化学反应工程第二章

合集下载

化学反应工程-第2章

化学反应工程-第2章
rA
移项并积分得:
dCA kCA a CB b dt
CA 0
kt

dCA CA mCBn
CA
这时假设a,b分别为m, n ,则以时间t为横 坐标,以积分项 C

A0
CA
dC A m n C A CB
为纵坐标,当以具体数据代入时,作图就可 以得到斜率为k的直线。如果得到直线,则表明此 动力学方程是适合于所研究的反应的。若得到曲 线,则表明此动力学应被排除,应该重新假设a, b的值而加以检验。
即:
ln
C Ae
C A0 C Ae C A C Ae
1 k1 1 t K
代入2-20式得:
将实验测得的CA-t数据,按照上式 C
ln
C A0
A
C Ae C Ae
与t作图可以得一条直线,斜率为k1+k2, 又因为k1/k2可知,因此可以求出 k1,k2 值。
2.2 等温恒容过程 ⑵ 反应转化率
第二章 均相反应动力学基础
反应物A的转化率可以用下式定义
反应物A的转化量 n A 0 n A xA = A的起始量 n A0
注意: ① 转化率恒为正。 ② 反应物一般指关键反应物(限制反应物、着眼反应物), 其是以最小化学计量量存在的反应物。 ③ 根据nA0的选择不同,有单程转化率(以反应器进口物料 为基准,如氨合成过程的合成塔进口循环气。)和总转化率 (以过程进口物料为基准,如氨合成过程的新鲜气。)。
如果cA0远远小于cB0,cB在全部反应时间里近似 于不变,则二级反应可以作为拟一级反应处理。
适用范围:
利用积分法求取动力学方程式的过程, 实际上是个试差的过程,它一般在反应级 数是简单整数时使用。当级数为分数时, 试差就比较困难,这时应该用微分法。 其他不可逆反应动力学方程式的 积分式见书上表2-4.

化学反应工程(第三版)第二章

化学反应工程(第三版)第二章


dnA Vdt
12.34cA2
[mol/L h]
14
2.2 单一反应速率式的解析
反应速率的定义式是微分式,将其与动力学方程关联并积分,可
得到反应物浓度随时间变化的关系。该过程称为反应速率式的解析。
本节介绍等温、恒容、间歇操作条件下单一反应速率式的解析。
2.2-1 不可逆反应
一、一级不可逆反应
A
5
2.1 基本概念及术语
二、膨胀因子(气相反应)
物理意义:每消耗1mol反应物K,引起整个物系总物质的量的变化。
(1)由化学计量式计算
K
i K
(2-1-16)
(2)由总物料衡算计算
K
n n0 nK 0 xK
n n0 n0 yK 0 xK
(2-1-17)
整理得
n n0 (1 K yK 0 xK )
行分析的基本依据。
9
2.1.2 均相反应动力学方程
解:将Arrhenius式取对数,则有
E ln k RT ln k0
由式可见,lnk与1/T之间为线性关系。整理表2.1-1中数据可得
10
lnk
B
-7.2
-7.4
-7.6
-7.8
-8.0
-8.2
-8.4
2.30
2.32
2.34
2.36
2.38
nk nk0 (1 xk )
则组分A的反应速率可用转化率表示为:
(rA )
dnA Vdt
nA0 V
dxA dt
恒容条件下
(rA )
cA0
dxA dt
讨论:转化率是衡量反应物转化程度的量,若存在多种反应物

化学反应工程第二章

化学反应工程第二章

nA = nA0(1− xA )
亦可得到任意组分在任意时刻的摩尔数 可得到任意组分在任意时刻的摩尔数 αI nI = nI0 + nA0xA (−αA )
7
1.计算转化率起始状态的选择: 计算转化率起始状态的选择: 计算转化率起始状态的选择 反应起始原料组成; (1)间歇反应器 :反应起始原料组成; ) (2)连续流动反应器:进口原料组成; )连续流动反应器:进口原料组成; 2.等容反应 CA=CA0(1- XA) 等容反应 3.可逆等容反应 CAe=CA0(1- XAe) 可逆等容反应 4.单程转化率:原料通过反应器一次达到 单程转化率: 单程转化率 的转化率 5.全程转化率:新鲜原料进入反应系统到 全程转化率: 全程转化率 离开系统所达到的转化率。 离开系统所达到的转化率。
4
(-a)A + (− b)B +L+ rR+ sS +L= 0
a A A + a B B + L + a R R + aS S + L = 0
∑a I = 0
I
•特点: 特点: 特点 •1 只反映组份间的计量关系 •2 乘以非零常数,计量关系不变 乘以非零常数, •3 不得含有除 之外的其它公因子 不得含有除1之外的其它公因子
• 必有
1 1 − rA = (− rB ) = (rC ) = (rD ) 2 2
−r I r= −αI
• 当I为反应物时, 为反应物时, 为反应物时 • I为产物时, 为产物时, 为产物时
r=
αI
19
r I
• 用转化率表示反应速率: 用转化率表示反应速率: nA0 dx A kmol -rA = 一般式 3 V dt m s • 用浓度表示反应速率: 用浓度表示反应速率:

