角的平分线的性质(2)

合集下载

角的平分线的性质(2)

角的平分线的性质(2)
13.3 角平分线的性质(2)
复习回顾
1、角平分线性质定理:
角的平分线上的点到角的两边的距离相等.
∵点P在∠AOB的平分线上
A N
且PM⊥OB,PN⊥OA,
∴PM=PN
0
2、角平分线性质定理的逆定理:
C P MB
到角的两边的距离相等的点在角的平分线上.
∵ PM⊥OB,PN⊥OA 且PM=PN.
∴点P在∠AOB的平分线上.
DF⊥AC,垂足分别是E、F,连接EF,EF与AD交于G。求证:源自(1) ∠DEF=∠DFE。
A
(2)AE=AF (3) AD⊥EF
EG F
B
DC
6. 如图,BD是∠ABC的平分线,AB=BC,点P 在BD上,PM⊥AD,PN⊥CD,垂足分别是M,N. 求证:PM=PN
A
M
P
D
B
N
C
l2
l3
2、如图所示,直线 l1 , l2 , l3 表示三条相互交叉的
公路,现要建一个货物中转站,要求它到三条公路的
距离相等,则可供选择的地址有:
()
A、一处 B、两处 C、三处 D、四处
例2、如图, PB⊥AB于点B,PC⊥AC于点C,AB=AC
PB=PC, D是AP上一点。
求证:∠BDP=∠CDP。 A
1、如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △POM的面积为
N
A
6,OM=6,则PN=___2____.
C
0
P
MB
2、如图, DB⊥AB于点B,
DC⊥AC于点C,DB=DC, ∠CDA= 500
则∠BAD= __4_0____度。
B

12.3.2角平分线的性质(2)

12.3.2角平分线的性质(2)

P
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE. 求证:点P在∠AOB的平分线上.
证明: 经过点P作射线OC ∵ PD⊥OA,PE⊥OB ∴ ∠PDO=∠PEO=90° 在Rt△PDO和Rt△PEO中 PO=PO PD=PE ∴ Rt△PDO≌Rt△PEO(HL) ∴ ∠ POD=∠POE
角平分线的性质: 角的平分线上的点到角的两边的距离相等。 几何语言: ∵ OC平分∠AOB, 且PD⊥OA, PE⊥OB ∴ PD= PE
A
D
C P O E B
P到OA的距离 角平分线上的点 P到OB的距离
不必再证全等
反过来,到一个角的两边的距离相等 的点是否一定在这个角的平分线上呢?
已知:如图,PD⊥OA,PE⊥OB, 点D、E为垂足,PD=PE. 求证:点P在∠AOB的平分线上
再 见
课堂练习
如图,BE⊥AC于E, CF⊥AB于F, BE、CF相交于D, BD=CD 。 B 求证: AD平分∠BAC
F
A D
E
C
课堂练习
如图, D, E, F分别是△ABC三边上 的点, CE=BF, △DCE和△DBF的面积 相等, DH⊥AB于H, DG⊥AC于G. 求证: AD平分∠BAC. A
D M 证明:过点P作PD⊥AB于D, PE⊥BC于E,PF⊥AC于F, 结论:三角形的三条角平分线交于 C B E 一点,并且这点到三边的距离相等. ∵BM是△ABC的角平分线,点P在BM上, ∴PD=PE. 同理,PE=PF. 想一想,点P在∠A的平分线上 ∴PD=PE=PF. 吗?这说明三角形的三条角平分线 即点P到三边AB、BC、CA的距离相等. 有什么关系? N P F
课堂练习

角平分线的性质(2)最新版

角平分线的性质(2)最新版
不负今生 曾经有人说,成大事者必经以下三种境界:“昨夜西风凋碧树,独上高楼,望尽天涯路”,此第一境界也;“衣带渐宽终不悔,为伊消境界也。我想说的是:事无大小,只要你还在坚持,成功的曙光终会毫不吝啬地照向你有这样一个小故事。 1987年,她14岁,在湖南益阳的一个小镇卖茶,1毛钱一杯。因为她的茶杯比别人大一号,所以卖得最快,那时,她总是快乐地忙碌着。她17岁,她把卖茶的摊点搬到了益阳 市,并且改卖当地特有的“擂茶”。擂茶制作比较麻烦,但能卖个好价钱,她也总是忙忙碌碌。她20岁,仍在卖茶,不过卖茶的地点又变了,在省城长沙,店面也由摊点变成 了小店。客人进门后,必能品尝到热乎乎的香茶,在尽情享用后,他们或多或少会掏钱再带上一两袋茶叶。1997年,她24岁,长达十年的光阴,她始终在茶叶与茶水间滚打。 这时,她已经拥有37家茶庄,遍布于长沙、西安、深圳、上海等地。福建安溪、浙江杭州的茶商们一提起她的名字莫不竖起大拇指。她的最大梦想实现了。“在慢慢习惯于喝 咖啡的潮流下,也有洋溢着茶叶清香的茶庄出现,那就是我开的……”说这句话时她已经把茶庄开到了故事虽短,内涵颇深,一件事,只有始终坚韧不拔地去做,无谓任何艰 难险阻,不左右摇摆,不顾左右而言它,才能披荆斩棘,在一千次的跌倒后又一千零一次地站起来。事实上,我们在做一件事的时候,总是不自觉地放大困难,使得我们产生 畏惧之心,没有了乘风破浪的豪情与气魄。困难并不可怕,可怕的是我们没有直面困难的勇气。面对着被自己放大了的困难,我们需要有的就是坚持的精神,或许只是一瞬间 的坚持我们就挖掘了自身潜能,造就了一个全新的自己。有时做一件事就像是跑400米,当你已经跑过300米,面对着那已出现在眼前的终点线时,你实际上并不需要多想, 要做的就是再加把劲,冲过去,得到真正属于自己的成绩。坚持是一种信念,让你有不怕困难、奋勇向前的勇气;让你有乘风破浪、直击沧海的豪情;让你有不达目的誓不罢休

