大数定理与中心极限定理

合集下载

大数定理与中心极限定理.

大数定理与中心极限定理.

P
X
-
2 2
证明:(对连续型情况证明)设随机变量X的概率密度为f (x).
对于X的取值x,当
所以有 P X
x
时,便有 (
f (x)dx
x
-
2
)2
1
(x - )2 2
x-
f
(
x)dx
x-
(x
-
)2
2
f
(
x)dx
2 2
注意:P
X
-
2 2
P
X
-
2 1 2
二、 Chebysherv不等式的应用
当观测次数n充分大时,“观测值得算术平均值接近 期望值”是一个大概率事件,即下式以大概率成立:
1
n
n i 1
Xi
n充分大
E(X )
➢ Bernoulli大数定理应用
寻找随机变量的期 望值提供了一条实
际可行的途径
这一定理表明:在相同条件下重复同一随机试验
n次,当试验次数n充分大时,“事件A发生的频率接近 其概率”是一个大概率事件,即下式以大概率成立:
➢ 概率的估算
P
X
1
2 2
例4.1 设一种小麦品种在某产地的平均产量为750斤,
标准差为15斤,试求该小麦品种今年在该地区亩产
量在700于800斤之间的概率。
解:设该地区次小麦品种的亩产量为X.
由题设知 E(X ) 750 D(X ) 152,由Chebysherv不等式有
P700
X
800
P
X
1 n
n i 1
Xi
1
这个定理表明 1
n
n i 1

大数定理与中心极限定理

大数定理与中心极限定理
n
的随机变量,使得X Xi . 易知 i 1
E( X ) np D( X ) npq
由Lindeberg-Levy中心极限定理知
lim
P
X
np
x
1
x t2
e 2 dt
n npq
2
n
理解:在定理条件下,总有 X ~ N(np, npq).
三、中心极限定理的应用
➢ Lindeberg-Levy中心极限定理应用
其概率分布一定是正态分布。
定理4(De Moivre-Laplace中心极限定理) 设随机变量X ~ B(n, p),则对于任意的实数x,有
lim
P
X
np
x
1
x t2
e 2 dt
n npq
2
证明:因为X ~ B(n, p),由Bernoulli大数定理证明有
X1, X 2 , , X n为独立同分布于参数为p的两点分布
P
1 n
n i1
1 Xi n
n
E( Xi )
i1
1
D(1 n n i1
2
Xi)
1
M
n 2
所以
lim P n
1 n
n i1
Xi
1 n
n i1
E( Xi )
1
推论:设X1, X 2 , , X n , 是独立同分布
随机变量序列,且数学期望为,方
差 2,则对于任意的正实数有
lim
n
当观测次数n充分大时,“观测值得算术平均值接近 期望值”是一个大概率事件,即下式以大概率成立:
1
n
n i 1
Xi
n充分大
E(X )

