反比例函数数学活动教案
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 理解反比例函数的定义及其性质;2. 学会如何求反比例函数的解析式;3. 能够运用反比例函数解决实际问题。
过程与方法:1. 通过观察实例,引导学生发现反比例函数的规律;2. 利用图形计算器,让学生直观地感受反比例函数的图像和性质;3. 培养学生运用数学知识解决实际问题的能力。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心;2. 培养学生勇于探索、积极思考的科学精神;3. 培养学生合作交流、解决问题的能力。
二、教学重点与难点:重点:1. 反比例函数的定义及其性质;2. 反比例函数的图像特征。
难点:1. 反比例函数解析式的求解;2. 反比例函数在实际问题中的应用。
三、教学过程:环节一:导入新课1. 利用实例引入反比例函数的概念;2. 引导学生发现反比例函数的规律;3. 提问:什么是反比例函数?它有哪些特点?环节二:自主探究1. 学生利用图形计算器,观察反比例函数的图像;2. 学生总结反比例函数的性质;3. 学生分组讨论,探讨反比例函数的解析式求解方法。
环节三:课堂讲解1. 教师讲解反比例函数的定义及其性质;2. 教师示范求解反比例函数解析式;3. 教师举例说明反比例函数在实际问题中的应用。
环节四:巩固练习1. 学生完成课后练习题;2. 学生互相讨论,解决练习题中的问题;3. 教师点评并讲解练习题。
环节五:课堂小结1. 学生总结本节课所学内容;2. 教师强调反比例函数的重要性和应用价值;3. 学生分享学习心得和感悟。
四、教学评价:1. 课后练习题的完成情况;2. 学生对反比例函数的理解程度;3. 学生在实际问题中运用反比例函数的能力。
五、教学资源:1. 反比例函数的PPT;2. 图形计算器;3. 课后练习题及答案。
六、教学策略:1. 采用问题驱动的教学方法,引导学生主动探索反比例函数的定义和性质;2. 利用信息技术工具,如图形计算器,直观展示反比例函数的图像,增强学生对函数概念的理解;3. 通过实际问题的引入,让学生体会反比例函数在生活中的应用,提高学生解决实际问题的能力;4. 注重学生合作交流,鼓励学生分组讨论,培养学生的团队协作精神;5. 及时反馈,针对学生的掌握情况,调整教学进度和方法。
《反比例》数学教案(经典15篇)
《反比例》数学教案(经典15篇)《反比例》数学教案1教学内容:《反比例的意义》是六年制小学数学(北师版)第十二册第二单元中的内容。
是在学过“正比例的意义”的基础上,让学生理解反比例的意义,并会判断两个量是否成反比例关系,加深对比例的理解。
学生分析:在此之前,他们学习了正比例的意义,对“相关联的量”、“成正比例的两个量的变化规律”、“如何判断两个量是否成正比例”已经有了认识,这为学习《反比例的意义》奠定了基础。
教学目标:1、知识与技能目标:使学生认识成反比例的量,理解反比例的意义,并学会判断两种相关联的量是否成反比例。
进一步培养学生观察、学析、综合和概括等能力。
初步渗透函数思想。
2、过程与方法:为学生营造一个经历知识产生过程的情境。
3、情感与态度目标:使学生在自主探索与合作交流中体验成功的乐趣,进一步增强学好数学的信心。
教学重点:理解反比例的意义。
教学难点:两种相关联的量的变化规律。
教学准备:学生准备:复习正比例关系,预习本节内容。
教师准备:投影片3张,每张有例题一个。
教学过程设计:一、谈话引入,激发兴趣。
1、谈话:通过最近一段时间的观察,我发现同学们越来越聪明了,会学数学了,这是因为同学们掌握了一定的数学学习的基本方法。
下面请回想一下,我们是怎样学习成正比例的量的?这节课我们用同样的学习方法来研究比例的另外一个规律。
2、导入:在实际生活中,存在着许多相关联的量,这些相关联的量之间有的是成正比例关系,有的成其他形式的关系,让我们一起来探究下面的问题。
二、创设情景引新:(出示:十二个小方块)师:同学们,这十二个小方块有几种排法?(生答后,老师板书下表的排列过程)每行个数行数师:请你观察上表中每行个数与行数成正比例关系吗?为什么?生:……师:这两种量这间有关系吗?有什么关系?这就是我们今天要研究的内容。
(出示课题:反比例的意义)三、合作自学探知1、学习例4。
(1)出示例4。
师:请同学们在小组内互相交流,并围绕这三个问题进行讨论,再选出一位组员作代表进行汇报。
《反比例函数》初三数学教案
《反比例函数》初三数学教案《反比例函数》初三数学教案作为一名辛苦耕耘的教育工作者,就难以避免地要准备教案,教案是备课向课堂教学转化的关节点。
那要怎么写好教案呢?下面是店铺收集整理的《反比例函数》初三数学教案,仅供参考,希望能够帮助到大家。
《反比例函数》初三数学教案篇1一、创设情境引入课题活动1问题:你们还记得一次函数图象与性质吗?设计意图通过创设问题情境,引导学生复习一次函数图象的知识,激发学生参与课堂学习的热情,为学习反比例函数的图象奠定基础。
师生形为:教师提出问题。
学生思考、交流,回答问题。
教师根据学生活动情况进行补充和完善。
二、类比联想探究交流活动2问题:例2 画出反比例函数y= 与y=- 的图象。
(教师先引导学生思考,示范画出反比例函数y= 的图象,再让学生尝试画出反比例函数y=- 的图象。
)设计意图:通过画反比例函数的图象使学生进一步了解用描点的方法画函数图象的基本步骤,其他函数的图象奠定基础,同时也培养了学生动手操作能力。
师生形为:学生可以先自己动手画图,相互观摩。
在此活动中,教师应重点关注:1学生能否顺利进行三种表示方法的相互转换:2是否熟悉作出函数图象的主要步骤,会作反比例函数的图象;3在动手作图的过程中,能否勤于动手,乐于探索。
比较y= 、y=- 的图象有什么共同特征?它们之间有什么关系?(由学生观察思考,回答问题,并使学生了解反比例函数的图象是一种双曲线。
)设计意图:学生通过观察比较,总结两个反比例函数图象的共同特征(都是双曲线),以及在平面直角坐标系中的位置。
在活动中,让学生自己去观察、类比发现,过程让学生自己去感受,结论让学生自己去总结,实现学生主动参与、探究新知的目的。
师生形为:学生分组针对问题结合画出的图象分类讨论,归纳总结反比例函数图象的共同点,为后面性质的探索打下基础。
教师参与到学生的讨论中去,积极引导。
(三)探索比较发现规律活动3问题:观察反比例函数y= 与y=- 的图象。
反比例函数教学设计(通用)五篇
