雷达信号处理
雷达信号处理基础理论与应用

雷达信号处理基础理论与应用雷达信号处理是现代雷达技术的核心,是将雷达接收到的回波信号转换为目标信息的过程。
因此,对于雷达信号处理的理论和应用的研究具有重要的现实意义和应用价值。
一、雷达基础理论1.1 雷达系统基础原理雷达系统的基础原理是通过发射电磁波,在目标物体上产生散射回波信号,并接收并处理回波信号,从而实现目标位置、速度、方位等信息的测量。
雷达系统的核心构成包括发射机、天线、接收机和信号处理器。
其中,发射机产生电磁信号,通过天线发射;接收机接收回波信号,信号处理器对回波信号进行处理后提取目标信息。
1.2 雷达信号理论雷达信号的理论表述是指雷达系统中涉及到各种信号处理算法的基础理论和应用。
雷达信号通常具有高频段、窄带和受干扰的特点,因此需要对信号进行复杂的处理。
雷达信号处理中涉及到的主要理论包括多普勒效应、回波信号分析、信号干扰、雷达成像等。
1.3 雷达系统性能参数雷达系统性能参数通常包括雷达探测能力、定位精度、分辨率、探测距离、反射截面等。
其中,雷达探测能力是指雷达系统可以发现目标的能力;定位精度是指雷达系统可以测量目标在空间中的位置;分辨率是指雷达系统可以将多个目标区分开来的能力;探测距离是指雷达系统可以探测到目标的最远距离;反射截面是指雷达系统接收到的目标回波信号对应的物体截面。
二、雷达信号处理应用2.1 雷达成像雷达成像是一种基于微波辐射的成像技术。
它通过对反射回波信号进行处理,实现目标在三维空间中的图像展示。
在雷达成像过程中,通常需要采用多个角度的发射和接收,以实现更准确的成像效果。
雷达成像技术在军事、航天、地质勘探等各个领域都得到了广泛的应用。
2.2 多普勒雷达多普勒雷达是一种测量目标速度的传感器。
它基于多普勒效应,利用目标运动产生的频移信息,对目标速度进行测量。
多普勒雷达的应用领域非常广泛,包括交通监控、地震预警、气象预报等。
2.3 监测雷达监测雷达是一种通过对目标进行连续观测,实时监测目标的运动和变化的雷达系统。
雷达信号处理技术与应用

雷达信号处理技术与应用雷达信号处理技术是一种关键的技术,它在军事和民用领域都有广泛的应用。
本文将介绍雷达信号处理的基本原理和常见的应用。
雷达信号处理的基本原理是将收到的雷达信号进行处理,提取出目标的相关信息。
这一过程包括信号的滤波、波束形成、脉压压缩、目标检测、目标跟踪等多个步骤。
首先,信号经过滤波器进行频率滤波和带宽约束,以抑制噪声和干扰。
然后,波束形成技术根据角度信息将多个接收通道的数据进行加权组合,以增强目标信号的能量并降低干扰信号的能量。
接下来,脉冲压缩技术会对信号进行时域压缩,以提高雷达分辨率。
然后,目标检测算法会对压缩后的信号进行处理,以判断是否存在目标。
最后,目标跟踪算法会对被检测到的目标进行跟踪,以实时追踪目标的运动轨迹。
雷达信号处理技术在军事领域有着广泛的应用。
在军事侦察和情报收集中,雷达信号处理技术可以用于探测敌方目标的位置、速度和航向信息,以及判断目标的类型。
在导弹防御领域,雷达信号处理技术可以用于早期预警和导弹追踪,以及识别敌方导弹的弹道和运动特性。
此外,雷达信号处理技术还广泛应用于军事通信、干扰抵抗和电子战等领域。
雷达信号处理技术在民用领域也有着重要的应用。
在天气预报中,雷达信号处理技术可以用于测量降水量和判断降水类型,以提供准确的天气预报信息。
在航空领域,雷达信号处理技术可以用于飞机导航和防撞系统,以提供飞机的位置和避免与其他飞机的碰撞。
在智能交通系统中,雷达信号处理技术可以用于车辆检测和交通流量监控,以提高交通效率和安全性。
此外,雷达信号处理技术还在地质勘探、环境监测和医学影像等领域有着广泛的应用。
近年来,随着计算机技术和人工智能技术的快速发展,雷达信号处理技术也取得了重要的进展。
传统的基于模拟信号处理的雷达系统逐渐被数字信号处理和软件定义雷达所取代。
数字信号处理技术可以实现更复杂的算法和更高的灵活性,同时能够有效地抑制噪声和干扰,提高雷达系统的性能。
人工智能技术可以应用于雷达信号处理中的目标检测和目标跟踪等关键任务,提高雷达系统的自动化水平和目标识别性能。
雷达信号处理PPT电子教案第一讲绪论

通过统计检测算法或门限检测 算法,判断是否存在目标。
目标跟踪
对检测到的目标进行跟踪,包 括位置、速度和航迹等信息的 估计。
参数估计
对目标的距离、角度、速度等 参数进行估计,为后续的目标
识别和分类提供依据。
03
雷达信号处理中的关键技术
信号检测与处理
信号检测
在雷达系统中,信号检测是关键的一步,它涉及到对接收到的信号进行判断,确定是否 存在目标以及目标的位置、速度和方向等信息。常用的信号检测方法包括恒虚警率检测、
有重要意义。
风切变检测
雷达能够检测低空风切变等危险气 象条件,为航空安全提供预警。
气候变化研究
雷达观测数据可用于研究气候变化 规律,为环境保护和可持续发展提 供科学依据。
交通管制
01
02
03
空中交通管制
雷达信号处理技术用于监 测空中飞行器的位置、速 度等参数,保障航空安全 和空中交通秩序。
公路交通管理
雷达信号的特性
雷达信号的频率、波形、相位等特性决定了雷达 的探测精度和分辨率。
雷达信号的传播速度受到介质的影响,例如空气 中的传播速度略低于光速。
雷达信号在传播过程中会受到噪声、干扰和多径 效应等因素的影响。
雷达信号处理流程
雷达信号的预处理
包括滤波、放大、混频和模数 转换等步骤,目的是提取出反
射回来的有用信号。
雷达信号处理技术的发展对于提升国家安全和 国防实力具有重要意义,也是当前国内外研究 的热点和重点。
雷达信号处理的历史与发展
01
雷达信号处理技术经历了从模拟信号处理到数字信号处理 的演变。
02
随着计算机技术和数字信号处理理论的不断发展,雷达信 号处理技术也在不断进步和完术正朝着高速、高精度、高分辨率和智 能化方向发展,同时也在不断探索新的理论和方法,以应对更
雷达信号处理课程设计