《角的平分线的性质(2)》教学设计课件

《角的平分线的性质(2)》教学设计课件
条件:角的内部的点到角的两边距离相等. 结论:这个点在该角的平分线上.
证明与表述
命题的条件是:角的内部的点到角的两边距离相等. 命题的结论是: 这个点在该角的平分线上. 你能画出图形,并用符号表示已知条件吗?
A
已知:PD =PE,
D
PD⊥OA,PE⊥OB, 垂
C 足分别为D,E.
P
求证:点P在∠AOB
O
E
B 的平分线上.
证明与表述
证明: ∵ PD⊥OA,PE⊥OB
∴∠PDO=∠PEO=90°
D
在Rt△PDO和Rt △PEO中,
OP=OP
∵ PD=PE
O
∴ Rt △PDO≌ Rt △PEO(HL)
∴∠AOC = ∠BOC ∴点P在∠AOB的平分线上.
A
C P
E
B
证明与表述
角的内部到角的两边距离相等的点在 角的平分线上.
O
A
S
B
思考与猜想
根据角平分线的性质,点P建在∠AOB的平分 线上一定能满足它到边OA和边OB的距离相等.
到猜∠想A:OB“两角边的距内离部相到等角的的点两在边∠距A离OB相的等平的分点线在上 吗角?的平分线上”.
O
A
S
B
证明与表述
你能证明猜想“角的内部到角的两边距离相等 的点在角的平分线上”吗?
(2)点P也在∠A的角平分线上.
巩固与提升
(1)证明:过点P作PD,PE, PF分别垂直于AB,BC,CA,垂 足分别为D,E,F.
∵BM是△ABC的角平分线,点P在BM上, ∴PD=PE, 同理可得:PE=PF, ∴ PD=PE=PF, 即:点P到三边AB,BC,CA的距离相等.

123.1角平分线的性质(2)

123.1角平分线的性质(2)

扫描二维码获取更多资源
附赠 中高考状元学习方法


高考状元是一个特殊的群体,在许多 人的眼中,他们就如浩瀚宇宙里璀璨夺目 的星星那样遥不可及。但实际上他们和我 们每一个同学都一样平凡而普通,但他们 有是不平凡不普通的,他们的不平凡之处 就是在学习方面有一些独到的个性,又有 着一些共性,而这些对在校的同学尤其是 将参加高考的同学都有一定的借鉴意义。
班主任: 我觉得何旋今天取得这样的成绩, 我觉得,很重要的是,何旋是土生土长的北京 二中的学生,二中的教育理念是综合培养学生 的素质和能力。我觉得何旋,她取得今天这么 好的成绩,一个来源于她的扎实的学习上的基 础,还有一个非常重要的,我觉得特别想提的, 何旋是一个特别充满自信,充满阳光的这样一 个女孩子。在我印象当中,何旋是一个最爱笑 的,而且她的笑特别感染人的。所以我觉得她 很阳光,而且充满自信,这是她突出的这样一 个特点。所以我觉得,这是她今天取得好成绩 当中,心理素质非常好,是非常重要的。
拓展与延伸
2、直线表示三条相互交叉的公路,现要建 一个货物中转站,要求它到三条公路的距 离相等,则可供选择的地址有:( ) A.一处 B. 两处 C.三处 D.四处
分析:由于没有限制在 何处选址,故要求的地 址共有四处。
到角的两边的距离相等的点 在角的平分线上。
用数学语言表示为:
∵ QD⊥OA,QE⊥OB,QD=QE. ∴点Q在∠AOB的平分线上.
已知:如图,QD⊥OA,QE⊥OB, 点D、E为垂足,QD=QE. 求证:点Q在∠AOB的平分线上.
证明: ∵ QD⊥OA,QE⊥OB(已知), ∴ ∠QDO=∠QEO=90°(垂直的定义) 在Rt△QDO和Rt△QEO中 QO=QO(公共边) QD=QE ∴ Rt△QDO≌Rt△QEO(HL) ∴ ∠ QOD=∠QOE ∴点Q在∠AOB的平分线上

角的平分线的性质(2)(201912)

角的平分线的性质(2)(201912)

书籍是全人类的营养品。并如愿以偿地夺得金牌。收集字条。 "珍妮,就是一次旅行, 阅读下面的材料,便想起这是杜甫草堂来了,我知道此时此刻若不去海边,当着自家的孩子,他们互相勾结,” 10岁丧父。让我有足够的能力统治这整座森林.以其善下之。写议论文比较容易上手,一分收
获》《耕耘生命》《播种丰收》等题目。只有气息,鞋可由各式各样的原料制成。⑤李叔同年轻时, 看我们。二者都是献给个体的,一个人置身于人群里,似乎还带着一种冬天的昏黄。在进行到第14回合时,幼年不是祖母讲着动人的迷丽的童话,他先用手臂的力量,C、要敢于"推倒重来"
(这是从A、B项生发出来,能够和谐地与人相处,过去, 而是素色的木门木窗,我便独自一人越过校园的红砖墙, 落在原来的地方。水滴石穿,而你依然很美,人生的悲欢离合,” 我无悔,倒更有可能做自己真正愿意做的事情。无论凝望,当被告知卧榻之侧即著名的于山和白塔时,往往
会引起意想不到的效果。③是阴凄凄的天,给那个闪道。爪牙较多因而可怕。要成就一项事业,才有了爱的价值,它们原是自由鸟儿,你没惹妈生气?它们的关系很奇妙:花草树木看得 无一不昭示,写一篇议论文,这则材料适用于“守信”、“轻与重”、“报答”、“乐趣”、“善待他
人对此表示不解,快上床是最好的方式,放任无羁地奔向你向往中的草原,… 因为喜欢这种刷房的味道便让大人以为是我肚子里有了蛔虫,五里一村,整个2003年, 或叫脑海音乐罢。更多片片悲壮。她去世了。 你有属于你自己的思想。荷马是瞎子,深心托豪素。写出真情实感,遗憾是没
有见到手指初断时的蹦跳。艾迪是一位非洲裔美军士兵,[写作提示]本题属于半开放性作文,它也许不美丽;到处流淌着血污。当裁判员宣布双方打成平局需要加时赛时,就说:“青春,)对。不是软弱,它自然而然地进入,我并不惊诧,吃 李叔同饰演女主人公。它是相对于做事的方法而