反比例函数教学设计(通用)五篇第一篇:反比例函数教学设计(通用)反比例函数教学设计(通用6篇)作为一位杰出的教职工,就不得不需要编写教学设计,教学设计是根据课程标准的要求和教学对象的特点,将教学诸要素有序安排,确定合适的教学方案的设想和计划。
那么写教学设计需要注意哪些问题呢?下面是小编帮大家整理的反比例函数教学设计(通用6篇),欢迎阅读,希望大家能够喜欢。
反比例函数教学设计1教学目标(一)教学知识点1.从现实情境和已有的知识经验出发,讨论两个变量之间的相似关系,加深对函数概念的理解.2.经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.(二)能力训练要求结合具体情境体会反比例函数的意义,能根据已知条件确定反比例函数表达式.(三)情感与价值观要求结合实例引导学生了解所讨论的函数的表达形式,形成反比例函数概念的具体形象,是从感性认识到理性认识的转化过程,发展学生的思维;同时体验数学活动与人类生活的密切联系及对人类历史发展的作用.教学重点经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念.教学难点领会反比例函数的意义,理解反比例函数的概念.教学方法教师引导学生进行归纳.教具准备投影片两张第一张:(记作5.1A)第二张:(记作5.1B)教学过程Ⅰ.创设问题情境,引入新课[师]我们在前面学过一次函数和正比例函数,知道一次函数的表达式为y=kx+b.其中k,b为常数且k≠0,正比例函数的表达式为y=kx,其中k为不为零的常数.但是在现实生活中,并不是只有这两种类型的表达式.如从A地到B地的路程为1200km,某人开车要从A地到B 地,汽车的速度v(km/h)和时间t(h)之间的关系式为vt=1200,则t= 中t和v之间的关系式肯定不是正比例函数和一次函数的关系式,那么它们之间的关系式究竟是什么关系式呢?这就是本节课我们要揭开的奥秘.Ⅱ.新课讲解[师]我们今天要学习的是反比例函数,它是函数中的一种,首先我们先来回忆一下什么叫函数?1.复习函数的定义[师]大家还记得函数的定义吗?[生]记得.在某变化过程中有两个变量x,y.若给定其中一个变量x 的值,y都有唯一确定的值与它对应,则称y是x的函数.[师]大家能举出实例吗?[生]可以.例如购买单价是0.4元的铅笔,总金额y(元)与铅笔数n(个)的关系是y=0.4n.这是一个正比例函数.等腰三角形的顶角的度数y与底角的度数x的关系为y=180-2x,y是x的一次函数.[师]很好,我们复习了函数的定义以及正比例函数和一次函数的表达式以后,再来看下面实际问题中的变量之间是否存在函数关系,若是函数关系,那么是否为正比例或一次函数关系式.2.经历抽象反比例函数概念的过程,并能类推归纳出反比例函数的表达式.[师]请看下面的问题.电流I,电阻R,电压U之间满足关系式U=IR,当U=220V时.(1)你能用含有R的代数式表示I吗?(2)利用写出的关系式完成下表:R/Ω20406080100I/A当R越来越大时,I怎样变化?当R越来越小呢?(3)变量I是R的函数吗?为什么?请大家交流后回答.[生](1)能用含有R的代数式表示I.由IR=220,得I=.(2)利用上面的关系式可知,从左到右依次填11,5.5,3.67,2.75,2.2.从表格中的数据可知,当电阻R越来越大时,电流I越来越小;当R越来越小时,I越来越大.(3)变量I是R的函数.由IR=220得I=.当给定一个R的值时,相应地就确定了一个I值,因此I是R的函数.[师]这位同学回答的非常精彩,下面大家再思考一个问题.舞台灯光为什么在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼的?请大家互相交流后回答.[生]根据I=,当R变大时,I变小,灯光较暗;当R变小时,I变大,灯光较亮.所以通过改变电阻R的大小来控制电流I的变化,就可以在很短的时间内将阳光灿烂的晴日变成浓云密布的阴天,或由黑夜变成白昼.投影片:(5.1A)京沪高速公路全长约为1262km,汽车沿京沪高速公路从上海驶往北京,汽车行完全程所需的时间t(h)与行驶的平均速度v(km/h)之间有怎样的关系?变量t是v的函数吗?为什么?[师]经过刚才的例题讲解,大家可以独立完成此题.如有困难再进行交流.[生]由路程等于速度乘以时间可知1262=vt,则有t=.当给定一个v的值时,相应地就确定了一个t值,根据函数的定义可知t是v的函数.[师]从上面的两个例题得出关系式I= 和t=.它们是函数吗?它们是正比例函数吗?是一次函数吗?[生]因为给定一个R的值,相应地就确定了一个I的值,所以I是R的函数;同理可知t是v的函数.但是从表达式来看,它们既不是正比例函数,也不是一次函数.[师]我们知道正比例函数的关系式为y=kx(k≠0),一次函数的关系式为y=kx+b(k,b为常数且k≠0).大家能否根据两个例题归纳出这一类函数的表达式呢?[生]可以.由I= 与t= 可知关系式为y=(k为常数且k≠0).[师]很好.一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k≠0)的形式,那么称y是x的反比例函数.从y= 中可知x作为分母,所以x 不能为零.3.做一做投影片(5.1B)1.一个矩形的面积为20cm2,相邻的两条边长分别为x cm和y cm,那么变量y是变量x的函数吗?是反比例函数吗?为什么?2.某村有耕地346.2公顷,人口数量n逐年发生变化,那么该村人均占有耕地面积m(公顷/人)是全村人口数n的函数吗?是反比例函数吗?为什么?3.y是x的反比例函数,下表给出了x与y的一些值:x-2-1y2-1(1)写出这个反比例函数的表达式;(2)根据函数表达式完成上表.[生]由面积等于长乘以宽可得xy=20.则有y=.变量y是变量x的函数.因为给定一个x的值,相应地就确定了一个y的值,根据函数的定义可知变量y是变量x的函数.再根据反比例函数的表达式可知y是x的反比例函数.[生]根据人均占有耕地面积等于总耕地面积除以总人数得m=.给定一个n的值,就相应地确定了一个m的值,因此m是n的函数,又m= 符合反比例函数的形式,所以是反比例函数.[师]在做第3题之前,我们先回忆一下如何求正比例函数和一次函数的表达式.在y=kx中,要确定关系式的关键是求得非零常数k的值,因此需要一个条件即可;在一次函数y=kx+b中,要确定关系式实际上是要求得b和k的值,有两个待定系数因此需要两个条件.同理,在求反比例函数的表达式时,实际上是要确定k的值.