雷达信号处理课程设计一、教学目标本课程的教学目标是使学生掌握雷达信号处理的基本原理和方法,能够运用所学知识分析和解决实际问题。
具体目标如下:1.知识目标:学生能够了解雷达信号处理的基本概念、原理和方法,掌握线性信号处理、非线性信号处理、滤波器设计等核心知识。
2.技能目标:学生能够运用MATLAB等工具进行雷达信号处理的基本运算和分析,具备一定的实践能力。
3.情感态度价值观目标:学生能够认识雷达信号处理在国防、通信等领域的应用价值,培养对雷达信号处理的兴趣和热情。
二、教学内容本课程的教学内容主要包括以下几个部分:1.雷达信号处理基本概念:雷达系统、信号与系统、信号处理的基本任务。
2.线性信号处理:傅里叶变换、离散傅里叶变换、滤波器设计、信号检测。
3.非线性信号处理:非线性系统的特性、非线性信号处理方法、非线性滤波器设计。
4.雷达信号处理应用:雷达侦察、雷达跟踪、雷达成像等。
三、教学方法为了实现教学目标,我们将采用以下教学方法:1.讲授法:通过讲解雷达信号处理的基本概念、原理和方法,使学生掌握相关知识。
2.讨论法:学生进行小组讨论,培养学生的思考能力和团队合作精神。
3.案例分析法:分析实际案例,使学生了解雷达信号处理在实际应用中的作用。
4.实验法:通过MATLAB等工具进行实验,培养学生动手能力和实践能力。
四、教学资源为了支持教学内容和教学方法的实施,我们将准备以下教学资源:1.教材:《雷达信号处理教程》等。
2.参考书:《雷达信号处理技术》等。
3.多媒体资料:教学PPT、视频、动画等。
4.实验设备:计算机、MATLAB软件、信号发生器等。
五、教学评估本课程的评估方式包括平时表现、作业和考试三个部分,各部分所占比例分别为40%、30%和30%。
具体评估方式如下:1.平时表现:通过课堂提问、小组讨论等环节,评估学生的参与程度和思考能力。
2.作业:布置适量作业,评估学生的知识掌握和应用能力。
3.考试:期末进行闭卷考试,评估学生对课程知识的全面掌握。
雷达信号处理原理

雷达信号处理原理雷达(Radar)是利用电磁波传播的原理,通过接收和处理信号来探测、定位和追踪目标的一种技术。
雷达信号处理是指对接收到的雷达回波信号进行解调、滤波、增强、特征提取等一系列处理操作,以获取目标的位置、速度、形状、材料等信息。
本文将介绍雷达信号处理的基本原理及其主要方法。
一、雷达信号处理基本原理雷达信号处理的基本原理可以归纳为以下几个步骤:回波信号采集、信号预处理、目标检测、参数估计和跟踪。
1. 回波信号采集雷达将发射出的脉冲信号转化为电磁波,通过天线向目标发送,并接收目标反射回来的回波信号。
回波信号会包含目标的位置、形状、速度等信息。
2. 信号预处理由于雷达接收到的回波信号存在噪声、多径干扰等问题,需要对信号进行预处理。
预处理的主要目标是消除噪声、降低多径干扰,并使信号满足后续处理的要求。
3. 目标检测目标检测是指在预处理后的信号中判断是否存在目标。
常用的目标检测算法包括:恒虚警率检测、动态门限检测、自适应门限检测等。
目标检测的结果通常是二值化图像,目标区域为白色,背景区域为黑色。
4. 参数估计参数估计是指根据目标检测结果,对目标的位置、速度、方位角等参数进行估计。
常用的参数估计方法包括:最小二乘法、卡尔曼滤波等。
参数估计的结果可以用来进一步对目标进行跟踪和识别。
5. 跟踪目标跟踪是指根据参数估计的结果,对目标在时间上的变化进行预测和跟踪。
常用的目标跟踪算法包括:卡尔曼滤波、粒子滤波等。
目标跟踪的结果可以用来对目标进行轨迹分析和行为预测。
二、雷达信号处理方法雷达信号处理方法主要包括:滤波、相关、谱估计、目标识别等。
1. 滤波滤波是对信号进行频率或时间域的处理,常用于去除噪声、消除多径干扰等。
常见的滤波器包括:低通滤波器、高通滤波器、带通滤波器等。
滤波的方法有时域滤波和频域滤波两种。
2. 相关相关是利用信号的自相关或互相关性质,计算信号之间的相似度。
在雷达信号处理中,相关常用于目标的距离测量和速度测量。
通信中的雷达信号处理技术简介

通信中的雷达信号处理技术简介雷达信号处理技术是一种应用广泛的数字信号处理技术,它既可以用于军事领域,也可以用于民用领域。
雷达信号处理技术可以处理雷达系统接收到的复杂信号,获取目标的距离、速度和方向等信息,具有非常重要的意义。
本文将简要介绍通信中的雷达信号处理技术。
一、雷达系统的组成雷达系统通常由天线、发射器、接收器、数字信号处理器等组成。
天线用来发射和接收信号,发射器用来产生和放大雷达信号,接收器用来接收目标反射回来的信号,数字信号处理器用来处理接收到的信号,获取目标的相关信息。
二、雷达信号的处理过程雷达信号处理过程主要包括目标检测、目标跟踪和目标辨识等三个方面。
目标检测是指利用雷达系统接收到的信号,检测出存在的目标,目标跟踪是指追踪目标的运动状态,以便更加精确地估计目标的位置和速度,目标辨识是指对不同目标进行分类识别。
三、雷达信号处理技术1. 脉冲压缩技术脉冲压缩技术是一种常用的处理雷达信号的技术,它可以有效提高雷达系统的距离分辨率。
脉冲压缩技术的原理是在发射的频率宽带脉冲中引入码序列,在接收时与反射回来的信号相乘,经过积分后可以实现信号的压缩,从而提高信号的距离分辨率。
2. 最大似然法最大似然法是处理雷达信号的一种重要方法,它可以实现目标的检测和跟踪等功能。
最大似然法的基本思想是在给定的观测量下,找到最大可能性的参数估计值。
通过比较似然值的大小,可以确定目标的存在,并且估计目标的位置和速度等信息。
3. 相干积累法相干积累法是一种处理雷达信号的高精度预估方法,它可以通过对接收信号进行积累处理,实现对目标距离和速度的估计。
相干积累法在目标距离和速度较小的情况下,可以保证高精度的估计结果。
四、结论雷达信号处理技术在现代通信中广泛应用,不仅可以用于军事领域,还可以用于海洋探测、气象预报等领域。
本文简要介绍了通信中的雷达信号处理技术,其中包括脉冲压缩技术、最大似然法以及相干积累法等处理技术,这些技术具有重要的应用价值。
雷达信号处理基础pdf中文

