;②当CD≤CP时,结合图象,直接写出n的取值范围.4.(2022·北京北京·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=−x的图象平移得到,且经过点(1,1).(1)求这个一次函数的表达式;(2)当x>−1时,对于x的每一个值,函数y=mx−1(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.5.(2022·北京丰台·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=x的图象向下平移4个单位长度得到.(1)求这个一次函数的解析式;(2)一次函数y=kx+b的图象与x轴的交点为A,函数y=mx(m<0)的图象与一次函数y= kx+b的图象的交点为B,记线段OA,AB,BO围成的区域(不含边界)为W,横、纵坐标都是整数的点叫做整点,若区域W内恰有2个整点,直接写出m的取值范围.6.(2022·北京密云·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点A(0,−3)和点B(5,2).(1)求这个一次函数的表达式;(2)当x≥2时,对于x的每一个值,函数y=mx+2(m≠0)的值小于一次函数y=kx+b的值,直接写出m的取值范围.7.(2022·北京西城·二模)在平面直角坐标系xOy中,一次函数y=−x+b的图象与x轴交于点(4,0),且与反比例函数y=m的图象在第四象限的交点为(n,−1).x(1)求b,m的值;<y p<4,连接OP,结(2)点P(x p,y p)是一次函数y=−x+b图象上的一个动点,且满足mx p合函数图象,直接写出OP长的取值范围.8.(2022·北京平谷·二模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由x平移得到,且过点(0,−1).函数y=12(1)求这个一次函数y=kx+b(k≠0)的表达式;(2)当x>−2时,对于x的每一个值,函数y=mx+1的值大于一次函数y=kx+b(k≠0)的值,求m的取值范围.9.(2022·北京东城·一模)对于平面直角坐标系xOy中的点C及图形G,有如下定义:若图形G上存在A,B两点,使得△ABC为等腰直角三角形,且∠ABC=90°,则称点C为图形G的“友好点”.(1)已知点O(0,0),M(4,0),在点C1(0,4),C2(1,4),C3(2,−1)中,线段OM的“友好点”是_______;(2)直线y=−x+b分别交x轴、y轴于P,Q两点,若点C(2,1)为线段PQ的“友好点”,求b 的取值范围;(3)已知直线y=x+d(d>0)分别交x轴、y轴于E,F两点,若线段EF上的所有点都是半径为2的⊙O的“友好点”,直接写出d的取值范围.10.(2022·北京昌平·二模)在平面直角坐标系xOy中,直线y=kx+b(k≠0)与直线y=x平行,且过点(2,1).(1)求这个一次函数的解析式;(2)直线y=kx+b(k≠0)分别交x,y轴于点A,点B,若点C为x轴上一点,且S△ABC=2,直接写出点C的坐标.11.(2022·北京顺义·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象平x,且经过点A(2,2).行于直线y=12(1)求这个一次函数的表达式;(2)当x<2时,对于x的每一个值,一次函数y=kx+b(k≠0)的值大于一次函数y=mx−1(m≠0)的值,直接写出m的取值范围.x+b与直线l2:y=2x 12.(2022·北京石景山·一模)在平面直角坐标系xOy中,直线l1:y=12交于点A(m,n).(1)当m=2时,求n,b的值;(2)过动点P(t,0)且垂直于x轴的直线与l1,l2的交点分别是C,D.当t≤1时,点C位于点D上方,直接写出b的取值范围.13.(2022·北京市十一学校二模)在平面直角坐标系xOy中,已知点P(1,2),Q(−2,2),函.数y=mx(1)当函数y=m的图象经过点Q时,求m的值并画出直线y=-x-m.x(2)若P,Q两点中恰有一个点的坐标(x,y)满足不等式组{y>mxy<−x−m(m<0),求m的取值范围.14.(2022·北京丰台·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象由函数y=2x的图象平移得到,且经过点(2,1).(1)求这个一次函数的解析式;(2)当x>0时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.15.(2022·北京·东直门中学模拟预测)如图,在平面直角坐标系xOy中,点A(1,4),B(3,m).(1)如果点A,B均在反比例函数y1=kx的图象上,求m的值;(2)如果点A,B均在一次函数y2=ax+b的图象上,①当m=2时,求该一次函数的表达式;②当x≥3时,如果不等式mx−1>ax+b始终成立,结合函数图象,直接写出m的取值范围.16.(2022·北京一七一中一模)在平面直角坐标系xOy中,直线l与双曲线y=kx(k≠0)的两个交点分别为A(−3,−1),B(1,m).(1)求k和m的值;(2)求直线l的解析式;(3)点P为直线l上的动点,过点P作平行于x轴的直线,交双曲线y=k(k≠0)于点Q.当点Q位x于点P的左侧时,求点P的纵坐标n的取值范围.17.(2022·北京市燕山教研中心一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0) x的图象向上平移3个单位长度得到.的图象由函数y=12(1)求这个一次函数的解析式;(2)当x>2时,对于x的每一个值,函数y=mx(m≠0)的值大于一次函数y=kx+b的值,直接写出m的取值范围.18.(2022·北京平谷·一模)在平面直角坐标系xOy中,一次函数y=kx+b(k≠0)的图象经过点(﹣1,0),(0,2).(1)求这个一次函数的表达式;(2)当x>﹣2时,对于x的每一个值,函数y=mx(m≠0)的值小于一次函数y=kx+b(k≠0)的值,直接写出m的取值范围.19.(2022·北京门头沟·一模)我们规定:在平面直角坐标系xOy中,如果点P到原点O的距离为a,点M到点P的距离是a的整数倍,那么点M就是点P的k倍关联点.(1)当点P1的坐标为(−1.5,0)时,①如果点P1的2倍关联点M在x轴上,那么点M的坐标是;②如果点M(x,y)是点P1的k倍关联点,且满足x=−1.5,−3≤y≤5.