概率论中的大数定律与中心极限定理

概率论中的大数定律与中心极限定理

概率论中的大数定律与中心极限定理概率论是数学中的重要分支,研究随机现象的规律性。

在概率论中,大数定律和中心极限定理是两个基本定理,它们对于理解和应用概率论具有重要意义。

一、大数定律大数定律是概率论中的一项重要成果,它研究的是随机事件重复进行时,随着试验次数的增加,事件的频率趋于稳定的现象。

大数定律的核心思想是:随机事件的频率会趋于其概率。

大数定律有多种形式,其中最著名的是弱大数定律和强大数定律。

弱大数定律指出,当随机事件重复进行时,事件的频率会接近其概率,但不一定完全相等。

而强大数定律则更加严格,它指出,当随机事件重复进行时,事件的频率几乎必定会趋于其概率。

大数定律的应用非常广泛。

例如,在赌场中,赌徒们常常利用大数定律来制定自己的投注策略。

他们相信,通过多次下注,最终能够获得稳定的胜率。

另外,在统计学中,大数定律也是重要的理论基础。

通过对大量样本的观察,我们可以得出对总体的推断。

二、中心极限定理中心极限定理是概率论中的另一个重要定理,它研究的是随机变量的和的分布趋于正态分布的现象。

中心极限定理的核心思想是:随机变量的和趋于正态分布的程度与随机变量的分布无关,只与样本容量有关。

中心极限定理有多种形式,其中最著名的是中心极限定理的拉普拉斯形式和莫尔根-拉普拉斯形式。

中心极限定理的拉普拉斯形式适用于二项分布和泊松分布,而莫尔根-拉普拉斯形式适用于任意分布。

中心极限定理的应用广泛而深入。

在实际生活中,我们常常遇到一些随机现象,如测量误差、人口统计等。

通过应用中心极限定理,我们可以对这些随机现象进行更准确的分析和预测。

三、大数定律与中心极限定理的关系大数定律和中心极限定理是概率论中两个相互关联的定理。

它们都是研究随机现象的规律性,但侧重点不同。

大数定律研究的是随机事件的频率趋于稳定的现象,它关注的是事件本身的概率。

而中心极限定理研究的是随机变量的和的分布趋于正态分布的现象,它关注的是随机变量的分布。

大数定律和中心极限定理的关系可以从两个方面来理解。

大数定律和中心极限定理

大数定律和中心极限定理

大数定律和中心极限定理1 大数定律这里强调的是总体与样本大数定律就是说:当随机事件发生的次数足够多时,发生的频率趋近于预期的概率大数定律说的是当随机事件重复多次时频率的稳定性,随着试验次数的增加,事件发生的频率趋近于预期的“概率”2 赌徒缪误:1,2,4,8-----在赌钱时——输了就翻倍,一直到赢为止有人说:如果已经连续4次出现正面,接下来的第5次还是正面的话,就接连有5次“正面”,根据概率论,连抛5次正面的几率是1/25=1/32。

所以,第5次正面的机会只有1/32,而不是1/2。

以上混淆了“在硬币第1次抛出之前,预测接连抛5次均为正的概率”和“抛了4次正之后,第5次为正的概率”,既(11111)---- 1/32,(1111)1 ---- 1/2。

3 中心极限定理3.1 大数定律和中心极限定理的关系:上面通过赌徒谬误介绍了概率论中的大数定律。

大数定律说的是当随机事件重复多次时频率的稳定性,随着试验次数的增加,事件发生的频率趋近于预期的“概率”。

但大数定律并未涉及概率之分布问题。

此外大数定律说明了在一定条件下,当系统的个体足够多时,系统的算数平均值会集中在期望位置。

从这个角度,中心极限定理包含了大数定律。

因为中心极限定理在于揭示系统在期望附近的统计性质,即“以何种方式”集中在期望。

总的来说就是——大数定律反映的是频率->概率(或者认为广义的期望);而中心极限定理反映的是——在整体结果下,结果内部发生各种情况下的一个概率分布情况。

3.2 那什么是中心极限定理?中心极限定理指的是分别适用于不同条件的一组定理,但基本可以用一句通俗的话来概括它们:大量相互独立的随机变量,其求和后的平均值以正态分布(即钟形曲线)为极限。

Eg:以二项分布为例进行解释(抛硬币)对于抛n次硬币,出现正面k次的一个分布情况,如下:但是对于二项分布不一定是对对称的,除了受抛的次数n影响,还受对应的概率p的影响3.3 晋级再后来,中心极限定理的条件逐渐从二项分布推广到独立同分布随机序列,以及不同分布的随机序列。

3.5大数定理和中心极限定理

3.5大数定理和中心极限定理
≈ 1 − Φ(3.54) = 0.0002
2. De Moiver − Laplace积分极限定理( 推论 )
若 X ~ B ( n , p ), 则对于任何实数 x , 有
X − np x 1 −t lim P ≤ x = ∫ e 2 dt = Φ( x) n→∞ npq −∞ 2π
b − np a − np − Φ (由Th) ≈ Φ 由 npq npq
例2 : 设电路供电网中有 10000 盏灯 , 夜晚每一盏灯开着的概 率都是 0.7 ,
假定各灯开 , 关时间彼此无关 , 计算同时开着的灯数在 6800 与7200 之间的概率 . 解 : X 表示同时开着的灯数
Xi
P
µ
1 n ∀ 即对 ε > 0, lim P ∑Xi − µ < ε =1 n→∞ n i=1
以上定理表明 : 随机变量取值的算术平 均值收敛于期望均值
3.5.2
伯努利大数定律
Th3.9 : 设每次试验中事件 A 发生的概率为 p( 0 < p < 1), n 次重复试验中 事件 A 发生的次数为 X , X P X → p 其频率 µ n ( A) = , 则有 n n
i =1
n
1n ∑ Xi − µ 2.若Y = n i=1 ~ N (0,1)
σ
σ2 1 n 令 X = ∑ X i 则X ~ N µ , n n i =1

n
在实际工作中 , 只要 n足够大 , 便可以把独立同分布的 随机变量之和当成正态 变量 .
3 .独立 , 不同分布: 不同分布:
1 −2 X i ~ N (0, 10 ) 12