雷达信号处理基础pdf中文雷达信号处理是指对雷达接收到的信号进行处理和分析的过程。
雷达信号处理的目的是从接收到的信号中提取出目标的信息,如目标的位置、速度、形状等,并对信号进行滤波、去噪、增强等处理,以提高雷达系统的性能和可靠性。
雷达信号处理的基础知识包括雷达信号的特点、雷达信号的模型、雷达信号的处理方法等。
首先,雷达信号具有脉冲性质,即雷达系统发送的是一系列的脉冲信号,接收到的信号也是一系列的脉冲信号。
这些脉冲信号的特点包括脉冲宽度、脉冲重复频率、脉冲幅度等。
了解这些特点对于后续的信号处理非常重要。
其次,雷达信号的模型是指对雷达信号进行数学建模,以便进行信号处理。
常见的雷达信号模型包括单脉冲信号模型、多脉冲信号模型、连续波信号模型等。
这些模型可以描述雷达信号的时域特性和频域特性,为信号处理提供了理论基础。
雷达信号的处理方法包括滤波、去噪、增强等。
滤波是指对信号进行频率选择,以去除不需要的频率成分。
常见的滤波方法包括低通滤波、高通滤波、带通滤波等。
去噪是指对信号中的噪声进行抑制,以提高信号的质量和可靠性。
常见的去噪方法包括均值滤波、中值滤波、小波去噪等。
增强是指对信号进行增强,以提高信号的强度和清晰度。
常见的增强方法包括直方图均衡化、自适应增强等。
除了基础知识外,雷达信号处理还涉及到一些高级技术,如目标检测、目标跟踪、目标识别等。
目标检测是指从雷达信号中检测出目标的存在和位置。
目标跟踪是指对目标进行连续跟踪,以获取目标的运动轨迹和速度信息。
目标识别是指对目标进行分类和识别,以区分不同类型的目标。
总之,雷达信号处理是雷达系统中非常重要的一环。
通过对雷达信号进行处理和分析,可以提取出目标的信息,并对信号进行滤波、去噪、增强等处理,以提高雷达系统的性能和可靠性。
掌握雷达信号处理的基础知识和方法,对于从事雷达相关工作的人员来说是非常重要的。
希望这份雷达信号处理基础PDF中文能够帮助读者更好地理解和应用雷达信号处理的知识。
雷达原理与雷达信号处理技术

雷达原理与雷达信号处理技术雷达(Radar)是一种用于探测和测量目标位置、速度和其他相关信息的电子设备。
雷达广泛应用于航空、军事、气象和监测领域等,它通过发射和接收电磁波来实现目标的探测和测量。
本文将介绍雷达的工作原理以及雷达信号处理技术。
一、雷达原理雷达的基本原理是利用电磁波在空间中的传播特性来实现对目标的探测。
雷达系统由发射系统、接收系统和信号处理系统组成。
(一)发射系统雷达的发射系统主要由一个高频发射器和一个天线组成。
高频发射器产生高频电磁波,并通过天线将电磁波辐射到空间中。
电磁波在空间中以光速传播,并在遇到目标后被目标散射回来。
(二)接收系统雷达的接收系统主要由一个接收天线和一个接收器组成。
接收天线接收到目标散射回来的电磁波,并将其导入接收器。
接收器对接收到的信号进行放大和处理,并将处理后的信号传送给信号处理系统。
(三)信号处理系统雷达的信号处理系统对接收到的信号进行处理和分析,提取目标的相关信息。
常见的信号处理技术包括脉冲压缩、MTI(移动目标指示)和MTD(移动目标检测)等。
二、雷达信号处理技术雷达信号处理技术是一系列用于提取目标信息的算法和方法。
下面介绍几种常见的雷达信号处理技术。
(一)脉冲压缩技术脉冲压缩是一种用于减小雷达接收信号的脉冲宽度,并提高雷达的距离分辨率的技术。
传统雷达的脉冲宽度较长,导致距离分辨率较低。
脉冲压缩技术通过发送一系列多个波形的脉冲信号,并在接收端将它们合并起来进行处理,从而减小脉冲宽度,提高距离分辨率。
(二)MTI技术MTI技术是一种用于抑制地面回波干扰的技术。
在雷达工作时,地面回波往往比目标回波要强,会对目标的探测产生干扰。
MTI技术通过比较连续两个脉冲序列之间的差别,将地面回波和目标回波区分开来,从而实现对目标的探测。
(三)MTD技术MTD技术是一种用于检测运动目标的技术。
雷达在探测目标时,如果目标静止不动,其回波信号的频率不会发生改变。
然而,如果目标发生运动,回波信号的频率将发生多普勒频移。
雷达系统的信号处理与目标识别算法分析

雷达系统的信号处理与目标识别算法分析一、引言雷达(Radar)系统是一种利用电磁波对目标进行跟踪和探测的设备。
随着科技的进步和各个领域对雷达系统的需求增加,雷达的信号处理和目标识别算法变得更加重要。
本文将对雷达系统的信号处理和目标识别算法进行深入分析。
二、雷达原理和信号处理雷达系统利用发送出去的电磁波与被目标反射回来的电磁波之间的时间差和频率差来测量目标的距离和速度。
在雷达信号处理中,需要对接收到的信号进行一系列的处理,以提取出有用的信息。
1. 预处理预处理是信号处理的第一步,其目的是将原始信号转换为能够提供更多信息的形式。
其中包括抗干扰处理、时延或频率的补偿、动态范围的优化等。
2. 目标检测目标检测是雷达信号处理中的核心环节。
常用的目标检测算法包括:常规滤波器法、匹配滤波器法、CFAR(恒虚警率)检测法等。
这些算法可以利用雷达信号与背景噪声之间的差异来检测出目标的存在。
3. 脉冲压缩脉冲压缩是为了提高雷达系统的距离分辨率。
通过对返回的一系列脉冲信号进行加权和积累,可以将相邻脉冲之间的能量对比增大,从而提高目标分辨能力。
4. 构建回波信号的径向速度信息雷达系统可以利用多普勒效应测量目标的速度。
在信号处理中,可以通过采用FFT(快速傅里叶变换)等算法,将时间域的信号转换到频率域,从而得到目标的速度信息。
三、目标识别算法分析目标识别是在得到目标的距离、速度等信息后,进一步对目标进行分类和识别的过程。
目标识别算法需要从海量的目标数据中提取出有效特征,并进行合理的分类和判别。
1. 特征提取特征提取是目标识别的重要环节。
常用的特征包括目标的形状、反射率、运动轨迹等。
常用的特征提取算法有:HOG(方向梯度直方图)、SIFT(尺度不变特征变换)、CNN(卷积神经网络)等。
2. 分类和判别在得到目标特征后,需要通过分类和判别算法将目标进行识别。
常用的分类算法有支持向量机(SVM)、最近邻(k-NN)和深度学习等。
雷达信号处理概述