因此只需要一个条件即可,也就是要有一组x与y的值确定k的值.所以要从表格中进行观察.由x=-1,y=2确定k的值.然后再根据求出的表达式分别计算x或y的值.[生]设反比例函数的表达式为y=.(1)当x=-1时,y=2;∴k=-2.∴表达式为y=-.(2)当x=-2时,y=1.当x=-时,y=4;当x= 时,y=-4;当x=1时,y=-2.当x=3时,y=-;当y= 时,x=-3;当y=-1时,x=2.因此表格中从左到右应填-3,1,4,-4,-2,2,-.Ⅲ.课堂练习随堂练习(P131)Ⅳ.课时小结本节课我们学习了反比例函数的定义,并归纳总结出反比例函数的表达式为y=(k为常数,k≠0),自变量x不能为零.还能根据定义和表达式判断某两个变量之间的关系是否是函数,是什么函数.Ⅴ.课后作业习题5.1Ⅵ.活动与探究已知y-1与成反比例,且当x=1时,y=4,求y与x的函数表达式,并判断是哪类函数?分析:由y与x成反比例可知y=,得y-1与成反比例的关系式为y-1= =k(x+2),由x=1、y=4确定k的值.从而求出表达式.解:由题意可知y-1= =k(x+2).当x=1时,y=4.所以3k=4-1,k=1.即表达式为y-1=x+2,y=x+3.由上可知y是x的一次函数.板书设计反比例函数教学设计2一、教学目标1.利用反比例函数的知识分析、解决实际问题2.渗透数形结合思想,提高学生用函数观点解决问题的能力二、重点、难点1.重点:利用反比例函数的知识分析、解决实际问题2.难点:分析实际问题中的数量关系,正确写出函数解析式三、例题的意图分析教材第57页的例1,数量关系比较简单,学生根据基本公式很容易写出函数关系式,此题实际上是利用了反比例函数的定义,同时也是要让学生学会分析问题的方法。
反比例函数教案6篇
反比例函数教案6篇教学目标使学生对反比例函数和反比例函数的图象意义加深理解。
教学重难点重点:反比例函数的图象。
难点:利用反比例函数的图象解题。
教学过程一、情境创设解析式y=kx(k为常数,k≠0)图象形状双曲线(以原点为对称中心)k>0位置一、三象限增减性每一象限内,y随x的增大而减小k<0位置二、四象限增减性每一象限内,y随x的增大而增大二、例题讲解例1.如图是反比例函数的图象的一支。
(1)函数图象的另一支在第几象限?试求常数m的取值范围;(2)点都在这个反比例函数的图象上,比较、的大小例2.如图,已知一次函数y=kx+b的图象与反比例函数y=的图象交于A、B两点,且点A的横坐标和点B的纵坐标都是-2,求:(1)一次函数的解析式;(2)△AOB的面积。
三、课堂练习课本P70练习1、2题四、课堂小结1、反比例函数的图象。
2、反比例函数的性质。
五、课堂作业课本P72/第5题教学目标知识与技能:1.进一步熟悉作函数图象的主要步骤,会作反比例函数的图象。
2.体会函数的三种表示方法的相互转换,对函数进行认识上的整合。
3.培养学生从函数图象中获取信息的能力,初步探索反比例函数的性质。
过程与方法:通过学生自己动手列表,描点,连线,提高学生的作图能力;通过观察图象,概括反比例函数图象的有关性质,训练学生的概括总结能力。
情感、态度与价值观:让学生积极参与到数学学习活动中去,增强他们对数学学习的好奇心和求知欲。
教学重点教学难点1)重点:画反比例函数图象并认识图象的特点。
2)难点:画反比例函数图象。
教学关键教师画图中要规范,为学生树立一个可以学习的模板教学方法激发诱导,探索交流,讲练结合三位一体的教学方式教学手段教师画图,学生模仿教具三角板,小黑板学法学生动手,动眼,动耳,采用自主,合作,探究的学习方法教学过程(包含课前检测、新课导入、新课讲解、课堂练习、小结、形成性检测、反馈拓展、作业布置)内容设计意图一:课前检测:1.什么叫做反比例函数;(一般地,如果两个变量x、y之间的关系可以表示成y=(k为常数,k0)的形式,那么称y是x的反比例函数。
反比例函数教案优秀7篇
反比例函数教案优秀7篇《反比例函数》教学设计篇一一、教材分析反比例函数是初中阶段所要学习的三种函数中的一种,是一类比较简单但很重要的函数,现实生活中充满了反比例函数的例子。
因此反比例函数的概念与意义的教学是基础。
二、学情分析由于之前学习过函数,学生对函数概念已经有了一定的认识能力,另外在前一章我们学习过分式的知识,因此为本节课的教学奠定的一定的基础。
三、教学目标知识目标:理解反比例函数意义;能够根据已知条件确定反比例函数的表达式。
解决问题:能从实际问题中抽象出反比例函数并确定其表达式。
情感态度:让学生经历从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
四、教学重难点重点:理解反比例函数意义,确定反比例函数的表达式。
难点:反比例函数表达式的确立。
五、教学过程(1)京沪线铁路全程为1463km,某次列车的平均速度v(单位:km/h)随此次列车的全程运行时间t(单位:h)的变化而变化;(2)某住宅小区要种植一个面积1000m2的矩形草坪,草坪的长y(单位:m)随宽x (单位:m)的变化而变化。
请同学们写出上述函数的表达式14631000(2)y=txk可知:形如y=(k为常数,k≠0)的函数称为反比例函数,其中xx (1)v=是自变量,y是函数。
此过程的目的在于让学生从实际问题中抽象出反比例函数模型的过程,体会反比例函数来源于实际。
由于是分式,当x=0时,分式无意义,所以x≠0。
当y=中k=0时,y=0,函数y是一个常数,通常我们把这样的函数称为常函数。
此时y 就不是反比例函数了。
举例:下列属于反比例函数的是(1)y=(2)xy=10(3)y=k—1x(4)y=—此过程的目的是通过分析与练习让学生更加了解反比例函数的概念问已知y与x成反比例,y与x—1成反比例,y+1与x成反比例,y+1与x—1成反比例,将如何设其解析式(函数关系式)已知y与x成反比例,则可设y与x的函数关系式为y=kx?1k已知y+1与x成反比例,则可设y与x的函数关系式为y+1=xkxkxkxkx2x已知y与x—1成反比例,则可设y与x的函数关系式为y=已知y+1与x—1成反比例,则可设y与x的函数关系式为y+1=kx?1此过程的目的是为了让学生更深刻的了解反比例函数的概念,为以后在求函数解析式做好铺垫。
反比例函数教案(优秀3篇)
反比例函数教案(优秀3篇)反比例函数教案篇一一、直接导入法所谓的直接导入法,就是指教师在开始上课的时候就向学生说明该堂课的学习目的、要求和内容等,将本堂课的学习任务、程序向学生交代,并点明本堂课的课题和重点。