化学反应工程第二章

化学反应工程第二章
V
1 1 - xA kt
=
nA0
CA nA
CA C A0
=1 - x A
ln
ln
1 1 - xA
斜率﹦k 或
ln
C A0 CA
t
二级不可逆反应 A﹢B→产物
若 CA0﹦CB0
CA
( rA ) kC A
2
dC A dt
kC A C B

dC A dt


1 CA

dC A CA
2.13 93 k 5.02 86.8 k 0.0181 0.0309 1 2.13 K 1 5.02 K B B
2
2
2
9.58 89.3 k 6.46 86.3 k 0.0408 0.0338 1 9.58 K 1 6.46 K B B 3.3 92.2 k 0.0263 1 3.3 K B
第2章 均相反应动力学基础
2.1 概述
均相反应 均相反应是指参予反应的各物质均 处同一个相内进行的化学反应。
烃类的高温裂解为气相均相反应,酸碱中 和、酯化反应为典型的液相均相反应。
2.1.1化学反应速率及其表示
化学反应速率 :单位时间、单位反应体积、组分A 的摩尔数变化量称为A组分的反应速率。 例 反应物
1 xA C A0 1 xA
斜率﹦k 或
1 CA

1 C A0
t
若 CA0≠CB0 ,设β﹦ CB0 /CA0

dC A dt
kC A C B

CA

化学反应工程第二章均相反应动力学基础

化学反应工程第二章均相反应动力学基础

A
A+P
P
P+P
(2-8)
(2-9)
2.1.3 反应的转化率、选择性和收率
⑴转化率 转化率一般用关键组分来表示。所谓关键组分必须是反 应物,生产上选择的关键组分一般是反应物料中的主要
组分,即价值较高且不应是过量的,因此转化率的高低,
会一定程度上反映过程的经济效果,对反应过程的评价 提供直观的信息。
2.1.3 反应的转化率、选择性和收率
对于选择率一般有平均选择率和瞬时选择率之分,以平 行反应(2-5)、(2-6)为例,
两种选择率的定义为: 平均选择率 瞬时选择率 (2-2)
2.1.3 反应的转化率、选择性和收率
⑶收率Y 收率的定义为:
Y 生成目的产物所消耗的 A摩尔数 A的起始摩尔数
(2-3)
COCl2
3 2 2 CO CO Cl 2
(2-12)
该反应的速率方程为:
(rCO ) k c c
(2-18)
则对于氯气的反应级数是分数。
2.1.5 反应动力学方程
⑵反应速率常数kA 由式(2-13)知,当A、B组分的浓度等于1
(rA )k A ,说明kA就是浓度为1时的速率。 时,
温度是影响反应速率的主要因素,随着温度的升高速
三级反应常见。例如下面的气相反应(2-11):
2NO+O2 动力学速率方程为:
2 (rNO ) k NO cNO cO2
2NO2
(2-11)
(2-17)
2.1.5 反应动力学方程
级数在一定温度范围内保持不变,它的绝对值不会超过3, 但可以是分数,也可以是负数。例如下面的光气合成反 应:
CO+Cl2
生产上还经常遇到循环反应器,如合成氨或合成甲醇的 合成塔等,由于化学平衡或其他原因的限制,原料一次 通过反应器后,转化率一般很低,需要把出口的反应混

化学反应工程-第二章 复合反应与反应器选型

化学反应工程-第二章 复合反应与反应器选型
VR 4 0.537 2.15m3
16
2.1.4 循环反应器
在工业生产上,有时为了控制反应物的合适浓度, 以便于控制温度、转化率和收率,或为了提高原 料的利用率,常常采用部分物料循环的操作方法, 如图所示。
17
循环反应器的基本假设: ①反应器内为理想活塞流流动; ②管线内不发生化学反应; ③整个体系处于定常态操作。
第二章
复合反应与反应器选型
1
2.2.1 单一不可逆反应过程平推流反应器 与全混流反应器的比较
图2-1 不同反应器中浓度、转化率、反应速率的变化图 2
对于平推流反应器,在恒温下进行,其
设计式为:
P
1
k
cn 1 A0
n
xA 0
1
1
A xA xA
dxA
对于全混流反应器,在恒温下进行,其
设计式为:
m
xA
图2-5 多釜串联反应器的空间时间
11
计算出口浓度或转化率
对于一级反应:
1
cA0 cA1 kcA1
2
cA1 cA2 kcA2
cA1
cA0
1 k1
cA2
cA1
1 k 2
cA0
1 k11 k 2
依此类推:
cAN N cA0
1 ki
i 1
12
如果各釜体积相同,即停留时间相同,则:
cAN
VR1 :VR2 V01 :V02
是应当遵循的条件
6
(2)全混流反应器的并联操作 多个全混流反应器并联操作时,达到相同 转化率使反应器体积最小,与平推流并联 操作同样道理,必须满足的条件相同。
7
(1)平推流反应器的串联操作 考虑N个平推流反应器的串联操作,