那么k的最大值为________;(2)如果点P2的坐标为(1,0),且在函数y=−x+b的图象上存在P2的2倍关联点,求b的取值范围.20.(2022·北京朝阳·一模)在平面直角坐标系xOy中,对于直线l:y≡kx+b,给出如下定义:若直线l与某个圆相交,则两个交点之间的距离称为直线l关于该圆的“圆截距”.(1)如图1,⊙O的半径为1,当k=1,b=1时,直接写出直线l关于⊙O的“圆截距”;(2)点M的坐标为(1,0),①如图2,若⊙M的半径为1,当b=1时,直线l关于⊙M的“圆截距”小于4√5,求k的取值5范围;②如图3,若⊙M的半径为2,当k的取值在实数范围内变化时,直线l关于⊙M的“圆截距”的最小值为2,直接写出b的值.21.(2022·北京房山·一模)如图1,一次函数y=kx+4k(k≠0)的图象与x轴交于点A,与y 轴交于点B,且经过点C(2,m).(1)当m=9时,求一次函数的解析式并求出点A的坐标;2(2)当x>-1时,对于x的每一个值,函数y=x的值大于一次函数y=kx+4k(k≠0)的值,求k 的取值范围.22.(2022·北京房山·一模)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P,Q两点(Q在P,H之间).我们把点P称为⊙I关于直线a的“远点”,把PQ·PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4),半径为1的⊙O与两坐标轴交于点A,B,C,D.①过点E作垂直于y轴的直线m﹐则⊙O关于直线m的“远点”是点__________________(填“A”,“B”,“C”或“D”),⊙O关于直线m的“特征数”为_____________;②若直线n的函数表达式为y=√3x+4,求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy、中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,√3为半径作⊙F.若⊙F与直线l相离,点N(–1,0)是⊙F关于直线l的“远点”,且⊙F关于直线l的“特征数”是6√6,直接写出直线l的函数解析式.23.(2022·北京·中国人民大学附属中学分校一模)在平面直角坐标系xOy中,对于任意两点P1(x1,y1)与P2(x2,y2)的“非常距离”,给出如下定义:若|x1−x2|⩾|y1−y2|,则点P1与点P2的“非常距离”为|x1−x2|;若|x1−x2|<|y1−y2|,则点P1与点P2的“非常距离”为|y1−y2|.(1)已知点A(−1,0),B为y轴上的一个动点,2①若点A与点B的“非常距离”为4,直接写出点B的坐标:;②求点A与点B的“非常距离”的最小值;(2)已知C是直线y=1x+2上的一个动点,2①若点D的坐标是(0,1),求点C与点D的“非常距离”的最小值及相应的点C的坐标;②若点E是以原点O为圆心,1为半径的圆上的一个动点,求点C与点E的“非常距离”的最小值及相应的点E和点C的坐标.24.(2022·北京市第一六一中学分校一模)在平面直角坐标系xOy中,直线l1:y=﹣2x+6与y轴交于点A,与x轴交于点B,二次函数的图象过A,B两点,且与x轴的另一交点为点C,BC=2;(1)求点C的坐标;(2)对于该二次函数图象上的任意两点P1(x1,y1),P2(x2,y2),当x1>x2>2时,总有y1>y2.①求二次函数的表达式;②设点A在抛物线上的对称点为点D,记抛物线在C,D之间的部分为图象G(包含C,D两点).若一次函数y=kx﹣2(k≠0)的图象与图象G有公共点,结合函数图象,求k的取值范围.25.(2022·北京通州·一模)已知一次函数y1=2x+m的图象与反比例函数y2=k(k>0)的x图象交于A,B两点.(1)当点A的坐标为(2,1)时.①求m,k的值;②当x>2时,y1______y2(填“>”“=”或“<”).(2)将一次函数y1=2x+m的图象沿y轴向下平移4个单位长度后,使得点A,B关于原点对称,求m的值26.(2022·北京西城·xOy中,直线l1:y=kx+b与坐标轴分别交于A(2,0),B(0,4)两点.将直线l1在x轴上方的部分沿x轴翻折,其余的部分保持不变,得到一个新的图形,这个图形与直线l2:y=m(x−4)(m≠0)分别交于点C,D.(1)求k,b的值;(2)横、纵坐标都是整数的点叫做整点.记线段AC,CD,DA围成的区域(不含边界)为W.①当m=1时,区域W内有______个整点;②若区域W内恰有3个整点,直接写出m的取值范围.27.(2022·北京海淀·一模)在平面直角坐标系xOy中,二次函数y=ax2−2ax(a≠0)的图象经过点A(−1,3).(1)求该二次函数的解析式以及图象顶点的坐标;(2)一次函数y=2x+b的图象经过点A,点(m,y1)在一次函数y=2x+b的图象上,点(m+4,y2)在二次函数y=ax2−2ax的图象上.若y1>y2,求m的取值范围.28.(2022·北京十一学校一分校一模)在平面直角坐标系xOy中,函数y=k的图象与直线yx=mx交于点A(2,2).(1)求k,m的值;(2)点P的横坐标为n,且在直线y=mx上,过点P作平行于x轴的直线,交y轴于点M,交(x>0)的图象于点N.函数y=kx①n=1时,用等式表示线段PM与PN的数量关系,并说明理由;②若0<PN≤3PM,结合函数的图象,直接写出n的取值范围.29.(2022·北京·东直门中学模拟预测)在平面直角坐标系xOy中,对于点P(x1,y1),给出如下定义:当点Q(x2,y2)满足x1+x2=y1+y2时,称点Q是点P的等和点.已知点P(2,0).(1)在Q1(0,2),Q2(−2,−1),Q3(1,3)中,点P的等和点有______;(2)点A在直线y=−x+4上,若点P的等和点也是点A的等和点,求点A的坐标;(3)已知点B(b,0)和线段MN,对于所有满足BC=1的点C,线段MN上总存在线段PC上每个点的等和点.若MN的最小值为5,直接写出b的取值范围.30.(2022·北京市第五中学分校模拟预测)在平面直角坐标系xOy中,直线l1:y=ax(a≠0)过点A(﹣2,1),直线l2:y=mx+n过点B(﹣1,3).(1)求直线l的解析式;(2)用含m的代数式表示n;(3)当x<2时,对于x的每一个值,函数y=ax的值小于函数y=mx+n的值,求m的取值范围.。