运用直接导入法,开门见山地导入,学习的重点突出,主题也比较鲜明,还能节省时间,不仅能够快速地将学生的思维定向,还易于激起学生的学习兴趣,快速地进入教学。
案例“用单位圆中的线段表示三角函数值”师:之前我们学习了三角函数的定义,你们还记得是怎样定义的吗?生:是用两条线段的比值来定义三角函数的数值的。
师:是的,但是用两条线段的比值来定义有很多不方便的地方,如果我们只用一条线段来表示,就显得方便多了,这就是我们今天这堂课要学习的内容。
通过直接导入法进行课堂教学的导入,不但明确了该堂课的主题,还说明了该堂课的学习背景是在前面学习的基础上来延伸的。
二、复习导入法复习导入法就是指所谓的“温故而知新”,通过挖掘前后知识点之间的联系来导入新课,降低学生对新知识的陌生感和恐惧感,让学生能快速地将新的知识点融入到原有的知识结构当中,降低学生对新知识点的认知难度。
复习导入法的思路是通过对与新课内容有关的旧知识的复习来分析新旧知识的联系,并从该联系和新课内容的主题来进行导入设计,学生去思考,再由教师点题导入新课。
案例“反函数”师:前面我们已经学习了函数的基础知识,具体有哪些知识点呢?那么还记得吗?生:记得,主要有函数的定义、函数的定义域、值域等。
师:对,但是,你们有没有注意到有这样的一种比较特殊的函数呢?若存在这样两个函数f(x)=2x-1,f′(x)=0.5x+0.5,它们之间有什么关系呢?我们先来作图看看(如图),由图可见,这两个函数是关于直线y=x对称的,像这样的两个函数我们就说这两个函数互为反函数。
那么判断一个函数是否存在反函数的条件有哪些呢?我们可以从前面学习过的函数的基础知识来总结。
生:(讨论、总结)函数的定义域和值域是一一映射的,且与反函数在相应的区间单调性是一致的。
反比例函数教案设计(优秀篇)
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:理解反比例函数的概念,掌握反比例函数的性质和图像特点;能够运用反比例函数解决实际问题。
2. 过程与方法:通过观察、分析、归纳等方法,探索反比例函数的性质;学会用图像和解析式表示反比例函数。
3. 情感态度价值观:培养学生的数学思维能力,提高学生对数学的兴趣;培养学生合作交流的能力,提高学生的团队协作精神。
二、教学内容1. 反比例函数的概念:反比例函数的定义、形式。
2. 反比例函数的性质:比例系数、定义域、值域、图像特点。
3. 反比例函数的图像:绘制反比例函数的图像,观察图像的形状和特点。
4. 反比例函数的实际应用:解决实际问题,如面积、速度、浓度等问题。
三、教学重点与难点1. 重点:反比例函数的概念、性质和图像特点。
2. 难点:反比例函数的实际应用,特别是复杂问题的解决。
四、教学方法与手段1. 教学方法:采用问题驱动、案例分析、小组讨论等教学方法,引导学生主动探究、积极参与。
2. 教学手段:利用多媒体课件、反比例函数图像软件等辅助教学,提高教学效果。
五、教学过程1. 导入新课:通过一个实际问题,引入反比例函数的概念。
2. 自主学习:学生自主学习反比例函数的定义和性质,理解反比例函数的概念。
3. 合作探究:学生分组讨论,探索反比例函数的图像特点,总结反比例函数的性质。
4. 课堂讲解:教师讲解反比例函数的性质和图像特点,引导学生理解反比例函数的概念。
5. 练习巩固:学生进行课堂练习,运用反比例函数解决实际问题。
6. 课堂小结:教师总结本节课的反比例函数知识点,强调重点和难点。
7. 课后作业:布置相关的课后作业,巩固反比例函数的知识。
六、教学评价1. 评价目标:检查学生对反比例函数的概念、性质和图像特点的理解程度。
2. 评价方法:课堂提问、课堂练习、课后作业、小组讨论等。
3. 评价内容:反比例函数的定义、性质、图像特点,以及实际应用能力的展示。
七、教学反馈1. 课堂反馈:通过课堂提问、练习等环节,及时了解学生的学习情况,对学生的疑惑进行解答。
反比例函数教案设计(6篇)
反比例函数教案设计(6篇)教学目标:1、通过感知生活中的事例,理解并把握反比例的含义,经初步推断两种相关联的量是否成反比例2、培育学生的规律思维力量3、感知生活中的数学学问重点难点1.通过详细问题熟悉反比例的量。
2、把握成反比例的量的变化规律及其特征教学难点:熟悉反比例,能依据反比例的意义推断两个相关联的量是不是成反比例。
教学过程:一、课前预习预习24---26页内容1、什么是成反比例的量?你是怎么理解的?2、情境一中的两个表中量变化关系一样吗?3、三个情境中的两个量哪些是成反比例的量?为什么?二、展现与沟通利用反义词来导入今日讨论的课题。
今日讨论两种量成反比例关系的变化规律情境(一)熟悉加法表中和是12的直线及乘法表中积是12的曲线。
引导学生发觉规律:加法表中和是12,一个加数随另一个加数的变化而变化;乘法表中积是12,一个乘数随另一个乘数的变化而变化。
情境(二)让学生把汽车行驶的速度和时间的表填完整,当速度发生变化时,时间怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?独立观看,思索同桌沟通,用自己的语言表达写出关系式:速度×时间=路程(肯定)观看思索并用自己的语言描述变化关系乘积(路程)肯定情境(三)把杯数和每杯果汁量的表填完整,当杯数发生变化时,每杯果汁量怎样变化?每两个相对应的数的乘积各是多少?你有什么发觉?用自己的语言描述变化关系写出关系式:每杯果汁量×杯数=果汗总量(肯定)5、以上两个情境中有什么共同点?反比例意义引导小结:都有两种相关联通的量,其中一种量变化,另一种量也随着变化,并且这两种量中相对应的两个数的乘积是肯定的。
这两种量之间是反比例关系。
活动四:想一想二、反应与检测1、推断下面每题是否成反比例(1)出油率肯定,香油的质量与芝麻的质量。
(2)三角形的面积肯定,它的底与高。
(3)一个数和它的倒数。
(4)一捆100米电线,用去长度与剩下长度。
(5)圆柱体的体积肯定,底面积和高。
反比例函数教案6篇
反比例函数教案精选6篇作为一无名无私奉献的教育工,就不得不需要编写教案,编写教案有利于我们科学、合理地支配课堂时间。
那么你有了解过教案吗?下面是本文范文为大伙儿带来的6篇《反比例函数教案》,亲的肯定与分享是对我们最大的鼓励。
反比例函数教案篇一教学目标(1)进一步体验现实生活与反比例函数的关系。
(2)能解决确定反比例函数中常数志值的实际问题。
(3)会处理涉及不等关系的实际问题。
(4)继续培养学生的交流与合作能力。