化学反应工程第二章解析

化学反应工程第二章解析

第二章 均相反应动力学基础均相反应 均相反应是指参予反应的各物质均处同一个相内进行化学反应。

在一个相中的反应物料是以分子尺度混合的,要求:①必须是均相体系 (微观条件) ②强烈的混合手段 (宏观条件) ③反应速率远小于分子扩散速度一、计量方程反应物计量系数为负,生成物计量系数为正。

计量方程表示物质量之间关系,与实际反应历程无关; 计量系数只有一个公因子;用一个计量方程表示物质量之间关系的体系称为单一反应,反之称为复合反应。

二、化学反应速率单位时间、单位反应容积内组分的物质的量(摩尔数)的变化称之为该组分的反应速率。

反应物:生成物:对于反应三、化学反应速率方程r 是反应物系的组成、温度和压力的函数。

32223NH H N =+032223=--N H NH A A Adn r Vd d t C dt=-=-R R Rdn r Vdt dC dt==A B S R A B S Rαααα+=+SABRABSRr r r r αααα===AA AB r [k (T)][f(C ,C ,)]=有两类;双曲函数型和幂函数型。

k -化学反应速率常数; a(b)-反应级数。

(1)反应级数(i) 反应级数与反应机理无直接的关系,也不等于各组份的计量系数; (ii) 反应级数表明反应速率对各组分浓度的敏感程度;(iii) 反应级数是由实验获得的经验值,只能在获得其值的实验条件范围内加以应用。

(2)反应速率常数k[k]: s -1·(mol/m 3)1-nE :是活化能,把反应分子“激发”到可进行反应的“活化状态”时所需的能量。

E 愈大,通常所需的反应温度亦愈高,反应速率对温度就愈敏感。

k 0 —指前因子,其单位与 反应速率常数相同;E— 化学反应的活化能,J/mol ; R — 气体常数,8.314J/(mol .K)。

a b A A B r kC C=2220.512H Br HBrHBrBr k c c r c k c =+0exp[]E k k RT=-01ln ln E k k R T=-⨯ln klnk 0 slop=-E/R1/T⏹ 反应速率的温度函数关系● 活化能越高,斜率越大,该反应对温度越敏感; ● 对于一定反应,低温时反应速率对温度变化更敏感。

化学反应工程-第2章(23)

化学反应工程-第2章(23)

2 d T dT 2 2 4 ( R dR 2 R dR ) ( 4 R dR)rA H e 2 dR dR
简化后得到球形催化剂内温度分布微分方程:
e d 2T 2 dT Si 2 kS f (C A ) H R dR R dR 1
边界条件:
dT 0 dR R = Rp时,T Ts (外表面温度) R 0 时,
3) 颗粒内的浓度差与温度差
联立扩散-反应方程和温度分布微分方程可得:
2 dT kv f (C A ) 2 H R dR R dR
e d 2T
DAeff
d 2C A 2 dC A kv f (C A ) 2 R dR dR
无死区时边界条件:
R = Rp时,C A C As dC R 0 时, A 0 dR
有死区时边界条件:
R = Rp时,C A C As
* dC A R Rd 时, CA CA ; 0 dR R Rd
2)温度分布微分方程
有效导热系数

dT Qe e dR
1) 浓度分布微分方程 设球形颗粒的半径为RP 半径为R处取一厚度为 dR的壳体,在单位时间 内对该壳体作A的物料平 衡。 稳定状态下:
[A扩散进入量]-[A 扩散离开量] =[A反应量]
R
R+dR
[A扩散进入量]-[A扩散离开量]=[A反应量]
dC A dC A 2 2 2 DAeff 4 ( R dR ) D (4 R ) (4 R dR)rA Aeff dR RdR dR R Si 式中 rA kV f (C A ) ks f (C A ) 1

化学反应工程-第2章(21)