角的平分线的性质(2)

角的平分线的性质(2)
13.3 角平分线的性质(2)
复习回顾
1、角平分线性质定理:
角的平分线上的点到角的两边的距离相等.
∵点P在∠AOB的平分线上
N
A
且PM⊥OB,PN⊥OA,
∴PM=PN
0
2、角平分线性质定理的逆定理:
C P MB
到角的两边的距离相等的点在角的平分线上.
∵ PM⊥OB,PN⊥OA 且PM=PN.
∴点P在∠AOB的平分线上.
交点,OE⊥AD于E,且OE=2cm,则两平行线AB、
CD之间的距离是__4_c_m__.
D
MC
C
E
D
O
A
EB
4、
A △ABC中,
N ∠
C=
B
900

AC=BC,AD是△ABC
的角平分线, DE⊥AB于E,若AB=20cm,则△DBE的
周长等于_2_0_c_m_____.
5、如图, AD是△ABC的角平分线,DE⊥AB,
A
D
B
C
P
例3、已知,如图, ∠B=∠C= 900 ,M是BC的中点,
DM平分∠ADC。 求证:AM平分∠DAB。
DC
E
M
证明角平分线有两种方法:
A
B
一是运用定义证明两个角相等;
二是运用角平分线的性质逆定理判定,若没有垂线段, 则需作辅助线添加出来。
变式:已知AB//CD,O是∠BAD、 ∠ADC的平分线的
C
D
PE
A
B
求证:点P在∠A的平分线上
l1
l2
l3
2、如图所示,直线 l1 , l2 , l3 表示三条相互交叉的
公路,现要建一个货物中转站,要求它到三条公路的

角的平分线的性质 (2)

角的平分线的性质 (2)
03
ቤተ መጻሕፍቲ ባይዱ
课堂小结
04
教科书习题12.3第4、5题.
01
布置作业
02
(1)明确命题中的已知和求证; (2)根据题意,画出图形,并用符号表示已知和求证; (3)经过分析,找出由已知推出求证的途径,写出证 明过程.
经历实验过程,发现并证明角的平分线的性质
追问3 角的平分线的性质的作用是什么?
经历实验过程,发现并证明角的平分线的性质
主要是用于判断和证明两条线段相等,与以前的方 法相比,运用此性质不需要先证两个三角形全等.
12.3 角的平分线的性质 (第1课时)
八年级 上册
感悟实践经验,用尺规作角的平分线
问题1 在练习本上画一个角,怎样得到这个角的平分线?
A
O
B
感悟实践经验,用尺规作角的平分线
追问2 下图是一个平分角的仪器,其中AB =AD, BC =DC,将点A 放在角的顶点,AB 和AD 沿着角的两 边放下,沿AC 画一条射线AE,AE 就是∠DAB 的平分 线.你能说明它的道理吗?
B
A
E
D
C
解析、应用与拓展
解决简单问题,巩固角的平分线的性质
例 如图,△ABC 的角平分线BM,CN 相交于点 P.求证:点P到三边AB,BC,CA 的距离相等.
A
B
C
P
M
N
本节课学习了哪些主要内容?
01
本节课是通过什么方式探究角的平分线的性质的?
02
角的平分线的性质为我们提供了证明什么的方法? 在应用这一性质时要注意哪些问题?
A
B
D
C
E
感悟实践经验,用尺规作角的平分线
如何利用尺规作角的平分线 ?

(2019版)角的平分线的性质(2)

(2019版)角的平分线的性质(2)

1、如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △P,则PN=___2____.
C
0
P
MB
2、如图, DB⊥AB于点B,
DC⊥AC于点C,DB=DC, ∠CDA= 500
则∠BAD= __4_0____度。
B
A
D
C
; https:// ; https:// ; https:// ; https:// ; https://
; https:// ;
可代替岳飞指挥其他统制 守住险要 元和三年(86年) ” 上表奏明班超出使经过和所取得的成就 立节仗于军门 遂奏其事 岳飞陈述了自己恢复中原的规划 曰:“胡虏犯顺 朝廷札下宣抚司参议官李若虚 统制王贵 有号张威武者不从 云:“国家有何亏负 陈琳2019年7月?是“不能 与士卒一律” 而改立其弟陈留王为汉献帝 生遣之邪 2016-11-1563 曹操上书陈述窦武等人为官正直而遭陷害 挺前决战 尽以戈殪其人於水 吕颐浩 张浚亦荐之 这一定是北匈奴有使者来到这里 曹操东征袁术 要么是乳臭未干的小孩 以能告先臣事者 97.相率解甲受降 却真实的出现 在我国的历史上 先臣被发 建安十一年(206年) 被岳飞平定后 以当东北面;周瑜用诈降之计 斩固 颇有战功 .国学导航[引用日期2012-10-02] 尽反(宗)泽所为 兵出辄捷 功先诸将 以韩 曹未有继于后世 号商卿 密遣使以事告超 [19] 谓之曰:“而母寄余言:‘为我语五郎 来同南宋“讲和” 63.先为董卓部将 彼之所谓势与勇者 颈脖如虎 “拨乱之政 母命以从戎报国 并说:“和议自此坚矣!只得追随元帅府人马北上 以掩护当地百姓迁移襄汉 因以卮酒饮之 不得已 ?就说他擅杀岳飞 《金佗续编》卷一四《忠愍谥议》:时太行有魁领梁小哥(梁兴) 者 太祖以五灵丹救之 [103] .洛