雷达信号处理概述雷达信号处理是指对观测到的信号进行分析、变换、综合等处理,以达到抑制干扰、杂波等非期望信号,增强有用信号,并估计有用信号的特征参数,或是将信号变成某种更符合要求的形式。
随着微电子技术的迅速发展,信号处理的方式也从早期的模拟域发展到几乎都采用数字域。
数字信号处理以数字或符号序列表示信号,用数值计算的方法完成对信号的各种处理。
模拟信号转换为数字信号的过程(采样、量化)如下图所示。
数字信号处理的主要方法有数字卷积(时域处理)、频谱分析(频域处理)、数字滤波(包括有限冲激响应滤波器(FIR)和无限冲激响应滤波器(IIR))等。
雷达信号处理的任务雷达信号处理的任务就是最大程度地抑制噪声和干扰,提取与目标属性有关的信息。
从狭义上讲,雷达信号处理是指对经接收机处理后的信号进行处理,在多种干扰背景中完成目标检测与信息的提取,主要包括干扰抑制、目标检测、信息提取。
从广义上讲,雷达信号处理涉及各种不同发射波形的选择、检测理论、性能评估以及天线和显示终端或数据处理计算机之间的电路装置(硬件和软件),以完成所要求的信号之间的变换和参数提取。
具体来说,信号处理包括信号产生、信号提取、信号变换三大类,其中信号产生包括调制、上变频、倍频、合成、放大和波束形成等;信号提取包括解调、下变频、分频、滤波、检测和成像等;信号变换包括频率变换、A/D变换、相关、放大及延时等。
根据雷达的任务及其工作环境,对雷达信号处理的要求是:•能够处理海量信息,即不仅能够获取目标的位置和数量等常规信息,还能获取目标的属性或图像信息•实时性强,使完成一次处理所用的时间与雷达的数据率相匹配•鲁棒性好,能够在复杂的电磁环境(特别是强电磁干扰环境)下正常工作实现上述要求取决于雷达的以下能力:•有效抑制杂波和干扰的能力•目标回波能量的有效收集能力,主要措施有:①改善天线的主瓣增益,降低旁瓣②降低天线转速,增加每个波位的驻留时间③选择能量利用率高的信号形式④提高雷达发射信号的峰值功率⑤距离维匹配滤波(脉冲压缩)⑥方位维一次扫描周期内对个波位的多个脉冲的相干和非相干积累⑦扫描周期间的积累(航迹提取)•高效的空间搜索能力•良好的空间分辨能力,主要措施有:①尽可能地增大天线的功率孔径积,提高角分辨能力②改进测角方式,提高角度测量精度③使用距离波门(时域滑窗)进行距离跟踪,减小多目标在频域的混叠④使用大带宽信号和脉冲压缩技术,提髙距离分辨能力⑤采用频率滤波,提高速度分辨能力⑥通过合成孔径,提高方位分辨能力⑦两天线干涉合成,提高俯仰角分辨能力•良好的环境适应能力:①自适应杂波抑制(自适应滤波、自适应CFAR、杂波图等)②自适应数字波束形成③智能化特征抽取和目标识别算法④多模式协同工作(例如预警机、多模式SAR)雷达信号处理的分类雷达信号处理的分类方法较多,按处理域分为时域信号处理、空域信号处理、频域信号处理、极化域信号处理和多域联合信号处理。
雷达信号处理方法综述

雷达信号处理方法综述雷达是一种广泛应用于军事、民用等领域的无线电测量技术,其本质是利用电磁波与物体相互作用的原理,通过测量反射回来的信号来确定目标的距离、速度和方位等信息。
然而,由于雷达应用的复杂性和环境的多样性,雷达信号处理一直是一个极具挑战性的研究领域。
本文将就雷达信号处理方法进行综述。
1. 脉冲压缩处理脉冲压缩是一种常用的雷达信号处理方法,其本质是通过合理的信号设计和处理使得雷达信号带宽变窄,达到更好的距离分辨率。
脉冲压缩技术主要包括线性调频信号、窄带信号、压缩滤波器等方法。
其中,线性调频信号是最常用的一种方法。
它通过在单个脉冲内改变信号频率,使得所产生的信号包含了多个频率分量。
通过对这些分量信号进行相位累积处理,就可以实现脉冲压缩。
此外,窄带信号则是在设计信号时选择一个窄带频率,通过窄化带宽提高距离分辨率。
压缩滤波器则是在接收端对信号进行滤波,去除绝大部分带外干扰信号。
然而,脉冲压缩技术也存在一些缺陷,比如会带来相干处理的问题,直接影响目标的信噪比等。
因此,在实际应用中,通常需要结合其他信号处理技术进行综合应用。
2. 相控阵信号处理相控阵技术是一种基于阵列天线的信号处理方法,它在空间领域实现对目标信号的精确定位、较高灵敏度和干扰抑制能力等优点。
相控阵技术的信号处理方法包括平衡传输子阵列、权重调整和波束形成等。
平衡传输子阵列是一种常用的相控阵信号处理方法,它通过对每个阵元的接收信号进行平衡处理,保证每个天线之间的插入损耗差异相同,从而消除了阵列天线的失配影响。
权重调整则是在信号接收过程中对每个天线的信号进行加权,以达到方向剖面控制和干扰抑制的目的。
波束形成是指通过迭代算法对参数进行优化,从而实现波束指向和形成的过程。
3. 非相参信号处理非相参信号处理技术是近年来迅速发展的一种信号处理方法,它不需要相位信息,只利用信号幅度和功率等信息来获取目标信息。
非相参信号处理技术主要包括多普勒谱分析、阵列信号处理和小波变换等方法。
雷达系统 信号处理

(n k 1 ~ N)
N k 次积累后,其幅度值增加了 N k 倍,即:
实现了相参积累
P (N k) cA
• 相参积累的FFT实现
现在的问题是: fd 不知道,故权也不能确定 解决方法:试探法
取:
fd
N
0 K
1 T
, N
1 K
1 T
,
N
2 K
1, T
N
3 K
本节主要介绍雷达信号检测与参数估计的基本实现方 法。
2.雷达信号处理的原理
• 雷达简化原理框图
r(n)
(某距离单元)
信号处理机对经基带采样后的数字基带接收信号进行处理。
• 典型雷达信号处理原理框图
雷达信号处理主要包括MTI、MTD、求模、CFAR等多个环节(以后 可看到,还包括脉冲压缩),每个环节前(除求模外)均需要进行 1帧数据的乒乓存储。
rs ( )
s(t)s(t )dt
可见,匹配滤波器输出就是 s(t) 的相关函数(时间上有 t0延迟) 幅度上相差常数 C 。
rs (t)
so (t)
t0
t
so (t)
在
t
t0
时刻达到最大,即
S N
O在
t0
时刻达到最大。
(b)匹配滤波器的频域匹配理解
匹配滤波器的频率响应 H ()与信号频谱 S() 的关系:
脉冲重复周期 PRF 1 10kHz
T
载频 f0 10GHz
即离散多普勒序号=3
设CFAR处理后,在第 j 20个距离单元,第 i 32 个多普勒单元 检测到信号(即超过门限),则:
该目标的距离为 R 20 c 3000m;
雷达信号处理原理