一次函数与方程不等式的关系教学设计

一次函数与方程不等式的关系教学设计

一次函数与方程不等式的关系凉水河中学王小清教学目标1,借助图像,使学生初步理解一次函数与二元一次方程的关系.。

2,能根据一次函数的图像求二元一次方程的近似解。

3,借助图像,使学生理解一次函数与一元一次不等式的关系。

4,能根据一次函数的图像求不等式的解集。

重点:理解一次函数与二元一次方程,一元一次不等式的关系难点:根据一次函数的图像求二元一次方程组的解、一元一次不等式的解集,发展学生数形结合的思想和辩证思维的能力。

学情分析:本节内容是对一次函数,二元一次方程组,一元一次不等式的综合运用,通过探索方程、不等式与一次函数图像之间的关系,培养学生数形转化的思想。

学生已经有了了解二元一次方程(组)、一元一次不等式的能力和一次函数及其图像的基本知识,学习本节知识困难不大,关键是让学生理解一次函数与二元一次方程和不等式的内在联系,体会“数”和“形”之间的相互转化,从中使学生进一步感受到“数”的问题可以通过“形”来解决,“形”的问题也可以通过“数”来解决。

一,激情导入1.古诗《题西林壁》引入,全体同学背诵古诗,同学代表讲解古诗内容。

老师总结,看待事物和问题要多角度,客观、真实的去认知评价。

2.出示幻灯片2x-y=-1提出问题“老师带来的这位朋友,你们认识吗?”设计意图:通过古诗引入,充分激起学生的兴趣,古诗内容的理解,老师的过度,对2x-y=-1理解,使学生更加全面的认识了它,从而很好的为本节课所学的内容打好基础。

二、探究新知问题1:对于任意的一个二元一次方程是否都可以转化成一次函数的形式呢?学生活动:找同学板演,其他同学自己独立完成,同学总结得出结论设计意图:使学生完成从特殊到一般的转化过程,认识到任何一个二元一次方程都可以转化成一次函数的形式,他们只是形式的不同而已。

问题2:出示幻灯片第6张画一次函数图像的步骤有哪些?对于函数y=2X+1的图像你能得到哪些信息?学生活动:找同学根据图像回答问题。

设计意图:复习旧知识,并进一步明确这些点都在函数图像上,为下边二元一次方程的解做好对比。

人教版八年级下册19.2.3一次函数和方程和不等式的关系(教案)

人教版八年级下册19.2.3一次函数和方程和不等式的关系(教案)
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
1.讨论主题:学生将围绕“一次函数、方程和不等式在实际生活中的应用”这一主题展开讨论。他们将被鼓励提出自己的观点和想法,并与其他小组成员进行交流。
2.引导与启发:在讨论过程中,我将作为一个引导者,帮助学生发现问题、分析问题并解决问题。我会提出一些开放性的问题来启发他们的思考。
(3)针对实际问题的抽象,教师需要引导学生关注问题中的数量关系,如“速度与时间的关系”,并指导学生将其转化为一次函数模型。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是“一次函数和方程和不等式的关系”这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过需要解决两个未知数之间的关系的问题?”(例如:两个物品的价格和数量关系)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索一次函数、方程和不等式的奥秘。
(2)通过绘制一次函数图像,让学生观察并理解不等式kx+b>0或kx+b<0的解集与图像的关联。
(3)结合实际例题,如“某商品的售价与成本之间的关系”,让学生学会建立一次函数模型,并求解相关问题。
2.教学难点
-掌握一次函数图像与一元一次方程、不等式之间的转换关系,特别是不同情况下的图像特征。
-理解在图像上如何判断方程的根以及不等式的解集,尤其是在k、b取值不同的情况下。
三、教学难点与重点
1.教学重点
-理解并掌握一次函数与一元一次方程之间的关系,能够运用一次函数图像求解方程。
-学会利用一次函数图像解一元一次不等ห้องสมุดไป่ตู้,并能解释图像与不等式解集的关系。

