单调性、极值及判定、最大值最小值
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
f ( x2 ) f ( x1 ). y f ( x )在[a , b]上单调增加 .
若在(a , b)内, f ( x ) 0, 则 f ( ) 0,
f ( x2 ) f ( x1 ). y f ( x )在[a , b]上单调减少.
例1 讨论函数y e x x 1的单调性.
s( t )
0.5公里
追击至射击的时间(分 ). 敌我相距函数 s( t )
A
s( t ) (0.5 t )2 (4 2t )2
B
4公里
( 2) 求s s( t )的最小值点 . 5t 7.5 . 令s( t ) 0, s ( t ) 2 2 (0.5 t ) (4 2t )
注意:区间内个别点导数为零,不影响区间的单调性.
3 y x , y x 0 0, 但在( ,)上单调增加. 例如,
例4 当x 0时, 试证x ln(1 x )成立.
x . 证 设f ( x ) x ln(1 x ), 则 f ( x ) 1 x
f ( x )在[0,)上连续, 且(0,)可导,f ( x ) 0,
极大值 f ( 1) 10,
极小值 f ( 3) 22.
f ( x ) x 3 3 x 2 9 x 5图形如下
M
m
定理3(第二充分条件)设 f ( x ) 在x0 处具有二阶导数, 且 f ' ( x0 ) 0 , f '' ( x0 ) 0 , 那末 '' f (1)当 ( x0 ) 0 时, 函数 f ( x ) 在x0 处取得极大值; '' (2)当 f ( x0 ) 0 时, 函数 f ( x ) 在x0 处取得极小值.
f ( 0 ) 0, 在[0,)上单调增加;
当x 0时,x ln(1 x ) 0, 即 x ln(1 x ).
试证当x 0时, x arctanx. 证 : 设f ( x) x, g ( x) arctanx, G ( x) f ( x) g ( x),则
f ( x 0 x ) f ( x 0 ) ( 1 ) 证 0, f ( x0 ) lim
x 0
x
故f ( x0 x ) f ( x0 )与x异号,
当x 0时, 有f ( x0 x ) f ( x0 ) 0, 当x 0时, 有f ( x0 x ) f ( x0 ) 0,
例2 确定函数 f ( x ) 2 x 3 9 x 2
12 x 3的单调区间.
解 D : ( , ).
f ( x ) 6 x 2 18 x 12 6( x 1)( x 2)
解方程f ( x ) 0 得, x1 1, x2 2.
当 x 1时, f ( x ) 0, 在( ,1]上单调增加; 当1 x 2时,
2.4.3 函数的单调性 和极值
一、单调性的判别法
y
y f ( x)
A
B
y
A y f ( x)
B
o
a
f ( x ) 0
b
x
o a
f ( x ) 0
b x
定理 设函数 y f ( x )在[a, b]上连续,在 ( a, b )内可 导( . 1) 如果在( a, b )内f ( x ) 0,那末函数 y f ( x ) 在[a, b]上单调增加; ( 2) 如果在 ( a, b )内 f ( x ) 0, 那末函数 y f ( x ) 在[a, b]上单调减少.
3 2
比较得 最大值 f (4) 142, 最小值 f (1) 7.
例2 敌人乘汽车从河的北岸A处以1千米/分钟 的速度向正北逃窜,同时我军摩托车从河的 南岸B处向正东追击, 速度为2千米/分钟. 问我军摩托车何 时射击最好(相
距最近射击最好)?
点击图片任意处播放\暂停
解 (1)建立敌我相距函数关系 设 t 为我军从B处发起
二、单调区间求法
问题:如上例,函数在定义区间上不是单调的, 但在各个部分区间上单调.
定义:若函数在其定义域的某个区间内是单调 的,则该区间称为函数的单调区间. 导数等于零的点和不可导点,可能是单调区间 的分界点. 方法: 用方程 f ( x ) 0的根及 f ( x ) 不存在的点
来划分函数 f ( x )的定义区间 , 然后判断区间内导 数的符号.
函数的极大值与极小值统称为极值,使函数取得 极值的点称为极值点.
二、函数极值的求法
定理1(必要条件) 设 f ( x ) 在点 x0 处具有导数, 且 在 x0 处取得极值,那末必定 f ' ( x0 ) 0 . 定义 使导数为零的点 (即方程 f ( x ) 0 的实根)叫
做函数 f ( x ) 的驻点.
函数极值
一、函数极值的定义
y
y f ( x)
ax
y
1
o
x2
x3
x4
x5
x6
b
x
y
o
x0
x
o
x0
x
定义 设函数f ( x )在区间(a , b )内有定义, x0是
(a , b )内的一个点, 如果存在着点x0的一个邻域, 对于这邻域内的 任何点x ,除了点x0外, f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数f ( x )的一个极大值; 如果存在着点x0的一个邻域, 对于这邻域内的 任何点x ,除了点x0外, f ( x ) f ( x0 )均成立, 就称 f ( x0 )是函数f ( x )的一个极小值.