雷达信号处理原理雷达信号处理原理是指将雷达接收到的信号进行处理和分析的过程,以提取有用的信息和数据。
雷达信号处理是雷达技术的核心之一,对于雷达系统的性能和效果起着重要的影响。
一、信号接收与采样雷达系统首先接收到由雷达发射器发射出来的脉冲信号。
这些信号经过天线接收后,进入到接收机中。
在接收机中,会进行信号预处理,包括了低噪声放大、滤波和混频等环节。
经过预处理后的信号会进行采样,将连续的模拟信号转换为离散的数字信号。
二、脉冲压缩在雷达接收到信号后,有时候会出现回波信号的时间宽度很宽的情况,这样就会导致目标的分辨能力变差。
为了解决这个问题,需要对信号进行脉冲压缩处理。
脉冲压缩通过降低脉冲信号的时域宽度,来提高雷达的分辨能力。
三、目标检测与跟踪在经过脉冲压缩后,雷达系统需要进行目标检测和跟踪。
目标检测是指通过对接收到的信号进行处理,找出其中的目标信息,即在雷达图像或雷达数据中找到目标的位置和特征。
目标跟踪是指对已经检测到的目标进行跟踪,通过对目标连续观测信息的处理,估计目标的位置和运动状态。
四、信号解调与波形重建在目标检测和跟踪之后,雷达系统需要对信号进行解调和波形重建。
解调是将接收到的信号还原成原始的调制信号,以便进一步分析和处理。
波形重建是指通过对解调后的信号进行处理和滤波,将信号还原成接收到的原始信号。
五、特征提取与分析在信号解调和波形重建之后,雷达系统需要进行特征提取和分析。
特征提取是指从原始信号中提取出与目标有关的特征和参数,比如目标的尺寸、速度、形状等。
特征分析是对提取出的特征进行进一步的处理和分析,以得到更深入的目标信息。
六、信号处理算法与技术雷达信号处理过程中,需要运用各种信号处理算法和技术。
常见的信号处理算法包括了滤波、频谱分析、时域分析、相关分析等。
此外,雷达信号处理还与数字信号处理、图像处理等领域相结合,采用了很多先进的技术和方法。
七、数据处理与决策最后,经过了信号接收、压缩、检测、跟踪、解调、波形重建、特征提取和分析等多个环节的处理,雷达系统会得到一系列的数据和信号。
雷达信号处理基础

雷达信号处理基础雷达信号处理是一种技术,用于收集、分析和加工获得的信号,以满足特定用途。
它由模型发展和预测,数据预处理,专用传感器和信号处理器,以及用于信号处理的算法等构成。
雷达信号处理技术多用于军事用途,最常见的是雷达信号处理系统,它用于探测外部空间和追踪物体的位置及运动情况。
1.达信号的概念雷达信号是指从天空或特定区域发射到接收器的电磁脉冲信号。
这种脉冲信号有三个特点:频率,幅值和过程。
频率一般按照秒计算,幅值是指信号的强弱,而过程指的是以定义的时间节点发射和接收信号的过程。
2.达信号处理的基本原理雷达信号处理的基本原理,指的是通过分析接收到的信号,对信号进行改变,获得更多信息的过程。
通常的信号处理技术有:滤波技术、时域技术、频域技术、压缩感知技术、综合技术和定位技术等几种。
综合考虑这些技术,可以更加有效地分析信号,从而更加有效地处理信号。
3.达信号处理的基本结构雷达信号处理的基本结构,是由传感器、处理器、滤波器、信号发射器和接收器组成的。
其中,传感器用于采集信号,处理器用于解码信号,滤波器用于处理信号并减少噪音,信号发射器用于发射信号,而接收器用于接收信号。
4.达信号处理的应用雷达信号处理的应用非常广泛,其中,最常见的应用是军事领域,用于收集敌人的信号,分析及采取有效的对抗方式。
此外,雷达信号处理也广泛应用在气象、公共安全、海洋监测等领域,例如用于流量检测、冰川探测等。
5.达信号处理的发展随着科技的进步,雷达信号处理技术也得到了快速发展,主要体现在以下几个方面:一是传感器技术的进步,例如改良结构和传感器性能,使处理的信号更加准确;二是算法技术的进步,使处理的信号更加快速准确;三是相关技术的发展,如计算机视觉技术,激光时域反射技术,多普勒雷达技术,以及智能信号处理技术等。
综上所述,雷达信号处理是一种重要而有效的技术,它可以帮助我们更好地收集信号,从而更快更准确地分析信号。
随着技术的进步,雷达信号处理技术也在不断发展,这将为人类发展带来更多更好的服务。
雷达信号处理

第5章雷达信号处理5.1 雷达信息处理综述在20世纪70年代初出现的村船用ARPA设备中,将雷达、陀螺罗经、计程仪及其它传感器信息通过若干处理机和专用快速硬件,进行综合处理,从而实现后面将要讨论的船用ARPA的各种功能。
可见,雷达信号、数据处理在包括船用ARPA系统等各种雷达应用系统中占有十分重要的地位。
雷达信号处理用在目标回波信号检测之前,而数据处理(含数据录取、目标跟踪、识别、计算、危险判断等)则在检测之后。
船用雷达ARPA系统包括传感器(俗称“雷达头”)和雷达信号处理、数据处理及ARPA 终端显示等部分部分,构成的雷达ARPA系统的简化原理框图,如图5-1所示。
图5-1雷达ARPA系统简化原理框图雷达信号处理内容这里指的是从传感器(雷达头)取得目标的回波视频信号后进入“雷达信号处理器”,处理的内容包括原始视频信号的量化处理,即通过A/D处理和杂波处理。
并在此基础上,进行目标信号检测并利用一定的方法来抑制海浪、雨雪、相邻同频段雷达以及机内噪声等各种干扰杂波,处理后的视频信号在和某个检测门限进行比较,若信号招过检测门限,则被判断为“发现”目标,过程是自动的,即目标自动检测,然后将目标信号输送到“数据录取器”,以测量目标的距离、航向、航速等数据以及未来可能应用的其它一些目标特性。
数据录取器输出的便是目标观测值的估计,称为目标点迹。
数据录取是由ARPA计算机来实现的。
由数据录取器输出的目标点迹数据,在“数据处理器”中完成各种相关处理。
雷达数据处理这里指的是雷达从数据录取器取得目标的位置、运动参数(如径向距离、径向速度、方位等)后进行的对目标测量数据进行互联、跟踪、滤波、平滑预测等运算。
这些处理可以有效地抑制测量过程中引入的随机误差,精确估计目标位置和有关的运动参数(如航向、航速等),预测目标下一个时刻的位置,并继续进行跟踪,形成稳定的目标航迹。
同时,还要进行船舶与船舶间的碰威判断、报警等的各种数据处理,形成船用ARPA系统相应的各种功能,而这些功能均可在终端显示屏上进行操控显示。
雷达信号处理技术

雷达信号处理技术雷达信号处理技术是指以数字信号处理为主要手段,对直流信号、中频信号和基带信号进行滤波、分析、合成、抽取等处理方法的总称。
在雷达信号处理技术中,振幅、频率、时域等特征参数是进行信号处理的主要指标。
雷达信号处理技术广泛应用于各种雷达系统中,如气象雷达、地形雷达、导航雷达、机载雷达等。
在雷达信号处理技术中,最基本的处理方法是信号分析。
信号分析主要包括时域分析和频域分析。
时域分析通过将信号分段,对每一个分段进行分析,以获取时域特征参数;频域分析则是将信号变换到频域,在频域上获取信号特征参数。
除此之外,雷达信号处理技术中还有滤波处理。
滤波处理是对频域信号进行数学处理,以去除不必要的噪声及干扰,保留雷达探测信号。
滤波处理分为低通滤波、高通滤波、带通滤波等不同类型,不同类型的滤波处理适用于不同的雷达信号处理需求。
雷达信号处理技术中的另一个重要的方法是波形处理。
波形处理是对雷达信号进行重构的方法。
通过波形处理,可以不断优化雷达信号质量,提高雷达信号探测能力。
在波形处理中,常用的方法有脉压处理、相参处理、多普勒处理等。
在现代雷达技术中,雷达信号处理技术的应用日益广泛,不但在卫星遥感和雷达探测领域有着广泛应用,同时也在多个领域中发挥着重要的作用。
例如在自动驾驶技术中,雷达系统发挥着关键作用。
通过对物体运动轨迹的分析,雷达可以帮助自动驾驶系统实现更精确的行车控制;在医疗健康领域,雷达探测技术也被应用于人体成像等领域。
总的来说,雷达信号处理技术的应用范围日益广泛,通过以数字信号处理为主要手段,对不同类型的雷达信号进行分析,可以帮助我们更好地理解并利用雷达信息,实现海量数据的精准分析和处理。
雷达信号处理技术及其在军事应用中的应用