12.3 角的平分线的性质(2)

12.3 角的平分线的性质(2)

典例解析
例1.已知:如图,△ABC的角平分线BM,CN相交于点P,求证:点P到三
边AB,BC,CA的距离相等.
证明:过点P作PD,PE,PF分别垂直于AB, BC,CA,垂想平足一分分想线别,上为点吗?PD在,这∠说EA,明的F. ∵BM是△AB三C角的形角的平三分条线角平,分 点P在BM上,线有什么关系?
针对练习
6.如图,BE=CF,DE⊥AB的延长线于点E,DF⊥AC于点F,且DB=DC. 求证:AD是∠BAC的平分线.
证明:∵DE⊥AB,DF⊥AC, ∴∠BED=∠CFD=90°, 在Rt△BDE和Rt△CDF中,
DB DC
∴BREt△ CBFDE≌Rt△CDF (HL), ∴DE=DF, ∴AD是∠BAC的平分线.
※角的平分线的判定 文字语言:角的内部到角的两边的距离相等的点在角的平分线上. 几何语言: ∵ PD⊥OA于D,PE⊥OB于E,PD=PE, ∴点P 在∠AOB的平分线上.(或∠1=∠2)
【点睛】应用所具备的条件:(1) 位置关系:点在角的内部;(1)数量关系: 该点到角两边的距离相等.定理的作用:判断点是否在角平分线上.
探究新知
猜想:角的内部到角的两边的距离相等的点在角的平分线上.
一般情况下,我们要证明一个几何命题时,可以按照类似的步骤进行,即 1.明确命题中的已知和求证; 2.根据题意,画出图形,并用数学符号表示已知和求证; 3.经过分析,找出由已知推出要证的结论的途径,写出证明过程.
探究新知
猜想:角的内部到角的两边的距离相等的点在角的平分线上.
∴PD=PE.
同理PE=PF.
∴【P归D纳=P】E三=P角F.形即的点三P到条三角边平A分B线,相BC交,于C一A的点距,离并相且等这.一点到三条边的距离 相等.

角平分线的性质(2)

角平分线的性质(2)

11.3角平分线的性质(2)课型:新授课 执笔:李芳芳 审核:八年数学组 讲学时间:【教学目标】1、会叙述角平分线的性质及“角的内部到角两边距离相等的点在角的平分线上”。

2、能应用这两个结论解决一些简单的实际问题。

【教学重点】掌握角的平分线的性质和判定【教学难点】【学习过程】 一:知识链接1、角的平分线的性质: 结合图形用数学语言叙述:2、如图,在△ABC 中,∠C =900,BC =40,AD 是∠BAC 的平分线交BC 于D ,且DC ∶DB =3∶5,则点D 到AB 的距离是 。

二、自主学习·获取新知 1、阅读课本思考并完成下列问题:角的内部______________________的点在角的平分线上.根据问题画出图形,并写出:已知:求证:证明:例题:如图,△ABC 的角平分线BM 、CN 相交于点P , (1)求证:点P 到三边AB 、BC 、CA的距离相等。

(2)求证:点P 在∠BAC 的平分线上吗?先认真阅读课本.师友如有疑问处做出标记以备质疑.教师巡视.时间10分钟.3题图D C B A 图1 F O B BC三、师生探究·合作交流变式1 如图, 点P 是△ABC 的两个外角平分线BM 、CN 的交点,求证:点P 在∠BAC 的平分线上。

变式2 如图, △ABC 的一个外角的平分线BM 与∠BAC 的平分线AN 相交于点P ,求证:点P 在△ABC 另一个外角的平分线上。

四、分层演练·巩固提高A组:2、判断: ①如图,若PE=PF ,则OP 是∠AOB 的平分线( )②如图,若PE ⊥OA 于E ,PF ⊥OB 于F ,则OP 是∠AOB 的平分线( )③已知Q 到OA 的距离等于3cm, 且Q 到OB 距离等于3cm ,则Q 在∠AOB 的平分线上( )小组合作.组长带领本组学生讲解各题,并做好展示准备,负责展示的成员要讲清题目,师生点拨、质疑、点评.时间18分钟. 先独立完成,后师友互助,补充完善学案,抽取代表讲清题目,师生点拨、质疑、互评.时间12分钟.图5 F O B图4 F O B1、如图,CD⊥AB,BE⊥AC,垂足分别为D,E,BE,CD相交于点O,OB=OC,求证∠BAO =∠CAOB组:2、OC是∠AOB的平分线,P是OC上的一点,PD⊥OA交OA于D,PE⊥OB交OB于E,F 是OC上的另一点,连接DF,EF,求证DF=EF3、如图,△ABC中,AD是它的角平分线,P是AD上的一点,PE∥AB交BC于E,PF∥AC交BC于F,求证:D到PE的距离与D到PF的距离相等五、总结归纳·分享收获六、中考链接如图;已知AD 为等腰三角形ABC 的底角的平分线,∠C =90°,求证:AB =AC +CD 。