大数定律和中心极限定理的关系

大数定律和中心极限定理的关系

大数定律和中心极限定理的关系
大数定律和中心极限定理都是概率论中的重要定理,两者之间存在着
紧密的关系。

大数定律指的是,在进行无限次试验时,随着试验次数的增加,事件
发生的频率趋近于该事件的概率值。

也就是说,当试验次数趋于无限大时,样本均值会趋近于真实均值。

而中心极限定理则指的是,当样本容量足够大时,样本均值的分布会
趋向于正态分布。

也就是说,对于任何一种概率分布,当样本容量增大到
足够大时,样本均值的分布都会近似于正态分布。

可以看出,在大数定律中,我们是关注随着试验次数的增加,样本均
值逐渐逼近真实均值的过程。

而在中心极限定理中,我们是关注对于任何
一种分布,随着样本容量的增大,样本均值分布趋向于正态分布的规律。

因此,可以说中心极限定理是大数定律的推广和应用,两者之间有着
密不可分的联系。

第四章 大数定律和中心极限定理

第四章 大数定律和中心极限定理

设需N台车床工作, 现在的问题是:
求满足
P(X≤N)≥0.999
的最小的N.
(由于每台车床在开工时需电力1千瓦,N台 工作所需电力即N千瓦.)
由德莫佛-拉普拉斯极限定理
X np 近似N(0,1), np(1 p)
于是 P(X≤N)= P(0≤X≤N)
这里 np=120, np(1-p)=48
第四章
大数定律和中心极限定理
§1 大数定率
一. 切比雪夫不等式 若r.v.X的期望和方差存在,则对任意0,

D( X ) P{| X E( X ) | } ; 2
这就是著名的切比雪夫(Chebyshev)不等式。 它有以下等价的形式:
P{| X E( X ) | } 1 D( X ) . 2
P{Y 60000 0.9 }
P{Y>60000}=P{1000012-aX>60000}
=P{X60000/a}0.9; 由中心极限定理,上式等价于
60000 10000 0.006 ( a ) 0.9 10000 0.006 0.994
a 3017
例3 根据以往经验,某种电器元件的寿命服从均值为 100小时的指数分布. 现随机地取16只,设它们的寿 命是相互独立的. 求这16只元件的寿命的总和大于 1920小时的概率. 解: 设第i只元件的寿命为Xi , i=1,2, …,16
7 500 100 100 2 P{ X i 500} 1 35 1 (8.78) 0 i 1 10 12
2.德莫佛-拉普拉斯中心极限定理(De MoivreLaplace)
设随机变量n(n=1, 2, ...)服从参数为n, p(0<p<1) 的二项分布,则

167;34大数定律和中心极限定理

167;34大数定律和中心极限定理

1 n
nk1 Xk E(Xk)
(3)
1n nk1Xk
P
也就是当观察次数无限增多时,观察
结果的算术平均值几乎变成一个常数,不是随机的了。
定理2(贝努利大数定理)设n是n次独立试验 中事件A发生的次数,则对任意的正数有
lim P | np| 1 , 其P 中 A p
n n
引人随机变量
k=1,2,…则对任意实数 x有
n
Xk
n
lim Pk1`
x
x
1
t2
e 2dt
n
n
2
n
Xk n
(1)令Ynk1 n 的分布Fn函 x, 数那么
n l i F m ( nx ) n l i P m (Y nx) x 2 1e t2 2d t (x)
E n Xk n E(Xk)n, k1 k1
课内练习2. 某单位设置一电话总机,共有200架分机.设每个 电话分机是否使用外线通话是相互独立的. 设每时刻每个分 机有 5% 的概率要使用外线通话. 问总机需要多少外线才能 以不低于90%的概率保证每个分机要使用外线时可供使用?
设需要k条外线, X为某时刻通话的分, 机数 则 X ~ B (2,0 0 .0 0 )5 n , p 1,n 0 p 9 .5 q P(0Xk)kn npp q 0 nnpp q
|X n a | a X n a
Xn
a a a
或Xn落在(a - ε,a + ε )的概率无限接近于1。
二、两个大数定理
定理1 ( 切比雪夫大数定律 ) 设X1,X2,…,Xn…是一
个随机变量序列, 且E(Xk)= ,D(Xk)=2 (k=1,2,…)
则对任意正数 , 有