化学反应工程-第2章(21)

m p s g ( 2ra L) n m pVg ra Ln
2
内表面 积 mp:催化剂颗粒的质量,g
Sg
S M
ra
2Vg sg
孔容
V孔容积 Vg M 颗粒质量
催化剂颗粒 平均孔半径
表1-1是常用催化剂载体的比表面积和孔容。从表中可以看 出,催化剂颗粒的内表面积是何等的巨大。
b p (1 ) t (1 )(1 )
b p (1 ) t (1 )(1 )
b ( g / cm 堆体积) g = p ( 3 ) b p (1 ) 3 cm 空隙 cm 颗粒体积 1-( ) 3 cm 堆体积 g p( 3 ) g cm 颗粒体积 = ( ) p t (1 ) t 3 3 cm 孔容积 cm 载体体积 1 ( 3 ) cm 颗粒体积 b p (1 ) t (1 )(1 )
设有气-固相催化反应: CO( g ) H O( g ) CO ( g ) H ( g ) 2 2 2 反应步骤如下: (1) 外扩散:A和B从气相主体到达颗粒外表面; (2)内扩散:A和B从颗粒外表面进入颗粒内部; (3)化学吸附:A和B被活性位吸附,成为吸附态A和B; (4)表面反应:吸附态A和B起反应,生成吸附态C和D; (5)脱附:吸附态C和D脱附成自由的C和D。 (6)内扩散: C和D从颗粒内部到达颗粒外表面; (7)外扩散:C和D从颗粒颗粒外表面到达气相主体; 化学吸附、表面反应和脱附三步是串联的,构成了催化 反应过程。按照上述三步获得的催化反应动力学,称之为催 化反应化学动力学,或者催化反应本征动力学。
M 颗粒质量 P V颗粒体积
g / cm3
B、堆密度(床层密度):以床层的堆体积(颗粒体积和颗粒 间空隙之和)计算的密度。

化学反应工程 第二章 均相反应动力学基础

化学反应工程 第二章 均相反应动力学基础

2 等温恒容过程
3 等温变容过程
化学反应工程
2.1 概述
1
化学反应速率及其表示
2
反应速率常数k
化学反应工程
2.1 概述
均相反应是指在均一的液相或气相中进行的反应,这 一类反应包含很广泛的范围。 研究均相反应过程,首先要掌握均相反应的动力学。
它是不计过程物理因素的影响,仅仅研究化学反应本身的
反应速率规律,也就是研究物料的浓度、温度以及催化剂 等因素对化学反应速率的影响。
2.2.1单一反应动力学方程的建立
(3)将步骤(2)所得到的各 对 作图,若得到的
为一条通过原点的直线,说明所假定的机理与实验数据相符合
。否则,需重新假定动力学方程并加以检验,此步骤如图2-6 (b)所示。
化学反应工程
2.2.1单一反应动力学方程的建立
例2-1 在恒容下的液相反应, ,实验测得
如下的数据,试用微分法和积分法建立动力学方程。
化学反应工程
2.1.1 化学反应速率及其表示
对于气相反应,由于分压与浓度成正比,也常常使用分 压来表示:
双曲线型动力学方程型式,如合成溴化氢的反应是一 个链反应,其动力学方程为:
化学反应工程
2.1.1 化学反应速率及其表示
化学反应工程
2.1.1 化学反应速率及其表示
常见的复合反应有:
连串反应
平行反应 平行-连串反应
化学反应工程
2.1.1 化学反应速率及其表示
化学反应速率的定义,是以在单位空间(体积)、单
位时间内物料(反应物或产物)数量的变化来表达的,用
数学形式表示即为:
化学反应工程
2.1.1 化学反应速率及其表示
化学反应工程

化学反应工程 第二章2

化学反应工程 第二章2

• 定义参数Ѳj=Nj0/NA0=Cj0/CA0=yj0/yA0(与关键反 应物的进料比,feed condition) 所以, CB=[NB0-(b/a)NA0XA]/V=NA0[ѲB-(b/a)XA]/V CC= NA0[ѲC+(c/a)XA]/V CD= NA0[ѲD+(d/a)XA]/V 式中ѲB=NB0/NA0; ѲC=NC0/NA0 ; ѲD=ND0/NA0 • 下一步只需求V与XA的关系V(XA)即可得到 Cj=h(XA)
• • 对于二级反应(-rA)=kACACB,可以得到 (-rA)=f(XA)的表达式,即: (-rA)=kACACB=kACA02(1-XA)[ѲB-(b/a)XA]
{r}= mol体积-1时间-1
• 速率常数的单位
零级(n=0) –rA=kA {kA}=mol体积-1时间-1 一级(n=1) –rA=kACA {kA}=时间-1 二级(n=2)–rA=kACA2 {kA}= 体积mol -1时间-1 n级 –rA=kACAn {kA}= {C} 1-n时间-1
Part 2、化学计量
• A+b/aB c/aC+d/aD 取反应方程式中反应物A为计算基准,即其它物 质以1molA为基准。 2.2.1间歇式反应器 批式反应器主要用于特种化学品的生产,以 及用于实验室速率数据测定。 设反应物A在反应器中起始mol数为NA0 ,转化 率为XA,则反应掉的mol数为NA0XA,未反应的mol 数为: NA=NA0-NA0XA=NA0(1-XA)
• δA: 膨胀因子,关键组分A消耗1mol时,引 起反应物系摩尔数的变化量。对于恒压的 气相反应,摩尔数的变化导致反应体积变 化。δA>0是摩尔数增加的反应,反应体积 增加。δA<0是摩尔数减少的反应,反应体 积减小。δA=0是摩尔数不变的反应,反应 体积不变。