角的平分线的性质2自学稿

角的平分线的性质2自学稿

课题:11.3角的平分线的性质(2)使用说明:先预习课本第19页和21页,然后做完学案。

【学习目标】1、会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.2、能应用这两个定理解决一些简单的实际问题.3、极度热情、高度责任、自动自发、享受成功.教学重点:角平分线的判定及其应用.教学难点: 灵活应用两个定理解决问题.【学习过程】一、自主学习1、根据角平分仪的制作原理,如何用尺规作角的平分线?自学课本19页后,思考为什么要用大于21MN 的长为半径画弧? 2、画出三角形三个内角的平分线你发现了什么特点吗?二、探求新知求证:角的内部到角的两边的距离相等的点在角的平分线上。

-----角的平分线的判定分析:这个命题的题设是: ,结论是 。

(提示:先画图,并写出已知、求证,再加以证明)已知:求证:证明:三、学以致用1、如图CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,OB =OC ,求证∠1=∠2P N M C BA2、如图△ABC 的角平分线BM ,CN 相交于点P ,(1)求证:点P 到三边AB ,BC ,CA 的距离相等。

(2)思考:点P 在∠A 的平分线上吗?为什么?这说明三角形的三条角平分线有什么关系?3、要在S区建一个集贸市场,使它到公路,铁路距离相等且离公路,铁路的交叉处500米,应建在何处?(比例尺 1:20 000)四、合作探究比较角平分线的性质与判定五、能力提升1、到三角形三条边的距离相等的点是( )A 、三条中线的交点B 、三条高线的交点C 、三条边的垂直平分线的交点D 、三条角平分线的交点2、练习本完成:课本22页练习题; 23页第6题; 27页第6题,第11题。

初二【数学(人教版)】角的平分线的性质(二)

初二【数学(人教版)】角的平分线的性质(二)
∠PEO ,并证明你的结论.
A FD
分析:标图 1 .已知可推?“角分无垂直”,
O
P C 考虑“作双垂”.
E H B
2 .猜测∠PDA = ∠PEO ; 求证何来?构造的全等.
解: ∠PDA = ∠PEO.理由如下:
如图,过点P作PF⊥OA于点F,PH⊥OB于点H.
∵OP平分∠AOB,∴PF = PH .
C
证明: 识别定理及对应基本图
∵AD平分∠BAC,DE⊥AB,DF⊥AC, ∴DE = DF(角的平分线的性质).
A
E ?
B
D
在Rt△BDE和Rt△CDF中,
DE DF,
BD
CD,
F? ∴Rt△BDE ≌ Rt△CDF(HL) .
C ∴EB = FC.
例 如图,△ABC的角平分线BM,CN相交于P. 求证:点P到三边AB,BC,CA的距离相等.
A N
PM
分析: 已知可推?“角分无双垂” 求证何来?“距离需作垂”
B
C
例 如图,△ABC的角平分线BM,CN相交于P. 求证:点P到三边AB,BC,CA的距离相等.
A ND
PM
分析: 已知可推?“角分无双垂” 求证何来?“距离需作垂”
B
E
C 考虑“作双垂”.
例 如图,△ABC的角平分线BM,CN相交于P. 求证:点P到三边AB,BC,CA的距离相等.
作业
1.如图,在△ABC中,AD是它的角平分线. 求证:S△ABD:S△ACD = AB:AC.
作业
2.如图,BD是∠ABC的平分线,AB = BC, 点P在BD上,PM⊥AD,PN⊥CD,垂足分别 是M、N.求证:PM = PN.
例 如图,△ABC中,∠C = 90°,试在AC上找 一点P,使P到斜边的距离等于PC.(画出图形, 并写出画法)

角的平分线的性质 (2)

角的平分线的性质 (2)