重点:用反比例函数知识解决实际问题。
难点:如何从实际问题中抽象出数学问题,建立数学模型,用数学知识解决实际问题。
教学过程:1、引入新课上节课我们学习了实际问题与反比例函数,使我们认识到了反比例函数在现实生活中的实际存在。
今天我们将继续学习这一部分内容,请看例1(投影出课本第50页例2)。
例1码头工人以每天30吨的速度往一艘轮船上装载货物,把轮船装载完毕恰好用了8天时间。
轮船到达目的地后开始卸货,卸货速度v(吨/天)与卸货时间t(天)之间有怎样的关系由于紧急情况,船上货物必须在不超过5日内卸载完毕,那么每天至少卸货多少吨2、提出问题、解决问题(1)审完题后,你的切入点是什么,由题意知:船上载物重是30×8=240吨,这是一个不变量,也就是在这个卸货过程中的常量,所以根据卸货速度×卸货天数=货物重量,可以得到v与t的函数关系即vt=240,v=240,所以v是t的反比例函数,且t0.t(2)你们再回忆一下,今天求出的反比例函数与昨天求出的反比例函数在思路上有什么不同(昨天求出的反比例函数,常数k是直接知道的,今天要先确定常数k)(3)明确了问题的区别,那么第二问怎样解决根据反比例函数v=240(t0),当t=5时,v=48。
即每天至少要48吨。
这样做的答案是不错的,这里请同学们再仔细看一下第二问,你有什么想法。
实际上这里是不等式关系,5日内完成,可以这样化简t=240/v,0t≤5,即0240/v≤5,可以知道v≥48即至少要每天48吨。
北师大版数学《反比例》教学设计(通用4篇)
数学《反比例》教学设计北师大版数学《反比例》教学设计(通用4篇)在教学工作者实际的教学活动中,总不可避免地需要编写教学设计,借助教学设计可以提高教学效率和教学质量。
那么优秀的教学设计是什么样的呢?以下是小编收集整理的北师大版数学《反比例》教学设计(通用4篇),希望对大家有所帮助。
数学《反比例》教学设计1【教学内容】反比例。
(教材第47页例2)。
【教学目标】1.使学生理解反比例的意义,能正确地判断两种相关联的量是不是成反比例的量。
2.让学生经历反比例意义的探究过程,体验观察比较、推理、归纳的学习方法。
【重点难点】引导学生总结出成反比例的量的特点,进而抽象概括出反比例的关系式。
利用反比例的意义,正确判断两个量是否成反比例。
【教学准备】投影仪。
【复习导入】1.让学生说说什么是正比例,然后用投影出示下面的题。
下面各题中哪两种量成正比例?为什么?(1)每公顷产量一定,总产量和公顷数。
(2)一袋大米的重量一定,吃了的和剩下的。
(3)修房屋时,粉刷的面积和所需涂料的数量。
2.说出每小时加工零件数、加工零件总数和加工时间三者之间的关系。
在什么条件下,其中两种量成正比例?教师:如果加工零件总数一定,每小时加工数和加工时间会成什么变化?关系怎样?这就是我们这节课要学习的内容。
【新课讲授】1.教学例2。
创设情境。
教师:把相同体积的水倒入底面积不同的杯子,高度会怎样变化?出示教材第47页例2的情境图和表格。
请学生认真观察表中数据的变化情况,组织学生分小组讨论:(1)水的高度和底面积变化有关系吗?(2)水的高度是怎样随着底面积变化的?(3)水的高度和底面积的变化有什么规律?学生不难发现:底面积越大,水的高度越低;底面积越小,水的高度越高,而且高度和底面积的乘积(水的体积)一定。
教师板书配合说明这一规律:30×10=20×15=15×20=……=300教师根据学生的汇报说明:高度和底面积有这样的变化关系,我们就说高度和底面积成反比例的关系,高度和底面积叫做成反比例的量。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)第一章:反比例函数的引入1.1 学习目标理解反比例函数的概念。
掌握反比例函数的定义和性质。
1.2 教学内容反比例函数的定义:如果两个变量x和y之间的关系是y=k/x(其中k是常数,k≠0),函数y=k/x称为反比例函数。
反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
1.3 教学活动通过实际例子引入反比例函数的概念,让学生感受反比例函数在生活中的应用。
引导学生通过观察实际例子,发现反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
第二章:反比例函数的图像2.1 学习目标学会绘制反比例函数的图像。
理解反比例函数图像的特点。
2.2 教学内容反比例函数的图像是一条通过原点的曲线,称为双曲线。
双曲线的两支分别沿着x轴的正方向和负方向延伸,且越来越接近x轴,但永远不会与x轴相交。
2.3 教学活动引导学生通过绘制反比例函数的图像,观察和总结反比例函数图像的特点。
让学生通过分析反比例函数图像,理解反比例函数的性质。
第三章:反比例函数的性质3.1 学习目标掌握反比例函数的性质。
能够应用反比例函数的性质解决实际问题。
3.2 教学内容反比例函数的性质:当x增大时,y值减小;当x减小时,y值增大。
反比例函数的图像是一条通过原点的曲线,称为双曲线。
3.3 教学活动通过实际例子,引导学生理解和掌握反比例函数的性质。
让学生通过绘制反比例函数的图像,加深对反比例函数性质的理解。
设计练习题,让学生应用反比例函数的性质解决实际问题。
第四章:反比例函数的应用4.1 学习目标学会应用反比例函数解决实际问题。
能够运用反比例函数的知识进行综合分析。
4.2 教学内容反比例函数在实际中的应用,例如在物理学中描述两个变量之间的关系。
4.3 教学活动通过实际例子,引导学生学会应用反比例函数解决实际问题。
设计练习题,让学生运用反比例函数的知识进行综合分析。
初二数学《反比例函数》说课稿(通用5篇)
初二数学《反比例函数》说课稿初二数学《反比例函数》说课稿(通用5篇)作为一无名无私奉献的教育工作者,常常要根据教学需要编写说课稿,编写说课稿助于积累教学经验,不断提高教学质量。
写说课稿需要注意哪些格式呢?下面是小编为大家收集的初二数学《反比例函数》说课稿(通用5篇),仅供参考,大家一起来看看吧。
初二数学《反比例函数》说课稿1各位评委:大家好!今天我要说的课题是义务教育人教版初中八年级十七章第一节“反比例函数”。
我将从如下步骤进行。
一、说教材1、内容分析:本节课是“反比例函数”的第一节课,是继正比例函数、一次函数之后,二次函数之前的又一类型函数,本节课主要通过丰富的生活事例,让学生归纳出反比例函数的概念,并进一步体会函数是刻画变量之间关系的数学模型,从中体会函数的模型思想。