《化学反应工程》第二章

《化学反应工程》第二章
/3 p ( V )1A/ 3 V )1 B


2
cm2 / s
2-6 Knusen扩散系数
当孔径(d0)小于λ,(λ/d0)>10时,碰撞发生在分子与 孔壁之间,分子间的作用很小,这就是努森扩散。
努森扩散系数 DK(cm2/s):
2 raV cm2 / s 3 ra : 孔半径, DK
DK 9700ra T / M cm2 / s T : 系统温度, M : 扩散物的相对分子量。
进而得
V : 平均分子运动速度。
9.871011 cm 分子平均自由程估算: p
λ:cm,p:Pa
2-7 催化剂孔内组分的综合扩散系数 上述两种扩散都存在并且,10-2 <(λ/d0)>10时,这就是 综合扩散。
e
H R (cAS cA )
颗粒中心反应物的浓度cAC为零时,可得颗粒外表面温度TS与中心 温度TC之差的最大值,即
TC TS max
DA,eff
e
H R cAS
2-11 等温催化剂一级反应内扩散有效因子的解析解 一、球型催化剂 若球型催化剂上进行一级不可逆反应,
TS 、Tg :表面温度与气体温度, αS:气体与颗粒表面间的给热系数。 吸热时,颗粒外表面温度<气流温度; 放热时,颗粒外表面温度>气流温度。
2-3 催化反应控制阶段的判别
1.本征动力学控制
1 1 k G S e k S S i
* (rA ) g kS Si (cAg c* ) k S ( c c ) S i AS A A
第一节 气-固相催化反应的宏观过程
2-1 气-固相催化反应过程中反应组分的浓度分布
以球形催化剂为例

化学反应工程__第2章_理想反应器PPT课件

化学反应工程__第2章_理想反应器PPT课件

单位时间内
单位时间内
单位时间内
环境传给反 反应所放出 反应器内热
应器的热量
的热量
量的累积量
UA(Tm-T) (-△Hr)(-rA)V
d (Cv TV )
dt
UA(Tm-T) + (-△Hr)(-rA)V =
d (Cv TV )
dt
符号说明:
U----总括传热系数(KJ/m2.h.℃);
1 物料衡算 2 热量衡算 3 反应容积的计算 4 间歇反应器的最优操作时间
2021年3月18日星期四
间歇式完全混合反应器
2021年3月18日星期四
特点: 反应器内各处温度始终相等,无需考虑反应器内的热
量传递问题 所有物料具有相同的反应时间
优点: 操作灵活,易于适应不同操作条件与不同产品品种,
适用于小批量, 多品种,反应时间较长的产品生产 缺点:
2021年3月18日星期四
பைடு நூலகம்A VR
d VRcA
dt
VRcA nA nA0 1 xA
d VRcA
dt
nA0
dxA dt
rAVR
rA
nA0 VR
dxA dt
积分得:
t nA0
xA dxA 0 VR rA
cA0
xA 0
dxA rA
cA dcA
r cA0
A
——间歇完全混合反应器的设计方程
料,卸料及清洗等辅助操作时间为1h,反应在100℃
下等温操作,其反应速率方程如下:
2021年3月18日星期四
rA k1 cAcB cRcS K
100℃时:
k1 4.76104 l /mol min

化学反应工程课件—第二章(反应速率)(PDF)

化学反应工程课件—第二章(反应速率)(PDF)
2009-5-3
1
第二章 反应动力学基础
讲授内容
1 基本概念 2 单一反应速率式 3 复合反应 4 链锁反应
2009-5-3
2
2.1 基本概念
1 化学计量方程
本节 讲授 内容
2 化学反应速率的定义 3 转化率等重要概念
4 化学反应速率方程
4 反应机理与速率方程
2009-5-3
3
一、化学计量方程
100 − x / 2
100 − x / 2
解得: x = 1.504mol
y = 0.989mol
乙烯的转化量为 :1.504 + 0.989 / 2 = 1.999mol
2009-5-3
23
所以,乙烯的转化率为: 1.999 /15 = 13.33%
环氧乙烷的收率为: 1.504 /15 = 10.03%
和反应后的摩尔数 yk0、yk为着眼组分K的 起始摩尔分率和反应后
yK
= yK 0 (1− xK )
1+ δK yK0xK
对于任何反应组分i有
2009-5-3
的总摩尔数
yi
= yi0(1− xi )
1+δK yK0xK
=
yi0
(1−
αi αK
yK0 yi0
xK )
1+δK yK0xK 27
δK
= n − n0 nK 0 − nK