2 1 x G ' ( x) f ' ( x) g ' ( x) 1 2 1 x 1 x2 当x 0, G ' ( x) 0 在(0,)上G ' ( x) 0
在(0,)上G ( x) f ( x) g ( x)单调递增 G (0) 0,当x 0时总有 G ( x) f ( x) g ( x) 0 即当x 0时, x arctanx.
y y y
o a
bx
o a
b x
o
a
b x
步骤:
1.求驻点和不可导点; 2.求区间端点及驻点和不可导点的函数值,比 较大小,那个大那个就是最大值,那个小那个 就是最小值; 注意:如果区间内只有一个极值,则这个极值就 是最值.(最大值或最小值)
二、应用举例
例1 求函数 y 2 x 3 x 12 x 14 的在[3,4]
f ( x ) 2 33 x , ( x 0)
y 3 x2
当x 0时, 导数不存在.
当 x 0时,f ( x ) 0, 在( ,0]上单调减少; 当0 x 时, f ( x ) 0, 在[0,)上单调增加;
单调区间为 ( ,0], [0, ).
所以,函数 f ( x ) 在x0 处取得极大值
例2 求出函数 f ( x ) x 3 3 x 2 24 x 20 的极值. 解
f ( x ) 3 x 2 6 x 24 3( x 4)( x 2)
x2 2.
令 f ( x ) 0, 得驻点 x1 4,
3 2
上的最大值与最小值 .
解 f ( x ) 6( x 2)( x 1)
解方程 f ( x ) 0, 得
x1 2, x2 1.
f ( 2) 34; f (4) 142;
计算 f ( 3) 23;
f (1) 7;
y 2 x 3 x 12 x 14
f ( x ) 6 x 6, f ( 4) 18 0, f ( 2) 18 0,
3 2
故极大值 f ( 4) 60, 故极小值 f ( 2) 48.
f ( x ) x 3 x 24 x 20 图形如下
ቤተ መጻሕፍቲ ባይዱ
M
m
注意: f ( x0 ) 0时, f ( x )在点x0处不一定取极值 ,
解 y e x 1. 又 D : ( ,).
在( ,0)内, y 0,
函数单调减少;
在(0,)内, y 0,
函数单调增加 .
注意:函数的单调性是一个区间上的性质,要用 导数在这一区间上的符号来判定,而不能用一 点处的导数符号来判别一个区间上的单调性.
点, 注意: 可导函数 f ( x ) 的极值点必定是它的驻 但函数的驻点却不一定 是极值点.
3 y x , y x 0 0, 例如,
但x 0不是极值点.
定理2(第一充分条件)
(1)如果 x ( x0 , x0 ), 有 f ' ( x ) 0;而 x ( x0 , x0 ) , x 处取得极大值. 有 f ' ( x ) 0 ,则 f ( x )在 (2)如果 x ( x0 , x0 ), 有 f ' ( x ) 0;而 x ( x0 , x0 ) ' f 有 ( x ) 0 ,则 f ( x )在x0 处取得极小值. ' (3)如果当 x ( x0 , x0 ) 及 x ( x0 , x0 ) 时, f ( x ) 符号相同,则 f ( x ) 在 x0 处无极值.
f ( x ) 0, 在[1,2]上单调减少;
当2 x 时, f ( x ) 0, 在[2,)上单调增加;
单调区间为 ( ,1], [1,2], [ 2, ).
例3
确定函数 f ( x ) 3 x 2 的单调区间.
解 D : ( , ).
M
f ( 2) 1为f ( x )的极大值.
三、小结
极值是函数的局部性概念:极大值可能小于极小 值,极小值可能大于极大值.
驻点和不可导点统称为临界点. 函数的极值必在临界点取得.
第一充分条件; 判别法
第二充分条件;
(注意使用条件)
函数的最大值 与最小值
一、最值的求法
若函数 f ( x ) 在 [a , b] 上连续,除个别点外处处可导, 并且至多有有限个导数为零的点,则 f ( x ) 在 [a , b] 上的最大值与最小值存在 .
证
x1 , x2 (a , b), 且 x1 x2 , 应用拉氏定理,得 ( x1 x2 )
f ( x2 ) f ( x1 ) f ( )( x2 x1 ) x2 x1 0,
若在(a , b)内, f ( x ) 0,
则 f ( ) 0,
0
y
y
o
x0
x
x0
o
x
(是极值点情形)
y
y
o
x0
x
o
x0
x
(不是极值点情形)
求极值的步骤:
(1) 求导数 f ( x );
(2) 求驻点,即方程 f ( x ) 0 的根;
(3) 检查 f ( x ) 在驻点左右的正负号 , 判断极值点 ;
(4) 求极值.
例1 求出函数 f ( x ) x 3 3 x 2 9 x 5 的极值. 解
仍用定理2.
注意:函数的不可导点,也可能是函数的极值点.
例3 解
求出函数 f ( x ) 1 ( x 2) 的极值.
2 f ( x ) ( x 2 ) 3 3 1
2 3
( x 2)
当x 2时, f ( x )不存在. 但函数f ( x )在该点连续.
当x 2时, f ( x ) 0; 当x 2时, f ( x ) 0.
2 f ( x ) 3 x 6 x 9 3( x 1)( x 3)
令 f ( x ) 0, 得驻点 x1 1, x2 3. 列表讨论
x
f ( x )
f ( x)
( ,1) 1
( 1,3)
3
0
极 小 值
( 3, )
0
极 大 值