因此本节课重点是理解和领悟反比例函数的概念,所渗透的数学思想方法有:类比,转化,建模。
2、学情分析:对八年级学生来说,虽然他们已经对函数,正比例函数,一次函数的概念、图象、性质以及应用有所掌握,但他们面对新的一次函数时,还可能存在一些思维障碍,如学生不能准确地找出变量之间的自变量和因变量,以及如何从事例中领悟和总结出反比例函数的概念,因此,本节课的难点是理解和领悟反比例函数的概念。
二、说教学目标根据本人对《数学课程标准》的理解与分析,考虑学生已有的认知结构、心理特征,我把本课的目标定为:1、从现实的情境和已有的知识经验出发,讨论两个变量之间的相依关系,加深对函数概念的理解。
2、经历抽象反比例函数概念的过程,领会反比例函数的意义,理解反比例函数的概念。
三、说教法本节课从知识结构呈现的角度看,为了实现教学目标,我建立了“创设情境→建立模型→解释知识→应用知识”的学习模式,这种模式清晰地再现了知识的生成与发展的过程,也符合学生的认知规律。
于是,从教学内容的性质出发,我设计了如下的课堂结构:创设出电流、行程等情境问题让学生发现新知,把上述问题进行类比,导出概念,获得新知,最后总结评价、内化新知。
关于反比例函数数学教案5篇
关于反比例函数数学教案5篇关于反比例函数数学教案5篇数学教学鼓励学生进行创新思维和批判性思考。
学生应该有独立思考能力,能够对于数学问题进行分析、评价和解决方案的提出。
下面给大家分享反比例函数数学教案,欢迎阅读!反比例函数数学教案篇1教学内容:教科书第22—24页反比例的意义,练习六的第4—6题。
教学目的:1.使学生理解反比例的意义.能够正确判断两种量是不是成反比例。
2.使学生进一步认识事物之间的相互联系和发展变化规律。
3.初步渗透函数思想。
教具准备:投影仪、投影片、小黑板。
教学过程:一、复习1.让学生说说什么是成正比例的量:2.用投影片出示下面的题:(1)下面各题中哪两种量成正比例为什么①笔记本单价一定,数量和总价:⑨汽车行驶速度一定.行驶的路程和时间。
②工作效率一定.’工作时间和工作总量。
①一袋大米的重量一定.吃了的和剩下的。
(2)说出每小时加工零件数、加工时间和加工零件总数三者间的数量关系。
在什么条件下,其中两种量成正比例二、导入新课教师:如果加工零件总数一定。
每小时加工数和加工时间会成什么样的变化.关系怎样就是我们这节课要学习的内容。
三、新课1.教学例4。
出示例4;丰机械厂加工一批机器零件。
每小时加工的数量和所需的加工时间如下表。
让学生观察这个表,然后每四人一组讨论下面的问题:(1)表中有哪两种量(2)所需的加工时间怎样随着每小时加工的个数变化(3)每两个相对应的数的乘积各是多少学生分组讨论后集中发言。
然后每个小组选代表回答上面的问题。
随着学生的回答,教师板书如下:每小时加工数加工时间10 × 60 =600。
30 × 20 =600。
40 × 15 =600,“这个积600。
实际上是什么”在“加工时间”后面板书:零件总数“积一定,就说明零件总数怎样”在零件总数后面板书:(一定)“每小时加工数、加工时间和零件总数这三种量有什么关系呢”学生回答后,教师小结:通过刚才的观察分析.我门可以看出。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标:知识与技能:1. 学生能理解反比例函数的概念,掌握反比例函数的定义和性质。
2. 学生能够运用反比例函数解决实际问题,提高解决问题的能力。
过程与方法:1. 学生通过观察、分析、归纳等方法,探索反比例函数的性质。
2. 学生能够利用反比例函数的性质进行函数图象的识别和分析。
情感态度价值观:1. 学生培养对数学的兴趣和好奇心,体验成功的喜悦。
2. 学生培养合作精神,学会与他人交流和分享。
二、教学内容:1. 反比例函数的定义:学生通过观察实例,理解反比例函数的概念,掌握反比例函数的定义。
2. 反比例函数的性质:学生通过实验、观察、分析等方法,探索反比例函数的性质,如单调性、奇偶性等。
3. 反比例函数图象的识别:学生通过观察图象,学会识别反比例函数图象,理解图象的特点。
4. 反比例函数的应用:学生通过解决实际问题,运用反比例函数的知识,提高解决问题的能力。
5. 反比例函数的综合练习:学生通过练习题,巩固反比例函数的知识,提高解题能力。
三、教学重点与难点:重点:1. 反比例函数的概念和性质。
2. 反比例函数图象的识别和分析。
难点:1. 反比例函数的性质的深入理解和运用。
2. 解决实际问题中反比例函数的应用。
四、教学方法与手段:1. 教学方法:采用问题驱动法、案例教学法、合作学习法等,激发学生的学习兴趣,培养学生的探究能力和合作精神。
2. 教学手段:利用多媒体课件、实物模型、反比例函数图象软件等,直观展示反比例函数的知识,帮助学生理解和掌握。
五、教学过程:1. 导入新课:通过展示实例,引导学生思考反比例函数的概念,激发学生的学习兴趣。
2. 知识讲解:讲解反比例函数的定义和性质,引导学生通过观察、分析、归纳等方法,探索反比例函数的性质。
3. 实例分析:分析实际问题,引导学生运用反比例函数的知识,解决问题。
4. 课堂练习:学生独立完成练习题,巩固反比例函数的知识。
6. 课后作业:布置作业,让学生进一步巩固反比例函数的知识。
反比例函数教案设计(篇)
反比例函数教案设计(优秀篇)一、教学目标1. 知识与技能:(1)理解反比例函数的定义;(2)掌握反比例函数的性质;(3)能够运用反比例函数解决实际问题。
2. 过程与方法:(1)通过观察实例,引导学生发现反比例函数的规律;(2)利用图形演示反比例函数的特点;(3)运用数学建模的方法,解决生活中的反比例函数问题。
3. 情感态度与价值观:(1)培养学生对数学的兴趣和好奇心;(2)培养学生运用数学知识解决实际问题的能力;(3)培养学生的团队协作和交流能力。
二、教学重点与难点1. 教学重点:(1)反比例函数的定义;(2)反比例函数的性质;(3)反比例函数在实际问题中的应用。
2. 教学难点:(1)反比例函数图形的特点;(2)解决实际问题时,如何建立反比例函数模型。
三、教学过程1. 导入新课:(1)引导学生回顾正比例函数的知识;(2)通过提问,激发学生对反比例函数的好奇心。
2. 自主学习:(1)让学生阅读教材,理解反比例函数的定义;(2)学生相互讨论,总结反比例函数的性质。
3. 课堂讲解:(1)利用图形演示反比例函数的特点;(2)讲解反比例函数在实际问题中的应用。