算结果均是如此),对于复杂反应Φ ≠ x
¾ 收率也有单程和全程之分(循环物料系统)
¾ 无论是收率还是选择性,还有其它的定义(结果不
一样,但说明同样的问题)
¾ 转化率x只能说明总的结果, Φ 说明在转化的反

化学反应工程 第二章习题答案

化学反应工程  第二章习题答案

化学反应工程课后答案化工103班2-1银催化剂上进行甲醇氧化为甲醛的反应O H HCHO O OH CH 223222+=+ O H CO O OH CH 22234232+=+进入反应器的原料中,甲醇:空气:水蒸气=2:4:1.3(摩尔比),反应后甲醇转化率达72%,甲醛的收率为69.2%,试计算: (1)反应的总选择性; (2)反应器出口组成。

解:根据甲醇:空气:水蒸气=2:4:1.3(摩尔比),以100mol 进料为基准。

设χy 分别为HCOH 和2co 生成量O H HCHO O OH CH 223222+=+O H CO O OH CH 22234232+=+已知:%72=a x %2.69=Y%724.27=+yx ①0111A A c c kt -=A A c c kt 1122-=9.0=A x 99.0=A x091A kc t =0902A kc t =10:1:21=t t等温一级反应AA t c c k 0ln=同上解得kt t 10ln 21==1:1:21=t t 等温零级反应A A c c kt -=0同上解得kc t A 09.01=kc t A 009.02=1:10:21=t t2-5某一反应在间歇反应器中进行,经8min 后反应物转化了80%,经过18min 后转化了90%,求表达此反应的动力学方程。

解dtV dn r AA ⋅=积分后:()()⎪⎪⎭⎫- ⎝⎛--===--⎰⎰11111100n A n A c c c c n A A C A A c c n k kc dc r dc t A AA A A%90min 18%80min 821====A A x t x t()()()()⎪⎪⎪⎭⎪⎪⎪⎬⎫⎪⎪⎪⎩⎪⎪⎪⎨⎧⎪⎪⎭⎫ ⎝⎛----=⎪⎪⎭⎫ ⎝⎛----=------1111112001001111118111118n A n A n A n A n A n A x c c n k x c c n k 2=n2A A kcr =∴2-6某一气相一级反应S R A +→2,在恒温、恒压的实验反应器中进行,原料含75%A 及25%惰性气体(摩尔比),经8min 后其体积增加一倍。

化学反应工程 第二章 均相反应动力学基础

化学反应工程 第二章 均相反应动力学基础

for the volume of the person in
question
V person
75kg 1000kg / m3
0.075m 3
Next, noting that each mole of glucose
consumed uses 6moles of oxygen and
release 2816kJ of energy, we see that
T RT 2
ln
k
ln
k0
E RT
Temperature Rise Needed to Double the Rate of Reaction for Activation Energies and Average Temperatures Shown
Average
Activation Energy E
按反应工程观点:ri =f (P, T, C, Catalyst, 三传)
----宏观动力学方程
本征动力学
只研究化学因素而排除物理因素对反应速率的影 响的学科
宏观动力学
研究物理因素与化学因素共同影响化学反应速率 的学科
动力学方程有两大类:
幂函数型
经验型 由质量作用定律导出 多用于均相反应
第二章 均相反应的动力学基础
基本概念 简单反应 复合反应 连锁反应
2.1 基本概念和术语
化学计量方程 化学反应速率 反应转化率和反应程度 反应速率方程
化学计量方程
表示各反应物、生成物在反应过程中量的变化 关系的方程。
一个由S 个组分参与的反应体系,其计量方程写
为: α1A1+α2A2+…+αsAs=0
1 V

化学反应工程2(第二章-均相反应动力学基础)

化学反应工程2(第二章-均相反应动力学基础)

◆自催化反应:
特点:反应产物中某一产物对反应有催化作用,同时,为了使反应进
行 , 常 事 先 加 入 一 定 浓 度 的 催 化 剂 C , 设 浓 度 为 CC0 。
A+C2C+R……
设对各组分均为一级,则: rA
dCA dt
kCCCA
t=0, CA=CA0 CC=CC0 CR=CR0=0
continue
非等分子反应的膨胀因子及相关计算
膨胀因子:
K