第四章大数定律与中心极限定理

第四章大数定律与中心极限定理
n→ ∞
≥ lim (1 −
n→ ∞
D( X n )
ε2
C )=1 ) ≥ lim (1 − 2 n→ ∞ nε
契比雪夫大数定律的特殊情况 推论:设 是两两不相关的随机变量序列, 推论 设{Xk}是两两不相关的随机变量序列 是两两不相关的随机变量序列 具有相同的数学期望E(Xk)=µ和方差 具有相同的数学期望 和方差 D(Xk)=σ2(k=1,2,…),则对于任意给定的 则对于任意给定的ε>0,恒 则对于任意给定的 恒 有
1 n 1 n 2 ∑ Yi = n ∑ ( X i − µ ) n i =1 i =1 1 n 1 n 2 2 ∑ E (Yi ) = n ∑ E [( X i − µ ) ] = σ n i =1 i =1
D (Yn ) = D[( X n − µ ) ] = E [( X n − µ ) ] − σ
2 4 4 Q E ( X n ) 存在 ,∴ E [( X n − µ ) 4 ]存在 4
1 n 2 ∴ lim P ∑ ( X i − µ ) − σ < ε = 1 n→ ∞ n i =1
定理(伯努里大数定律):设进行n 定理(伯努里大数定律):设进行n次独 大数定律):设进行 立重复试验,每次试验中事件A 立重复试验,每次试验中事件A发生 的概率为p 次试验中事件A 的概率为p,记μn为n次试验中事件A 发生的次数,则对任意的ε>0,有 发生的次数,则对任意的ε>0,有
例如对某物的长度进行测量,在测量时有 例如对某物的长度进行测量 在测量时有 许多随机因素影响测量的结果.如温度和 许多随机因素影响测量的结果 如温度和 湿度等因素对测量仪器的影响,使测量产 湿度等因素对测量仪器的影响 使测量产 生误差X 测量者观察时视线所产生的误 生误差 1;测量者观察时视线所产生的误 差X1;测量者心理和生理上的变化产生的 测量者心理和生理上的变化产生的 测量误差X 显然这些误差是微小的、 测量误差 3;…显然这些误差是微小的、 显然这些误差是微小的 随机的,而且相互没有影响 而且相互没有影响.测量的总误差 随机的 而且相互没有影响 测量的总误差 是上述各个因素产生的误差之和,即∑Xi. 是上述各个因素产生的误差之和 即

大数定律与中心极限定理

大数定律与中心极限定理

解: EX i = 10, DX i = 100. 系统寿命X = ∑ X i
P{ X ≥ 350} = P{∑ X i ≥ 350}
i =1 30 i =1
30
= P{
∑X
i =1
30
350 − 300 ≥ } 30 × 100 30 × 100
i
− 300
∑X
k =1
n
近似 k~ N (nµຫໍສະໝຸດ , nσ )∞ n n =1
1 n 1 n lim P | ∑ X k − E ∑ X k |≥ ε = 0. n →∞ n k =1 n k =1
定理1( Markov):若随机变量序列{ X n }∞=1 ,对∀n ≥ 1, n 1 n n→∞ DX n 存在; 且 2 D ∑ X k 0,则称{ X n }服从大数定律. → n k =1 proof : 1 n 1 n 1 n 0 ≤ P | ∑ X k − E ∑ X k |≥ ε ≤ 2 2 D ∑ X k k =1 n k =1 n k =1 nε
第 k 个学生来参加会议的家 长数,
Xk 则 X k 的分布律为 pk
0 1 2 0.05 0.8 0.15
易知 E ( X k ) = 1.1, D( X k ) = 0.19, ( k = 1,2,⋯,400)
根据独立同分布的中心极限定理 独立同分布的中心极限定理, 而 X = ∑ X k , 根据独立同分布的中心极限定理,
1 则 lim Fn ( x) = lim P{Yn ≤ x} = n →∞ n →∞ 2π
近似 n

x
−∞
e
1 − t2 2

大数定理与中心极限定理的应用

大数定理与中心极限定理的应用

大数定理与中心极限定理的应用大数定理和中心极限定理是概率论中最基本也是最重要的两个定理。

它们是求解随机事件的概率分布和预测随机现象的变化趋势的基础。

本文将介绍大数定理和中心极限定理的定义、证明以及应用。

一、大数定理大数定理是概率论中的一个重要原理,描述了随机变量序列平均数的性质。

大数定理表明,随着样本数量逐渐增加,随机变量序列平均数越来越接近随机变量的期望值。

具体来说,如果 $X1,X2, ..., Xn$ 是独立同分布的随机变量,其期望为 $E(X)$,则样本平均数的极限为 $E(X)$,即:$$\lim_{n\to\infty} \frac{X_1+X_2+...+X_n}{n} = E(X)$$大数定理的证明比较复杂,这里不再深入探讨。