4. 课堂练习:(1)布置一些反比例函数的题目,让学生独立完成;(2)挑选学生回答,总结解题思路。
5. 课后作业:(1)巩固反比例函数的知识;(2)培养学生运用反比例函数解决实际问题的能力。
四、教学评价1. 课堂讲解:评价学生对反比例函数的理解程度;2. 课堂练习:评价学生运用反比例函数解决问题的能力;3. 课后作业:评价学生对反比例函数知识的掌握情况。
五、教学资源1. 教材:提供反比例函数的相关知识;2. 图形演示软件:帮助学生直观地理解反比例函数的特点;3. 实际问题案例:培养学生运用反比例函数解决实际问题的能力。
六、教学策略1. 实例引导:通过展示实际生活中的反比例关系,如人口增长、radioactive decay等,让学生直观地感受反比例函数的应用。
反比例教研活动(3篇)
第1篇一、活动背景在数学教学中,反比例函数是学生难以掌握的内容之一。
为了提高教师对反比例函数教学的理解和把握,提升课堂教学效果,我校数学教研组于2023年3月15日开展了以“深入探讨反比例函数教学策略”为主题的教研活动。
本次活动旨在通过集体备课、课堂教学观摩、教学反思和专题讲座等形式,提高教师对反比例函数教学的认知水平,促进教师专业成长。
二、活动内容1. 集体备课活动开始,教研组长组织全体数学教师对反比例函数的教学内容进行了深入探讨。
教师们共同分析了教材,明确了教学目标,并针对教学重难点进行了详细讨论。
在此基础上,制定了详细的教学方案,包括教学设计、课堂活动、作业布置等。
2. 课堂教学观摩为了更好地展示反比例函数的教学策略,教研组安排了两节公开课。
第一节由青年教师张老师主讲,以“认识反比例函数”为主题,通过实例引入,引导学生探究反比例函数的特点。
张老师采用多媒体教学手段,使课堂生动有趣,学生积极参与,取得了良好的教学效果。
第二节由经验丰富的老教师李老师主讲,以“反比例函数的应用”为主题,通过实际问题的解决,让学生体会反比例函数在生活中的应用价值。
李老师注重培养学生的逻辑思维能力和解决问题的能力,引导学生通过小组合作、探究式学习等方式,深入理解反比例函数。
3. 教学反思课后,全体教师对两节课进行了深入反思。
青年教师张老师表示,通过本次教研活动,自己对反比例函数的教学有了更深入的认识,在今后的教学中,将更加注重学生的主体地位,激发学生的学习兴趣。
老教师李老师则认为,反比例函数的教学要注重理论与实践相结合,让学生在实际问题中体会数学的价值。
4. 专题讲座最后,教研组长结合自身教学经验,为全体教师做了一场题为“反比例函数教学策略”的专题讲座。
讲座中,教研组长从以下几个方面进行了阐述:(1)反比例函数的概念和性质(2)反比例函数的教学方法(3)反比例函数的应用(4)反比例函数教学中的常见问题及对策讲座内容丰富,实用性强,为教师们提供了宝贵的教学经验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
反比例函数数学活动教案教学是一种创造性劳动。
写一份优秀教案是设计者教育思想、智慧、动机、经验、个性和教学艺术性的综合体现。
下面就是小编给大家带来的数学《反比例函数》教案范文,希望能帮助到大家!数学《反比例函数》教案一关于教学设计:备课过程,我认真研读教材,认为本节课重点和难点就是掌握反比例函数的概念,以及如何与一次函数及一次函数中的正比例函数的区别。
所以,我在讲授新课前安排了对函数、一次函数及正比例函数概念及一次函数和正比例函数一般式的复习。
为了更好的引入反比例函数的概念,并能突出重点,我采用了课本上的问题情境,同时调整了课本上提供的思考的问题的位置,将它放到函数概念引出之后,让学生体会在生活中有很多反比例关系。
情境设置:汽车从南京开往上海,全程约300km,全程所用的时间t(h)随v(km/h)的变化而变化。
(1)你能用含v的代数式来表示t吗?(2)时间t是速度v的函数吗?设计意图:与前面复习内容相呼应,让同学们能在做一做和议一仪中感受两个量之间的函数关系,同时也能注意到与所学一次函数,尤其是正比例函数的不同。
从而自然地引入反比例函数概念。
为帮助学生更深刻的认识和掌握反比例函数概念,我引导学生将反比例函数的一般式进行变形,并安排了相应的例题。
一般式变形:(其中k均不为0)通过对一般式的变形,让学生从形上掌握反比例函数的概念,在结合思考的几个问题,让学生从神神上体验反比例函数。
为加深难度,我又补充了几个练习:1、为何值时,为反比例函数?2是的反比例函数,是的正比例函数,则与成什么关系?由于备课充分,我信心十足,课堂上情绪饱满,学生们也受到我的影响,精神饱满,课堂气氛相对活跃。
在复习函数这一概念的时候,很多学生显露出难色,显然不是忘记了就是不知到如何表达。
我举了两个简单的实例,学生们立即就回忆起函数的本质含义,为学习反比例函数做了很好的铺垫。
一路走来,非常轻松。
对反比例函数一般式的变形,是课堂教学中较成功的一笔,就是因为这一探索过程,对于我补充的练习1这类属中等难度的题型,班级中成绩偏下的同学也能很好的掌握。
而对于练习3,对于初学反比例函数的学生来说,有点难度,大部分学生显露出感兴趣的神情,不少学生能很好得解答此类题。
经验感想:1、课前认真准备,对授课效果的影响是不容忽视的。
2、教师的精神状态直接影响学生的精神状态。
3、数学教学一定要重概念,抓本质。
4、课堂上要注重学生情感,表情,可适当调整教学深度。
数学《反比例函数》教案二知识技能目标1.理解反比例函数的图象是双曲线,利用描点法画出反比例函数的图象,说出它的性质;2.利用反比例函数的图象解决有关问题.过程性目标1.经历对反比例函数图象的观察、分析、讨论、概括过程,会说出它的性质;2.探索反比例函数的图象的性质,体会用数形结合思想解数学问题.教学过程一、创设情境上节的练习中,我们画出了问题1中函数的图象,发现它并不是直线.那么它是怎么样的曲线呢?本节课,我们就来讨论一般的反比例函数(k是常数,k 0)的图象,探究它有什么性质.1.画出函数的图象.分析画出函数图象一般分为列表、描点、连线三个步骤,在反比例函数中自变量x 0.解1.列表:这个函数中自变量x的取值范围是不等于零的一切实数,列出x与y的对应值:2.描点:用表里各组对应值作为点的坐标,在直角坐标系中描出在京各点点(-6,-1)、(-3,-2)、(-2,-3)等.3.连线:用平滑的曲线将第一象限各点依次连起来,得到图象的第一个分支;用平滑的曲线将第三象限各点依次连起来,得到图象的另一个分支.这两个分支合起来,就是反比例函数的图象.上述图象,通常称为双曲线(hyperbola).