中考数学总复习一次函数与方程、不等式的关系

中考数学总复习一次函数与方程、不等式的关系

一次函数与方程、不等式的关系考点·方法·破译 1. 一次函数与一元一次方程的关系:任何一元一次方程都可以转化成kx +b =0(k 、b 为常数,k ≠0)的形式,可见一元一次方程是一次函数的一个特例.即在y =kx +b 中,当y =0时则为一元一次方程.2. 一次函数与二元一次方程(组)的关系:⑴任何二元一次方程ax +by =c (a 、b 、c 为常数,且a ≠0,b ≠0)都可以化为y =a c x b b-+的形式,因而每个二元一次方程都对应一个一次函数;⑵从“数”的角度看,解方程组相当于求两个函数的函数值相等时自变量的取值,以及这个函数值是什么;从“形”的角度看,解方程组相当于确定两个函数图像交点的坐标.3. 一次函数与一元一次不等式的关系:由于任何一元一次不等式都可以转化成ax +b >0或ax +b <0(a 、b 为常数,a ≠0)的形式,所以解一元一次不等式可以看成是当一次函数的函数值大于或小于0时,求相应自变量的取值范围.经典·考题·赏析【例1】直线l 1:y =k 1x +b 与直线l 2:y =k 2x 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式k 1x +b >k 2x 的解为( )A .x >-1B .x <-1C .x <-2D .无法确定 【解法指导】由图象可知l 1与l 2的交点坐标为(-1,-2),即当x =-1时,两函数的函数值相等;当x >-1时,l 2的位置比l 1高,因而k 2x >k 1x +b ;当当x <-1时,l 1的位置比l 2高,因而k 2x <k 1x +b .因此选A .【变式题组】01.(浙江金华)一次函数y 1=kx +b 与y 2=x +a 的图象如图,则下列结论:①k <0;②a >0;③当x <3时,y 1<y 2中,正确的个数是( ) A .0 B .1 C .2 D .302.如图,已知一次函数y =2x +b 和y =ax -3的图象交于点P (-2,-5),则根据图像可得不等式2x +b >ax -3的解集是________. 03. (武汉)如图,直线y =kx +b 经过A (2,1),B (-1,-2)两点,则不等式12x >kx +b >-2的解集为_________.第1题图 第2题图 第3题图【例2】若直线l 1:y =x -2与直线l 2:y =3-mx 在同一平面直角坐标系的交点在第一象限,求m 的取值范围. 【解法指导】直线交点坐标在第一象限,即对应方程组的解满足00x y >⎧⎨>⎩,从而求出m 的取值范围.解:23y x y mn =-⎧⎨=-⎩,∴51321x mm y m ⎧=⎪⎪+⎨-⎪=⎪+⎩,∴00x y >⎧⎨>⎩,∴5013201m m m⎧>⎪⎪+⎨-⎪>⎪+⎩,即10320m m +>⎧⎨->⎩,∴-1<m <32.【变式题组】01. 如果直线y =kx +3与y =3x -2b 的交点在x 轴上,当k =2时,b 等于( )A .9B .-3C .32-D .94-02. 若直线122y x =-与直线14y x a =-+相较于x 轴上一点,则直线14y x a =-+不经过( ) A .第四象限 B .第三象限 C .第二象限 D .第一象限03. 两条直线y 1=ax +b ,y 2=cx +5,学生甲解出它们的交点坐标为(3,-2),学生乙因抄错了c 而解出它们的交点坐标为(34,14),则这两条直线的解析式为____________.04. 已知直线y =3x 和y =2x +k 的交点在第三象限,则k 的取值范围是________.【例3】已知直线l 1经过点(2,5)和(-1,-1)两点,与x 轴的交点是点A ,将直线y =-6x +5的图象向上平移4个单位后得到l 2,l 2与l 1的交点是点C ,l 2与x 轴的交点是点B ,求∴ABC 的面积.【解法指导】设直线l 1的解析式为y =kx +b ,∴l 1经过(2,5),(-1,-1)两点, ∴251k b k b +=⎧⎨-+=-⎩,解得21k b =⎧⎨=⎩,∴y =2x +1,∴当y =0时,2x +1=0,x =12-,∴A (12-,0).又∴y =-6x +5的图象向上平移4个单位后得l 2,∴l 2的解析式为y =-6x +9, ∴当y =0时,-6x +9=0,x =32,∴B (32,0). ∴2169y x y x =+⎧⎨=-+⎩,∴13x y =⎧⎨=⎩,∴C (1,3),∴AB =32-(12-)=2,∴S ∴ABC =12×2×3=3.