但需要注意的是,大数定理只是对随机变量序列平均数的渐近表现进行的描述。

在实际应用中,仍然需要考虑样本数量、样本大小、采样方法等因素带来的误差。

大数定理的应用十分广泛,常见的例子包括赌场游戏、信用评级等。

以赌场游戏为例,假设一家赌场每次赌客可以下注 $1$ 美元,赢得的概率为 $p$。

根据赌场规则,获胜的赌客可以得到$2$ 美元的回报,输掉的赌客则失去所下的 $1$ 美元。

赌场的利润取决于获胜和失败的比例。

利润越高,赌场的经营者就越富有。

而大数定理在此处的应用则在于,当赌客的数量越来越多时,赌场的经营者能够准确预测赌客赢得和输掉的比例,从而达到通过调整赔率保证赌场利润最大的目的。

二、中心极限定理中心极限定理是概率论中的另一个重要概念。

它表明当样本数量增加时样本平均数的分布越来越接近正态分布。

正态分布是概率分布中最常见也最重要的一种分布。

由于中心极限定理具有一定的普适性,因此它在实际应用中十分重要。

中心极限定理的数学表达式为:$$\lim_{n\to\infty} P(\frac{X_1+X_2+...+X_n}{n} \leq x) =\frac{1}{\sqrt{2\pi}} \int_{-\infty}^x e^{-t^2/2}dt$$其中 $X_1,X_2,...,X_n$ 是独立同分布的随机变量,并且有$E(X_1^2)<\infty$,$\mu=E(X_1),\sigma^2=Var(X_1)$,则样本平均数满足:$$\frac{\frac{X_1+X_2+...+X_n}{n} - \mu}{\sigma/\sqrt{n}} \sim N(0,1)$$其中 $N(0,1)$ 表示标准正态分布。

大数定律与中心极限定理

大数定律与中心极限定理

大数定律与中心极限定理大数定律和中心极限定理是概率论中两个重要的定理,它们在统计学和概率论中有着广泛的应用。

本文将分别介绍大数定律和中心极限定理的概念、原理以及在实际应用中的意义。

大数定律是概率论中的一个重要定理,它描述了随机变量序列的均值在重复试验中的稳定性。

大数定律告诉我们,随着试验次数的增加,样本均值会趋向于总体均值,即样本均值收敛于总体均值的概率接近于1。

大数定律的核心思想是随机现象的规律性,即在大量独立重复试验中,样本均值会逐渐接近总体均值。

以弱大数定律为例,它指出对于独立同分布的随机变量序列,样本均值以概率1收敛于总体均值。

这意味着在进行大量独立重复试验时,样本均值会逐渐接近总体均值,从而使得我们可以通过样本均值来估计总体均值。

大数定律的应用非常广泛,例如在统计学中,通过样本均值来估计总体均值是一种常用的统计方法。

另一个重要的定理是中心极限定理,它描述了大量独立同分布随机变量的和的分布在适当标准化后近似服从正态分布。

中心极限定理的核心思想是当随机变量的数量足够大时,它们的和的分布会趋近于正态分布。

这个定理在实际应用中具有重要意义,因为正态分布具有许多重要的性质,使得我们可以通过正态分布来进行各种统计推断。

中心极限定理有两种形式,一种是林德伯格-莱维中心极限定理,它适用于具有有限方差的随机变量序列;另一种是李雅普诺夫中心极限定理,它适用于具有有限高阶矩的随机变量序列。

这两种中心极限定理在不同情况下具有不同的适用范围,但它们都揭示了随机变量和的分布在适当标准化后趋近于正态分布的规律。

总的来说,大数定律和中心极限定理是概率论中两个重要的定理,它们揭示了随机现象的规律性,并在统计学和概率论中有着广泛的应用。

通过理解和运用这两个定理,我们可以更好地理解和分析随机现象,从而为实际问题的解决提供有力的工具和方法。

第五章大数定律与中心极限定理

第五章大数定律与中心极限定理

• 例:一加法器同时收到 个噪声电压 k(k=1,2,…,20), 一加法器同时收到20个噪声电压 一加法器同时收到 个噪声电压V 它们相互独立且都在区间[0,10]上服从均匀分布 噪声 上服从均匀分布,噪声 它们相互独立且都在区间 上服从均匀分布 的近似值. 电压总和V=V1+V2+…+V20,求P{V>105}的近似值 电压总和 求 的近似值 • 解:易知 易知E(Vk)=5,D(Vk)=100/12,由独立同分布的中心 易知 由独立同分布的中心 20 极限定理知
∑ D( X
k =1
n
k
)=
σ2
n
1 n 所以 P{| ∑ X k − µ |< ε } = P {| X n − E ( X n ) |< ε } n k =1 D( X n ) σ2 ≥ 1− = 1− 2 2 nε ε
设随机变量序列{Y 如果存在一个常数a 定义 设随机变量序列{Yn},如果存在一个常数a,使得 ε>0 对任意的 ε>0,有
1 故 n
X k 1 . ∑ 2 P→ 3 k =1
§2
中心极限定理
定理(林德贝尔格 勒维 定理):设 定理 林德贝尔格-勒维 林德贝尔格 勒维(Lindeberg-Levy)定理 设 定理 {Xk}为相互独立的随机变量序列 服从同一分布 且 为相互独立的随机变量序列,服从同一分布 为相互独立的随机变量序列 服从同一分布,且 具有数学期望E(Xk)=µ和方差 和方差D(Xk)=σ2 ,则随机变 具有数学期望 和方差 则随机变 量
X 1 ~ U ( −1, 1). 则 1 (1) n X k,(2)1 ∑ n k =1
n 2 X k 分别 依概 率收 敛吗 ? ∑ k =1 n