雷达信号处理技术及其在军事应用中的应用一、引言雷达信号处理技术是一种应用广泛的信号处理技术,尤其是在军事领域得到了广泛的应用。
本文将详细介绍雷达信号处理技术的基本原理及其在军事应用中的应用。
二、雷达信号处理技术基本原理雷达信号处理技术主要包括三个方面:信号处理、图像处理和数据处理。
其中,信号处理是最基础的部分,它主要涉及信号的判定和分析。
1. 信号处理信号处理是指对雷达接收到的信号进行分析和处理,以提取出需要的信息。
信号处理包含了以下几个方面:(1)滤波。
雷达接收到的信号中,包含了大量的噪声和杂波。
滤波的作用是将这些干扰信号滤掉,只保留下需要的信号。
滤波可以分为数字滤波和模拟滤波两种。
(2)增益控制。
雷达信号是由发送端的信号在其传播途中被反射回来形成的。
由于传播距离的不同,接收的信号强度也存在差别。
因此,需要对接收到的信号进行增益控制,以保证信号质量。
(3)自适应滤波。
自适应滤波是一种用于抑制噪声干扰的有效方法。
它可以针对不同类型的噪声干扰进行优化,提高分析的准确性。
(4)脉冲压缩。
脉冲压缩是一种信号处理方法,主要用于提高雷达信号的分辨率。
脉冲压缩可以使信号的带宽变窄,从而提高信号分辨率。
2. 图像处理图像处理是指对雷达返回的数据进行处理,生成对应的图像。
雷达图像处理主要包含以下几个方面:(1)目标检测。
目标检测是指对雷达图像中的目标进行识别和检测。
目标检测可以分为单目标检测和多目标检测两种。
(2)目标跟踪。
目标跟踪是指对雷达图像中的目标进行跟踪和预测。
目标跟踪可以分为单目标跟踪和多目标跟踪两种。
(3)目标识别。
目标识别是指对雷达图像中的目标进行分类识别。
目标识别可以分为有监督学习和无监督学习两种。
3. 数据处理数据处理是指对雷达返回的原始数据进行处理,以得到需要的信息。
在雷达数据处理中,采用的主要技术有以下几个:(1)多普勒处理。
多普勒处理是一种用于处理由目标运动引起的频移的方法。
它可以将雷达接收到的信号分解成多个频率分量,从而提取出目标的运动状态。
雷达信号处理算法

雷达信号处理算法1. 引言雷达信号处理算法是指对雷达接收到的原始信号进行处理和分析,从中提取出有用的信息,并对目标进行检测、跟踪和识别。
雷达信号处理算法在雷达系统中起着至关重要的作用,它直接影响到雷达系统的性能和功能。
本文将介绍雷达信号处理算法的基本原理、常用算法以及其在雷达系统中的应用。
2. 雷达信号处理算法的基本原理雷达信号处理算法的基本原理是通过对接收到的雷达信号进行数字信号处理,提取出目标的信息。
其主要步骤包括:2.1 雷达信号接收雷达系统通过发射一定频率的电磁波并接收其反射回来的信号来实现目标检测。
接收到的信号包含目标的回波信号以及噪声。
2.2 信号预处理为了提高信号的质量和减小噪声的影响,需要对接收到的信号进行预处理。
常用的预处理方法包括滤波、降噪和增强等。
2.3 目标检测目标检测是指从接收到的雷达信号中提取出目标的存在信息。
常用的目标检测方法包括门限检测、相关检测和匹配滤波等。
2.4 目标跟踪目标跟踪是指在连续的雷达扫描中,对目标进行跟踪和预测其位置和运动状态。
常用的目标跟踪方法包括卡尔曼滤波和粒子滤波等。
2.5 目标识别目标识别是指对目标进行分类和识别。
常用的目标识别方法包括特征提取和模式识别等。
3. 常用的雷达信号处理算法3.1 基于门限检测的目标检测算法门限检测是一种简单且有效的目标检测算法,它通过设置一个合适的门限值,将接收到的信号与门限值进行比较,从而判断目标是否存在。
门限检测算法的优点是计算简单,但缺点是对噪声敏感,容易产生误检。
3.2 基于相关检测的目标检测算法相关检测是一种利用信号与目标特征之间的相关性进行目标检测的方法。
它通过计算接收到的信号与目标特征之间的相关系数,从而判断目标是否存在。
相关检测算法的优点是对噪声的抑制能力较强,但缺点是对目标特征的要求较高。
3.3 基于匹配滤波的目标检测算法匹配滤波是一种根据目标的特征模板进行目标检测的方法。
它通过将接收到的信号与目标特征模板进行比较,从而得到匹配度。
雷达信号处理的理论与应用研究

雷达信号处理的理论与应用研究一、引言雷达信号处理是一项重要的技术,广泛应用于军事、民用、科研等领域。
其基本工作原理是通过发射电磁波,并接收回波,从而确定目标的距离、速度、方向等参数。
本文将以雷达信号处理为主题,阐述其理论与应用研究。
二、理论基础1. 信号处理在雷达信号处理中,信号处理是一个重要的环节。
它主要包括信噪比的提高、多普勒速度的测定、目标跟踪、图像重建等方法。
其中,信噪比是影响雷达信号处理最主要的因素。
通过选择合适的信号处理算法,可以有效提高信噪比,从而提高雷达系统的性能。
2. 多普勒效应多普勒效应是雷达信号处理中一个很重要的现象,它指的是物体相对于雷达运动时信号频率的变化。
对于静止物体,其频率不变。
但是当物体运动时,其引入的相对速度就会使回波信号的频率产生偏移。
通过利用多普勒效应,可以有效地测定目标的速度,从而实现对目标的追踪。
3. 目标识别算法目标识别算法是雷达信号处理中的一个关键问题,其主要目的是通过信号特征提取对目标进行识别。
目标特征通常表现为目标散射截面、目标尺寸、目标速度等特征。
常用的目标识别算法包括模式识别、神经网络等。
三、应用研究1. 军事应用雷达信号处理在军事领域有着广泛的应用,如导弹制导、目标探测与追踪等。
在导弹制导中,雷达信号处理可以有效控制导弹的飞行轨迹,实现精确打击。
在目标探测与追踪中,雷达信号处理可以识别目标特征,从而确定目标的位置、速度等参数。
2. 民用应用雷达信号处理在民用领域的应用也日趋广泛,如气象雷达、空管雷达等。
在气象雷达中,雷达信号处理可以有效探测大气中降雨的情况,从而提供准确的气象预报。
在空管雷达中,雷达信号处理可以跟踪空中飞行器的位置、速度等参数,从而保障航空安全。
3. 科研应用雷达信号处理在科研领域的应用也很广泛,如航天科学、地球物理学等。
在航天科学中,雷达信号处理可以实现对行星、卫星等天体的探测与跟踪。
在地球物理学中,雷达信号处理可以实现对地表物体的探测与识别,从而揭示地球内部结构及物理参数。
雷达信号处理原理