【变式题组】01. 已知一次函数y =ax +b 与y =bx +a 的图象相交于A (m ,4),且这两个函数的图象分别与y 轴交于B 、C 两点(B 上C 下),∴ABC 的面积为1,求这两个一次函数的解析式. 02. 如图,直线OC 、BC 的函数关系式为y =x 与y =-2x +6.点P (t ,0)是线段OB 上一动点,过P 作直线l 与x 轴垂直.⑴求点C 坐标; ⑵设∴BOC 中位于直线l 左侧部分面积为S ,求S 与t 之间的函数关系式;⑶当t 为何值时,直线l 平分∴COB 面积. 演练巩固·反馈提高 01. 已知一次函数y =32x +m ,和y =12-x +n 的图象交点A (-2,0),且与y 轴分别交于B 、C 两点,那么∴ABC 的面积是( ) A .2 B .3 C .4 D .602. 已知关于x 的不等式ax +1>0(a ≠0)的解集是x <1,则直线y =ax +1与x 轴的交点是( )A .(0,1)B .(-1,0)C .(0,-1)D .(1,0)第3题图 第6题图03. 如图,直线y =kx +b 与x 轴交于点A (-4,0),则y >0时,x 的取值范围是( )A .x >-4B .x >0C .x <-4D .x <0 04. 直线kx -3y =8,2x +5y =-4交点的纵坐标为0,则k 的值为( )A .4B .-4C .2D .-205. 直线y =kx +b 与坐标轴的两个交点分别为A (2,0)和B (0,-3).则不等式kx +b +3≥0的解集为( ) A .x ≥0 B .x ≤0 C .x ≥2 D .x ≤206. 如图是在同一坐标系内作出的一次函数y 1、y 2的图象l 1、l 2,设y 1=k 1x +b 1,y 2=k 2x +b 2,则方程组111222y k x b y k x b ⎧⎨⎩=+,=+的解是( )A .22x y =-⎧⎨=⎩B .23x y =-⎧⎨=⎩C .33x y =-⎧⎨=⎩D .34x y =-⎧⎨=⎩07. 若直线y =ax +7经过一次函数y =4-3x 和y =2x -1的交点,则a =_________.08. 已知一次函数y =2x +a 与y =-x +b 的图象都经过A (-2,0),且与y 轴分别交于B 、C 两点,则S ∴ABC =_________.09. 已知直线y =2x +b 和y =3bx -4相交于点(5,a ),则a =___________.10.已知函数y =-x +m 与y =mx -4的图象交点在x 轴的负半轴上,则m 的值为__________. 11.直线y =-2x -1与直线y =3x +m 相交于第三象限内一点,则m 的取值范围是___________. 12.若直线122a y x =-+与直线31544y x =-+的交点在第一象限,且a 为整数,则a =_________. 13.直线l 1经过点(2,3)和(-1,-3),直线l 2与l 1交于点(-2,a ),且与y 轴的交点的纵坐标为7.⑴求直线l 2、l 1的解析式;⑵求l 2、l 1与x 轴围成的三角形的面积; ⑶x 取何值时l 1的函数值大于l 2的函数值?14.(河北)如图,直线l 1的解析式为y =-3x +3,l 1与x 轴交于点D ,直线l 2经过点A (4,0),B (3,32-). ⑴求直线l 2的解析式; ⑵求S ∴ADC ;⑶在直线l 2上存在异于点C 的另一点P ,使得S ∴ADP =S ∴ADC ,求P 点坐标.第14题图15.已知一次函数图象过点(4,1)和点(-2,4).求函数的关系式并画出图象.⑴当x 为何值时,y <0,y =0,y >0? ⑵当-1<x ≤4时,求y 的取值范围; ⑶当-1≤y <4时,求x 的取值范围.16.某医药研究所开发了一种新药,在实验药效时发现,如果成人按规定剂量服用,那么服药后2h时血液中含药量最高,达每毫升6μg (1μg =10-3mg ),接着就逐步衰减,10h 后血液中含药量为每毫升3μg ,每毫升血液中含药量y (μg )随时间x (h )的变化如图所示,当成人按规定剂量服药后, ⑴分别求x ≤2和x ≥2时,y 与x 之间的函数关系式;⑵如果每毫升血液中含药量在4μg 或4μg 以上时,治疗疾病才是有效的,那么这个有效时间是多长?第16题图l 2。