第五章大数定理与中心极限定理

第五章大数定理与中心极限定理

2. 随机事件的频率
lim P p =1 n n
p f n p
n
作业
P112
1、3、6、7
§5.4中心极限定理
在客观实际中有许多随机变量,它们是由大 量的相互独立的随机因素的综合影响所形成的。 而其中每一个别因素在总的影响中所起的作用 都是微小的。这种随机变量往往近似地服从正 态分布,这种现象就是中心极限定理的客观背 景。
设{ξn}为随机变量序列,ξ为随机变量,其对 应的分布函数分别为Fn(x), F(x). 若在F(x)的连 续点,有
第五章
大数定律与中心极限定理
5.1大数定律的概念 5.2切贝谢夫不等式 5.3切贝谢夫定理 5.4中心极限定理
“概率是频率的稳定值”。前面已经提到, 当随机试验的次数无限增大时,频率总在其概 率附近摆动,逼近某一定值。大数定理就是从 理论上说明这一结果。正态分布是概率论中的 一个重要分布,它有着非常广泛的应用。中心 极限定理阐明,原本不是正态分布的一般随机 变量总和的分布,在一定条件下可以渐近服从 正态分布。这两类定理是概率统计中的基本理 论,在概率统计中具有重要地位。
பைடு நூலகம்
大数定律以确切的数学形式表达了这种规 律性,并论证了它成立的条件,即从理论上阐述 了这种大量的、在一定条件下的、重复的随机 现象呈现的规律性即稳定性.由于大数定律的作 用,大量随机因素的总体作用必然导致某种不依 赖于个别随机事件的结果.
§5.2 切贝谢夫不等式
一个随机变量离差平方的数学期望就是它的
f n p
n
证明:设

1 第i次试验事件A发生 i 0 第i次试验事件A不发生
E (i ) p, D(i ) p(1 p)

大数定理及中心极限定理

大数定理及中心极限定理

标准正态分布的分布函 数.
从而知当n充分大时,
n
Xk n
k
近似服从标准正态分布
N (0,1)
n
n
X k 近似服从正态分布 N (n, n 2 )
k 1
例1 一加法器同时收到20 个噪声电压Vk (k 1,2, 20), 设它们是相互独立的随机变量,
20
且都在区间(0,10) 上服从均匀分布, 记 V Vk , k 1
§4.1 大数定律
一、切比雪夫不等式 (P107)
若 r .v X 的期望和方差存在,则对任意0,

P{|
X
E(
X
) |
}
D( X
) ;
这就是著名的切比雪夫(Chebyshev)不等式。
它有以下等价的形式:
P{|
X
E(
X
) |
}
D(
X
)
.
二、依概率收敛
设{Xn}为随机变量序列,X为随机变量,若任给 >0, 使得
E( Xk ) p, D( Xk ) p(1 p) (k 1,2, , n),
根据定理4.6得
lim P n
n np
np(1 p)
x
lim n
P
n
Xk
k 1
np(1
np p)
x
x
1
t2
e 2 dt ( x).

定理4.8表明:
正态分布是二项分布的极限分布, 当n充分大 时, 可以利用该定理来计算二项分布的概率.
D( Yn
)
n
D(
k
Xk
)
n
P {| Yn