1 K
s i1
i

n n0 n0yK0xK
K 的定义:
s
i Ai 0
i 1
的情况
每反应1mol的组分K所引起反应物系总摩尔数的变化量。
(举例:如合成氨的反应,求膨胀因子)
设关键组分K的转化率为xK,则:
yK
反应开始时总mol数(单位体积):CM0= CA0+ CC0
两参数是无法积 分的,设法变为 单参数微分形式
任何时刻:CC=CC0+(CA0-CA)=CM0- CA
rA
dCA dt
kCA CM 0
CA
积分得C
MO
k
t

ln

C C
A CM 0 A0 CM
C A0 0 CA
●幂函数型
对反应:AA+BB
kC

LL+MM
l CMm

kC'
Ca' A
Cb' B
Cl' L
C m' M
若为不可逆反应,则:
rA

k
c

化学反应工程第二章

化学反应工程第二章

二 复杂反应积分法
1. 一级可逆反应(reversible first-order reactions)
一级 A R (CRo 0)
k2 k1
dCA rA k1C A k2CR dt C Ao C A C R dCA rA k1C A k2 (C Ao C A ) (k1 k2 )C A k2C Ao dt
k2 k3 [M ] 末氏常数 k1
二 不同限定组分间关系 与反应速度的定义
(the definition of rates and their relation)
aA bB rR sS
(如:A 2 B 3R 4S )
同一个反应方程式只有一个温度和浓度影 响规律,不同限定组分之间的速度方程差别 用常数修正。
2.平行反应
A
(parallel reactions)
R S
k2
k1
rR k1C A
rS k 2 C A
dC A rA ( k1 k 2 ) C A dt
用同样方法可测出 nA
CD,C A CB时
C AC B C D 时
测出nB
测出nD
k kCB C D
nB
nD
k kCA C B
nA
nB
将nA,nB,nD代入k’,k’’,k’’’,k’’’’ 可求出四个值,均值为真k。 例: A 2B R
C Ao : CBo 1 : 2
M 1
2A R
M 1
dC A 2 kCA dt
1 1 kt C A C Ao
3.不可逆三分子三级反应 ( A B D 产物)
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
kaA p* A A bA p* A 1 A B kdA
bA k aA k dA
吸附达平衡时,ra=rd,则有:
对组分B,同理可得:
* kaB pB B * bB pB 1 A B kdB bB k aB k dB
2.2 气固催化本征动力学(8)
2.2 气固催化本征动力学(4)
考虑以上两种因素,脱附速率可以用下式表示:
rd=k’ f’’(θA ) exp(-Ed/RgT)
吸附净速率为: r= ra- rd=σA pA f(θA ) exp(-Ea/RgT)- k’ f’’(θA ) exp(-Ed/RgT) 3.3 吸附等温线 (absorption isotherms) 对于一定的吸附系统,恒温下测得的平衡吸附量与分压的关 系称为吸附等温线。 描述吸附等温线的模型有两类: 1)理想吸附层(Langmuir均匀表面吸附)模型; 2)真实吸附层(不均匀表面吸附)模型
吸附速率:
ra =ka pA (1- θA)2
脱附速率:
rd =kd θA2
平衡时:
A
bpA
* *
1 bpA
2.2 气固催化本征动力学(11)
五 均匀表面吸附动力学方程
气固相催化反应经过三个步骤,若其中的某一步阻力最大,总反 应速率决定于该步骤的速率,该步骤就为控制步骤。
vA A vB B vL L vM M
rA k0i e

Ei RTb
c ni Ab
效率因子包括外扩散有效因子及内扩散有效因子。 表观动力学法:将非反应相主体的温度和浓度与反应速率 直接关联得到的动力学方程:
rA k0a e

Ea RTb
c na Ab
形式完全一样,但实际意义不同。
2.2 气固催化本征动力学(1)
一 催化剂表面反应过程
* A
4.4 等温吸附方程的两种极限情况:
1)稀疏覆盖的表面
2.2 气固催化本征动力学(9)
* p A 很小, A 对于单分子吸附,
很小,
此时:bp* 1 1 bp* 1 A A 因此有: * • • 则:
A bpA
n
对于多组分吸附
i bi pi*
1 bi pi* 1
v p L M p A v pB v * vL
A
M
B
代入反应方程式
pL rL 1/ vL pL vL pM vM bM pM 1 bA p A bB pB bL v B K p p B
i 1
2)完全覆盖表面 对于单组分吸附,
* 1 bp* bp A A
p* A
很大,
bp* A 1
A 1
对于多组分吸附
2.2 气固催化本征动力学(10)
i 1
i 1 n
1 bi p bi pi*
i 1 * i i 1
n
n
3)当吸附的分子分解成两个原子,各占一个活性中心,则:
2.2 气固催化本征动力学(13)
5.2 过程为表面化学反应控制
催化反应速率服从质量作用定律,对于上述反应,有:
rA k A B k L M
令:
k1 kbAbB ,
rA
k2 k bLbM
k1 p A pB k2 pL pM 1 bA p A bB pB bL pL bM pM bi pi 2
2.2 气固催化本征动力学(5)
四 理想吸附层等温方程
4.1 模型基本假设: 1)催化剂表面是均匀的; 2)吸附分子间没有相互作用: 3)吸附和脱附可以建立动态平衡: 4.2 Langmuir理想吸附层等温方程 根据上述假设,可令: ka= σAexp(-Ea/RgT),kd= k’ exp(-Ed/RgT) 净吸附方程:
1/ vL
K p v A p vB k p A vM B pM
2.2 气固催化本征动力学(16) 例题:
铁催化剂上氨的合成反应速率由氨的脱附控制, 设表面吸附态有氨及氮,试求均匀表面吸附模型 动力学方程
例题1-4 设一氧化碳与水蒸气在铁催化剂上的催化反应机理如下 (1) (2) (CO) CO ( )
第二章 气固相反应动力学
2.1、 气固催化反应过程分析
2.2、气固催化反应本征动力学
2.3、气固反应表观动力学 2.3.1、 内部传递对气固相催化反应过程的影响 2.3.2、外部传递对气固相催化反应过程的影响 2.3.3、 外部传递与内部传递的综合影响
2.4、
气固相反应器的分类和选型
2.1 反应宏观过程(1)
催化剂
• • • • • • • •
颗粒
2.1 反应宏观过程(2)
2.1 反应宏观过程(2)
一 催化剂表面反应过程 (Surface reaction)
在多孔催化剂上进行的气固相催化反应,由反应物在位于催化剂内表 面的活性位上的化学吸附、活化吸附态组分进行化学反应和产物的脱 附三个连串步骤组成,因此,气固相催化反应本征动力学的基础是化 学吸附。
过程为A吸附控制,化学反应达到平衡
Kp
p p p p
* vL L M * vA A B
* vM * vB
v v p L pM pA* v pB v
L A
M
B
代入反应方程式
1/ v A pL vL pM vM k pA v B K p p B rA 1/ v A v v L M p pM bB pB bL pL bM pM 1 bA L v B K p p B
5.1 过程为单组分反应物的化学吸附控制
n rA raA rdA ka p A 1 i kd A i 1
其中