一次函数与方程组、不等式的关系

一次函数与方程组、不等式的关系

一次函数与方程组、不等式的关系
一次函数与方程组、不等式的关系
一、概述
一次函数,又称一元函数,是利用一个变量由常数、指数、对数、三
角函数和其他的混合动态变量构成的函数。

它可以以简单的一次曲线
定义某一参数变化情况,也可以定义涉及多个变量的复杂方程组,对
曲线参数进行函数式分析和证明。

一次函数可以看做是方程组和不等
式的特例,与方程组、不等式关系密切。

二、一次函数与方程组的关系
一次函数可以看做方程组的特殊情况,当某一方程只有一个未知数时,它就可以转换成一次函数,并有着一定的图形表示,简化了对其进行
分析的过程,极大的提高了效率。

如当一组方程组均为一个未知数冚
构成时,若满足一次函数的性质,那么这组方程组就可以看做是一次
函数的特殊情况。

例如,若我们有一组以y=2x+1构成的一次函数,那么它就可以表示为
形如y-2x-1=0的方程,也就是图形上红色一次函数曲线对应着满足蓝
色方程线的点。

三、一次函数与不等式的关系
与方程组类似,不等式也可以通过一次函数转换,当某一不等式只有一个未知数构成时,就可以用一次函数进行表示,并且由于不等式的加减性,不同类型的不等式有着不同的图形表示。

例如,当y<2x+1的不等式表达式转换为一次函数时,我们可以得到一条红色的上限函数曲线,它就可以表示不等式表达式所给出的结果,也就是解空间位于红色曲线之下的点才符合不等式表达式。

四、总结
一次函数与方程组、不等式的关系密切,它们各自都可以通过对另一个的转换来进行数学分析和求解,而一次函数的表示也简化了数学求解的难度,可以有效的提高效率。

一次函数与一次方程,一次不等式的关系

一次函数与一次方程,一次不等式的关系

一次函数与一次方程,一次不等式的关系知识点:一、一次函数与一元一次方程的关系直线y=kx+b (k ≠0)与x 轴交点的横坐标,就是一元一次方程kx+b=0(k ≠0)的解。

求直线y=kx+b 与x 轴交点时,可令y=0,得到方程kx+b=0,解方程得x=-b/k 。

直线y=kx+b 交x 轴于(-b/k ,0),-b/k 就是直线y=kx+b 与x 轴交点的横坐标。

二、一次函数与一元一次不等式的关系任何一元一次不等式都可以转化为ax=b>0或ax=b<0 (b a 、为常数,a ≠0)的形式,所以解一元一次不等式可以看作:当一次函数值大(小)于0时,求自变量相应的取值范围。

三、一次函数与二元一次方程(组)的关系一次函数的解析式y=kx+b (k ≠0)本身就是一个二元一次方程,直线y=kx+b (k ≠0)上有无数个点,每个点的横纵坐标都满足二元一次方程y=kx+b (k ≠0),因此二元一次方程的解也就有无数个。

例题解析一、一次函数与一元一次方程综合已知直线y=(3m-2)x+2和y=-3x-2交于x 轴上同一点,m 的值为______已知一次函数y=-x+a 与y=x-b 的图象相交于点(m,8),则b-a=______.二、一次函数与一元一次不等式综合1.已知一次函数y=-2x+525y x =-+.(1)画出它的图象;(2)求出当x=3/2时,y 的值;(3)求出当y=-3时,x 的值;(4)观察图象,求出当x 为何值时,y>0,y<0,y=02.当自变量x 满足什么条件时,函数y=-4x+1的图象在:(1)x 轴上方; (2)y 轴左侧; (3)第一象限.3.已知直线A 为y=x+5,直线B 为y=-2x-6.当A>B 时,x 的取值范围是_____4.已知一次函数y=-2x+3(1)当x 取何值时,函数y 的值在-1与2之间变化?(2)当x 从-2到3变化时,函数y 的最小值和最大值各是多少?5.直线A:y=Mx+b 与直线B:y=Nx 在同一平面直角坐标系中的图象如图所示,则关于x 的不等式Nx>Mx+b 的解集为______.6.当x_________时直线y=x+2上的点在直线y=3x-2上相应点的上方.7.如图,直线y=kx+b (k ≠0)经过A(5,1),B(-2,-3)两点,则不等式0.5x> kx+b>-3的解集为______.5题图 7题图8已知一次函数经过点(1,-2)和点(-1,3),求这个一次函数的解析式,并求:(1)当x=2时,y 的值;(2)x 为何值时,y<0?(3)当-2<x<1时,x 的值范围;(4)当-2<y<1时,y 的值范围.。

一次函数与方程不等式关系PPT课件

一次函数与方程不等式关系PPT课件
方程的解与函数的零点
对于形如y=kx+b的一次函数,其与x轴的交点即为方程 y=0的解,也就是函数的零点。通过对方程进行求解,可 以得到函数的零点,从而确定函数的图像与x轴的交点。
03
不等式的解集与函数的图像
一次函数图像在平面坐标系中的位置和形态可以通过不等 式来描述。对于形如y<kx+b或y>kx+b的不等式,其解集 对应于函数图像在坐标系中的位置和取值范围。通过解不 等式,可以得到函数图像在坐标系中的位置和形态。
一次函数与不等式的关系
01
不等式可以转化为函数形式
不等式可以看作是函数的特殊情况,如 (ax + b > c) 可以视为 (y = ax
+ b) 在 (y) 轴上的截距大于 (c) 的情况。
02
解不等式即找函数值的范围
解不等式的过程是找到满足条件的 (x) 值范围,即函数值的范围。
03
函数图像与不等式的解集关系
函数图像上方的区域对应不等式的解集,下方的区域对应不等式的非解
集。
一次函数在方程与不等式中的应用
利用一次函数解一元一次方程
通过将方程转化为函数形式,可以更直观地找到方程的解。
利用一次函数解一元一次不等式
将不等式转化为函数形式,可以更方便地找到满足条件的 (x) 值范围。
一次函数在解决实际问题中的应用
02
方程与不等式的基本概念
方程的概念
1 2
3
方程
表示数学关系的一种数学模型,由等号和等号右边的未知数 组成。
一元一次方程
只含有一个未知数,且未知数的次数为1的方程。
二元一次方程
含有两个未知数,且未知数的次数为1的方程。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一次函数与方程、不等式的关系一次函数与一元一次方程的关系:一般的一元一次方程0kx b +=的解就是一次函数y kx b =+的图象与x 轴交点的横坐标。