5大数定律与中心极限定理

5大数定律与中心极限定理

分布 P(2) .若随机变量Y100
100
Xi
,求 P190
Y100
210 .
i 1
解 因为 X i 服从 P(2) ,i 1,2,
即 PX i
k
2k k!
e2 , (k
1,2,)
所以 E( X i ) 2, D( X i ) 2 , i 1,2,,100
近似服从 Y100
N 200, 10
k 1
n
D( X k )
n k 1
Xk k
Bn
k 1
若对于一切实数x,有
lim P{Yn x} n
1
t2
e 2 dt
2
则称随机变量序列{Xk}服从中心极限定理.
• 定理(独立同分布的中心极限定理):设{Xk}为相 互独立的随机变量序列,服从同一分布,且具有数学 期望E(Xk)=μ和方差D(Xk)=σ2 ,则随机变量
t2
e 2 dt
lim lim n
np(1 p) n
np(1 p)
2
例: 设某妇产医院出生男孩的概率为 0.515,求在 10000 个新生儿中,出生的女孩不少于男孩的概率.
解法1 设X为10000个新生儿中男孩个数 则X服从B(n,p),其中n=10000,p=0.515
由德莫弗-拉普拉斯中心极限定理,所求概率为
20 100/12 20 100/12
20 100/12
1 1
0.387 t 2
e 2 dt 1 (0.387) 0.348
2
即有
P{V 105} 0.348
例: 在一家保险公司里有10000个人参加寿 命保险,每人每年付12元保险费。在一年内 一个人死亡的概率为0.6%,死亡时其家属 可向保险公司领得1000元,问:

概率论第五章 大数定律及中心极限定理

概率论第五章 大数定律及中心极限定理

的标准化变量为
n
X i n
Yn i1 n
则Yn的分布函数Fn(x)对任意的x∈(-∞,+∞)都有
n X i n
lim
n
Fn
(
x)

lim
n
P(Yn

x)

lim
n
P
i 1
n
x




x

1
t2
e 2 dt
2
该定理说明,当n充分大时, Yn近似地服从标准正 态分布,Yn~N(0,1), (n )
P|
X


|




2 2

P X



1


2 2
证明 (1)设X的概率密度为p(x),则有
P{| X | } p(x)dx
| x |2
p(x)dx
|x|
|x|
2

1
2

(x



)2
p(
x)dx


2 2
Xi 2
0
pi
1 4
1 2
2
(i 1,2, , n, )
1 4

因为 X1, X 2 , , X n ,
相互独立, EX i 0 , E
X
2 i
1

DX i

E
X
2 i
EX i
2
1 0
1, i
1,2,
, n,

所以,满足切比雪夫大数定理的条件,可使用大数定理.

大数定律和中心极限定理

大数定律和中心极限定理

1 n
,则X n
P
证明: 利用切比雪夫不等式 :
P(|
Xn
0 | )
D(Xn )
2
1
n 2
0.
9
例:在n重贝努里试验中,若已知每次试验 事件A出现的概率为0.75, 试利用切比雪夫不等式计算, (1)若n=7500,估计A出现的频率在0.74至0.76 之间的概率至少有多大; (2)估计n,使A出现的频率在0.74至0.76之 间的概率不小于0.90。
解:设在n重贝努里试验中,事件A出现的次数为X,
则X Bn,0.75,
E X np 0.75n, D X npq 0.1875n,

fn A
X n
(1) n 7500, P
0.74
X n
0.76
P X 0.75n 0.01n
1
0.1875n
0.01n 2
1
1875 7500
解:设X
i为第i次所倒的红酒重量(单位:ml),则X
相互独立且
i
分布相同,E(Xi ) 100, D(Xi ) 322,i 1, 2,L ,55.
根据独立同分布的中心极限定理:知
55
Xi 55100 近似
i 1
~ N 0,1,
32 55
所以
55
P{倒了55次后该瓶红酒仍有剩余} P{ Xi 6000} i 1
由德莫佛--拉普拉斯中心极限定理,知
Y
1500
1 10
近似
~ N (0,1).
1500
1 10
9 10
设教室需要设a个座位,由题意知a需要满足
a 1500 1
95% P{Y a} (
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
k 1
2
1.
解 因为 1,2,L ,n ,L 是相互独立的,
所以12,Fra bibliotek2 2
,L
, n2 ,L
也是相互n 立的,
由 Ek 0,
由辛钦定理知
得 Ek 2 D
对于任意正数
k
,
(E

k
)2
2,
lim
n
P
1 n
n
k 2
k 1
2
1.
四、小结
贝努里大数定理
三个大数定理 契贝晓夫大数定理
辛钦定理 频率的稳定性是概率定义的客观基础, 而伯 努利大数定理以严密的数学形式论证了频率的稳 定性.
当 n 很大时, 随机变量 1, 2,L ,n 的算术平
均 1 n
n i 1
k 接近于它们的数学期望的算术平均
值 1 n
n i 1
Ek
(这个接近是概率意义下的接近)
即在定理条件下, n个随机变量的算术平均, 当n 无限增加时, 几乎变成一个常数.
定理4.4(辛钦大数定律)
辛钦资料
设随机变量 1, 2,L , n服,L从独立同
4.1 大数定律
一、问题引入 二、基本定理 三、典型例题 四、小结
一、问题的引入
概率论与数理统计是研究随机现象统计 规律性的学科. 随机现象的规律性只有在相 同的条件下进行大量重复试验时才会呈现出 来. 也就是说,要从随机现象中去寻求必然 的法则,应该研究大量随机现象.
研究大量的随机现象,常常采用极限 形式,由此导致对极限定理进行研究. 极 限定理的内容很广泛,其中最重要的有两 种:
n
n
n
n
i E(i )
i1
i 1
n
二、基本定理
定理4.1(贝努里大数定理)
伯努利
设 A 是 n 次独立 重复试验中 事件A 发 生
的次数, p 是事件 A 在每次试验中发生的概率,
则对于任意正数 0, 有
lim
n
P
A
n
p
0