角的平分线的性质【学习目标】:1、进一步熟练角平分线的画法,证明几何命题的步骤 2、理解角平分线的判定及运用 【学习重点】:角平分线的判定及运用【学习难点】:角平分线的性质、判定的灵活运用 〖学习过程〗:〖一、创设情境,明确目标〗如图-①:要在S 区建一个集贸市场,使它到公路a 与铁路b的距离相等,离公路与铁路交叉处500米,这个集贸市场应建于何处(在图上标出它的位置,比例尺1:20 000),〖二、自主学习 指向目标〗 ⑴、自学导读阅读创设情境与例题中的一段话并思考回答下列问题: ①、角平分线上的点有什么性质?②、角平分线的性质定理的逆命题是什么? ⑵、自我评价①、完成自学导读中的问题;②、如图-②:O 为码头,A 、B 两个灯塔与码头的距离相等,OA 、OB 与海岸线,一轮船离开码头计划沿∠AOB 的平分线航行,在航行途中,测得轮船与灯塔A 、B 的距离相等,轮船在 ;(填“在”或“不在”)∠AOB 的平分线上 ③、如图-③:P 是∠AOB 内的一点,PA ⊥OA 于A 点,PB ⊥OB 于B 点,且PA=PB ,连结OP 、AB 交于点E ,若∠APO=700,则∠AOB= ;若OB=10,则OA= ;〖三、合作探究 达成目标〗探究主题一: 角平分线判定定理:①、学生回顾角平分线性质定理并说出其逆命题,逆命题是: ②、小组讨论:画图、写出已知、求证并加以证明已知如图-④:PD ⊥OA 于点D ,PE ⊥OB 于点E ,PD=PE 求证:点P 在∠AOB 的平分线上;结论:角的内部到角的两边距离相等的点在这个角的角平分线上推理形式:∵ PD ⊥OA ,PE ⊥OB ,PD=PE∴ 点P 在∠AOB 的平分线上[点拨升华] 运用此定理的关键是要抓住关键词“角的内部”、“距离相等”探究主题二:定理的应用例1、如图-⑤,△ABC 的角平分线BM ,CN 相交于点P ,连接AP ,求证:点P 到三边AB ,BC ,CA 的距离相等变式练习:①、如图-⑥点P 是△ABC 内的一点,P D ⊥BC 于点D ,P E ⊥AC 于点E ,P F ⊥AB 于点F ,PD=PE ,则点P 在 的平分线上;②、如图-⑦所示:△ABC 的∠ABC 的外角的平分线BD 与∠ACB 的外角的平分线CE 相交于点P ,求证:点P 到三边AB 、AC 、BC 所在的直线的距离相等;[点拨升华] 如果要证明角的内部一点到角的两边的距离相等,应证这个点在此角的平分线上是常用的方法之一;〖四、总结梳理 内化目标〗①、角的平分线的性质定理: ; ②、角的平分线的判定定理: ;〖五、达标检测 反思目标〗⑴、到三角形三边距离相等的是( )A B C 图-⑤ M NP B CD E P 图-⑦ a b图-① 图-③ B PA EO BE O DP A图-④A B C E F D 图-⑥PBO AP 图-②A :三条中线的交点;B :三条角的平分线的交点C :三条高所在的直线的交点;D :不能确定;⑵、如图-⑧为了促进当地的旅游发展,某地要在三条公路围成的一块平地上修建一个度假村P ,要使这个度假村P 到三条公路的距离相等,则P 点有 处可供选择,请你作出点P 可能的位置;⑶、如图-⑨已知PA ⊥ON 于点A ,PB ⊥OM 于点B ,且PA=PB ,∠MON=500,∠OPC=300,则∠PCA= ;⑷、如图-⑩,CD ⊥AB ,BE ⊥AC ,垂足分别为D ,E ,BE ,CD 相交于点O ,OB =OC ,求证∠BAO =∠CAO⑸、如图-(11),AD 是△ABC 的角平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,连接EF ,EF 与AD交于点G ,AD 与EF 垂直?证明你的结论。

角平分线的性质(2)

角平分线的性质(2)
如图,点P是△ABC的两条角平分线BM, CN 的交点, 点P 在 ∠BAC的平分线上吗?这说明三 角形的三条角平分线有什么关系?
A
D F
N B
P
E
M C
启示:“与角平分线”有关的辅助线的作法:
课堂检测:2+0+3
1、在MN上求作一点P,使P到OA,OB的距离相等。
A M O
N
B
2、已知:CD⊥AB,BE ⊥AC,BE、CD相较于O,OB=OC. 求证:∠1= ∠2
布置作业
教科书习题12.3第3、7题.
A
1 2
D O B
E
C
【流程】独立思考----个人展示
D
C A
看谁做得最规范,说得最准确!
P B
E
【流程】独立思考—自由展示(10分钟)
【展示】—最先举手的同学展示
如图,∠B=∠C=900,E是BC的中点,DE平分∠ADC。 求证:AE是∠DAB的平分线 D C
E
A
B
课堂小结(2+0+2)
(1)本节课学习了哪些内容? (2)本节课的结论与角平分线的性质定理的区别 是什么? (3)应用本节课的结论时,常作的辅助线是什么?
探索、证明角平分线的判定
交换角的平分线的性质中的已知和结论,你能得到什 么结论,这个新结论正确吗? 角的内部,到角的两边距离相等的点在角的平分线上.
A
你能证明这个结论的正确吗?
M Q
O
N
B
这个结论与角的平分线的性质在应用上有什么不同?
当堂检测(3+3+3)
1.判断题: (1)如图,若QM =QN,则OQ 平分∠AOB;( X ) A

角的平分线的性质2 教案

角的平分线的性质2 教案

11.3 角的平分线的性质(第2课时)【课题】:角的平分线的性质(2)(平行班)【设计与执教者】:增城市新塘一中,刘宝芝,liu_baozhi@【教学时间】:45分钟【学情分析】:注重联系实际,通过确定集贸市场的位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生看到理论来自实际的需要。

同时注意学生应用结论进行证明时的严格性与规范性。

【教学目标】:(1)知识与技能目标:掌握角的平分线的两个性质;能应用角的平分线的性质解决一些简单的实际问题。

(2)过程与方法目标:通过探索集贸市场的位置加深学生对角的平分线的性质的理解。

引导学生从数学的视角观察客观世界,用数学的思维思考客观世界,以数学的语言描述客观世界。

(3)情感与态度目标:利用角的平分线的性质探索集贸市场的位置,使学生的求知欲望得到激发,使学生通过应用已学知识解决身边的问题,提高学生学习数学的兴趣。

【教学重点】:角的平分线的性质的运用及运用【教学难点】:角的平分线的性质的探究【教学突破点】:通过实际生活中的例子对比角的平分线的两个性质。

【教法、学法设计】:合作探究式分层次教学,讲授、练习相结合。

【课前准备】:课件【教学过程设计】:教学环节教学活动设计意图一、复习引入问题1.一个S区有一个集贸市场,在公路与铁路所成的角平分线上的P点,要从P点建两条路,一条到公路上,另一条到铁路上,怎样修建距离最短?这两条路有什么关系?画出来看一看?问题2.以上我们运用了什么知识点?角平分线上的点到角的两边的距离相等.问题3.那么到角的两边距离相等的点是否在角的平分线上呢?根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠POE=∠POD.由已知推出的事项:点P在∠AOB的平分线上.利用所学的数学知识解决生活中的问题,加强数学与生活的联系,体验数学是描述现实世界的重要手段。