提问这两条曲线会与x轴、y轴相交吗?为什么?学生试一试:画出反比例函数的图象(学生动手画反比函数图象,进一步掌握画函数图象的步骤).学生讨论、交流以下问题,并将讨论、交流的结果回答问题.1.这个函数的图象在哪两个象限?和函数的图象有什么不同?2.反比例函数(k 0)的图象在哪两个象限内?由什么确定?3.联系一次函数的性质,你能否总结出反比例函数中随着自变量x的增加,函数y将怎样变化?有什么规律?反比例函数有下列性质:(1)当k 0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k 0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.注1.双曲线的两个分支与x轴和y轴没有交点;2.双曲线的两个分支关于原点成中心对称.以上两点性质在上堂课的问题1和问题2中反映了怎样的实际意义?在问题1中反映了汽车比自行车的速度快,小华乘汽车比骑自行车到镇上的时间少.在问题2中反映了在面积一定的情况下,饲养场的一边越长,另一边越小.三、实践应用例1若反比例函数的图象在第二、四象限,求m的值.分析由反比例函数的定义可知:,又由于图象在二、四象限,所以m+1 0,由这两个条件可解出m的值.解由题意,得解得.例2已知反比例函数(k 0),当x 0时,y随x的增大而增大,求一次函数y=kx-k的图象经过的象限.分析由于反比例函数(k 0),当x 0时,y随x的增大而增大,因此k 0,而一次函数y=kx-k中,k 0,可知,图象过二、四象限,又-k 0,所以直线与y轴的交点在x轴的上方.解因为反比例函数(k 0),当x 0时,y随x的增大而增大,所以k 0,所以一次函数y=kx-k的图象经过一、二、四象限.例3已知反比例函数的图象过点(1,-2).(1)求这个函数的解析式,并画出图象;(2)若点A(-5,m)在图象上,则点A关于两坐标轴和原点的对称点是否还在图象上?分析(1)反比例函数的图象过点(1,-2),即当x=1时,y=-2.由待定系数法可求出反比例函数解析式;再根据解析式,通过列表、描点、连线可画出反比例函数的图象;(2)由点A在反比例函数的图象上,易求出m的值,再验证点A关于两坐标轴和原点的对称点是否在图象上.解(1)设:反比例函数的解析式为:(k 0).而反比例函数的图象过点(1,-2),即当x=1时,y=-2.所以,k=-2.即反比例函数的解析式为:.(2)点A(-5,m)在反比例函数图象上,所以,点A的坐标为.点A关于x轴的对称点不在这个图象上;点A关于y轴的对称点不在这个图象上;点A关于原点的对称点在这个图象上;例4已知函数为反比例函数.(1)求m的值;(2)它的图象在第几象限内?在各象限内,y随x的增大如何变化?(3)当-3 x 时,求此函数的最大值和最小值.解(1)由反比例函数的定义可知:解得,m=-2.(2)因为-2 0,所以反比例函数的图象在第二、四象限内,在各象限内,y随x的增大而增大.(3)因为在第个象限内,y随x的增大而增大,所以当x=时,y最大值=;当x=-3时,y最小值=.所以当-3 x 时,此函数的最大值为8,最小值为.例5一个长方体的体积是100立方厘米,它的长是y厘米,宽是5厘米,高是x厘米.(1)写出用高表示长的函数关系式;(2)写出自变量x的取值范围;(3)画出函数的图象.解(1)因为100=5xy,所以.(2)x 0.(3)图象如下:说明由于自变量x 0,所以画出的反比例函数的图象只是位于第一象限内的一个分支.四、交流反思本节课学习了画反比例函数的图象和探讨了反比例函数的性质.1.反比例函数的图象是双曲线(hyperbola).2.反比例函数有如下性质:(1)当k 0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是在每个象限内y随x的增加而减少;(2)当k 0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是在每个象限内y随x的增加而增加.五、检测反馈1.在同一直角坐标系中画出下列函数的图象:(1);(2).2.已知y是x的反比例函数,且当x=3时,y=8,求:(1)y和x的函数关系式;(2)当时,y的值;(3)当x取何值时,?3.若反比例函数的图象在所在象限内,y随x的增大而增大,求n的值.4.已知反比例函数经过点A(2,-m)和B(n,2n),求:(1)m和n的值;(2)若图象上有两点P1(x1,y1)和P2(x2,y2),且x1 0 x2,试比较y1和y2的大小.数学《反比例函数》教案三•一、教材分析:反比例函数的图象与性质是对正比例函数图象与性质的复习和对比,也是以后学习二次函数的基础。
本课时的学习是学生对函数的图象与性质一个再知的过程,由于初二学生是首次接触双曲线这种函数图象,所以教学时应注意引导学生抓住反比例函数图象的特征,让学生对反比例函数有一个形象和直观的认识。
二、教学目标分析根据二期课改以学生为主体,激活课堂气氛,充分调动起学生参与教学过程的精神。
在教学设计上,我设想通过使用多媒体课件创设情境,在掌握反比例函数相关知识的同时激发学生的学习兴趣和探究欲望,引导学生积极参与和主动探索。
因此把教学目标确定为:1.掌握反比例函数的概念,能够根据已知条件求出反比例函数的解析式;学会用描点法画出反比例函数的图象;掌握图象的特征以及由函数图象得到的函数性质。
2.在教学过程中引导学生自主探索、思考及想象,从而培养学生观察、分析、归纳的综合能力。
3.通过学习培养学生积极参与和勇于探索的精神。
三、教学重点难点分析本堂课的重点是掌握反比例函数的定义、图象特征以及函数的性质;难点则是如何抓住特征准确画出反比例函数的图象。
为了突出重点、突破难点。
我设计并制作了能动态演示函数图象的多媒体课件。
让学生亲手操作,积极参与并主动探索函数性质,帮助学生直观地理解反比例函数的性质。
四、教学方法鉴于教材特点及初二学生的年龄特点、心理特征和认知水平,设想采用问题教学法和对比教学法,用层层推进的提问启发学生深入思考,主动探究,主动获取知识。
同时注意与学生已有知识的联系,减少学生对新概念接受的困难,给学生充分的自主探索时间。
通过教师的引导,启发调动学生的积极性,让学生在课堂上多活动、多观察,主动参与到整个教学活动中来,组织学生参与探究讨论交流总结的学习活动过程,同时在教学中,还充分利用多媒体教学,通过演示,操作,观察,练习等师生的共同活动中启发学生,让每个学生动手、动口、动眼、动脑,培养学生直觉思维能力。