直线与坐标轴的交点坐标的求法:(1)直线y kx b =+与y 轴交点的横坐标是0,当x=0时,一次函数y kx b =+的函数值y b =,b 就是交点的纵坐标,即直线y kx b =+与y 轴的交点为(0,b ); (2)直线y kx b =+与x 轴交点的纵坐标是0,故令y=0,得到方程0kx b +=,解方程得b x k =-,bk -就是直线y kx b =+与x 轴交点的横坐标,即直线y kx b =+与x 轴的交点为(,0)bk-.一次函数与一元一次不等式的关系:(1)一般的,一元一次不等式0(0)kx b kx b +>+<或的解集,就是使一次函数y=kx+b 的函数值大于0(或小于0)时自变量x 的取值范围。

(2)从图象上看,一元一次不等式0kx b +>的解集是直线y=kx+b 位于x 轴上方的部分所对应的自变量x 的取值范围;一元一次不等式0kx b +<的解集是直线y=kx+b 位于x 轴下方的部分所对应的自变量x 的取值范围; 一次函数与二元一次方程的关系:(1)一次函数y=kx+b 图象上任意一点的坐标都是二元一次方程kx y b -=-的一组解; (2)以二元一次方程kx y b -=-的解为坐标的点都在一次函数y kx b =+的图象上 (3)对于同一个数学模型()y=kx+b k 0≠,若将其中的x 、y 看做变量,则它表示一个一次函数;若将x 、y 看做未知数,则它就是一个二元一次方程,二者本质相同 一次函数与二元一次方程组的关系:两条直线1l :11y k x b =+ ()10k ≠,2l :22y k x b =+()20k ≠的交点坐标就是关于x 、y的方程组1122y k x b y k x b =+⎧⎨=+⎩的解用图象法解方程组:画出二元一次方程组中的两个一次函数的图象,找出他们的交点,该交点坐标就是二元一次方程组的解。

二元一次方程组的解的情况与对应的两条直线的位置关系之间的联系: 对于由两个二元一次方程组成的二元一次方程组111222a xb yc a x b y c +=⎧⎨+=⎩,有以下规律:(1)当111222a b c a b c ==时,方程组有无数个解,对应的两直线重合; (2)当111222a b c a b c =≠时,方程组无解,对应的两直线平行; (3)当1122a b a b ≠时,方程组有唯一解,对应的两直线相交 对于直线11y k x b =+与22y k x b =+,有如下规律: (1)当1212,k k b b ==时,两直线重合; (2)当1212,k k b b =≠时,两直线平行; (3)当12,k k ≠时,两直线相交练习题1、用图象法解某二元一次方程组时,在同一直角坐标系中作出相应的两个一次函数的图象(如图所示),则所解的二元一次方程组是( )A 203210x y x y +-=⎧⎨--=⎩,B 2103210x y x y --=⎧⎨--=⎩,C 2103250x y x y --=⎧⎨+-=⎩,D 20210x y x y +-=⎧⎨--=⎩,2.一次函数y =kx +b (k ,b 是常数,k ≠0)的图象如图所示,则不等式kx +b >0的解集是( ) A .x >-2 B .x >0 C .x <-2 D .x <0 y kx b =+y3、已知直线y kx b =+经过A (-2,-1)和B (-3,0)两点,则不等式组102x kx b <+<的解集为 。

4、已知一次函数的图象过点A (1,4),B (-1,0),求函数表达式,并画出它的图象,再利用图象求:(1)当x 为何值时,0,0,0y y y >=<; (2)当30x -<<时,y 的取值范围; (3)当22x -≤≤时,y 的取值范围; 5、已知一次函数(24)(3)y m x n =++-,求(1)m ,n 满足什么条件时,y 随x 的增大而增大?(2)m ,n 满足什么条件时,函数的图象与y 轴的交点在x 轴下方? (3)m ,n 满足什么条件时,函数的图象经过原点? 6、画出函数21y x =+的图象,利用图象求: (1)方程210x +=的解; (2)不等式210x +≥的解集; (3)当3y ≤时,x 的取值范围; (4)当33y -≤≤时,x 的取值范围。

7、如图所示,直线y kx b =+经过点A (-1,-2)和B (-2,0),直线2y x =过点A,则不等式组20x kx b <+<的解集为 。

8、画出函数39y x =-的图象,结合图象; (1)求方程390x -=的解; (2)求不等式390x -≤的解集; (3)当3y =时,求x 的值; (4)当3y >时,求x 的范围。

9、作出函数31y x =+的图象,根据图象回答: (1)x 取什么值时,函数值y 大于零? (2)x 取什么值时,函数值y 小于零? (3)x 取什么值时,函数值y 小于-2?7、若点A (2,a ),B (,3b ),C (,4c -)都在直线23y x =-上,试求,,a b c 的值,并判断这三个点的坐标是否为方程23y x -=-的解。