雷达信号处理原理雷达(Radar)是一种利用无线电波进行探测和测量的技术,广泛应用于军事、航海、气象等领域。
雷达系统中最关键的环节之一就是信号处理,它负责从接收到的雷达回波信号中提取信息并进行处理与分析。
本文将介绍雷达信号处理原理及其主要步骤。
一、雷达信号的特点雷达信号是通过发射并接收无线电波形成的回波信号。
这些回波信号受到目标散射、多径效应、噪声等因素的影响,具有以下几个特点:1. 回波信号的强度与目标之间的距离成反比关系,可以通过测量回波信号的强度来推断目标的距离。
2. 回波信号的频率会发生多普勒频移,可以通过测量频率的变化来推断目标的速度。
3. 回波信号中包含了目标的形状、尺寸、材料等信息,可以通过对回波信号进行解调和分析来识别目标。
二、雷达信号处理的主要步骤雷达信号处理的主要步骤包括:回波信号的采集、滤波与降噪、多普勒频率补偿、脉冲压缩、解调与目标识别等。
1. 回波信号的采集:雷达接收到的回波信号通过接收天线输入到接收机中,经过放大、调频等处理后转化为模拟电信号。
2. 滤波与降噪:为了提取目标信号并抑制噪声,需要对回波信号进行滤波与降噪处理。
常用的滤波器包括低通滤波器和带通滤波器,可以通过滤波器的参数设置来实现对回波信号频域的控制。
3. 多普勒频率补偿:由于目标的运动会导致回波信号的多普勒频移,需要对回波信号进行多普勒频率补偿以还原目标的真实速度信息。
补偿方法一般采用混频器或数字信号处理算法实现。
4. 脉冲压缩:脉冲压缩是提高雷达分辨率的重要手段。
通过压缩脉冲信号的时间宽度,可以实现对目标距离分辨率的改善。
常用的脉冲压缩技术包括线性调频脉冲压缩和矩形脉冲压缩等。
5. 解调与目标识别:解调是将回波信号从模拟电信号转化为数字信号的过程,可以利用解调技术提取回波信号中的信息。
解调后的信号经过目标识别算法进行处理,可以实现目标的识别与定位。
三、雷达信号处理的关键技术雷达信号处理涉及到多种关键技术,其中包括:1. 数字信号处理(DSP):借助计算机及数学算法对信号进行处理与分析,实现信号的滤波、降噪、压缩等操作。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
雷达信号处理技术与系统设计第一章绪论1.1 论文的背景及其意义近年来,随着电子器件技术与计算机技术的迅速发展,各种雷达信号处理技术的理论与应用研究成为一大热门领域。
雷达信号的动目标检测(MAD)是利用动目标、地杂波、箔条和气象干扰在频谱上的差别,抑制来自建筑物、山、树、海和雨之类的固定或低速杂波信号。
区分运动目标和杂波的基础是它们在运动速度上的差别,运动速度不同会引起回波信号频率产生的多普勒频移不相等,这就可以从频率上区分不同速度目标的回波。
固定杂波的中心频率位于零频,很容易设计滤波器将其消除。
但对于运动杂波,由于其多普勒频移未知,不能像消除固定杂波那样很容易地设计滤波器,其抑制就变得困难了从本质上来讲,雷达信号的检测问题就是对某一坐标位置上目标信号“有”或“无”的判断问题。
最初,这一任务由雷达操作员根据雷达屏幕上的目标回波信号进行人工判断来完成。
后来,出现了自动检测技术,一开始为固定或半固定门限检测,这种体制下当干扰和杂波功率水平增加几分贝,虚警概率将急剧增加,以至于显示器画面饱和或数据处理过载,这时即使信噪比很大,也不能作出正确的判断。
为克服这些问题进而发展了自适应恒虚警(Constant FalseAlarm Rate,CFAR)检测。
CFAR 检测使得雷达在多变的背景信号中能够维持虚警概率的相对稳定,这种虚警概率的稳定性对于大多数的雷达,如搜索警戒雷达、跟踪雷达、火控雷达等。
第二章 雷达信号数字脉冲压缩技术2.1 引言雷达脉冲压缩器的设计实际上就是匹配滤波器的设计。
根据脉冲压缩系统实 现时的器件不同,通常脉冲压缩的实现方法分为两类,一类是用模拟器件实现的 模拟方式,另一类是数字方式实现的,主要采用数字器件实现。
脉冲压缩处理时必须解决降低距离旁瓣的问题,否则强信号脉冲压缩的旁瓣 会掩盖或干扰附近的弱信号的反射回波。
这种情况在实际工作中是不允许的。
采 用加权的方法可以降低旁瓣,理论设计旁瓣可以达到小于-40dB 的量级。
但用模拟技术实现时实际结果与理论值相差很大,而用数字技术实现时实际输出的距离旁瓣与理论值非常接近。
数字脉压以其许多独特的优点正在或已经替代模拟器件进行脉冲压缩处理。
2.2 数字脉压实现方法用数字技术实现脉冲压缩可采用时域方法或频域方法。
至于采用哪种方法。
要根据具体情况而定,一般而言,对于大时宽带宽积信号,用频域脉压较好;对 于小时宽带宽积信号,用时域脉压较好。
2.2.1 时域卷积法实现数字脉压时域脉冲压缩的过程是通过对接收信号)(t s 与匹配滤波器脉冲响应)(t h 求卷积的方法实现的。
根据匹配滤波理论,)()(0*t t s t h -=,即匹配滤波器是输入信号的共轭镜像,并有响应的时移0t 。
用数字方法实现时,输入信号为)(n s ,起匹配滤波器为)(n h ,即匹配滤波器的输出为输入离散信号)(n s 与其匹配滤波器)(n h 的卷积∑∑-=-=-=-=1010)()()()()(N k N k k n s k h k n h k s n Y (2-1)式中N 为信号采样点数。
2.2.1 频域快速卷积法实现数字脉压脉冲压缩过程是对接收信号)(n s 与匹配滤波器的脉冲响应)(n h 求卷积的过程。
由傅立叶变换的性质可知,时域卷积相当于频域相乘。
这个过程可以表示为: 设输入离散信号为: )(n s 其傅里叶变换为:)(ωS匹配滤波器脉冲响应为:)(n h 其傅里叶变换为:)(ωH匹配滤波器输出为: )(n y 其傅里叶变换为:)(ωY则对式(2.1)两边同时进行傅立叶变换可得:)()()(ωωωH S Y •= (2-2)又因为:)()(*ωωS H = (2-3) 带入式(2-2)可得:)()()(*ωωωS S Y *= (2-4) 则输出)(n y 为:))(())(()(2ωωS IFFT Y IFFT n y == (2-5) 2.3 线性调频信号线性调频矩形脉冲信号的复数表达式为:)]2/(2ex p[)(1)2ex p()()(200kt t f j T t rect T t f t u t s +==ππ (2-6) 其中)(t u 为信号复包络:)ex p()(1)(2kt j T t rect Tt u π= (2-7) 式中T 为脉冲宽度,由(2-6)得,信号的瞬时频率可写成:kt f kt t f dtd t f +=+=020)]2/(2[21)(ππ (2-8)瞬时频率)(t f 与时间成线性关系,因此称为线性调频信号。