i 1
n
i
是反应物和产物的表面覆盖度之和
2.2 气固催化本征动力学(12)
n 1 1 i 1 b p* b p* b p* b p* i 1 A A B B L L M M * b p A A A * * * * 1 b p b p b p b p A A B B L L M M
(2)
k H 2 (CO2 ) (CO) H 2O k
/ kd
CO2 ( ) 2.2(CO 气固催化本征动力学( 17) (3) 2 ) /
ka
试推导(1),(2)为控制步骤时的均匀吸附动力学方程。 解: 设A-CO;B-H 2O; C H 2 ; D CO2 1. (1)为控制步骤 r ka PA 1 ( A D ) kd A 式中 A为定值,以平衡值近似代替。
rA k0i e

Ei RTS
c ni As
排除了传递过程的影响的动力学方程称为本征动力学方程 测定的气相主体的温度与反应物浓度与反应场所之间有差 距,处理方法: 1. 效率因子法
2. 表观动力学法。
2.1 本征动力学与表观动力学(3)
效率因子法: 采用实际测定的主体温度和浓度代入方程, 再用效率因子校正:

2.1 反应宏观过程(3)
二 反应组分的浓度催化剂孔道的分布
无死区时浓度分布
存在死区时浓度分布
2.1 本征动力学与表观动力学(2)
三 本征动力学方程与宏观动力学方程 (Intrinsic kinetics and global kinetics)
反应速率由实际进行场所的浓度和温度决定的,采用幂函 数动力学方程时:
r = ra- rd = ka pA (1- θA) - kd θA
2.2 气固催化本征动力学(6)
当吸附达到平衡时, ra= rd 若气相中的组分A的分压为平衡分压
p* A ,则有:
ka p* (1 A ) k d A A ka * p A b kk * ka pA kd bp* A A * k kd ka p* 1 bp * A A 1 a pA kd
* bL pL L * * * 1 bA p * b p b p b p A B B L L M M
2.2 气固催化本征动力学(15)
过程为L脱附控制,化学反应达到平衡
Kp
p p p p
* vL L M * vA A B
* vM * vB
p
联立解两方程: 如果气相中有n个组分被吸附,则:
n * b p i i n i i 1 n * i 1 1 b p i i 11 bi pi* i n 1 bi pi* 11
bA p A * * 1 b p b p A A B B * b p B B B * * 1 b p b p A A B B
一 基本步骤:
1. 气流主体扩散到催化剂颗粒外表面(外扩散)
2. 从外表面扩散到催化剂孔道内部(内扩散) 3. 在内部孔道表面进行反应(本征反应) 4. 反应物被活性中心吸附(本征反应) 5. 产物从活性中心脱附(本征反应) 6. 产物从催化剂内部孔道扩散到外表面(内扩散) 7. 产物从外表面扩散到气流主体 (外扩散) 宏观动力学(macokinetic) 包括物理的传递过程影响的催化反应 总体速率(global rate) • • • • • • • •
2.2 气固催化本征动力学(14)
5.3 过程为单组分产物的脱附控制 若过程为产物L的脱附控制,则
n rL rdL raL kd L ka pL 1 i i 1
相关文档
最新文档