(一次函数与二元一次方程的关系) 8、画出函数36y x =-与4y x =-+的图象,并利用图象解决下列问题:(1)解方程组364y x y x =-⎧⎨=-+⎩; (用图象法解方程组)(2)解不等式364x x ->-+;(3)当x 取何值时,360x ->与40x -+>同时成立? 9、若直线5y ax =+与直线36y x =+平行,则a = 。

10、已知一次函数4y mx =+有如下性质:y 随x 的增大而减小,且分别与直线x=1,x=4在第一象限相交于点A,D ,直线x=1,x=4分别与x 轴相交于点B,C ,若四边形ABCD 的面积为8. (一次函数与图形面积综合题) (1)求m 的值及此一次函数的表达式;(2)若直线4y mx =+与x 轴相交于点E ,与y 轴相交于点F ,求点E,F 的坐标及EOF 的面积。

11、已知函数12y x =-和342y x =-,求这两个函数的图象与x 轴,y 轴分别围成的三角形的面积。

12、利用图象法解方程组344683x y x y -=⎧⎨-=-⎩;(二元一次方程组的图象解法及应用)13、如图所示,直线1l :1y x =+与直线2l :y mx n =+相交于点P(1,b)(点P 在第一象限,m<0)(1)求b 的值;(2)不解关于x ,y 的方程组1y x y mx n =+⎧⎨=+⎩,请直接写出它的解;(3)直线3l :y nx m =+是否也经过点P ?请说明理由。

14、点A (-3,0)B (0,6)C (0,1)D (2,0)的坐标如图所示(略),求直线AB 与直线CD的交点坐标。

15、某种铂金饰品在甲、乙两个商品销售,甲电标价477元/克,按标价出售,不优惠;乙店标价530元/克,但若买的铂金饰品质量超过3克,则超出部分可打八折出售. (图象法解方程组的实际应用)(1)分别写出到甲、乙商店购买该种铂金饰品所需费用y (元)和质量x (克)之间的表达式;(2)李阿姨要买一条质量不少于4克且不超过10克的此种铂金饰品,到哪个商店购买合算?16、在同一平面直角坐标系中画出直线14y x =-+和225y x =-,根据图象: (1)求两条直线交点的坐标;(2)确定x 分别取什么值时,12y y =,12y y >,12y y <;17、在同一平面直角坐标系中,若一次函数3y x =-+与35y x =-的图象交于点M ,则点M 的坐标为 。

18、用图象法解方程组:231763172357x y x y +=⎧⎨+=⎩;(注意:画图象时误差太大,需先化简)19、如图所示,已知函数y ax b =+和y kx =的图象交于点P (-4,-2),则根据图象可得关于x ,y 的二元一次方程组y ax by kx=+⎧⎨=⎩的解是 。

20、一次函数y kx b =+(k,b 为常数,且0k ≠)的图象过点(2,3),则关于x 、y 的二元一次方程30kx y b -+-=的一组解为 。

一次函数与一元一次方程的关系一次函数y kx b =+的图象如图所示,则方程0kx b +=的解为( )A 、x=-2B 、y=-2C 、x=-1D 、y=-1直线2y x b =+与x 轴的交点坐标是(2,0),则关于x 的方程的20x b +=的解是 。

一元一次方程0ax b -=的解是x=3,则函数y ax b =-的图象与x 轴的交点坐标 。

已知点P(2,1)是直线4y kx =-上的一点,则方程50kx -=的解为。

已知一次函数y ax b =+(a ,b 是常数),x 与y 的部分对应值如下表: x -2 -1 0 1 2 3 y642-2-4那么方程的解是 。

若一次函数y ax b =+的图象经过点(2,3),则方程3ax b +=的解为 。

已知一次函数2y x =+与一次函数y mx n =+的图象交于点(,2)P a -,则关于x 的方程2x mx n +=+的解是 。

提升练习一次函数与一元一次不等式的关系利用函数的图象解方程2436x x +=+利用方程确定函数的图象与坐标轴的交点坐标 如图,一次函数1(3)2y x b =--的图象经过直线1(1)2y x =+与x 轴的交点A,试确定b 的值,并计算两条直线与y 轴的交点的B ,C 和点A 构成的三角形面积(图见31)利用函数图象解一元一次不等式画出一次函数25y x =-的图象,观察图象回答下列问题: (1)x 取何值时,250x ->; (2)x 取何值时,250x -<;已知13y x =-+,234y x =-,当x 取何值时,12y y >?当x 取何值时,12y y <? 利用一次函数与一元一次方程的关系解几何问题直线2y x =-+与x 轴,y 轴分别交于点A 和点B ,另一直线y kx b =+经过点C (1,0),且把三角形AOB 分成两部分,若三角形AOB 被分成的两部分面积相等,求k 和b 的值。

基础题一次函数与二元一次方程的关系直线y kx b =+()0k ≠的表达式就是一个关于x ,y 的 方程;以二元一次方程y kx b -=的解为坐标的点组成的图象就是一次函数的图象。

相关文档
最新文档