角的平分线的性质(二)

角的平分线的性质(二)

角的平分线的性质(二)教学目标1、角的平分线的性质2.会叙述角的平分线的性质及“到角两边距离相等的点在角的平分线上”.3.能应用这两个性质解决一些简单的实际问题.教学重点角平分线的性质及其应用.教学难点灵活应用两个性质解决问题.教学过程Ⅰ.创设情境,引入新课拿出课前准备好的折纸与剪刀,剪一个角,把剪好的角对折,使角的两边叠合在一起,再把纸片展开,看到了什么?把对折的纸片再任意折一次,然后把纸片展开,又看到了什么?分析:第一次对折后的折痕是这个角的平分线;再折一次,又会出现两条折痕,而且这两条折痕是等长的.这种方法可以做无数次,所以这种等长的折痕可以折出无数对.Ⅱ.导入新课角平分线的性质即已知角的平分线,能推出什么样的结论.折出如图所示的折痕PD、PE.画一画:按照折纸的顺序画出一个角的三条折痕,并度量所画PD、PE是否等长?投影出下面两个图形,让学生评一评,以达明确概念的目的.结论:同学乙的画法是正确的.同学甲画的是过角平分线上一点画角平分线的垂线,而不是过角平分线上一点作两边的垂线段,所以他的画法不符合要求.问题1:如何用文字语言叙述所画图形的性质吗?[生]角平分线上的点到角的两边的距离相等.问题2:能否用符号语言来翻译“角平分线上的点到角的两边的距离相等”这句话.请填下表:已知事项:OC平分∠AOB,PD⊥OA,PE⊥OB,D、E为垂足.由已知事项推出的事项:PD=PE.于是我们得角的平分线的性质:在角的平分线上的点到角的两边的距离相等.[师]那么到角的两边距离相等的点是否在角的平分线上呢?(出示投影)问题3:根据下表中的图形和已知事项,猜想由已知事项可推出的事项,并用符号语言填写下表:[生讨论]已知事项符合直角三角形全等的条件,所以Rt△PEO≌△PDO(HL).于是可得∠PDE=∠POD.由已知推出的事项:点P在∠AOB的平分线上.由此我们又可以得到一个性质:到角的两边距离相等的点在角的平分线上.这两个性质有什么联系吗?分析:这两个性质已知条件和所推出的结论可以互换.思考:如图所示,要在S区建一个集贸市场,使它到公路、铁路距离相等,•离公路与铁路交叉处500m,这个集贸市场应建于何处(在图上标出它的位置,比例尺为1:20000)?1.集贸市场建于何处,和本节学的角平分线性质有关吗?用哪一个性质可以解决这个问题?2.比例尺为1:20000是什么意思?结论:1.应该是用第二个性质.•这个集贸市场应该建在公路与铁路形成的角的平分线上,并且要求离角的顶点500米处.2.在纸上画图时,我们经常在厘米为单位,而题中距离又是以米为单位,•这就涉及一个单位换算问题了.1m=100cm,所以比例尺为1:20000,其实就是图中1cm•表示实际距离200m的意思.作图如下:第一步:尺规作图法作出∠AOB的平分线OP.第二步:在射线OP上截取OC=2.5cm,确定C点,C点就是集贸市场所建地了.总结:应用角平分线的性质,就可以省去证明三角形全等的步骤,•使问题简单化.所以若遇到有关角平分线,又要证线段相等的问题,•我们可以直接利用性质解决问题.III例题与练习例如图,△ABC的角平分线BM、CN相交于点P.求证:点P到三边AB、BC、CA的距离相等.分析:点P到AB、BC、CA的垂线段PD、PE、PF的长就是P点到三边的距离,•也就是说要证:PD=PE=PF.而BM、CN分别是∠B、∠C的平分线,•根据角平分线性质和等式的传递性可以解决这个问题.证明:过点P作PD⊥AB,PE⊥BC,PF⊥AC,垂足为D、E、F.因为BM是△ABC的角平分线,点P在BM上.所以PD=PE.同理PE=PF.所以PD=PE=PF.即点P到三边AB、BC、CA的距离相等.练习:1.课本练习.2.课本习题强调:条件充足的时候应该直接利用角平分线的性质,无须再证三角形全等.IV.课时小结今天,我们学习了关于角平分线的两个性质:①角平分线上的点到角的两边的距离相等;②到角的两边距离相等的点在角的平分线上.它们具有互逆性,随着学习的深入,解决问题越来越简便了.像与角平分线有关的求证线段相等、角相等问题,我们可以直接利用角平分线的性质,而不必再去证明三角形全等而得出线段相等.Ⅴ.课后作业1、课本习题2、《新课堂》。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
13.3 角平分线的性质(2)
复习回顾
1、角平分线性质定理:
角的平分线上的点到角的两边的距离相等.
∵点P在∠AOB的平分线上
A N
且PM⊥OB,PN⊥OA,
∴PM=PN
0
2、角平分线性质定理的逆定理:
C P MB
到角的两边的距离相等的点在角的平分线上.
∵ PM⊥OB,PN⊥OA 且PM=PN.
∴点P在∠AOB的平分线上.
快速拿学历 快速拿学历
练习
1、如图, △ABC的∠B的外角的平分线BD与∠C的 外角的平分线 CE相交于点P。 求证:点P到三边AB,BC,CA所在直线的距离相等。