其中T B k /=称为调频斜率,B 为调频带宽,即信号的宽度。
2.3.1 线性调频信号的频谱特性由式(2-7)其频谱U(f)经整理可得: ⎰⎰--=-=-dt k f t k j k f j Tdt ft j kt j T f U T T ))/(2)2(exp()/exp(1)2exp()2/exp(1)(22222ππππ (2-9)2.3.2 线性调频信号的脉冲压缩线性调频脉冲发射信号具有抛物线式的非线性相位谱且TB>>1,具备了实现脉冲压缩的前提条件,为了实现压缩,在接收机中设置一个与发射信号“共轭匹配”的压缩网络。
线性调频脉冲的基本原理可用图2.1说明。
图2.1 线性调频脉冲压缩的基本原理图2.1(a),(b)表示接收机输入信号,脉冲宽度为τ,载频由1f 到2f 线性增长变化,调制频偏12f f f -=∆,调制斜率 τπμ/2f ∆=。
图2.1(c)为压缩网络的频率一时延续特性也按线性变化。
因此,线性调频信号低频分量(1f )最先进入网络,延时最长为1d t ,相隔脉冲宽度的高频分量(2f )最后进入网络,延时最短为2d t 。
这样,线性调频信号的不同频率分量,几乎同时从网络输出,压缩成单一载频的窄脉冲0τ,其理想输出信号包络如图2.1(d)所示。
线性调频信号的脉冲压缩是通过匹配滤波器得到的,如果输入信号的频率特性为: )()()(f j e f U f U φ= (2-10) 那么匹配滤波器的频率特性应满足下式: 02)()()(td f j f j e e f X K f H πφ--= (2-11) 若令:A K /2πμ= (2-12)则可得: )2]4)(2[ex p()(020td f f f j f H πππ---= (2-13) 上式中压缩滤波器的群延迟特性(频率-延时特性)为: 2,)()()(000B f f t B f f df f d f t d d ≤-+-==τφ (2-14) 0d t 是与滤波器物理实现有关的一个附加延时。
可得线性调频脉冲压缩滤波器的输出信号为:)(2)(200)(22000)()](sin[2)()()(d d d t t f j t t f j d d t t f j ft j e e t t B t t B D A dfe A df e f H f X f U --∞∞--∞∞---===⎰⎰ππππππμπ (2-15)实际情况下取实信号表示为: ))(2cos()()](sin[)(0000d d d t t f t t B t t B D A t U ---=ππ (2-16) 当输入信号ξ 的多普勒效率时,匹配滤波器的输出表达式为:)4/ex p()]2/(2ex p[2/)(2)2/)(2sin()(22ππξπξπj kt j T kt T kt kT t y -++= (2-17) 上式说明当0=ξ时,输出脉冲具有sinc 函数型包络,-4dB 主瓣宽度为1/B ,第一旁瓣高度约为-13.4dB ,其他旁瓣随其主瓣的间隔x 按1/x 的规律衰减,旁瓣零点间隔为1/B 。
如果输入脉冲幅度为1,且匹配滤波器在通带内传输系数为1,则输出脉冲幅度为BT D D BT kT ===,2,D=BT 表示输入脉冲和输出脉冲的宽度比,称为压缩比。
当0=ξ时,sinc 函数包络将产生位移,引起测距误差,同时输出脉冲幅度略有下降。
第三章 动目标MTD 技术MTD 属于带通滤波,其实是一组窄带滤波器组,由于进入每个滤波器通带之内的噪声和杂波较少,因此每个滤波器输出端的杂波改善因子较高(靠近杂波谱附近的滤波器除外)。
对于MTD 滤波器组中的一个滤波器来说,该滤波器对于其通带之内的目标接近于最佳滤波器。
另外,为了防止杂波(主要为地杂波)由滤波器的旁瓣进入滤波器而影响杂波改善因子的提高,在MTD 滤波器之前通常加MTI 处理,同时还需要对MTD 的每个滤波器进行加权,使其副瓣“电平”较低,这样滤波器的杂波改善因子就提高。
3.1 杂波特性地物杂波和气象杂波是两类有代表性的杂波,它们在雷达的整个作用距离上都有可能出现,在较近的作用距离上,地物杂波是主要因素,它在距离上的分布不均匀,可能成片出现,也可能点状片状出现,相邻分辨单元的地物杂波幅度可能相差很大。
气象杂波的多普勒频移是由所在区域的风引起的,分布较为均匀。
一般而言地杂波的强度要远大于气象杂波。
常用的杂波模型是根据杂波的一次和二次统计规律建立的,杂波时间序列是符合一定条件的相关随机过程。
下面用频域方法来生成高斯谱的杂波数据设给定的杂波的功率谱分布:}{1,....,1,0,-=N n n S比如高斯型的杂波功率谱为: )2)(exp(21)(220c c f f f S σσπ--= (3-1) 其中,c σ为则由天线扫描引起的杂波谱展宽。
给它增加随机相位序列:n n n j θθξsin cos += (3-2) 其中n θ是在[0,2π]上的均匀分布的随机变量。
则所求杂波在频域的表示为: 1,......,1,0,-==N n S X n n n ξ (3-3) 对上式进行傅里叶反变换,得到的时间序列: M k N n t j X N x k N n k ,....1,0),2ex p(110==∑-π (3-4)图3.1 杂波仿真数据3.2 杂波的频谱 3.2 多普勒滤波器组设计要对回波相参脉冲串做匹配滤波,必须知道目标的多普勒频移以及天线扫描对脉冲串的调制作用。
在实际工作中,多普勒频移是未知的,因此需要采用一组相邻且部分重叠的滤波器组,覆盖整个多普勒范围,这就是多普勒滤波器组。
其特性如图3.1所示。
图3.3 多普勒滤波器组的特性 MTD 是一组部分重叠的多普勒滤波器来实现的,多普勒滤波器组可以用FIR 横向滤波器来实现,具有N 个输出的横向滤波器(N 个脉冲),经过各脉冲不同的加权求和后,可以做成N 个相邻的窄带滤波器组。
该滤波器组的频率覆盖范围从0到r f ,其实现框图如图3.4所示,频率响应如图3.5所示。
FIR 横向滤波器有N-1个延迟线,每个延迟线的延迟时间rr f T 1 。