lim P n
A
n
p
1.
证明 引入随机变量
显然 A 1 2 L n
大数定律的定义
定义4.1设 1,2 ,L ,n ,L 是随机变量序列, 令
Yn
1 n
n
i
i 1
如果存在一个常数序列 a1, a2 ,L , an ,L ,
对任意的 0, 恒有
lim
n
P{|
Yn
an
|
}
0
则称随机变量序列{ n }服从大数定律.
{|
1 n
n i 1
k
1 n
n i 1
Ek
|
}是一个随机事件,
等式表明, 当n 时这个事件的概率趋
于0,即对于任意正数 , 当n充分大时,
不等式 |
1 n
n
k
i 1
1 n
n i 1
Ek
|
成立的概率很小.
定理4.2(契贝晓夫大数定理)
契贝晓夫
设随机变量 1,2,L ,n,L 两两不相关,
且都具有有限的方差, 并有公共的上界
D1 C, D2 C,L , Dn C,L , 则对于任意正数 有
n
D(i )
i 1
n2 2
.
n
n
D(i ) Di npq.
i 1
i 1
从而P(
n
n
p
)
npq
n2 2
0, n
关于贝努里定理的说明:
贝努里定理表明事件发生的频率 A 依概
n 率收敛于事件的概率p, 它以严格的数学形式 表达了频率的稳定性.
故而当n很大时, 事件发生的频率与概率有 较大偏差的可能性很小. 在实际应用中, 当试验 次数很大时, 便可以用事件发生的频率来代替 事件的概率.
大数定律 与 中心极限定理
下面我们先介绍大数定律
大数定律的客观背景 大量的随机现象中平均结果的稳定性
大量抛掷硬币 正面出现频率
生产过程中的 字母使用频率 废品率
……
思考:频率是概率的反映,随着观察的次数增加, 频率将会“逐渐稳定”或“靠近”到概率,“逐渐 稳定”或“靠近”到概率是什么?
n p n np
1
11
P 2n2 1 n2 2n2
问是否满足契比雪夫定理 ?
解 独立性依题意可知, 检验是否具有数学期望?
En
1
1
1
na 2n2 0 (1 n2 ) na 2n2 0,
说明每一个随机变量都有数学期望,
检验是否具有有限方差?
n2 (na)2 0 (na)2
Q P
1 1 1
1
2n2
n2 2n2
E
(
2 n
)
2(na )2
1 2n2
a2
Dn En2 (En )2 a2 ,
说明离散型随机变量有有限方差,
故满足契比雪夫定理的条件.
例2 设随机变量 1,2,L ,n ,L 独立同分布, 且 Ek 0, Dk 2, k 1, 2,L , 证明对任 意正数 有
lim
n
P
1 n
n
k 2
证明 因为{n}两两不相关,故
D
1 n
n i1
i
1 n2
n i1
D(i )
C n
由契贝晓夫不等式可得
n
0
P
1 n
n
k
i1
1 n
n i1
Ek
D(
1 n
i1
2
i )
C
n 2
,
在上式中令n ,则
P
1 n
n i 1
k
1 n
n i 1
Ek
0.
[证毕]
关于定理4.2的说明:
分布且期望为
Ek (k 1, 2,L ),
则对于任意正数
,
有lim n
P
1 n
n
k
k 1
0.
关于辛钦定理的说明:
(1) 与定理4.2相比, 不要求方差存在;
(2) 贝努利定理是辛钦定理的特殊情况.
三、典型例题
例1 设随机变量 1,2 ,L ,n ,L 相互独立,
n na 0 na
分布律如下:
因为 1,2,L ,n ,L 是相互独立的,
且k服从以 p 为参数的 (0 1) 分布,
所以 Ek p,
Dk
p(1
p)
1, 4
k 1, 2,L
n
n
于是 n
p
n
np
i E( i )
i 1
i 1
n
n
n
由契比晓夫不等式得
P
n
n
p
P(
n
i
i 1
n
E( i )
i 1
n ).
由独立性知道
相关文档
最新文档