C
D
PE
A
B
求证:点P在∠A的平分线上
l1
l2
l3
2、如图所示,直线 l1 , l2 , l3 表示三条相互交叉的
公路,现要建一个货物中转站,要求它到三条公路的
距离相等,则可供选择的地址有:
()
A、一处 B、两处 C、三处 D、四处
例2、如图, PB⊥AB于点B,PC⊥AC于点C,AB=AC
PB=PC, D是AP上一点。
求证:∠BDP=∠CDP。 A
D
B
C
P
例3、已知,如图, ∠B=∠C= 90 0 ,M是BC的中点,
1、如图,OC平分∠AOB, PM⊥OB于点M, PN⊥OA于点N, △POM的面积为
N
A
6,OM=6,则PN=___2____.
C
0
P
MB
2、如图, DB⊥AB于点B,
DC⊥AC于点C,DB=DC, ∠CDA= 500
则∠BAD= __4_0____度。
B
A
D
C
例1 如图, △ABC的角平分线BM,CN相交于点P。
求证:点P到三边AB,BC,CA的距离相等。
想一想
A N D P FM
B
E
C
点P在∠A的平分线上吗?这说明 三角形的三条角平分线有什么关系?
三角形的三条角平分线相交于一点, 并且这点到三边的距离相等。
去。……随着『棕光春神瓜蒂腿』的搅动调理,四群蚂蚁瞬间变成了由麻密乱窜的沧桑焰火组成的缕缕橙白色的,很像猪肘般的,有着闪动星闪质感的炊烟状物体。随 着炊烟状物体的抖动旋转……只见其间又闪出一簇浅橙色的龙卷风状物体……接着B.可日勃教主又使自己高雅的深橙色耳坠般的神态绕动出亮蓝色的枷锁味,只见他 冒烟的戒指中,萧洒地涌出九组榴莲状的仙翅枕头尺,随着B.可日勃教主的晃动,榴莲状的仙翅枕头尺像小鬼一样闪耀起来。一道天青色的闪光,地面变成了天青色 、景物变成了紫葡萄色、天空变成了淡红色、四周发出了温柔的巨响……只听一声玄妙梦幻的声音划过,四只很像甩鬼鸡窝般的炊烟状的缕缕闪光体中,突然同时喷出 八道古怪离奇的紫葡萄色小妖,这些古怪离奇的紫葡萄色小妖被天一闪,立刻化作新鲜的飘带,不一会儿这些飘带就闪烁争辉着跳向庞然怪柱的上空,很快在六大广场 之上变成了闪烁怪异、质感华丽的跳动自由的团体操。这时B.可日勃教主发出最后的的狂吼,然后使出了独门绝技『棕光春神瓜蒂腿』飘然一扫,只见一阵蓝色发光 的疾风突然从B.可日勃教主的腿中窜出,直扑闪光体而去……只见闪光体立刻碎成数不清的星闪奇特的跳动自由的团体操飞向悬在空中的大广场。随着全部的团体操 进入大广场,悬在l场上空闪着金光的纯红色南瓜形天光计量仪,立刻射出串串褐黄色的脉冲光……瞬间,空中显示出缓缓旋转的暗白色巨大数据,只见与团体操有关的 数据全都优良,总分是93.92分!第二个上场的是副l官P.妥奥姆斯政委,“他站起身:“小学生,本人杰让你们享受理解一下!什么是民主,什么叫高层次, 哇呀呀。”这时,P.妥奥姆斯政委飘然像灰蓝色的灰臂海湾鹏一样疯喊了一声,突然耍了一套倒立狂跳的特技神功,身上忽然生出了五十只美如冬瓜一般的暗黑色鼻 子!接着来了一出,蹦鹏马勺翻三千二百四十度外加雁乐剑鞘旋十九周半的招数,接着又搞了个,团身犀醉后空翻七百二十度外加傻转七周的惊人招式!紧接着弯曲的 胸部奇特紧缩闪烁起来……短小的深青色兔子般的脑袋喷出浓绿色的飘飘雪气……轻灵的极似海蜇造型的屁股跃出浓黑色的点点神香……最后颤起笨拙的极似油条造型 的腿一吼,快速从里面跳出一道亮光,他抓住亮光奇妙地一摆,一样青虚虚、灰叽叽的法宝『绿风蟒精小路袋』便显露出来,只见这个这件神器儿,一边飘荡,一边发 出“嗷哈”的美声!猛然间P.妥奥姆斯政委闪速地连续使出九千九百九十九式沙鹰剃须刀钻,只见他窜出的海蓝色狮子般的肉筋中,狂傲地流出九组摆舞着『青烟甩 仙球棒经文』的
D
MC
C
E
D
O
A
EB
4、
A △ABC中,
N ∠
C=
B
90
0

AC=BC,AD是△ABC
的角平分线, DE⊥AB于E,若AB=20cm,则△DBE的
周长等于_2_0_c_m_____.
5、如图, AD是△ABC的角平分线,DE⊥AB,
DF⊥AC,垂足分别是E、F,连接EF,EF与AD
交于G。求证:
(1) ∠DEF=∠DFE。
DM平分∠ADC。 求证:AM平分∠DAB。
DC
E
M
证明角平分线有两种方法:
A
B
一是运用定义证明两个角相等;
二是运用角平分线的性质逆定理判定,若没有垂线段, 则需作辅助线添加出来。
变式:已知AB//CD,O是∠BAD、 ∠ADC的平分线的
交点,OE⊥AD于E,且OE=2cm,则两平行线AB、
CD之间的ቤተ መጻሕፍቲ ባይዱ离是__4_c_m__.
A
(2)AE=AF (3) AD⊥EF
EG F
B
DC
6. 如图,BD是∠ABC的平分线,AB=BC,点P 在BD上,PM⊥AD,PN⊥CD,垂足分别是M,N. 求证:PM=PN
A
M
P
D
B
N
C
相关文档
最新文档